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Abstract
Previous studies have shown that when there are statistical regularities in the items stored in visual working memory, the
responses are biased toward the ensemble average. This statistical-regularity-induced bias could happen in two ways: (1) a target
bias,where the individual memory representations are pulled toward the ensemble average; or (2) a strategic guess, for items that
are not memorized, other information in the ensemble (e.g., another item) is reported as a substitute. Here, these two mechanisms
are distinguished on the basis of a three-part model (target responses + swap responses + random guesses; e.g., Bays, Catalao, &
Husain, 2009, Journal of Vision, 9, 7). The strategic guess is operationalized as swap responses, whereas the target bias is
reflected by a bias parameter in the target responses. This model was applied on 8 data sets (22 observers each). In this model,
contributions of target biases and strategic guesses can be clearly distinguished from each other because they lead to distinctive
patterns in the distribution of responses. In the present results, strategic guesses always contributed substantially to the statistical-
regularity-induced biases, whereas target biases were limited to specific conditions. All in all, the Bayesian inference in visual
working memory is much more limited than what is previously advocated.
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Statistical-regularity-induced bias

The human visual system constantly faces many objects and
processes a large amount of information. However, only a
small subset of this information can be temporarily retained
in the mind. This mechanism—namely, visual working
memory—has been studied extensively by cognitive psychol-
ogists (e.g., Alvarez & Cavanagh, 2004; Huang, 2010b; Olson

& Jiang, 2002; Pashler, 1988; Phillips, 1974; Wheeler &
Treisman, 2002; Xu, 2002; Zhang & Luck, 2008).

The amount of information in the visual world is often very
large and goes well beyond the capacity limit of visual work-
ing memory. However, it is also often highly structured and
therefore contains a lot of redundant information that can po-
tentially be exploited. For example, the sizes of the apples
hanging on a tree may be fairly similar to each other, so the
“average size” of all apples gives a sometimes imprecise, but
nevertheless informative and efficient, description of the sizes
of individual apples. The studies on visual statistical proper-
ties (e.g., Alvarez, 2011; Chong & Treisman, 2003; Huang,
2015b) have shown that human observers can indeed effi-
ciently extract the statistical properties of a set of objects,
and more specifically have shown that these statistical regu-
larities can be exploited to memorize more stimulus items
(e.g., Brady, Konkle, & Alvarez, 2009; see also Sims, 2016;
Sims, Jacobs, & Knill, 2012; but see Huang & Awh, 2018;
Ngiam, Brissenden, & Awh, 2019).

Many previous studies have reported statistical-regularity-
induced biases and attributed these biases to Bayesian infer-
ence (e.g., see Brady & Alvarez, 2011; Huang & Sekuler,
2010; Orhan & Jacobs, 2013; Son, Oh, Kang, & Chong,
2019). These studies found that the visual working memory
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for an individual item is sometimes biased toward the “ensem-
ble average” of the group the item belongs to. For example,
Brady and Alvarez (2011) found that if an item belongs to a
group whose members are generally larger than the item itself,
then the report of the memorized size of the item is systemat-
ically biased toward being larger. These studies generally sug-
gested that there are Bayesian inferences across different
levels of representations.

Target bias versus strategic guesses

The abovementioned studies (e.g., Brady & Alvarez, 2011;
Orhan & Jacobs, 2013) used the notion of Bayesian inference
to account for the bias in the mnemonic representation of
individual items. Briefly speaking, in a Bayesian inference
mechanism, the visual system has a prior assumption about
the distribution of the stimulus value and combines that with
the observed data to produce a posterior distribution, and this
combination introduces systematic bias in mental representa-
tions of the stimulus values. This notion of Bayesian inference
has provided excellent accounts in various cases. For exam-
ple, in the prototype effect (e.g., Bae, Olkkonen, Allred, &
Flombaum, 2015; Huttenlocher, Hedges, & Duncan, 1991),
biases are introduced by combining the prototype (i.e., prior
distribution) and the actual feature value (i.e., data). If the
abovementioned statistical-regularity-induced bias occurs as
a result of Bayesian inference, then that means the individual
features are genuinely memorized in a way that is systemati-
cally biased from the actual values. For example, if someone
attempts to remember the sizes of 10 apples and is tested on a
target apple that is smaller than the average of the set, the
actual memory of the size of this tested apple is larger than it
should be because it is biased toward the average. Hereinafter,
this individual-item-level bias in target-based responses is ad-
dressed as the target bias.

Another possible mechanism is a strategic guess. Perhaps,
an observer fails to remember the feature of a target item, but
can use some strategies to make educated guesses. Generally
speaking, various types of such guessing strategies (e.g., using
a nontarget item as a substitute for the target item, reporting of
the ensemble mean as a substitute of the target) will lead to
“response biases” toward the ensemble mean. Hereinafter,
these will be addressed as the strategic guesses. For a specific
example, if someone attempts to remember the sizes of 10
apples and is tested on a target apple that is smaller than the
average of the set, the observer may very well remember
nothing about this particular target apple at all, but can never-
theless make an educated guess on the basis of what he or she
knows about another apple. Then, on average, this guess
would likely be larger than the actual size of the target apple,
even if there is no individual-item bias in any of the mnemonic

representations. Hereinafter, this swap-based strategic guess is
briefly addressed as the swap.

The target bias and swap are illustrated in Fig. 1. Assuming
an ensemble of six values, target bias refers to the degree of
how individual memory representations are pulled toward the
center of the ensemble. On the other hand, swap responses
could be made as substitutes for target responses, and that
would also pull the responses toward the center of the ensem-
ble. These two mechanisms have one thing in common: In
terms of the mean of the distributions, the “output distribu-
tions” will be biased toward the ensemble mean. But, concep-
tually, they are two very different mechanisms.

Distinguishing between target biases
and strategic guesses

To distinguish between the target bias and the strategic guess,
the present study employs the three-part mixture model (e.g.,
Bays, Catalao, & Husain, 2009; Oberauer, Stoneking,
Wabersich, & Lin, 2017), which was developed on the basis
of Zhang and Luck’s (2008) two-part mixture model. In a
typical trial of these studies, the observers were asked to mem-
orize a set of colors and were then tested on one of them by
choosing a color on a color wheel. In Zhang and Luck (2008),

Fig. 1 Target-based responses and strategic guesses. Observers were
asked to memorize six orientations (or six colors) that were evenly
distributed over a certain range in the orientation space (or color wheel)
and were tested on one of them. Reasonably, the target-based responses
(i.e., responses based on knowledge about individual items) were expect-
ed to be normally distributed, centering on the target feature value plus a
possible bias (green distribution). When observers know nothing about
the target, they might make strategic guesses. For example, they might
report another item from the ensemble that they know is likely to be
similar to the target. Such swap responses were also expected to be nor-
mally distributed, centering on the other items (red distributions). (Color
figure online)
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knowledge-based responses were assumed to be normally dis-
tributed and centered on the target value, whereas random
guesses were assumed to be evenly distributed on the entire
color wheel. Amixture of the two distributions makes a family
of distinctive distribution shapes that allows us to indepen-
dently determine (1) the probability of memorizing an item
and (2) the precision of the mnemonic representation. This
mixture model has been widely applied to study various as-
pects of visual workingmemory (e.g., Hardman, Vergauwe, &
Ricker, 2017; Murray, Nobre, Clark, Cravo, & Stokes, 2013;
Ricker & Hardman, 2017; Zhang & Luck, 2008). Subsequent
studies (e.g., Bays et al., 2009; Oberauer et al., 2017) added
swap responses to Zhang and Luck’s (2008) model and con-
sidered a mixture of three parts.

The present study adopted this three-part model and tried to
independently determine the magnitudes of the target bias and
strategic guess. Specifically, the magnitude of the target bias is
reflected by the bias parameter in the target responses, where-
as the magnitude of the strategic guess is reflected by the
portion of the swaps.

As mentioned above, the swap is a plausible strategy of
making educated guesses. Therefore, it is used as a convenient
operational definition of the strategic guess in the present
three-part model. It should be stated that these two can be
different from each other. On the one hand, as mentioned
above, one can easily imagine other strategies of making ed-
ucated guesses, such as reporting the mean of the perceived
ensemble. On the other hand, there are other potential reasons
for swap responses to occur, such as perceptual binding errors.
The potential implications of this divergence will be elaborat-
ed in the general discussion.

The present study

To summarize, the target biases and the strategic guess (i.e.,
operationalized as swaps) are two ways of using the ensemble
information,1 and they can be distinguished in a three-part
model. Recently, many studies have reported target biases.
Some of these studies (e.g., Brady & Alvarez, 2011; Orhan
& Jacobs, 2013) have considered strategic guess as a contrib-
uting factor and have always concluded that it does not play a
significant role.

Is it generally true that the target bias plays a dominant role,
but the strategic guess plays no role in ensemble-induced bias?
The present study attempted to readdress this question in
broader conditions and in a more effective way. First, the
present study adopted a greater memory load, manipulated

the range of ensemble (i.e., the similarity between members
in an ensemble), and tried both color and orientation stimuli.

Second, the present study used a regular stimuli set which
allows a direct visual analysis of the distribution of responses.
In the present study, the orientations or colors were designed
to be evenly distributed over a certain range in the featural
space. These very regular stimuli were used for two reasons.
First, this very clear-cut regularity will hopefully facilitate the
use of ensemble information in the designed way so that the
statistical-regularity-induced biases will be clearer and more
pronounced. For example, if the ensemble consists of items
that are unevenly distributed in the feature space, then it seems
plausible that sometimes the actual “perceived ensemble” will
deviate from the designed ensemble in some ways (e.g.,
skewed distribution, or forming two clusters) and these will
add ambiguities on the predictions. Second, using regular
stimuli, the predicted distribution of strategic guesses is
known and remains constant from trial to trial (depending on
where the target is in the range of features; see below), thus we
can visually analyze the distribution of responses (see Fig. 4).
This gives a more transparent analysis of the research question
in addition to the statistical indexes.

Third, the present study used circular feature spaces (colors
and orientations), which, when compared with linear feature
spaces (e.g., sizes; see Brady & Alvarez, 2011), allow clearer
interpretation of random guesses. On the one hand, there is a
fairly straightforward way of modeling random guesses in
circular spaces (i.e., uniform distribution in the full range).
On the other hand, in linear spaces, the observer probably will
inevitably consider the “usual range” of the stimuli whenmak-
ing a response. Therefore, when sizes are used, the response
will appear to contain some information even if the observer
knows nothing about the stimuli in a trial. Accordingly, all
responses will be more or less affected, adding ambiguities
on the interpretations of the responses.

In the present study, the observers were asked to memorize
six orientations that were evenly distributed over a certain
range in the orientation space (or six colors that were evenly
distributed over a certain range in the color wheel) and were
tested on one of them (see Fig. 3); their responses were then
analyzed. Reasonably, the target-based responses (i.e., re-
sponses based on knowledge about individual items) were
expected to be normally distributed, centering on the target
feature value plus a possible bias (green distribution in Fig.
1); the swap responses were also expected to be normally
distributed, centering on one of the other items (red
distributions in Fig. 1).

Figure 2 illustrates how the target biases and the swap
differently affect the distribution of responses. The overall
responses (yellow curve) consist of target-based responses
(green curve) and swap responses (red curve; i.e., the
mixture of the red distributions in Fig. 1). In the two top
examples, the target biases manifest as a shift in the average

1 The target bias is clearly a Bayesian inference process. It should be men-
tioned that the strategic guess can also be viewed as a specific type of Bayesian
inference process: There is no information at all in the data, so the posterior
distribution is equal to the prior distribution. This point will be elaborated in
the Discussion.
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of the distribution of target-based responses. In the two right-
side examples, the swap responses manifest as the emergence
of an additional distribution centering on the ensemble aver-
age (i.e., the red curve). These two types of biases could occur
with or without each other.

In Fig. 2, the overall distribution of responses will vary in
two distinctive ways: (a) when there is a greater proportion of
swap responses and (b) when there is a larger target bias.
Specifically, although both will lead to a larger bias toward
the ensemble average in the responses, the former manifests
as a “fat tail” toward the ensemble average, whereas the latter
manifests as a “shift of peak” toward the ensemble average.
Then, both the proportion of swap responses and the magnitude

of target bias can be simultaneously determined by fitting the
experimental results to these predicted distributions.

Method

Participants

A total of 176 participants (university students from the
Chinese University of Hong Kong, average age = 20 years,
111 females), all of whom had a normal or corrected-to-
normal vision, participated in this study. Each was paid
HK$50 for participating.

Participants were divided into eight separate groups (22
each), four groups for four different values of orientation
ranges (75°, 100°, 125°, 150°; see below), and the other four
groups for four different values of color ranges (75°, 100°,
125°, 150°; see below).

All experiments of the present study were carried out in
accordance with approved guidelines. The consent form and
experimental procedures received prior ethical approval from
the research ethics committee of the Chinese University of
Hong Kong. Informed consent was obtained from each
participant.

Apparatus

In this study’s experiment, the participants viewed the display
from a distance of about 60 cm. The participants were asked to
make responses by clicking on a wheel to indicate the mem-
orized orientation (or color) of the target. They were asked to
respond as accurately as possible, but were under no time
pressure (i.e., unspeeded responses).

Stimuli

Sample stimulus displays are shown in Fig. 3. For orienta-
tions, a stimulus display consisted of six isosceles triangles
that were evenly placed around the center (on corners of a
virtual regular hexagon) and 3.3 cm away from the center.
For colors, a stimulus display consisted of six colored disks
that were evenly placed around the center (on corners of a
virtual regular hexagon) and 2.3 cm away from the center.
The orientations of triangles (or colors of disks) were chosen
so that they took six evenly distributed values over a certain
range in the orientation space (or color wheel2). For example,
in a trial, they could be 3°, 23°, 43°, 63°, 83°, and 103°. These
orientations or colors were randomly assigned to the six items
(i.e., locations).

Fig. 2 How the target biases and strategic guesses differently affect the
distribution of responses. The overall responses (yellow curve) consist of
target-based responses (green curve) and strategic guesses (red curve, i.e.,
the mixture of the red distributions in Fig. 1). In the two top examples, the
target biases manifest as a shift in the average of the distribution of target-
based responses. In the two right-side examples, the strategic guesses
manifest as the emergence of an additional distribution (i.e., the red
curve, which is the mixture of the red distributions in Fig. 1). These
two types of biases could certainly occur simultaneously (top-right cor-
ner). Then, the overall distribution of responses will vary in two distinc-
tive ways when (a) there is a greater proportion of strategic guesses and
(b) when there is a larger target bias. Specifically, although both will lead
to a larger bias toward the ensemble average in the responses, the former
manifests as a “fat tail” toward the ensemble average, whereas the latter
manifests as a “shift of peak” toward the ensemble average. Then, both
the proportion of strategic guesses and the magnitude of target bias can be
simultaneously determined by fitting the experimental results to these
predicted distributions. (Color figure online)

2 For colors, these degrees correspond to the degree on a color wheel, such as
the one shown in Fig. 3.
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The range of orientations (or colors) could be 75°, 100°,
125° or 150°. Each of the orientation range value was used in a
separate group of 22 participants. Perceptually, an ensemble
appeared fairly coherent when the orientation (or color) range
was 75° (e.g., the items could be 3°, 18°, 33°, 48°, 63°, 78°),
but appeared rather heterogeneous when the orientation (or
color) range was 150° (e.g., the items could be 6°, 36°, 66°,
96°, 126°, 156°).

This manipulation on orientation (or color) range was in-
troduced to see how target bias and swap responses are affect-
ed. The range manipulation is likely to be important because it
directly determines the similarity between within-ensemble
items, which plausibly affects the usefulness of the ensemble
information. The orientations (or colors) were randomly cho-
sen in the full 360° range, but can only vary as integers. For
example, an orientation could be 341° or 342°, but can never
be 341.5°.

Procedure

The procedure is illustrated in Fig. 3. A trial started with a
fixation in the center of the display, which was presented for
800 ms and then followed by the stimulus display. The stimuli
were presented for 200 ms and then disappeared. This stimulus
duration of 200 ms was designed with reference to previous
studies (e.g., Brady, Stormer, & Alvarez, 2016), which showed
that simple features can be sufficiently encoded in 200 ms.

After a retention interval of 800 ms, one of the six items
was randomly chosen for the memory test and was indicated
by a probe (a dark-gray ring for reporting an orientation, or a
global color wheel for reporting a color). The participants then
attempted to report, according to their memory, the orientation
or color of this item by choosing a position on the probe ring
(or color wheel) using a mouse. The mouse cursor was set as a
cross (rather than an arrow) for unambiguous localization. A
“preview” of the chosen orientation (or chosen color) was
shown and was continuously updated with mouse movement.
After the participants were satisfied with a chosen response,
they clicked the mouse to make a report. Each participant
completed 10 blocks (56 trials per block). The first block
was regarded as practice and excluded from the analysis.

Results

The results of the experiment are presented in Fig. 4. The data
are presented as gray histograms, whereas the predictions (see
below) are presented as black curves.

Following Zhang and Luck (2008), a report-target
difference was calculated: The relative difference between
the reported value and the target value, which falls within
the range between −180° and 179°. The less the absolute value
of this report-target difference is, the more precise a report is.

Figure 4 only plotted trials in which the target is an extreme
value in the range of colors or orientations. For example, if, in
a trial, the orientations were 147°, 167°, 187°, 207°, 227°, and
247°, then this trial is included only if the target is one of the
“extremes values” of the range (147° and 247°)3. This is be-
cause the effects of both target biases and strategic guesses are
expected to be more pronounced in these extreme values.4

3 In Fig. 4, the results are presented in the way that the target is less than the
ensemble average. The data (i.e., report–target differences) on the other side
(i.e., target greater than ensemble average) has been reversed (× −1) for simpler
presentation. In this example, the report–target differences for the targets 247°
has been reversed and shown together with the target 147°.
4 For swap responses, the average swapped-induced difference (i.e., the dif-
ference between an item and the average of the other five items) was 60° for
the extremes values of the range (147° and 247°), 36° for the intermediate
values (167° and 227°), and 12° for the close-to-center values (187° and 207°).
For target bias, the parameter biastarget is used to represent the “magnitude of
target bias” for the extreme values, and the magnitude of target bias should,
respectively, be 0.6 × biastarget for intermediate values, and 0.2 × biastarget for
close-to-center values. See main text for the details of modeling.

Fig. 3 Stimuli and procedure. A stimulus display consisted of six
isosceles triangles (or six colored disks) that were evenly placed around
the center. The orientations of these triangles (colors of disks) were evenly
distributed values over a certain range in the orientation space (color
wheel) and were randomly assigned to the six items. The range of the
orientations (colors) could be 75°, 100°, 125°, or 150°, each for a separate
group of 22 participants. The stimuli were presented for 200 ms and then
disappeared. After a retention interval of 800 ms, one of the six items was
randomly chosen for the memory test and was indicated by a probe. The
participants then attempted to report, according to their memory, the ori-
entation (color) of this item by choosing a position on the probe ring (or
color wheel). (Color figure online)
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This restriction to the extreme values is only adopted for clear-
er presentation in Fig. 4, and all data were included for model-
ing below.

Implementation of the model

Platform, software, and type of the model

The data of the present experiment was modeled using
matjags1.3 as a MATLAB interface for running JAGS (http://
psiexp.ss.uci.edu/research/programs_data/jags/). The
MATLAB script was run in MATLAB R2018b. The
MATLAB script and the model specifications are available on
the Open Science Framework project page (https://osf.io/
wscpv/).

The four orientation ranges and four color ranges were
modeled separately. For each there were 22 participants and
11,088 trials in total.

The model

Two parameters, portionguess and portionswap are used to de-
scribe respectively the “proportion of random guesses among
all responses” and the “proportion of swap responses after
excluding random guesses.”

Next, both the target-based responses and swap re-
sponses are assumed to be normally distributed, so one
parameter (sdtarget) is needed to describe the precision of
an individual mnemonic representation (i.e., the standard
deviation of the green distribution, or that of a red
distribution in Fig. 1). In addition, one parameter (bias-
target) is needed to describe the magnitude of target bias
(see Fig. 1).

The specific model is as follows. The first part uses
von Mises distributions5 (i.e., normal distribution in a
circular space) to describe both the target-based responses
and swap responses. The second part is the random
guesses.

errorresponse∼ ∑5
item¼0VM meanitem; sdtarget

� �
∙portionitem

þ portionguess
2π

The portionitem (i.e., portion of contribution of an item)
depends on whether it is the target or not. It is determined as

the following equation6:

If item ¼¼ itemtarget
� �

portionitem ¼ 1−portionguess
� �

∙ 1−portionswap
� �n o

else portionitem ¼ 1−portionguess
� �

∙ portionswap
� �

=5
n o

The meanitem (i.e., the difference between the “reported
feature value of an item” and the “actual target value”) is
determined as the following equation7:

meanitem ¼ 0:2∙range∙ item−itemtarget
� �

þ biastarget∙ 1−0:4∙itemð Þ

In this study, I adopted a Bayesian hierarchical model so
that the between-subjects variations of the parameters can be
appropriately incorporated. Then, for this purpose, each ob-
server is assigned a different value on the four parameters. The
distribution of individual subjects’ values of biastarget was
modeled by a normal distribution, whereas the distributions
of individual subjects’ values of the other three parameters
(sdtarget, portionguess, portionswap) were modeled by lognormal
distributions because they are always positive by definition.

The priors of the overall mean of these four parameters
were chosen in the following ways. The priors of portionguess
and portion

swap
were both uniform distribution [0, 1]. The prior

of biastarget was N(μ = 0, λ = 4): a moderate spread around
zero. The prior of sdtargetwas LogNormal (μ = −1, λ = 0.001):
the mean is ln (22×π/180) ≈ −1 because 22° is a typical sd in
previous studies (e.g., Zhang& Luck, 2008), whereas the very
small λ indicates uninformed prior distributions. The priors of
the between-subjects variations (sds) of all the four parameters

5 The vonMises probability density function for a given angle x is f(x | μ, k) =
ek cos(x −μ)/2πI0(k), in which I0(k) is the modified Bessel function of order 0.
The parameters μ and 1/k are analogous toμ andσ2 (the mean and variance) in
the normal distribution. The von Mises distribution is not provided in standard
jags, so I used a module provided by Oberauer et al. (2017).

6 Three points need to be clarified: (1) Both item and itemtarget mean not the
physical location, but the relative position of an item in the range of features.
For example, in a set of [3°, 23°, 43°, 63°, 83°, 103°], item = 0 means 3°, item
= 1 means 23°, and so forth. (2) A nontarget (i.e., swap) response is divided by
5 because it is assumed that one of the 5 nontarget items is randomly chosen.
(3) portionswap is defined as the portion of swap responses after excluding
random guesses. In other words, it is the portion of swap responses among
“target-based responses and swap responses.” This parameter is defined this
way so that portionguess and portionswap can vary as two separable parameters
each in the full range of [0, 1].
7 The first part of this equation describes the difference caused by swapping in
actual values, whereas the second part of this equation describes the target bias
on the reported item. In the Bayesian integration of normal distributions, the
mean of the posterior distribution is a weighted average of the mean of data
and the mean of prior distribution:

meanposterior ¼ λprior
λpriorþλdata

∙meanprior þ λdata
λpriorþλdata

∙meandata. Following this

linear principle of Bayesian inference, the magnitude of the target bias
should be proportional to the “target-ensemble distance.” Here, I do not
make specific assumptions on the precisions of the prior information
and data, but do assume they are the same regardless of where the target
is in the range. In Fig. 1, these mean that all mnemonic representations
are pulled toward the center of the ensemble as a proportional shrinking.
Therefore, the parameter biastarget is used to represent the magnitude of
bias for item = 0, and the actual magnitude of bias in the other items are
calculated as biastarget ∙ (1 − 0.4 ∙ item), so that the bias is − biastarget for
item = 5.
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were LogNormal (μ = 0, λ = 0.001) for the purpose of giving
uninformed prior distributions.

Results of modeling
The JAGS gave posterior distributions of the mean of the

population-level value of the four parameters (portionguess,
portionswap, sdtarget, biastarget). The mean and 95% confidence
intervals (2.5% and 97.5% percentiles) are calculated from
these distributions and plotted in Fig. 5. It is clear that all
parameters can be determined fairly precisely.

As shown in Fig. 5a, biastarget clearly differs from zero in
two orientation ranges (75° and 100°), but not in the other two
orientation ranges (125° and 150°) or any of the four color
ranges. Therefore, target bias is statistically reliable in only
two of eight situations.

As shown in Fig. 5b, sdtarget is basically constant for all
orientation ranges and constant for all color ranges. These

values fit very well with the typical sd values reported in
previous studies (Bays et al., 2009; Zhang & Luck, 2008).

As shown in Fig. 5c, portionguess increases with the range
of orientation, whereas portionswap decreases with the range of
features. More critically for the present purpose, portionswap is
always very far from zero, implying that swap is always an
essential part of the responses.

To see whether the three-part model provides a sufficient
fitting to the data, predicted distributions are plotted in Fig. 4

Fig. 5 Posterior distribution of parameters. The Bayesian modeling gave
posterior distributions of the mean of the population-level value of the
four parameters (biastarget, sdtarget, portionguess, portionswap). The mean
and 95% confidence intervals (2.5% & 97.5% percentiles) are calculated
from these distributions and plotted. The biastarget clearly differs from
zero for two orientation ranges (75°& 100°), but not the other two orien-
tation ranges (125° & 150°) or any of the four color ranges. Therefore,
target bias is statistically reliable in some situations, but not in all situa-
tions. The sdtarget is basically constant in all situations and this fits very
well with the typical standard deviations values reported in previous
studies (Bays et al., 2009; Zhang & Luck, 2008). The portionguess in-
creases with the range of features, whereas portionswap decreases with
the range of features. It seems that when a set of stimuli are less coherent,
observers will be less likely to make strategic guesses and simply make a
random response (see also Fig. 7)

Fig. 4 The distributions of response-target differences and the best fitting
models. The data are presented as gray histograms, whereas the predic-
tions are presented as black curves. Only the extremes values are present-
ed here because the effects are more pronounced. Clearly, the predictions
provide an excellent fit to the overall trend of the data. Specifically,
orientation ranges 75° and 100°, the black curves capture the shift of
peaks in the data. More obviously, in all cases, the black curves capture
the fat tails in the data
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as black curves.8 Clearly, they provide an excellent fit to the
overall trend of the data. Specifically, in two cases (orienta-
tions 75° and 100°), the black curves capture the shift of peaks
in the data. More obviously, in all cases, the black curves
capture the fat tails in the data.

Parameter estimations and model comparisons are two dif-
ferent Bayesian approaches to the assessment of null values
(Kruschke, 2011). To assess the necessity of the target biases
and swaps, I considered three other models by removing target
bias, swap responses, or both from the three-part model.
DICs9 of these models are compared in Fig. 6. Basically, the
no-swap model is always worse than the three-part model, and
the no-target-bias-no-swapmodel is always worse than the no-
target-bias model. Clearly, the swap is always an essential part
of accounting for the pattern of responses.

On the other hand, the no-target-bias model is similar to,
and sometimes even better than, the three-part model, whereas
the no-target-bias-no-swap model is similar to, and sometimes
even better than, the no-swap model. So, it seems fair to say
that the target bias is not as important as the swap for account-
ing for the pattern of responses.

It should be pointed out that there is a disagreement be-
tween the results of parameter estimation and those of model
comparisons in the orientation range 75° and 100°: The results
of parameter estimation suggests a statistically reliable target
bias, whereas results of model comparison suggest a prefer-
ence for the no-bias model. It worth mentioning that the target
biases are visually compelling in the orientation range 75° and
100° (see Fig. 4). Therefore, combining model comparison,
parameter estimation, and visual assessment of the data, it
seems reasonable to say that the results offer support for target
biases in these cases.

Discussion

To explore the nature of statistical-regularity-induced bias in
visual workingmemory, the present study attempted to predict
the shapes of the distributions of responses when target-based
responses are mixed with random guesses and swap re-
sponses. The predictions of this three-part model were then
compared with the results of experiments in a Bayesian hier-
archical model to determine the parameters of these distribu-
tions. This three-part model provides an excellent fit to the

data. In the present results, strategic guesses always contrib-
uted substantially to the statistical-regularity-induced biases,
whereas target biases were limited to specific conditions. All
in all, the Bayesian inference in visual working memory is
much more limited than what is previously advocated.

Swap as strategic guesses

In the present study, the strategic guess is operationalized as
swap responses. These two can be different from each other.
Therefore, the potential implications of this divergence need
to be elaborated.

Other strategies of making educated guesses

Aside from the swap, there are certainly other strategies of
making educated guesses. For example, the observers could
use the strategy of reporting the “perceived ensemble average”
as a substitute for the target. Across many trials, the swap strat-
egy would lead to a distribution that is essentially the same as
the ensemble of all items. Therefore, in the present data, it is
difficult to empirically distinguish swap responses and
ensemble-average-based responses. Future studies will be need-
ed to specifically target the distinction between these two (and
perhaps other) types of strategic guesses. It should be clearly
stated that for the present purpose of distinguishing target biases
and strategic guesses, both the swap responses and ensemble-
based responses are reasonable operational definitions of stra-
tegic guesses, and they serve the same conceptual purpose.

Alternative reasons for swap responses

One potential reason for swap responses is perceptual or
mnemonic binding errors. As a binding error, the observers

8 These predicted distributions are generated by the three following steps.
First, I took the mean of posterior distributions for each of the four parameters
of each individual participant. Second, for each individual participant, the
predicted distributions were generated by using these means as parameters.
Third, these individual–participant distributions were averaged to generate the
predicted aggregated distributions.
9 The DIC (deviance information criterion) is an estimator commonly used for
model comparison in Bayesian hierarchical modeling. Conceptually, it is sim-
ilar to AIC (Akaike information criterion) in nonhierarchical modeling.

Fig. 6 Model comparison. To assess the necessity of the target biases and
swaps, I considered three alternative models by removing target bias,
swap responses, or both from the three-part model. DICs of the models
are compared. Basically, the no-swap model is always worse than the
three-part model, and the no-target-bias-no-swap model is always worse
than the no-target-bias model. Clearly, strategic guess (swap) is always an
essential part of accounting for the pattern of responses. (Color figure
online)
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do see (or remember) the item in a wrong location and report
that item in the same confident way as they report correctly
located items. As strategic guesses, the observers make spec-
ulations purposely. These two cannot be empirically distin-
guished from each other in the present data. However, it
seems unlikely that binding errors play a large role.
Previous studies have shown that from perceptual encoding
(Johnston & Pashler, 1990) to working memory (Chen &
Wyble, 2018; Jiang, Olson, & Chun, 2000; see also
Pertzov & Husain, 2014; Rajsic & Wilson, 2014;
Schneegans & Bays, 2017), the dimension of location is
always the primary dimension that other features are based
upon, so it is unlikely that one will often remember a color or
an orientation in the wrong location. Recently, Pratte (2019)
has explicitly tested this issue by presenting false-probe trials
in which the probed color has not been actually presented.
The responses, which are necessarily strategic guesses, are
still only given to the locations of other items. In addition,
the confidence ratings for the swap responses are low and
comparable to random guesses. Altogether, Pratte (2019)
suggested that swap responses are strategic guesses rather
than real binding errors.

Recent studies (Oberauer & Lin, 2017; Schneegans &
Bays, 2017) reported another potential reason for swap re-
sponses: the limited memory precision for the cue feature.
However, these studies that have shown a serious problem
on the cue precision usually involve more challenging situa-
tions (e.g., many locations or nonlocation feature cue). In the
present study, the cue is manipulated as one out of six proto-
typical locations (i.e., corners of a virtual regular hexagon), so
it is trivially easy to distinguish between these cued locations.

Even if these abovementioned factors do occasionally con-
tribute to swap responses, there is no way they can account for
the portionswap, which can go up to as much as 50% in the
present study. So they do not throw any serious doubt on the
interpretations of the present results.

Strategic guess as a special case of Bayesian inference

It should be mentioned that the strategic guess concept can be
viewed as a special case of Bayesian inference. If there is no
observed data at all, then the posterior distribution is equal to
the prior distribution. In other words, some types of prior
knowledge (e.g., another known item) can be used as a report.
Therefore, the strategic guess is not the opposite of the
Bayesian inference, but can be viewed as a special case of
the latter.

Nevertheless, the strategic guess is clearly only a special
type of Bayesian inference in limited situations. On the one
hand, if the Bayesian inference is a generally applicable mech-
anism, then the target bias should be observed in all situations
(e.g., all the eight data sets of the present study). On the other
hand, if one views the strategic guess (e.g., swap) as a special

type of Bayesian inference, then it is a much narrower solution
that is only limited to the situation of “no observed data.”
Clearly, if the Bayesian inference is mainly limited to the
“no observed data” situation, then that is already consistent
with the present conclusion, which is that the Bayesian infer-
ence in visual working memory is much more limited than
what is previously advocated.

Contributions of target biases and strategic guesses

As mentioned above, the presence of strategic guesses (i.e.,
swap responses) is statistically very reliable in all eight situa-
tions, whereas the presence of target bias is statistically reli-
able in two of the eight situations. More generally, we want to
distinguish the target biases and strategic guesses rather than
merely testing against a specific null hypothesis. Therefore, it
is useful to compare the contributions of these two types of
biases to the overall statistical-regularity-induced bias.

In the sense of contributions to the weighted average, the
target biases account for 19.8% and 10.5%, respectively, of
overall biases for the orientation range of 75° and 100°, and
approximately zero for the orientation range of 125° and 150°
and all color ranges. Clearly, in the cases that have been tried
in the present study, strategic guesses play a dominant role,
whereas the target biases play a relatively small and inconsis-
tent role.

Of course, this description of the dominance of strategic
guesses is not meant to deny the importance of target biases
in some cases. In Bayesian inference, it is useful to ask wheth-
er the integration mechanism has “fully used” the prior infor-
mation. As mentioned above, in the design of the present
study, we do not make specific assumptions on the sd of prior
distributions. Nevertheless, an approximate estimation can be
made. In the Bayesian integration of normal distributions, the
mean of the posterior distribution is a weighted average of the
mean of data and the mean of prior distribution:

meanposterior ¼ λprior

λprior þ λdata
∙meanprior

þ λdata

λprior þ λdata
∙meandata

For the extreme values in orientation range 75°, the target-
ensemble distance is 75°/2 = 37.5°, and the bias is 12.4°.
Therefore, we can estimate that the ratio between λdata and
λprior is approximately 2:1 (i.e., sdprior/sddata = 1.44). We do
not know exactly what λprior is. But by any reasonable as-
sumption, it has to be significantly worse than λdata.
Therefore, it is clear that in this case, the integration has fully
used the prior information. In other words, for the case of
orientation range 75°, the magnitude of target bias is as large
as it theoretically can be.
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As discussed above, many previous studies (e.g., Bae et al.,
2015; Brady & Alvarez, 2011; Huang & Sekuler, 2010;
Huttenlocher et al., 1991; Orhan & Jacobs, 2013; Sims
et al., 2016) have referred to the notion of Bayesian inferences
to account for biases in responses. Some of them have ad-
dressed the possibility of strategic guess, and they usually
found that target bias is a dominant factor, whereas the strate-
gic guess plays a negligible role (e.g., Brady & Alvarez, 2011;
Orhan & Jacobs, 2013). It is important to consider the possible
reasons why the results differ so much between the present
study and these previous studies.

Factors affecting the target biases and strategic
guesses

The relative contributions of target biases and strategic
guesses apparently depend on the specific tasks and stimuli.
Next, I will visit a few potential factors.

Memory load

An obviously critical factor is memory load. For example, in
the classic prototype effect (Huttenlocher et al., 1991), ob-
servers only need to memorize one single location, and it
seems reasonable to expect that all responses will be target
based, and the prototype effect will depend mainly on target
biases. Similarly, in other studies in which the memory load is
limited to two or three items (Bae et al., 2015; Huang &
Sekuler, 2010; Orhan & Jacobs, 2013; Sims et al., 2016), there
was probably little or no need for making strategic guesses.
Hypothetically, in orientation range 75° of the present study, if
the memory load is reduced to two or three, then there will be
no need of making strategic guesses, and the contribution of
target biases will probably also increase dramatically from
20% to full dominance. In other words, the present finding
is not incompatible with the results of these previous studies,
but it does give a clear warning that the lack of strategic
guesses cannot be generalized beyond the memory load of
two or three.

Color versus orientation

In the present results, there is a clear target bias in some of the
orientation ranges, but no target bias in any of the color ranges.
Of course, it is always possible that there will be target biases
in some other types of color ensemble.10 Nevertheless, previ-
ous studies showed color and orientation work differently for
visual work memory in several other important ways, so it
worth considering the present color/orientation distinction in
this broader context.

Huang (2015a; see also Alvarez & Cavanagh, 2008)
showed that visual working memory for orientations is better
than that of colors after the discriminability of stimulus items
has been controlled in a perceptual discrimination task.
Interestingly, this is not simply because the orientations are
stronger visual features than colors are: Performance of orien-
tations is actually much worse than that of colors in a visual
search task. Huang (2015c) explained this difference by as-
suming that multiple orientations, but not multiple colors, can
be represented together as a spatial structure that is formalized
as a Boolean map (e.g., Huang, 2010a, 2010c; Huang &
Pashler, 2007, 2009; Huang, Treisman, & Pashler, 2007).
Huang (2015c) labeled this factor (being represented as a spa-
tial structure) as spatial strength and examined its value for
other featural dimensions. For a few examples, sizes are like
orientations and have high spatial strength, whereas shapes are
like colors and have low spatial strength.

Recently, Huang (2019) used this factor of spatial strength
to account for a few findings in visual working memory. For
one, memory for color–shape binding is largely integrated
(see also Gajewski & Brockmole, 2006), whereas memory
for color–orientation binding is largely independent of each
other (see also Fougnie, Cormiea, & Alvarez, 2013). For an-
other, although color–color stimulus does not enjoy any same-
object advantage (e.g., Xu, 2002), orientation–orientation
stimulus does enjoy a substantial same-object advantage
(e.g., Huang, 2019, Experiments 8–9).

In this context, it seems not entirely implausible that the
root of the color/orientation distinction in the present study
can also be attributed to their difference in spatial strength.
In addition, the dimension size is frequently used to demon-
strate the ensemble-induced biases (e.g., Brady & Alvarez,
2011; Corbett, 2017). In Huang’s (2015c) measure, size also
scores high on spatial strength, so this is again consistent with
this hypothesis.

Then, why is it, exactly, that there are target biases only in
high spatial strength features (e.g., orientation, size), but not in
low spatial strength features (e.g., colors)? One straightfor-
ward account is that the colors are always represented individ-
ually, so they cannot influence the representations of each
other, whereas orientations or sizes are represented together
in multiple-item representations, so they will interact with
each other in these multiple-item representations. Future stud-
ies will be needed to determine this and other possible mech-
anisms by which spatial strength affects target biases.

Effect of ranges

The feature range apparently affects the results. As shown in
Fig. 5, for both colors and orientations, the portionguess in-
creases with range, where the portionswap decreases with range.
The portions of all three types of responseswere calculated and
presented in Fig. 7. It seems that the portion of target-based

10 Bae et al. (2015) demonstrated a prototype effect that is an effect of the
innate color categories rather than an ensemble-induced color bias.
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responses is constant regardless of the range, whereas swap
responses gradually turn into random responses. Perhaps,
when the members of a set are more different from each other,
it becomes less useful to guess the target based on another item
in the ensemble, so observers are less inclined tomake strategic
guesses. Similarly, this perhaps also explains why target biases
of orientation stimuli disappear in larger orientation ranges.

These effects of ranges are consistent with previous studies
showing that stimuli variance is very important in ensemble
perception (Corbett, Wurnitsch, Schwartz, & Whitney, 2012;
Fouriezos, Rubenfeld, & Capstick, 2008; Im & Halberda,
2013; Morgan, Chubb, & Solomon, 2008; Solomon,
Morgan, & Chubb, 2011). In this specific case, these effects
of ranges are also consistent with what we would have intui-
tively expected. For a more dissimilar ensemble, the members
in the ensemble become less effective substitutes of each oth-
er. In addition, a more dissimilar ensemble spread over multi-
ple feature categories, and it seems plausible that same-
category features (e.g., approximately upward-pointing ar-
rows) are especially likely to be used as substitutes of each
other. For these reasons, the underlying mechanisms (of both
Bayesian integration and strategic guesses) are less inclined to
exploit ensemble information for more dissimilar ensembles.

Other potential factors

The present three-part model has not considered some of the
known factors. First, the present study has not considered the
prototype effects (i.e., biased toward the vertical/horizontal
orientations, or biases toward the center of color categories;
see Bae et al., 2015). Second, by keeping the parameters sd-
target constant for all trials of an observer, the present three-part
model has not considered variability in how accurately

observers encode the individual item or the ensemble mean
(see Fougnie, Suchow, & Alvarez, 2012). Although these fac-
tors certainly do exist in the present task, they are not directly
relevant to the present purpose, because their effects would be
averaged out across the trials and they are unlikely to account
for the specific distribution of responses (shift of peaks and/or
fat tails) shown in Fig. 4.
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