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Abstract
A core distinction in Anne Treisman’s feature-integration theory (FIT) is in that between parallel and serial search.We outline this
dichotomy and selectively review the reasons why it has largely been abandoned in the visual-search community—namely, its
theoretical dispensability, failure to find reliable yardsticks for differentiating parallel and serial search, and falsification of core
predictions. We then go on to introduce a new theoretical framework that, we argue, clears up some of the theoretical confusion
bymerging FITwith various competing theories. This framework’s core feature is the distinction between and characterization of
two fundamentally different searchmodes: one in which attention is guided to a single item via a prioritymap (priority guidance),
and one in which clumps of multiple items are scanned in parallel in a spatially systematic order (clump scanning). Finally, we
will elaborate how this new theoretical framework can resolve current controversies in the literature and how it relates to other
existing theories. We (somewhat optimistically) believe that the outcome of this theoretical exercise is a unification of theories of
visual search that can explain, or at least is consistent with, all phenomena reported in the visual-search literature that have
previously been accounted for by various conflicting theories.

Keywords Selective attention . Theoretical unification . Serial vs. parallel processing . Visual search . Dimension-weighting
account

A core assumption of Treisman’s feature-integration theory
(FIT; Treisman & Gelade, 1980) is that visual search is either
parallel or serial. That is, the presence of a certain,
distinguishing target feature is registered via parallel process-
ing of all objects in view (parallel search), or the focus of
spatial attention (akin to a “spotlight”) is shifted from one
(clump of) object(s) to the next until the target is found or
until all objects have been inspected and rejected (serial
search). The idea of these two types of search has strong
intuitive appeal because both are self-evidently part of every-
day life: One often finds a sought-for object by just looking
into its rough direction, without investing much effort (paral-
lel search), such as the single red-cased book on one’s book-
shelf full of black-cased books. But then there are also those
searches for the proverbial needle in the haystack, where we

have to scrutinize one piece on the stack after the other (serial
search), producing massive costs in terms of effort and time
(even if the needle lies in plain view on top of the haystack).
As detailed in turn, both strategies have largely complemen-
tary advantages and disadvantages, so that, contingent on the
specific search conditions, the observer is well advised to re-
sort to one or the other strategy.

According to Treisman, parallel search is highly efficient:
The presence of a target feature (e.g., is there a red item any-
where in the display?) can be established directly, without
allocating attention to any specific item. However, before at-
tention is allocated, feature representations are “free floating”
in dimensionally organized modules—that is, features are not
yet assigned to specific objects. Accordingly, observers can-
not tell which features belong to the same or different objects
and theymight perceive illusory conjunctions (e.g., a red cross
when there are actually only red hearts and blue crosses). This
renders parallel search overly prone to error when the target is
defined by a conjunction of features (e.g., red and cross),
because the observer cannot know whether the percept of a
red cross reflects reality or is just an illusory conjunction.

This issue is resolved in serial search, where spatially fo-
cused attention ensures that features are bound into localized
objects. On the down side, in serial search, only one (Treisman
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&Gelade, 1980) or a few (Treisman & Souther, 1985) objects
are processed at once, rendering search effortful and slow
(inefficient).

One hallmark of inefficient search is that an increase in the
number of presented objects yields an increase in search times.
This set-size effect can be quantified as the slope of the func-
tion relating search RT to the number of items in the display.
Its steepness has become the main empirical criterion for dis-
criminating serial from parallel search. Accordingly, the main
empirical pattern explained by (and taken to support) FITwas
that search for feature targets produced flat search slopes and
search for conjunction targets steep slopes.

As detailed below, while the serial/parallel dichotomy is
useful for describing everyday experience and had some suc-
cess in explaining certain data patterns, it has largely been
dispensed with as an explanatory conceptualization of visual
search, for three main reasons: (a) theoretically more parsimo-
nious theories were successful in explaining the same data
patterns; (b) core predictions from FIT were falsified; and (c)
search slopes turned out to be unreliable yardsticks for classi-
fying searches as serial versus parallel. Nevertheless, we sug-
gest a new look at the serial/parallel dichotomy that integrates
competing theories, and we will attempt to demonstrate that
this unified theoretical framework can resolve several current
controversies in the literature. Given the (hidden) indication of
two qualitatively different types of search reviewed (and
reinterpreted) here, we conclude that it would be unwise to
ultimately reject such a dichotomy.

Challenges to the dichotomy

Theoretical challenge: The dispensability of a search
dichotomy

“To the same natural effects we must, as far as possible, assign
the same causes” (Newton, 1846, p. 384). This general scien-
tific heuristic, which has become known as Ockham’s razor,
reminds us to adhere to the least complex theory that can still
explain all observed data patterns within the theory’s scope.
Accordingly, theories that can explain all kinds of searches
(same scope) without assuming any dichotomy (less complex-
ity) cast considerable doubt on the serial/parallel dichotomy.
We will briefly sketch the currently most influential of these
(potentially) more parsimonious theories next. Of note, none
of these theories assumes a search dichotomy along the lines
of Treisman’s FIT, though some of them assume two or more
successive stages of processing.

In guided search (GS; Wolfe, 1994, 2007; Wolfe, Cave, &
Franzel, 1989), an initial, parallel processing of the visual
scene yields a map-type representation coding for the relative
importance of each item in the scene (while Wolfe uses the
term activation map, priority map has recently become more

prevalent). This map guides subsequent allocations of atten-
tion, so that spatial attention is not deployed at random, but
selectively only to promising items. The quality of guidance
varies depending on the discriminability of the target, so that
smaller or larger subsets of all items are inspected. Based on
this assumption, GS can produce all kinds of search slopes
without assuming a search dichotomy. Crucially, despite the
strong serial aspect (which shares critical features with serial-
search conceptions in later versions of FIT; Treisman &
Souther, 1985, see below), GS can also explain flat search
slopes: If the priority of the target is so high that it is always
selected first for focal-attentional inspection, the number of
nontargets has no effect on search times. Subjectively, the
target pops out of the display. According to a more recent
version of GS, a few objects can be processed in parallel after
having (sequentially) passed the attentional bottleneck (car-
wash model; Moore & Wolfe, 2001; Wolfe, 2007).

Theories based on a strategically modifiable attentional
window (e.g., Humphreys & Müller, 1993; Theeuwes, 1994;
Treisman & Souther, 1985) take, in a way, the opposite ap-
proach to explain search slopes: They assume that only the
subset of items within the attentional window is processed in
parallel and the size of the window adapts to target discrimi-
nability to maintain an acceptable signal-to-noise-ratio (see
below). Smaller windows require more reallocations, in par-
ticular with larger displays, thus yielding steep search slopes.
With larger windows, search slopes become flatter until the
window encompasses the whole display, in which case all
objects are processed at the same time. The size of the window
is—similar to the guidance in GS—determined by the diffi-
culty of discriminating the target from the nontargets.

Related, but conceptually different from the attentional
window, is the functional viewing field (FVF) in the model
of Hulleman and Olivers (2017; see also Engel, 1977; Geisler
& Chou, 1995). Rather than being strategically modifiable, its
size is an outcome of the inherent limitations of the system.
The model assumes that multiple objects are processed in
parallel within one eye fixation, with the number of objects
that are processed to a sufficiently high degree being limited
by declining retinal resolution and increasing neural competi-
tion towards the periphery. Targets that are harder to discrim-
inate from distractors require higher resolution; in other
words, the functional viewing field is smaller for less discrim-
inable targets. With a smaller field, more fixations are needed
and, consequently, search slopes increase. Arguably, this the-
ory is theoretically more elegant than attentional-window
models, in that the size of the functional viewing field emerges
“naturally” rather than being set deliberately by the observer.

Note that GS, attentional-windowmodels, and FVFmodels
incorporate (various) parallel as well as serial aspects. In all
cases, the movement of attention (or the eye) is serial. GS has
a preattentive (and, in later versions, also an additional
postselective) parallel stage, and attentional-window/FVF
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models have a postselective and (might need; see Itti, 2017;
Müller, Liesefeld, Moran, & Usher, 2017) an additional
preattentive parallel stage. In fact, the phenomenon of pop-
out cannot be explained without assuming some parallel pro-
cessing across the whole display, and there is no doubt that
visual information is initially processed in parallel in early
visual areas.

Consequently, the most parsimonious accounts (in terms of
the number of theoretical assumptions, though not necessarily
in terms of the number of model parameters) must derive from
theories of visual search that assume parallel processing of all
objects in the display. These purely parallel theories come in
two main flavors: with limited or unlimited capacity. With
limited capacity, distribution of the limited resource across
all items in the display results in slower processing of each
individual item (Snodgrass & Townsend, 1980; Thornton &
Gilden, 2007; Ward & McClelland, 1989). Unlimited-
capacity parallel models are typically based on signal-
detection theory, assuming that the signal (and therefore pro-
cessing time and/or error rate) depends on target discrimina-
bility. Decisions might be based on individual items (Eckstein,
Thomas, Palmer, & Shimozaki, 2000; Gardner, 1973; Eriksen
& Spencer, 1969; Moran, Zehetleitner, Liesefeld, Müller, &
Usher, 2016; Verghese, 2001), on a signal pooled across items
(Kinchla, 1974), or on the overall-gist of the scene (summary
statistics; Rosenholtz, Huang, Raj, Balas, & Ilie, 2012;
Treisman & Souther, 1985).

The latter two possibilities have the potential disadvantage
that information about the target’s location necessarily gets
lost during integration and would have to be recovered by
some additional mechanism if the task requires localization
of the target. This would imply that localizing the target
takes longer than detecting the target, which is exactly the
opposite of what Zehetleitner and Müller (2010) found in a
direct comparison of localization and detection speed.
Accordingly, parallel processing of individual items appears
to be the more comprehensive parallel account of visual
search, because—provided that information on the location
of the individual items is preserved (e.g., assuming that each
parallel processor is associated with a particular location, as in
modern graphic cards)—it would most readily also account
for localization performance.

To keep the proportion of erroneous responses low despite
increases in the number of nontargets, the decision criterion
must be adapted, which is paid for by an increase in decision
time (Moran et al., 2016; Palmer & McLean, 1995). In these
models, if (due to time constraints) decision criteria are not
adapted or accumulated information is insufficient, error rates
increase (Eckstein et al., 2000; Eriksen & Spencer, 1969;
Gardner, 1973; Kinchla, 1974; Verghese, 2001). Of note, even
such purely parallel models can well account for steep RT
search slopes and other aspects of the visual-search data in
various ways (see below; Humphreys & Müller, 1993;

Moran et al., 2016). Furthermore, purely parallel models can
theoretically even produce the subjective experience of
seriality: Potentially an item reaches consciousness only after
processing is completed, and even synchronously starting par-
allel identifications result in asynchronous completion times
due to (random) variation in processing time.

Empirical challenge: Conjunctions can pop out and
feature search can be inefficient

The most central and characteristic idea of FIT (Treisman &
Gelade, 1980) is that single features can be processed
preattentively, whereas the processing of conjunctions of fea-
tures requires focal attention. Accordingly, searching for a
target standing out in one feature dimension among any num-
ber of homogenous nontargets (feature search; e.g., a red bar
among green bars) is easy and produces the subjective expe-
rience of pop-out, whereas searching for a target differing
from the nontargets only in its specific combination of features
(conjunction search; e.g., a red vertical bar among red hori-
zontal and green vertical bars) is hard and feels effortful. The
critical finding was that the number of nontargets did not
influence response times in feature search, but did have a huge
effect in conjunction search, producing steep search slopes.

However, it soon turned out that conjunction searches can
produce flat search slopes as well (McLeod, Driver, & Crisp,
1988; Nakayama & Silverman, 1986; Steinman, 1987;
Theeuwes, 1996; Theeuwes & Kooi, 1994; Wolfe et al.,
1989) if the target features differ sufficiently from the nontar-
get features (see von Mühlenen & Müller, 2000).
Additionally, even feature searches can produce steep slopes
(Duncan & Humphreys, 1989; Liesefeld, Moran, Usher,
Müller, & Zehetleitner, 2016; Nagy & Sanchez, 1990;
Nothdurft, 1993; Roper, Cosman, & Vecera, 2013; Treisman
&Gormican, 1988; Wolfe, Klempen, & Shulman, 1999) if the
target feature is similar enough to the nontarget features (i.e., if
the target is not salient). Thus, feature and conjunction search
are not so different after all, but searches might differ on a
continuum, depending on target–nontarget discriminability
(Duncan & Humphreys, 1989; Liesefeld et al., 2016; Wolfe,
1998).

Practical challenge: Search slopes do not discriminate

The prime evidence for the existence of two searchmodes was
the observation of flat (parallel) versus steep (serial) search
slopes. However, there are two serious problems with this
evidence: (a) It soon turned out that there is a continuum of
search slopes in between flat and steep slopes (Liesefeld et al.,
2016; Wolfe, 1998), invalidating the inference of a search-
mode dichotomy from a search-slope dichotomy; (b) steep
search slopes may be produced by all kinds of mechanisms,
including some that are clearly serial or, respectively, parallel
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in nature, and some that can involve aspects of either (for
general issues in discriminating serial vs. parallel processes
based on [mean] set-size effects and more promising alterna-
tive suggestions, see Townsend, 1971, 1972, 1976, 1990). The
influences that we believe are most relevant to the debate are
systematized below (though see also Palmer, 1995).

In (partly) serial-search models, both the number of inspec-
tions and the duration of each inspection (dwell time) can
theoretically influence search slopes. The number of inspec-
tions, in turn, can depend on (a) how informed the decision to
inspect a certain item is (guidance); (b) the criterion/
mechanism to stop searching and guess instead (quitting);
(c) how many objects are processed in parallel (window size);
and (d) how well the observer keeps track of already inspected
locations (memory). Dwell time can depend on how long it
takes (e) to recover control over the focus of attention after an
incorrect allocation (disengagement); (f) to program and exe-
cute a shift of attention from A to B (shifting) and/or to iden-
tify and reject nontargets (identification). Regarding the latter
factor, nontarget identification can take longer (g) because
evidence accumulation is slowed (accumulation rate), (h) be-
cause more evidence is required to identify an object as a
nontarget (criterion), or (i) because the tendency towards
making a nontarget decision decreases (bias). This bias would
likely decrease with the probability of actually processing
nontargets, which, in turn, should decrease with increasing
guidance, so that a change in decision bias might somewhat
attenuate set-size effects. For illustrations of those influences
(enumerated above) that were most crucial to the debate—
namely, dwell time, guidance, quitting, and window size—
we created an interactive spreadsheet available at https://
github.com/Liesefeld/searchSlopes.

If subsamples of items are processed in parallel, window
size would likely be strategically adapted in order to maintain
an acceptable signal-to-noise ratio within each window
(Humphreys & Müller, 1993; Theeuwes, 1994; Treisman &
Souther, 1985). In particular, less discriminable targets would
require smaller windows because each nontarget contributes
an independent amount of decision noise, so that the signal-to-
noise ratio decreases with the number of nontargets within a
window. Items might be processed individually, but in paral-
lel, so that the probability of at least one nontarget identifica-
tion process accidentally hitting the target boundary increases
with set size (Moran et al., 2016). Alternatively, information is
pooled across all objects and summary statistics within each
window are evaluated (Hulleman & Olivers, 2017; Treisman
& Gormican, 1988; Treisman & Souther, 1985). These statis-
tics are more influenced by the target (and thus indicative of
target presence) the smaller the number of nontargets that are
included in the summary statistic. The disadvantage of smaller
window sizes is that the window has to shift more often to
process the same total display area/number of objects.
Furthermore, if a limited processing resource is shared among

all items, processing more items in parallel would decrease
processing speed for each individual item, including the tar-
get. Thus, steeper search slopes can be explained by smaller
windows and by slower processing within each window.

For purely parallel models, similar principles apply as for
parallel processing within attentional windows, only that the
window size would be fixed at display size. Limited-capacity
parallel models assume an increase in decision time when the
resource is shared among an increasing number of items.
Unlimited-capacity parallel models, instead of adapting win-
dow size, adapt the decision criterion (i.e., wait for the accrual
of more information). That is, search slopes in purely parallel
models can be explained by limited capacity and by increases
in decision criteria. Relatedly, the time required for the spa-
tially parallel computation of priority maps at the first stage of
partly serial models might, too, depend on the number of
nontargets (Buetti, Cronin, Madison, Wang, & Lleras, 2016).

Matters are further complicated by the fact that target dis-
criminability, which is considered crucial by virtually all con-
testants in the debate, is influenced not only by features of the
target and the nontargets but also by their spatial arrangement:
Targets presented further in the periphery are processed with
lower resolution, so that one would have to assure that large
set sizes do not come along with a higher incidence of periph-
eral targets than small set sizes do. Furthermore, target dis-
criminability depends on local feature contrast (Julesz &
Bergen, 1983; Nothdurft, 1993; Tsotsos et al., 1995), so that
one would also have to ensure that local density is kept con-
stant across set sizes. In an attempt to meet these criteria,
Liesefeld et al. (2016) implemented densely packed, circular
search arrays to keep local feature contrast constant and ma-
nipulated set size by adding rings. With such arrays centered
on fixation, targets would, on average, be farther from fixation
in larger displays. To compensate for this confound (of set size
with target eccentricity), Liesefeld et al. positioned the center
of their circular arrangements unpredictably across trials in a
way that kept the average target eccentricity constant across
set sizes. To achieve the same ends, Palmer (1995) presented
identically arranged search arrays and manipulated set size by
cueing smaller or larger display regions as relevant for the
upcoming search task; visual marking (Watson &
Humphreys, 1997), based on previewing a set of the nontarget
items in advance of the whole search display (the latter includ-
ing the target), might be used tomanipulate set size in a similar
way. However, these techniques complicate the task design,
might induce dynamics of their own, and were not implement-
ed in most studies that examined set-size effects.

Interpreting slopes becomes even more difficult when con-
sidering that participants are likely sometimes to guess that a
target is present before they have found it and quit search with
a target-absent response without having scanned all objects in
the display. Guessing rates likely depend on various task char-
acteristics, with stimulus properties that make displays more
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difficult to search (in particular, greater set sizes and less dis-
criminable targets) engendering higher guessing rates. Awell-
studied effect is that more targets are missed when targets are
encountered rarely, indicating that target prevalence influ-
ences the disposition to answer/guess “target present” versus
“absent” (Ishibashi, Kita, &Wolfe, 2012; Wolfe, Horowitz, &
Kenner, 2005; Wolfe & Van Wert, 2010).

Early quitting poses a special problem for another criterion
highlighted by Treisman: serial, self-terminating search
should yield a 1:2 ratio of target-present:absent slopes because
the target is found on average after inspecting half the items,
but to be certain that no target is present requires scanning of
all objects. This is indeed a very strong and unique prediction
from the serial/parallel dichotomy envisaged by FIT.
However, empirically, present:absent slope ratios take various
values (Liesefeld et al., 2016; Pashler, 1987a;Wolfe, 1998). In
a certain range of efficiency, target-present slopes become flat
while target-absent slopes remain steep, thus producing slope
ratios of 1:6.90 and higher (Liesefeld et al., 2016).

A final, more advanced approach is to take more informa-
tion from the data into account, such as the variability or the
whole distribution of response times across trials (Rangelov,
Müller, & Zehetleitner, 2017; Townsend, 1972; Wolfe,
Palmer, & Horowitz, 2010). However, at least regarding the
distinction between serial and parallel search, even these are
not particularly diagnostic: both partly serial and purely par-
allel models account almost equally well for various kinds of
searches (with a slight advantage for our serial model so far;
Moran, Liesefeld, Usher, & Müller, 2017; Moran et al., 2016;
Moran, Zehetleitner, Müller, & Usher, 2013; Narbutas, Lin,
Kristan, & Heinke, 2017).

Treisman’s response

From the above ingredients (and potentially more), one can
chose ad libitum to explain variations in search slopes (we
encourage you to try this out for yourself using the interactive
spreadsheet at https://github.com/Liesefeld/searchSlopes).
Somewhat surprisingly, rather than explaining the
challenging findings of steep search slopes in feature search
within a parallel framework (e.g., by assuming limited
capacity), Treisman opted to drop the assumption that all
feature searches are parallel. Doing so required a revision of
FIT. Treisman and Gormican (1988) argued that attention is
needed not only to process conjunctions but also to discrimi-
nate a target from nontargets that share the same feature dif-
fering only in degree. Attention is needed because it enhances
resolution (e.g., Yeshurun & Carrasco, 1998). Thus, feature
search becomes serial when targets and nontargets do not dif-
fer qualitatively, but only quantitatively. From the bouquet of
options outlined above, Treisman considered three and finally

decided on the latter two: variation in dwell time, window
size, and guidance.

Treisman and Souther (1985) found explaining slopes via
variations in dwell time problematic because they observed
target-absent slopes as shallow as 13 ms/item (see also
Liesefeld et al., 2016, who found statistically significant
target-absent slopes down to 2.9 ms/item), whereas traditional
estimates of dwell time/shifts of attention are around 150–300
ms (Eriksen & Hoffman, 1972; Duncan, Ward, & Shapiro,
1994; Raymond, Shapiro, & Arnell, 1992; Theeuwes,
Godijn, & Pratt, 2004; Ward, Duncan, & Shapiro, 1996,
1997). More recent evidence is indicative of shorter dwell
times, of the order of 50–60 ms (Grubert & Eimer, 2016;
Jenkins, Grubert, & Eimer, 2018), which might still be too
long to explain some (barely) inefficient searches.

Given this, Treisman preferred an explanation in terms of
window size and summary statistics: “subjects might check
groups of items in parallel, with group size depending on the
discriminability of the pooled feature response to groups con-
taining only distractors and to groups in which the target re-
placed one of the distractors” (Treisman&Gormican, 1988, p.
18; see also Treisman & Souther, 1985). As elaborated above,
discriminability of clumps containing versus not containing a
target based on summary statistics depends on both the dis-
criminability of target versus nontarget features and the num-
ber of items included in each clump (window size). Thus, with
decreasing target-nontarget discriminability, observers go for
smaller windows in order to keep target-present and target-
absent clumps discriminable based on summary statistics.

Additionally, Treisman and Sato (1990) explained flat
slopes in conjunction search by assuming that a master map
can guide serial search (effectively adopting a version of GS):
They argued that when target and nontarget features are highly
discriminable in conjunction search, people might inhibit one
or multiple nontarget features so that the target is the only
object for which activity on the master map survives. The
serial scan then always starts at the target so that no other items
need to be inspected and, consequently, search slopes are flat.
More items need to be scanned in conjunction search only if
the target does not stand out sufficiently—that is, if random
noise makes it difficult to discriminate the target priority sig-
nal from the priority signals induced by nontargets.

Although these additional assumptions could rescue the
assumption of a dichotomy that is so central to FIT, they also
weakened its theoretical appeal: with each additional assump-
tion, the theory became less parsimonious. This is particularly
problematic as theories are available that are already more
parsimonious than the original version of FIT (see above).
Furthermore, the various post hoc assumptions added over
time to account for new findings and the intermingling of
different theoretical accounts for the same phenomena make
this theory somewhat hard to digest for the “‘theoretician.”
Some complexities are probably owing to the adherence to
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the problematic yardstick of steep versus flat search slopes.
For this reason, we will next propose a different yardstick—
along with a new theoretical framework that adopts many
assumptions from FIT and other theories, including the idea
of a search dichotomy, but rearranges these in a way that
appears more orderly to us.

A new search dichotomy

In the theoretical framework proposed here, the core dichoto-
my concerns whether focal attention is guided by the priority
map or, alternatively, items are scanned in a spatially system-
atic way (e.g., left-to-right or clockwise). To reiterate, the pri-
ority map is a (somewhat noisy) spatial representation of the
visual scene that, rather than conveying information about
stimulus features, simply provides a summary code of the
relative importance of each item in the scene. Although it is
derived from visual input, it is not involved in transmitting
visual feature information (see Wolfe, 2007; cf. Li, 1999,
2002). We shall argue that the priority map is useful during
search only if it reliably guides attention to the target and if
this strategy is more efficient than its alternative—namely,
inspecting clumps of adjacent objects in parallel in a spatially
systematic fashion. Both strategies (sketched in Fig. 1) share
certain computational principles, and both can be used to
solve most search tasks; but they also differ in certain features,
making one or the other more efficient in a given search sce-
nario. We will refer to these strategies by their most
distinguishing characteristic: priority guidance versus clump
scanning. In an attempt to flesh out a working theory, we will
outline below some mechanisms underlying these search
modes that appear plausible based on our knowledge of the
literature. However, the general idea does not depend on all of
these details, and some will likely be subject to modification
in future work.

Clump scanning

For clump scanning, we adopt the assumption that subsets of
items within an attentional window (or focus) can be proc-
essed in parallel (Humphreys & Müller, 1993; Pashler,
1987a; Theeuwes, 1994; Treisman & Souther, 1985), but only
spatially contiguous items can be in the window at any time
(Posner, Snyder, & Davidson, 1980; for more recent evidence
against split attentional foci, see VanRullen, Carlson, &
Cavanagh, 2007). In other words, if two items are in the at-
tentional window, all items in between are in the window, too.
The restriction to spatially adjacent items (a geographical
clump) is crucial, because it typically renders selection of
multiple potentially relevant objects based on the output of
the priority map inefficient. This is because the priority map
would typically highlight nonadjacent items, either because
salient objects are positioned at random (not necessarily adja-
cent) locations or because priority noise in homogeneous as
well as heterogeneous displays is distributed randomly with-
out any strong (or even a negative) bias for adjacent positions.

It would, of course, be conceivable that several objects
positioned around a high-priority location are processed in
parallel within a window. However, this would not consider-
ably increase, or it might even decrease, search efficiency
compared with processing only the single object at the high-
priority location, because the surrounding low-priority objects
are unlikely to be targets anyway and processing them in
addition might cost resources. Thus, the parallel-processing
advantage of clump scanning and the set-restriction advantage
of priority guidance are assumed to be incompatible in typical
search scenarios.

In clump scanning, the size of the attentional window
would be adapted according to the difficulty of search (in
order to maintain a reasonable signal-to-noise ratio), and the
window is shifted systematically (e.g., in clockwise direction
or along plausible target locations in naturalistic scenes). We
conceive of clump scanning as systematic, rather than guided,

Fig. 1 The two proposed search modes applied to the same search
displays (the black bars). In this hypothetical task, participants search
for a strongly (efficient search) or slightly (less efficient search) tilted
target bar among homogenous vertical nontarget bars. With priority
guidance (left), items are examined individually, and choice of items is
guided by a priority map, as sketched by the grayish dots. Because this

map is noisy, attention might sometimes visit a nontarget first (priority
guidance, less efficient). With clump scanning (right), several spatially
contiguous items within an attentional window are examined in parallel.
When the window does not encompass all items (clump scanning, less
efficient), it is moved across the display in some spatially systematic
fashion (e.g., clockwise, as indicated by the arrow)
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in order to avoid postulating two different priority maps (one
for priority guidance and one for clump scanning; this will
become clearer below) and to tentatively keep the two modes
maximally dissimilar. Also note that there is some evidence
that observers turn to systematic strategies under some condi-
tions (e.g., von Mühlenen, Müller, & Müller, 2003).

Processing within a window could be described as item-
wise two-boundary parallel (probably capacity-limited) tem-
plate matching (Bundesen, 1990; Bundesen, Habekost, &
Kyllingsbaek, 2005; Duncan & Humphreys, 1989, 1992;
Humphreys & Müller, 1993; Olivers, Peters, Houtkamp, &
Roelfsema, 2011; Soto, Hodsoll, Rotshtein, & Humphreys,
2008; Wolfe, 1994, 2007). Thus, for each item, a diffusor
accumulates evidence in favor of a “target” or a “nontarget”
decision and search terminates either when the “target”-deci-
sion threshold is reached or when all or a sufficiently high
proportion of diffusors have reached the “nontarget”-decision
threshold (for a detailed description and computational
implementation, see Moran et al., 2016). Alternatively, ob-
servers might evaluate summary statistics of all items within
the attentional window for deciding between a target-present
and target-absent display (Rosenholtz, Huang, Raj, et al.,
2012; Treisman & Souther, 1985). Search goals (or templates)
and previous experience might speed the decision process by
optimizing the coding of target features or increasing the target
signal (e.g., Chelazzi, Duncan, Miller, & Desimone, 1998; Li,
1999, 2002; Zelinsky & Bisley, 2015). The respective mech-
anisms likely affect neuronal activation already before search-
display onset.

Priority guidance

Proposed workings of priority guidance are adopted from the
dimension-weighting account (Found & Müller, 1996;
Liesefeld, Liesefeld, & Müller, 2019; Liesefeld, Liesefeld,
Pollmann, & Müller, 2019; Liesefeld & Müller, 2019;
Müller, Heller, & Ziegler, 1995), which, in essence, is a
version/specification of guided search. As sketched in Fig. 2,
various maps code for the saliency of each object within each
of multiple dimensions. Saliency is determined by local fea-
ture contrast computed per feature dimension—that is, an ob-
ject is the more salient within a particular dimension (i.e.,
achieves a higher value on that dimension’s saliency map)
the more it differs featurally (in that dimension) from the ob-
jects in its surround (see also the concept of conspicuity maps
inWalther &Koch, 2006). Of note, dimension-specific salien-
cy maps do not convey information about specific object fea-
tures, but only about how much each object differs from its
surround.

These saliency signals are then integrated into a priority
map in a weighted fashion. While saliency is the bottom-up
contributor to the priority map, top-down influences (goals,
expectations, etc.) are expressed in terms of dimensional

weights that modulate the gain from the individual dimension-
al saliencymaps to the priority map (dimension weighting; see
Liesefeld, Liesefeld, Pollmann, & Müller, 2019). The
weighting is likely never “absolute” for one dimension, in
order to ensure that unexpected but highly relevant signals
generated in other dimensions can pass through and summon
attention (see Liesefeld, Liesefeld, & Müller, 2019), and/or
because stronger weighting might require more cognitive re-
sources than the observer may be able or willing to expend
(e.g., due to other cognitive demands of the task; see, e.g.,
Irons & Leber, 2018; Lavie, Hirst, de Fockert, & Viding,
2004). Once the weights are set, priority guidance is per-
formed by a relatively autonomous (i.e., reflexive) system,
which is why it subjectively feels rather passive and effortless
(see Wyble et al., 2018).

By default, the priority map guides attention to the most
probable target location(s); alternatively its summary statistics
are evaluated (e.g., with homogeneity indicating target ab-
sence and heterogeneity target presence in certain search sce-
narios) to make a “target-present” versus “target-absent” de-
cision without the need to allocate focal attention (see Luck &
Ford, 1998; Rangelov et al., 2017; Rosenholtz, Huang, &
Ehinger, 2012). When there are multiple priority peaks, atten-
tion is allocated sequentially to each peak so as to determine
whether the item at the respective position is a target or a
nontarget/distractor object (with attention potentially moving
from one peak to the next, in descending order, by suppression
of activation at each inspected and rejected location; Klein,
1988; Klein, Schmidt, & Müller, 1998; Wang & Klein, 2010).
But even if there is just one priority peak (the target), attention
might typically be allocated there to further examine the item
that gave rise to the peak (e.g., to extract whatever information
is required for a classification response) or double-check that
this item is indeed the target rather than a peak of noise
(Hoffman, 1978, 1979). This close inspection might well in-
volve a two-boundary template matching process as in clump
scanning, though with a window size restricted to one item.

Resolving current controversies

We propose that acknowledging these two complementary
(albeit, as pointed out above, “redundant”) modes of search,
instead of categorically rejecting the idea of a search dichoto-
my, helps resolve various controversies in the literature on
visual search and visual attention in general. Given our back-
ground, we are most familiar with controversies regarding the
dimension-weighting account (DWA) and so will concentrate
on these here. Notwithstanding this somewhat limited scope
of the following discussion, we expect that the proposed di-
chotomy will also help to resolve other controversies in future
theoretical work.
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One recurring challenge leveled at the DWA is that certain
experimental effects are not dimension-specific but feature-
specific in nature, apparently indicating that top-down influ-
ences on priority computations are not dimensionally
constrained, but applied already at an earlier, feature-specific
stimulus-coding stage (Li, 1999, 2002). We will show that in
the reported instances, search displays are constructed in a
way that renders clump scanning more efficient than priority
guidance. As dimension weighting is assumed to play a role
only in the computation of priorities, no dimensional con-
straints are to be expected during clump scanning, because
clump scanning (typically) proceeds in a spatially systematic
manner uninfluenced by saliency/priority computations.
Instead, the notion of template matching already implies
feature-specific processing, as templates are by definition rep-
resentations of specific features (though likely with an
element of imprecision; Geng, DiQuattro, & Helm, 2017).

We assume that observers choose either priority guidance
or clump scanning to perform a given search task: They might
initially try out both strategies, but—constantly monitoring
their performance—would quickly settle on the strategy that
feels most efficient and least effortful in a given situation. A

theoretical alternative is that both strategies are applied in
parallel to each search display, and the strategy that finishes
first determines response times. The latter alternative is, argu-
ably, less likely: Running both strategies in parallel would
probably waste cognitive resources, and the available evi-
dence suggests that only one distinct search mode persists
following a training phase (Leber & Egeth, 2006;
Zehetleitner, Goschy, & Müller, 2012) or may be induced at
will (Smilek, Enns, Eastwood, & Merikle, 2006; Watson,
Brennan, Kingstone, & Enns, 2010; see section on other
search dichotomies below). A third theoretical possibility is
that, under some conditions, priority guidance is applied first
on each trial, and only if it fails to detect a target will the
display be processed more thoroughly via spatially systematic
clump scanning. This would be in line with steep target-absent
slopes together with flat target-present slopes for an interme-
diate range of target discriminability, where observers poten-
tially switch to inefficient clump scanning once priority guid-
ance has failed to pinpoint the target early on (though this
pattern can also be explained by a model that knows only
priority guidance; Liesefeld et al., 2016). Thus, before exam-
ining the controversies alluded to above in greater detail, it is

Fig. 2 Simplified sketch of priority computations according to the
dimension-weighting account. From the search display, saliency maps
are computed for each feature dimension, noisily reflecting how strongly
each object differs from its surround. These activations are weighted and
integrated at the superordinate priority map, which in turn guides the
allocation of focal attention. Thus, the influences of the various saliency
maps on priority signaling depend on the respective weight settings (wS,

wO, wM, and wL); in this example, wo is set to 1, while all other weights
are set to 0, reflecting (somewhat unrealistically) perfect implementation
of the task goal to find the tilted target bar. What exactly constitutes a
dimension in terms of priority computations and whether some of the
weights may influence each other remains to be examined (see
Liesefeld, Liesefeld, Pollmann, & Müller, 2019)
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useful to consider under which conditions one or the other
strategy is more likely to be chosen.

Priority guidance is inefficient when the target produces no
or only slightly stronger activity on the priority map relative to
other objects in the scene (e.g., because it differs only little
from the nontargets and is therefore of low saliency). In this
case, the map would often guide attention to “noise” peaks, so
that nontargets would be inspected instead of the target. If
noise is random and not fixed across attention allocations
(e.g., because the priority map is computed anew after each
attention allocation; see Wolfe, 2007), the target will still,
eventually, be the object achieving the highest priority and
thus be selected. If noise is stable or some object other than
the target consistently gains a higher priority (Liesefeld,
Liesefeld, Töllner, & Müller, 2017), the observer has to keep
track of the locations that were already attended focally in
order to avoid repeatedly inspecting the same high-priority
“distractors.” This keeping-track might be limited by working
memory resources or by how long space-based inhibition on
the priority map persists (Klein, 1988; Klein et al., 1998;
Wang & Klein, 2010). Priority guidance would become par-
ticularly inefficient when, due to poor memory, the same ob-
jects are inspected repeatedly. In the worst case, the same set
of high-priority distractors would alternate in summoning at-
tention, so that the target is never found. In any case, in tasks
featuring low-saliency targets, priority guidance would always
come with uncertainty regarding the absence of the target (in
target-absent displays). These would be strong reasons to turn
to clump-scanning mode instead.

While the efficiency of clump scanning would also de-
crease with decreasing target discriminability, a systematic
scan would (virtually) guarantee that the target, if present, is
eventually found (see the older work on continuous search;
e.g., Prinz, 1986) or that all objects are correctly discerned as
nontargets on target-absent trials. Furthermore, although pre-
vious models have treated the creation of the priority map as
essentially cost free or incurring a fixed cost, recent evidence
indicates that the time taken to compute a priority map in-
creases with the number of nontargets in the display (Buetti
et al., 2016). Such a cost might further reduce the incentive to
use priority guidance when it is inefficient.

Strategy choice therefore (loosely) depends on relative tar-
get priority, which, in turn, is influenced by target saliency, by
nontarget saliency, and by how well observers can “tune in” to
the specific search targets via setting dimensional weights. As
discussed above, (bottom-up) target saliency is influenced by
target/nontarget feature contrast, display density, and the tar-
get’s distance to fixation. The effectiveness of top-down con-
trol via dimension weighting depends on factors such as avail-
ability of cognitive resources and predictability of and experi-
ence with various properties of the search display (e.g.,
Allenmark, Wang, Liesefeld, Shi, & Müller, 2019). Finally,
priority guidance is most beneficial if the display contains

many items. If there are only few items that can easily be
scanned in one or a few clumps, there is little incentive to
hazard the uncertainties involved in priority guidance.

Further (seemingly auxiliary) experimental details might
also influence the choice of search mode (ceteris paribus)
without or against the intention of the researcher. The type
of search task (detection vs. localization/classification; see,
e.g., Liesefeld, Liesefeld, Pollmann, & Müller, 2019;
Töllner, Rangelov, &Müller, 2012), for example, might affect
this choice because knowledge of the location of the target
comes at no cost in priority guidance, but might require addi-
tional mechanisms for clump scanning (as discussed for par-
allel target-detection mechanisms in general in the section
Theoretical Challenge, above).

As another example, Buetti et al. (2016) presented two
types of nontargets: lures and candidates (see also Pashler,
1987b; Tsotsos, 1990; von Mühlenen & Müller, 2000).
Lures are very inconspicuous nontargets that are very unlikely
to be selected for further inspection. Candidates are more con-
spicuous nontargets that might be inspected before the target is
found. If lures and candidates are randomly intermixed
(spatially) within a display, scanning of a geographical clump
would usually include candidates and lures; it might then be
more efficient to guide focused attention specifically to the
priority peaks reflecting candidates and targets, thereby effec-
tively eliminating the processing of lures. In the same displays
without lures (just candidates and the target), clump scanning
of multiple candidates (and potentially the target) might be
more efficient.

Nontargets can become candidates when their local feature
contrast is high (i.e., if they are surrounded by dissimilar ob-
jects). This underscores the fact that efficiency of guidance is
not determined by absolute target priority, but—as mentioned
above—by relative target priority—that is, priority guidance
is efficient only if the target priority is much higher than the
priority of all (or most) other objects in the display. Lleras,
Wang, Madison, and Buetti (2019) compared displays which
contained only nontargets of medium similarity to displays
containing also nontargets of low similarity to the target. If
search efficiency were determined by pure target priority, the
latter displays should produce more efficient search, because
local target contrast is higher on average. Instead, Lleras et al.
(2019) found that displays containing only medium-similarity
nontargets produced more efficient search. This can be under-
stood by considering that through the addition of low-
similarity nontargets, the target is no longer the only item
producing high local feature contrast. Now, low-similarity
and high-similarity items produce relatively high local feature
contrast as well, thus competing with the target for allocation
of attention.

The notion of relative target priority is also useful to un-
derstand effects of distractor heterogeneity (Duncan &
Humphreys, 1989), conjunction search (Treisman & Gelade,
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1980), and search asymmetries (Treisman & Souther, 1985).
These phenomena can be explained in terms of variation in the
efficiency of priority guidance, largely in line with guided
search (Wolfe, 1994, 2007).

With heterogeneous distractors and conjunction-search dis-
plays, the local feature contrast of the target is usually similar
to that of nontargets, because many nontargets will generate
(relatively) high local feature contrasts, too, and the local fea-
ture contrast of a conjunction target is necessarily lower com-
pared with the respective feature-search displays (see also
Wei, Yu, Müller, Pollmann, & Zhou, 2018; Zhaoping &
May, 2007).1 Consequently, with heterogeneous distractors
and conjunction searches, the target is unlikely to produce a
singular peak on the priority map, so that (similar to scenarios
with low-saliency targets discussed above) nontargets often
draw attention, and potential revisits become an issue.

As regards search asymmetries, these can be explained by
variation in guidance due to low versus high local feature
contrast of the target: For instance, a closed-circle target
among broken-circle nontargets does not generate strong local
feature contrast, because the shape feature “circularity” (or
whatever shape feature the local contrast coded on the respec-
tive saliency map is based on) is present in all nontargets as
well. A broken-circle target among closed-circle nontargets, in
contrast, produces a strong local feature contrast, because
“brokenness” is absent from all surrounding nontargets.
Thus, various, seemingly disparate phenomena can be ex-
plained within our framework based on considerations of rel-
ative target priority.

This new proposal is admittedly not the most parsimonious
visual-search theory ever proposed. In fact, both strategies
could in principle explain the whole range of empirically ob-
served search slopes on their own—for instance, by variation
of guidance or window size, respectively. That is, a theory
postulating both strategies in order to explain search slopes
is nonparsimonious. Importantly, though, as detailed above,
search slopes are nondiagnostic for differentiating models of
visual search, and focusing on explaining search efficiency
with as few assumptions as possible has, arguably, misguided
model development in visual search to quite some degree.
Also given that human cognition is complex, the theory’s
increase in complexity (as compared with, say, purely parallel
theories) might be warranted. After all, we know quite well
that the human brain contains redundancy (e.g., having two
hemispheres with largely overlapping functions), and such
redundancy might have evolutionary advantages in case one

system fails (e.g., due to injuries). Most importantly, we be-
lieve that our theory can account for all phenomena that pre-
vious theories were able to accommodate, some of whichwere
discussed above and for each of which we will, of course,
have to provide detailed proof in future work.

For the present purpose, we regard it to be of greater inter-
est to consider conflicting results that, to date, have not been
explained by any single existing theory. Thus, we now turn to
a number of controversies in need of theoretical resolution—
which, in our view, requires the existence of a search dichot-
omy similar to the one outlined above. The common denom-
inator of our explanations of these phenomena—dimension
versus feature specificity—might provide a fruitful new yard-
stick for distinguishing the two search modes, and we expect
to develop additional yardsticks in future work. In what fol-
lows, we will focus on target-repetition effects—a form of
history effects, and on distractor handling—a form of volun-
tary control. Together, history effects and voluntary control
cover all (or, at least, the most intensively investigated) top-
down influences on visual search (e.g., Gaspelin & Luck,
2018b), so that the two examples given here are representative
of the whole set of phenomena to which the feature-specificity
versus dimension-specificity distinction applies

Target-repetition effect

When the target changes unpredictably across trials, search
can slow down under certain conditions (Egeth, 1977;
Müller et al., 1995; Treisman, 1988). Closer analyses indicat-
ed that the loss in speed results mainly from trials on which the
target changed with respect to the previous trial, while search
is relatively fast when the target repeats (Müller et al., 1995).
Crucially, Müller and colleagues found that the target-
repetition effect is dimension specific: Response times were
speeded independently of whether the previous target had ex-
actly the same defining feature or just a feature within the
same dimension (for a recent review, see Liesefeld,
Liesefeld, Pollmann, & Müller, 2019; for a mathematical
account, see Allenmark, Shi, & Müller, 2018). In stark con-
trast, another group of researchers observed a target repetition
effect that was feature specific: Responses were speeded only
if the previous target had the same feature, and they were slow
when the previous target had a different feature from the same
dimension. This feature-specific effect was termed priming of
pop-out (PoP; Lamy, Zivony, & Yashar, 2011; Maljkovic &
Nakayama, 1994). A crucial difference between the two con-
flicting lines of study is that only very few (and relatively
widely spaced) nontargets are typically used in PoP studies.
Indeed, the feature-specific PoP vanished when more (and
densely spaced) nontargets were presented (Rangelov,
Müller, & Zehetleitner, 2013; see also Krummenacher,
Grubert, & Müller, 2010; Meeter & Olivers, 2006; Rangelov
et al., 2011a, 2011b; Zehetleitner et al., 2012). Rangelov and

1 In typical conjunction-search displays, targets and nontargets produce
roughly the same average local feature contrast in each dimension. For exam-
ple, a red-horizontal-conjunction target will typically be surrounded by red and
horizontal nontargets. Each red nontarget has the same chance as the red target
of being surrounded mainly by blue nontargets and therefore achieve high
saliency, or of being surrounded mainly by red nontargets and therefore
achieve low saliency. The same holds for the orientation dimension.
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colleagues argued, and later showed more directly (see
Rangelov et al., 2017), that with a (for PoP studies typical)
set size of three objects (one target and two nontargets), targets
often are low in saliency due to the lack of local feature
contrast—a consequence of the sparse layout (see Julesz &
Bergen, 1983; Liesefeld et al., 2016; Nothdurft, 1993; Tsotsos
et al., 1995)—and therefore actually fail to pop out (see also
Becker, 2008).

On our account, low saliency makes the use of the priority
map less efficient. Additionally, if only few objects are shown,
these can be scanned at once, rendering clump scanning the
more efficient strategy in typical PoP studies. On this interpre-
tation, priming of pop-out is a speed-up of the template
matching process rather than an increase in (attention-
guiding) priority (see also Huang, Holcombe, & Pashler,
2004). That is, PoP search displays induce clump scanning,
in which top-down influences are feature specific, while the
(dense) displays used by Müller and colleagues induce prior-
ity guidance, in which top-down influences are dimensionally
constrained (for an interesting exception, see Wolfe, Butcher,
Lee, & Hyle, 2003).

Distractor suppression

The presence of a salient-but-irrelevant distractor, such as a
red singleton during search for a form singleton, delays re-
sponse times. This was interpreted in terms of involuntary
attention allocation to the distractor preceding and therefore
delaying the allocation of attention to the target (attentional
capture; Theeuwes, 1991, 1992). However, recent electro-
physiological evidence indicates that such a distractor does
not typically capture attention, at least not if the target remains
the same across trials (Burra & Kerzel, 2013; Gaspar &
McDonald, 2014; Jannati, Gaspar, & McDonald, 2013).
This would be predicted by the dimension-weighting account,
because distractors in most attentional-capture studies are sin-
gletons in a dimension other than the target, and it would be
reasonable to simply down-weight any signal from the respec-
tive distractor dimension. This down-weighting would not be
possible, or it would be harmful, if the distractor stands out in
the same dimension as the target (Liesefeld & Müller, 2019).
Indeed, same-dimension distractors cause massive interfer-
ence (an order of magnitude larger than different dimension
distractors; Liesefeld, Liesefeld, & Müller, 2019; Sauter,
Liesefeld, & Müller, 2019; Sauter, Liesefeld, Zehetleitner, &
Müller, 2018) and clear electrophysiological signs of atten-
tional capture (Liesefeld et al., 2017). We therefore concluded
that distractors reliably capture attention when they are de-
fined in the same dimension as the target—that is, distractor
handling is dimensionally constrained (for a review, see
Liesefeld & Müller, 2019, where we also explain in detail
the special status of color, how dimensional relationship dif-
fers from mere similarity, and how imperfect preparatory

weighting—for example, due to attentional resources being
consumed by other aspects of the task—sometimes allow for
attentional capture by different-dimension distractors).

Interestingly, another group of researchers came to the di-
ametrically opposed conclusion—namely, that distractor han-
dling is feature specific (first order feature suppression;
Gaspelin & Luck, 2018a). They argued that if only the
distractor’s dimension is predictable, dimension weighting
(second order feature suppression) but not feature weighting
can be employed. They found, however, that knowing the
distractor dimension was not sufficient to shield against dis-
traction, but instead information on the specific distractor fea-
ture was needed—thus favoring the assumption that distractor
down-weighting is necessarily feature specific. Importantly,
Gaspelin and Luck (2018a) likely induced inefficient search
(see also Gaspelin, Leonard, & Luck, 2015) among only a few
objects. In particular, observers had to search for a specific
target shape among various other nontarget shapes (i.e., high
nontarget heterogeneity according to Duncan & Humphreys,
1989). We, in contrast, focused on tasks in which the target
clearly stood out from the homogenous nontarget background
(e.g., Liesefeld et al., 2017; Liesefeld et al., 2016; Liesefeld,
Liesefeld, & Müller, 2019; Sauter et al., 2019; Sauter et al.,
2018). Thus, in Gaspelin and Luck’s task, using the priority
map is likely inefficient, making observers resort to clump-
scanning mode. As a consequence, dimensional-weight set-
tings controlling the transfer from the dimension-specific sa-
liency maps to the overall priority map would not play a role.
Instead, in line with the present proposal, Gaspelin and Luck’s
observers might have performed clump scanning, using an
efficient feature-specific distractor template that allows for fast
identification and rejection of the distractor (e.g., Beck, Luck,
& Hollingworth, 2018; Reeder, Olivers, & Pollmann, 2017;
Woodman & Luck, 2007) or tuning the target template in a
way that optimized target processing in the presence of the
salient distractor (Geng et al., 2017; Navalpakkam & Itti,
2007).

Relations to other theories

The theoretical framework of visual search proposed here
does not only draw from feature-integration theory and the
dimension-weighting account as discussed above, but unifies
various existing accounts (e.g., Duncan & Humphreys, 1989,
1992; Humphreys & Müller, 1993; Müller, Humphreys, &
Donnelly, 1994; Pashler, 1987a; Theeuwes, 1994; Wolfe,
1994, 2007; Wolfe et al., 1989). Although a comparison with
each existing account in adequate depth is beyond the scope of
the present paper, we will briefly address and integrate a few
selected thoughts that we find particularly intriguing in the
context of current debates. Others would likely prioritize other
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aspects, and the following considerations are by no means
meant to be exhaustive.

Feature-integration theory

As in FIT, we assume that observers can choose between two
search modes. In contrast to FIT, rather than conceiving of
these modes as purely parallel or purely serial, we consider
both to include serial and parallel aspects. Furthermore, in-
stead of assuming that search becomes serial because of the
need to integrate free-floating features, we assume that both
modes can in principle be employed in all search tasks, and we
suggest a variety of factors that determine which mode is most
efficient, most notably display density, set size, and the com-
position of target and nontarget features. The actual choice,
though, depends only partly on these task characteristics; it is
also influenced by previous experience and, likely, some ele-
ment of voluntary control. More research is needed to deter-
mine the relative influence of these factors on the “choice” of
search mode.

Further search dichotomies

Wolfe (1998) used the unimodality of the distribution of
search slopes across various tasks to argue that all search
slopes stem from a single distribution, reflecting the same
basic processes and differing only in efficiency. Reanalyzing
this extensive data set, Haslam, Porter, and Rothschild (2001),
by contrast, found indication that the slopes rather stem from
two distinct but overlapping distributions, potentially
reflecting two qualitatively different types of search.
Interestingly, they speculated that “two distinct search pro-
cesses might exist, both operating on continua of some sort”
(p. 746)—which would be in line with our assumption of two
search modes which can both vary in efficiency.2 Haslam
et al., however, refrained from speculating what these two
distinct processes might be.

Bacon and Egeth (1994; see also, e.g., Leber & Egeth,
2006) proposed that people might choose to search for a spe-
cific feature or simply for any singleton (feature-search vs.
singleton-detection mode). They observed that with homoge-
nous nontargets, a salient distractor interfered with search.
With heterogeneous nontargets, by contrast, the same
distractor did not cause any interference. They reasoned that
homogenous nontargets incentivize a singleton-detection
mode, whereas heterogeneous nontargets force observers into
a feature-search mode.

Singleton detection might be an instance of priority guid-
ance with all weights set equally. However, equal weights
would not produce the pattern observed by Liesefeld,
Liesefeld, and Müller (2019; see also Liesefeld et al., 2017;
Sauter et al., 2019; Sauter et al., 2018): A physically identical
distractor much more salient than the target produces either
weak or strong interference, depending onwhether the observ-
er searches for a target defined in a different or the same
dimension. Furthermore, with distractors of comparable sa-
liency unpredictably intermixed across trials, only the same-
dimension distractor produced strong interference. Both find-
ings are indicative of unequal weighting of the various dimen-
sions in the presence of distractor interference, arguing against
both singleton-detection and feature-search modes. Consistent
with this, Zehetleitner, Goschy, andMüller (2012) found that a
different-dimension distractor caused significant interference
even when observers were operating in feature-search mode,
provided the distractor was absent in the preceding mode-
induction phase—pointing to a crucial role of distractor prac-
tice for minimizing interference (see also Müller,
Krummenacher, Geyer, & Zehetleitner, 2009). Thus, the inter-
ference caused by different-dimension distractors—which has
been taken, by others, as indication of attentional capture
(Theeuwes, 1991, 1992) or singleton-detection mode (Bacon
& Egeth, 1994)—is likely only the residual remaining after
incomplete down-weighting of the distractor dimension.

Two characteristics of the typical task used to induce
feature-search mode would make it suited to induce clump
scanning: First, the use of distractor heterogeneity, which is
known to produce inefficient search (Duncan & Humphreys,
1989). Second, studies inducing feature-searchmode typically
use relatively small set sizes (five vs. nine items). Indeed,
although search slopes are typically not significant in tasks
used to induce feature search, the slopes in Leber and Egeth
(2006), for example, were 3.5 ms/item and 3.25 ms/item for
distractor-present and distractor-absent displays, respectively.
Slopes of that size can be shown to significantly differ from
zero if the tests have sufficient power (Liesefeld et al., 2016).
Thus, even if the task was not very inefficient, it likely did not
produce pop out. Instead it might have induced relatively ef-
ficient clump scanning, which our theoretical framework al-
lows for. During clump scanning, a different-dimension
distractor does not produce any costs because it bears no sim-
ilarity to the target template (e.g., Duncan & Humphreys,
1989). In sum, feature-search mode would roughly corre-
spond to our clump scanning and singleton-detection mode
to our priority guidance (though the two theoretical dichoto-
mies differ in specific details).

Another dichotomy was suggested by Watson et al. (2010;
see also Smilek et al., 2006): Participants either focus on pas-
sive processing with stable fixation (seeing) or active explo-
ration including eye movements (looking). These different
strategies can be induced in the same search tasks by simply

2 It is of interest to note that we conceived of this dichotomy independently
from and for different reasons than Haslam et al. (2001). Their work was
brought to our attention only during the second round of reviews for the
present manuscript.
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instructing participants accordingly. Passive seeing likely cor-
responds to priority guidance, whereas active looking would
correspond to clump scanning. Accordingly, the search modes
proposed here can be regarded as mechanistic specifications
of Watson et al.’s (2010) seeing versus looking modes.

Guided search

Priority guidance is basically a version of the broader class of
models termed “guided search” (Wolfe, 1994, 2007; Wolfe
et al., 1989), with a dimension-weighting flavor (Found &
Müller, 1996; Liesefeld, Liesefeld, & Müller, 2019;
Liesefeld, Liesefeld, Pollmann, & Müller, 2019; Liesefeld &
Müller, 2019; Müller et al., 1995). One might argue against
the proposed dichotomy bymaintaining that what we describe
as clump-scanning mode is just a search with zero guidance,
where each object (or clump of objects) has to be processed
until the target is found. There are two main reasons why,
despite this possibility, we favor the notion of a search dichot-
omy: (a) Without the dichotomy, we cannot explain the con-
flicting findings regarding dimension versus feature specific-
ity considered above; and (b) there is strong evidence that
physically identical displays are treated differently depending
on the search mode induced in a preceding training phase
(Leber & Egeth, 2006; Zehetleitner et al., 2012).

Also note that the top-downmechanism envisaged by guid-
ed search differs from the one proposed here: While dimen-
sion weighting operates on dimension-specific local-feature-
contrast signals, in guided search specific feature channels are
up-weighted (i.e., feature-weighting with some imprecision)
prior to the transformation into saliency values. This is likely
done in a way that optimizes the signal-to-noise ratio (i.e.,
relative target saliency; Geng et al., 2017; Navalpakkam &
Itti, 2007). It is, of course, conceivable that both top-down
influences exist concurrently. In any case, more research is
needed to determine whether we can maintain the plain-
vanilla version of priority guidance or whether we have to
add such a presalience feature-specific mechanism.
Researchers embarking on this mission should keep in mind
that it remains unclear exactly what constitutes a dimension in
terms of saliency computations (for instance, color likely
consists of multiple dimensions; see Liesefeld, Liesefeld,
Pollmann, & Müller, 2019), and that observers likely also
have mechanisms of spatial suppression at their disposal
(Ferrante et al., 2018; Klein, 1988; Goschy, Bakos, Müller,
& Zehetleitner, 2014; Klein, Schmidt, & Müller, 1998;
Sauter et al., 2019; Sauter et al., 2018; Wang & Klein, 2010;
Wang & Theeuwes, 2018; Watson & Humphreys, 1997).

Attentional-window theories

From the perspective of attentional-window theories
(Humphreys & Müller, 1993; Pashler, 1987a; Theeuwes,

1994), one might argue against the proposed dichotomy by
maintaining that what we interpret as priority guidance really
is a relatively large window, affording rather efficient search.
A similar argument might be made by theories assuming a
functional viewing field (Hulleman & Olivers, 2017). Again,
the dependence of the search strategy on the search mode
adopted during a preceding training phase and the findings
regarding dimension versus feature specificity reviewed
above render these theories unlikely to provide a general ac-
count of all kinds of visual search. Put another way, rather than
viewing attentional-window/template-matching theories and
guided-search theories as competitors, we considers them to
simply characterize different strategies that are preferred in
different task situations. This underscores the point that in
the extant literature, the label visual search has been applied
to what constitute, from a cognitive-processing perspective,
actually quite dissimilar behaviors. Accordingly, future re-
search ought to distinguish clearly between tasks prone to
induce priority guidance or, respectively, clump scanning to
avoid theoretical stalemates and foster scientific progress.

Summary of the proposed dichotomy

To conclude, the available evidence leads us to believe that
there are two main strategies or processing modes employed
in visual-search tasks: One that can be used when the target is
singled out easily from the stimulus array by a combination of
bottom-up and top-down factors (priority guidance), and one
that is used when all items need to be inspected systematically
(clump scanning). Using the example from the introduction,
people will use priority guidance if they expect the target to
stand out, such as the single (or the few) red-cased book(s) on
our bookshelf full of black-cased books, and they will care-
fully scrutinize each element via clump scanning when
searching for the proverbial needle lying in plain view on
top of the haystack. In between these extremes, strategy
choice might be a matter of individual preference and
habituation.

Depending on the type of search a particular researcher is
focusing on, it would seem self-evident that the respectively
other camp is fundamentally mistaken: If one thinks of the
book with the red binder on the bookshelf, it would appear
clear that search is best described as massively parallel; if one
thinks of the needle in the haystack, it appears clear that search
is painfully serial. Thus, acknowledging that there simply are
two fundamentally different search modes that are employed
in different situations will help us arrive at a theoretical rec-
onciliation between the opposing camps, and researchers can
expressly decide and clearly communicate whether they study
priority-guided or clump-scanning search, thereby avoiding
much of the confusion.
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We propose that the “dimension versus feature specificity”
of effect patterns can be used as an empirical yardstick to
distinguish between the two modes of search. At first sight,
this criterion might appear to make dimension weighting (and
our new theory) unfalsifiable: Whenever there is compelling
evidence against dimension weighting, we can simply claim
that (involuntarily) the task induced a clump-scanning mode.
But this would grossly overstate the flexibility of the theory:
We have detailed various factors that make one or the other
strategy more efficient. Thus, evidence against dimension
weighting in a task that renders priority guidance highly effi-
cient (e.g., dense, homogenous arrays of nontargets) would
seriously challenge our theory. Additionally, we aim to devel-
op further criteria to differentiate between the two modes in
future work.

Obviously, the assumption of two rather flexible search
modes renders our idea considerably less parsimonious com-
pared with its one-mode competitors. Parsimony is usually
preferred in science, but parsimonious theories can, of course,
be inaccurate models for reality (e.g., the debunked assump-
tion that planetary orbits are circular). Simple theories might
often be able to explain data patterns in one study or a selected
set of data patterns, but then fail to account for other data
patterns or for more diverse sets of patterns when forced to
keep the exact-same set of (central and auxiliary) assumptions.
Future work on the present proposal must identify more ex-
amples such as the target-repetition and distractor-suppression
effects reviewed above and directly show within the same
appropriately designed studies that one-mode models fail to
account for the complete data pattern.

Also consider that the brain has not evolved to perform the
artificial tasks employed in typical visual-search studies.
Rather, when confronted with such tasks, it likely has to ex-
ploit mechanisms that have evolved for different, real-life rea-
sons. There is certainly a huge range of fundamentally differ-
ent mechanisms to pick from, and it is not too surprising that
(at least) two of these cognitive mechanisms are useful for
solving some (or most) laboratory search tasks.

Given that the dichotomy advocated here differs greatly
from Treisman’s original proposal, the reader might wonder
whether the title is appropriate. As detailed above, clump
scanning is serial in that the attentional window needs to shift
several times, but it is also parallel because multiple items are
processed in parallel. Conversely, priority guidance is parallel
in that all objects are initially processed in parallel to extract
priority values, but it is also serial because attention is subse-
quently allocated to each hotspot on the priority map in a serial
manner. This might be taken to indicate that the parallel-
versus-serial contrast is not well suited to describe the search
dichotomy. Alternatively, one can think of the dichotomy
from the standpoint of dialectical monism: Although priority
guidance has a serial aspect, it is best described (and intuitive-
ly felt) as relatively passive and parallel. Although clump

scanning contains a parallel aspect, it is best described (and
intuitively felt) as relatively active and serial. Theorists from a
Western background might feel uncomfortable with this way
of thinking, though the notion of such complementary, inter-
connected, and interdependent forces (“yin and yang”’) is
well-accepted among (ancient) East-Asian philosophers.
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