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Abstract
Numerosity perception has long been understood to be divided between subitizing and estimation. In a series of three experiments
(total N = 113), a new number “elbow” point in the estimation of visual number for numerosities of about 20 dots is confirmed.
Below 20, mean estimates are linear with a slope of about 1 and power-function exponents for numerosity estimation approx-
imate unity, though estimate variance increases dramatically above about 6 elements. For numerosities above 20, estimates
become increasingly compressed, such that power function exponents are much lower (e.g., 0.7) and are lower still when both
ranges are estimated within the same experimental procedure. The experiments described here show that the location of the
inflection point appears insensitive to the range of numbers estimated and to differences in density.
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For more than 150 years, it has generally been argued that the
perception of nonsymbolic visual number may be divided into
two different regimes with the division occurring between low
numbers (up to about four or five units), where number can be
accurately and immediately perceived, and higher numbers
where the uncertainty of estimation occurs (Atkinson,
Campbell, & Francis, 1976; Fernberger, 1921; Hamilton,
1859; Jevons, 1871; Kaufman, Lord, Reese, & Volkmann,
1949; Mandler & Shebo, 1982; Taves, 1941; Trick &
Pylyshyn, 1994). For example, Kaufman et al. found that re-
sponse latencies for the estimation of very small numbers
were brief; they increased rapidly as number increased beyond
four items, and they plateaued at between six and 10 items.
Similarly, as early as Jevon’s experiment with cast beans 150
years ago, it appeared that the break from perfect accuracy in
estimation occurred between four and five.

Here, we consider a second discontinuity in the estimation
of number, a break (or elbow) in the number estimation func-
tion that seems to occur at about 20 items (Durgin, 2016).
Whereas much recent work on perceived number has mea-
sured comparisons, rather than the enumerations, of visual
collections (e.g., Burr & Ross, 2008; Dakin, Tibber,

Greenwood, & Morgan, 2011; Durgin, 1995; Gebuis &
Reynvoet, 2012; Leibovich, Katzin, Harel & Henik, 2017;
Van Oeffelen & Vos, 1982), the present investigation extends
research traditions that have been primarily concerned with
explicit number estimation (i.e., explicitly evaluating a multi-
tude of elements) rather than visual comparison of quantities
based on their apparent numeric magnitude. Although we will
speculate about the meaning of this second elbow in the
General Discussion, the main purpose of this paper is to char-
acterize this second elbow by means of careful empirical in-
vestigation of relevant parameters, such as dot density and the
range of values employed, that might affect it.

Kaufman et al. (1949) labeled the first “elbow” in
numerosity perception (at about five or six dots) as the bound-
ary between “subitizing” and “estimation,” based on differ-
ences in response time, confidence, and accuracy (subitizing,
from the Latin for sudden, was described as fast, accurate, and
associated with great confidence; estimation was usually not).
Others have proposed that subitizing may be limited to only
four elements, replaced by rapid counting up to six or seven
(Atkinson et al., 1976), and this is consistent with Kaufman
et al.’s response latency data. Although the “second elbow,”
an inflection in the number estimation function at about 20
dots, can (with hindsight) be discerned in the estimation data
of Kaufman et al., (i.e., increasing underestimation as
numerosity increased) they made no comment on it.

Krueger’s (1972) study of numeric estimation for num-
bers 25 or greater showed that a power function with an
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exponent (log-log slope) of about 0.75 captured his data
well. Krueger found only small effects of display area,
though these might be interpreted as reflecting imperfect
integration of density information and area. A power func-
tion with an exponent less than 1 implies increasing under-
estimation in this range, though it is not clear what the
source of compression is. An exponent of 0.5 could be
expected if, for example, observers substituted mean linear
separation between elements for density; it remains possi-
ble that visuals systems seek to integrate a variety of
sources of relevant information (e.g., density, area, linear
separation; Gebuis & Reynvoet, 2012) when estimating
numbers in this higher range. An alternative source of re-
sponse compression could be anchoring effects, when tak-
ing repeated measures. To rule out effects of repeated mea-
sures, Krueger (1982) had each of 800 participants make
only a single numerosity estimate. He still observed an
exponent less than one (i.e., 0.85). Krueger (1982; Fig. 1)
estimated that his power function would cross the unity
line at about 20 dots, but he did not report direct investi-
gations of the transition point.

More recently, in the course of an investigation of the ef-
fects of adaptation on perceived number, Huk and Durgin
(1996) collected verbal estimates of visual number of homog-
enous elements both in adapted and in unadapted regions of
the visual field (these fields of small white dots were centered
4° to each side of fixation). They confirmed that estimates
were proportionally lower in the densely adapted field (an
effect that gradually emerged between five and 20 dots), and
that estimates in each field produced elbow-shaped estimation
functions in log-log space that seemed to sharply bend at
about 20 dots (see Durgin, 2016). Whereas estimation data
for numerosities up to 20 dots could be fit with a power func-
tion with an exponent somewhat greater than 1, the estimation
data from 40 to 1,152 dots, though offset in log-log space, as a
function of adaptation, were well fit by power functions hav-
ing an exponent of about 0.65. This exponent might be lower

than observed by Krueger (1972) for many reasons, including
response compression, given the large range of numbers tested
within subjects. Moreover, Huk and Durgin (1996; Durgin,
2016) did not vary the display area of their estimation fields,
and their fields were presented briefly and peripherally, unlike
those of Krueger. A departure from linearity in estimates is
what characterizes the second number elbow observed byHuk
and Durgin. It suggests a shift in the estimation process.
Whether this shift is related to cognitive or to visual processes
of estimation (or to some combination of the two) remains to
be seen.

In the studies to be reported here, we sought to measure
this second number estimation elbow with centrally pre-
sented collections, and to evaluate whether the location
of the elbow depended on density, number, or other
factors. For example, Anobile, Cicchini, and Burr (2014,
see also Anobile, Turi, Cicchini, & Burr 2015) have sug-
gested that numerosity evaluation processes may vary as a
function of density. Although density has been implicated
in estimation of number (e.g., Dakin et al., 2011), our re-
sults will not tend to support the specific idea that a critical
density defines the transition point marked by the second
number elbow.

Many labs have chosen to create number displays with
equal numbers of dark and light dots to avoid confounds
with luminance (e.g., Burr & Ross, 2008), but this ap-
proach could easily affect number estimation by defining
two equal subsets of dots for separate estimation. To
avoid this concern, we instead used identical luminance-
balanced elements (luminance-balanced dots; Carlson,
Moeller, & Anderson, 1984; Durgin & Huk, 1997) ran-
domly positioned without overlap in one of three sizes of
display so as to dissociate both density and brightness
from number. Our participants were asked to estimate,
as exactly as they could, the number of dots presented
in each display; the displays were presented briefly to
prevent counting.

Fig. 1 Sample numerosity displays using luminance-balanced dots. The left display depicts the smallest area used (with 112 dots), and the right display
(with 28 dots) depicts the largest area. Note that luminance balancing will not be perfectly preserved in these reproductions
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Experiment 1: The second elbow
in the estimation of visual number

In addition to seeking to replicate the second elbow, this ex-
periment was designed to test whether the range of stimuli
presented affects the scaling of number estimation above 20.
That is, using the same kind of stimuli in both paradigms, does
presenting numbers only above 20 (like Krueger, 1972) pro-
duce different kinds of estimates in the upper range than a
design that includes lower numbers (like Huk & Durgin,
1996, and Kaufman et al. 1949)?

To directly study the effect of range while discouraging a
dependence on density alone and to rule out trivial issues of
resolution, we adopted a design to meet these several con-
straints: (1) the annular elements had a bright center and dark
surround that were of the same average luminance as the
background gray, but were resolvable well into the periphery,
so that all elements were identical: (2) the area in which the
elements appeared varied over a range greater than 2 so that
number would be dissociated from density; and (3) half the
participants saw a quasilogarithmic, but complete range of
numerosites from 1 to more th an 200, similar to Kaufman
et al. (1949), while the other half only saw numerosities great-
er than 25, similar to Krueger (1972).

Method

The procedures in this and the following experiments were
approved by the local Institutional Review Board.

Participants Forty-one undergraduate students (at least 18
years old and of both sexes) participated in partial fulfillment
of a research requirement for the Introductory psychology
course. The data from one participant was excluded from
analysis because the numerosity estimates given were extreme
outliers (in some cases 20 standard deviations above the
means of the other participants), leaving 40 participants. Of
these, half made estimates over the full-range; half only saw
numerosities greater than 25.

Stimuli The number displays were viewed from a distance
of 60 cm on a 19-in. Sony CRT flat screen (34.3-cm dis-
play width) with a resolution of 1,280 × 1,024 pixels
refreshed at 100 Hz. The experiment was controlled using
Psychtoolbox (Brainard & Vision, 1997; Kleiner, Brainard
& Pelli, 2007). Each element in the presented array was a
white disc 0.30° (12 pixels) in diameter, surrounded by a
black annulus, with an outer diameter of 0.46° (18 pixels).
The background gray of the remainder of the screen was
selected so as to match the average luminance of the ele-
ments as measured by a spot photometer (72 cd/m2).
Independent of their density, the dots for each display were
randomly scattered based on an algorithm which required

that the center of each new randomly selected dot was at
least 0.61° (24 pixels) from the centers of all other dots in
the display, as well as from the central fixation point, so as
to avoid overlap and minimize clustering. Finally, the dis-
tance of each dot from the center of the display could be no
more that that required to ensure that the outer edge of the
dot was within the proscribed radius of the presentation
area, which was either 7.6°, 9.5°, or 11.4° (300 pixels,
375 pixels, or 450 pixels). Sample displays are shown in
Fig. 1. A single black crosshair at the center of the screen
was used to facilitate fixation prior to the onset of the
display. Once all dot positions had been computed, the
dot array was displayed for either 400 ms (Experiment 1)
or 500 ms (Experiments 2 and 3) and then replaced again
by the fixation display with a text box for entering the
estimate using a keyboard.

Design The range of numbers presented was manipulated be-
tween subjects. For the full-range condition, a quasilogarithmic
range of 32 different numbers starting from 1 was created by
including the first 10 integers and then increasing by 2 up to 20,
by 4 up to 40, by 8 up to 80, by 16 up to 160, and by 32 up to
224: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 24, 28, 32,
36, 40, 48, 56, 64, 72, 80, 96, 112, 128, 144, 160, 192, 224).
The highest density used (224 dots presented in the smallest
area) was 1.2 dots/deg2. For participants in the upper-range
condition, the top half of this range was densely sampled so
as to also have 32 distinct values by inserting 16 intermediate
numbers starting with 26: (26, 28, 30, 32, 34, 36, 38, 40, 44, 48,
52, 56, 60, 64, 68, 72, 76, 80, 88, 96, 104, 112, 120, 128, 136,
144, 152, 160, 176, 192, 208, 224).

A block of 96 trials consisted of presenting the 32 distinct
numerosities within each of the three sizes of circle. Two
blocks of 96 randomly ordered trials were completed by each
participant.

ProcedureAfter being informed of the general procedure, par-
ticipants were given specific instructions to make estimates of
the number of elements presented based on what they saw.
They were encouraged to be as precise as possible in making
their estimates and to avoid reporting only round numbers.
They were then presented with the 192 experimental test trials
one by one, typing in their estimate for each one. The exper-
iment typically took about 20 minutes.

Analysis To remove typographic errors, estimates that were
equal to or less than the square root of the presented number
(e.g., an estimate of eight or less for 64 dots) were excluded,
and estimates that were more than twice the presented number
were also excluded. These exclusions represented less than
1% of the data. Because numerosity estimation normally con-
forms to a power function, all statistics are reported for log-
transformed data.
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Results

Participants generally gave self-consistent responses: The me-
dian within-subjects correlation between the log-transformed
dot numbers and estimates was 0.94. A plot of the mean esti-
mates is shown in Fig. 2a; the mean within-subjects coeffi-
cients of variation (CoVs), corrected for the small sample size
(normally six estimates per subject for each number presented
across all display sizes) are shown in Fig. 2b. These graphs
illustrate the existence of a number estimation elbow at about
20 dots and a corresponding elbow in the CoVs. The CoV data
replicates the very low variance normally found in the
subitizing range (up to about four dots in our data). This is
followed by a rapid increase between four and 20 dots and a
plateau starting at the location of the second estimation elbow.

To provide a clearer picture of the estimation function, a plot
of locally smoothed data (reflecting the nonindependence of ad-
jacent values) for the full-range condition is shown in log-log
space in Fig. 3a, as a function of display area, showing that the
same elbow reported by Durgin (2016) is clearly present in the
full-range data. A similar plot for the high-range only version of
the experiment is shown in Fig. 3b. The estimates from both
groups in the upper range (28–224) are contrasted in Fig. 4.

There are five principal features of the estimation data worthy
of note: (1) There is an elbow in the full-range data (Fig. 2a),
showing a change in slope (i.e., exponent of the power function)
that occurs somewhere between the numerosities of 16 and 32;
(2) this elbow coincides with the start of an apparent plateau in
the CoVs (Fig. 2b), which rise dramatically between the
subitizing range and the elbow; (3) Fig. 3a–b suggests that both
groups of participants replicate Krueger’s (1972) observations of
a power-function fit for numbers greater than 25 and both repli-
cate his small effect of display area; however, (4) as shown in
Fig. 4, the exponents (log-log slopes) in the upper ranges differ
across the two versions, consistent with greater sensitivity when

only the upper range is tested. Moreover, (5) as suggested in Fig.
2b, within-subjects variability in the upper range (i.e., >25 dots)
is lower when only the upper range is estimated (Mean CoV =
0.23), than when the full range is tested (Mean CoV = 0.26),
t(46) = 4.31, p < .001.

a b

Fig. 2 Plots of mean estimates (left) and mean within-subjects CoVs
(right) as a function of number presented separated by range of values
estimates (filled circles for participants estimating in the upper range

only), with between-subjects standard error bars. For small numbers,
errors bars are smaller than the plot points
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Fig. 3 Log-log plots of estimates as a function of display area showing
locally smoothed estimates and between-subjects standard errors of fit
(medium gray). Panel a shows the estimation data from the full-range
condition of Experiment 1, split by display area; superimposed on the
data are a dotted black line representing accurate responding (exponent =
1.0), and a power-function fit (exponent = 0.50) to the upper portion of
the data, illustrating the transitional elbow at a numerosity of about 20.
Panel b show the estimation data from those who only estimated
numerosities greater than 25
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To quantify the slope difference, the exponents of the best-
fitting power-functions in the common range (greater than 25
dots) were calculated for each display area and participant
(i.e., the slopes of best fits to the log-transformed values).
An ANOVA on these exponents with display area (small,
medium or large) as a within-subjects factor and range (high
or full) as a between-subjects factor confirmed that the mean
exponent in the high-range group (M = 0.70, 95% CI [0.62,
0.77]) was reliably higher than the mean slope over the same
numeric range in the full-range group (M = 0.50, 95% CI
[0.45, 0.54]), F(2, 76) = 0.27, p = .761, η2G, = 0.32. Note that
an exponent of 0.5 is consistent with square root scaling of
density (i.e., using information about linear separations among
dots to estimate density), though other forms of explanation
for this low exponent may be more likely (including poorer
discrimination). The 0.5 exponent for the upper portion of the
full range condition is somewhat lower than that observed by
Huk and Durgin (1996; Durgin, 2016). The 0.7 exponent for
the high range group, on the other hand, is consistent with that
reported by Krueger (1972) for a similar range.

As the graphs in Fig. 3a–b suggest, the ANOVA found no
effect of display size on the exponents across observers, F(2,
76) = 0.27, p = .761. For the upper-range group, an ANOVA
on log estimates indicated a highly-reliable effect of display
size, F(2, 38) = 11.5, p < .001, η2G = 0.06, though the average
difference from small to large was only 6.8% (95% CI [3.2%,
10.6%]) for a change in area bymore than a factor of 2. For the
upper range of values in the full-range condition (i.e., for
numerosities 28 to 224), there was also a small, but reliable,
effect of display size (M = 9.6%, 95%CI [4.4%, 15.0%]), F(2,
38) = 12.5, p < .001, η2G = 0.15.

Discussion

Our principal concern was whether, using central presentation,
we would still see evidence of the elbow in the numerosity

function at about 20 dots. Indeed, when numerosity estimates
were made across a range including numbers from 1 to 224,
there was a clear inflection in the number estimation function
at about 20. In contrast, when the range was limited to values
greater than 25, the produced estimation function is similar in
detail to those reported by Krueger (1972), and still has a log-
log slope much less than 1, similar to the estimation data
beyond the elbow in the full-range data. Note that, as in
Kaufman et al.’s (1949) data, the exponent of the power func-
tion is about 1 in the low range (for 5–16) but is less than 1 in
the high range. Thus even when large elements are used, dis-
play area is varied, and presentation is central rather than
peripheral, we replicate the elbow reported by Durgin (2016;
Huk & Durgin, 1996), and observable in the data of Kaufman
et al.

This pattern of data suggests that different types of infor-
mation may be used to estimate numbers above and below
about 20. Although Fig. 3a could be used to argue that the
transition happens slightly earlier for smaller (more dense)
display areas, Fig. 3b, where no transition occurs, still shows
an effect of display area. This suggests, instead, that the pro-
cess involved in evaluating higher numbers is simply suscep-
tible to a display-size bias, and this can account for the why
there appears to be an earlier separation of the estimates in the
smaller display areas. Although the effects of display size are
superficially consistent with effects predicted by occupancy
models, for example (reduced estimates of number for denser,
smaller displays), the overall pattern observed here is not.
Simulations of occupancy models show that the area bias
should have a narrow window if it were based on a measure
of filled area or occupancy (Allik & Tuulmets, 1991; Durgin,
1995), and would not produce an elbow of this sort.

Still, several questions remain. First, why is the slope for
the upper range shallower for the participants making esti-
mates for the lower range as well? It is possible that when
only high numbers are shown, there is an advantage in dis-
crimination for high numbers. If, in addition to subitizing pro-
cesses, there are two different types of visual process involved
in number estimation (i.e., above and below 20) and cognitive
interfaces with these processes compete for resources, perhaps
discrimination suffers for the upper range when working
memory must keep cognitive interfaces for both kinds of pro-
cess ready for application. This hypothesis is supported by the
higher CoVs in the upper range among participants who
judged both ranges.

Second, is the formation of the elbow dependent on the
presence of the subitizing range? That is, might the fairly
accurate estimation performance up to about 20 dots be para-
sitic on the presence of instances of numbers from the
subitizing range to help calibrate estimation up to about 20?
For example, being asked to exactly estimate five dots might
enable one to better estimate 10 dots, later, by calibrating a
perceptual unit for “five” that can be scaled up when
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Fig. 4 The effect of tested range on estimates in upper range in
Experiment 1. Locally smoothed estimates with between-subjects stan-
dard errors for the upper range are shown as a function of range presented.
The data from those who only saw numerosities greater than 25 (solid
black fit line) were more steeply sloped than the data given by those who
made estimates across a lower range as well (dashed black fit line)
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confronted with collections well above five dots. If this were
true, then magnitude estimation for numbers below 20 might
be less accurate if no small sets were shown during the
experiment.

Experiment 2: Range independence

In Experiment 2, we sought to test whether the location of the
visual number elbow depends on the inclusion of the
subitizing range in the tested values. That is, it seemed possi-
ble that the subitizing range might serve to calibrate the esti-
mation range (up to a point), such that the low numbers (i.e.,
below 7) help to scale the estimation of somewhat larger num-
bers (up to 20 or so). We therefore manipulated the range of
numbers being estimated to test whether the presence or ab-
sence of the subitizing range affected the location or shape of
the elbow. If the elbow seen in Experiment 1 merely repre-
sents a transition between subitizing-supported (scaled) esti-
mation and self-scaled estimating, then eliminating the
subitizing range might eliminate the elbow. Conversely, if
the elbow represents a division between two different kinds
of estimation process, then the transition should occur whether
or not the subitizing range is included.

Methods

The stimuli, apparatus and general procedures were as in
Experiment 1, with the exception that stimulus duration was
increased to 500 ms, followed by a 500 ms blank screen prior
to the collection of response, to reduce the risk that partici-
pants felt rushed to respond.

Participants Forty-eight undergraduate students participated
in partial fulfillment of a research requirement for the
Introductory psychology course. None had participated in
Experiment 1. Half of the participants made estimates in each
of the two ranges.

Design The manipulation of numeric range (low, including the
subitizing range, vs. high, not including the subitizing range)
was implemented between subjects, with random assignment.
Both groups of participants gave estimates of the elbow por-
tion of the range used in Experiment 1. That is both groups
saw 16 numbers that included the range from 9 to 72 (9, 10,
12, 14, 16, 18, 20, 24, 28, 32, 36, 40, 48, 56, 64, 72). The low-
range (subitizing) group additionally gave estimates of all of
the numbers from 1 to 8, intermixed with the shared range.
The high-range (nonsubitizing) group additionally gave esti-
mates of eight numbers above the shared range (viz. 80, 96,
112, 128, 144, 160, 192, 224). Thus, each group had eight
numbers unique to that group in addition to the range of 16
numbers (half greater than 25 and half lower) spanning 9 to 72

that was common to both groups. As in Experiment 1, there
were three different display sizes used, but only 24 distinct
numbers, and thus a total of 72 trials constituted the full de-
sign. Two blocks of 72 randomly ordered estimation trials
were collected.

Results and discussion

If the presence or absence of the subitizing range was irrele-
vant to the formation of an elbow at about 20 elements, we
should expect to see no effect of our manipulation of this
range. The mean estimates for each condition are shown in
Fig. 5 against the fit lines computed for the full range data
from Experiment 1. The figure suggests that when the
subitizing range was excluded, there was an elevation of esti-
mates in the upper range. Computing the log-log slope for
each participant in this upper range (values greater than 25)
produced amean value of 0.61 (95%CI [0.54, 0.68]), which is
higher than the slopes in this upper range for the full range
condition of Experiment 1, t(42) = 2.71, p = .010, d = 0.84.
This elevation of the exponents could have been due to the
elimination of the subitizing range. But it might also be attrib-
utable to the greater proportion of trials that were in the upper
range as a consequence of eliminating the subitizing range.

In order to test whether the effect of contextual range (high
or low) differentially affected the upper range of numbers, an
ANOVA was conducted on estimates over the shared range
(9–72), with eight levels of number and two levels of magni-
tude (representing 9–24 vs. 28–72), as well as size as within-
subject variables, and contextual range as a between-subjects
variable. Because there was a marginal interaction between
number and magnitude (consistent with the presence of a dis-
continuity), F(7, 322) = 392.4, p < .001, η2 = 0.66, separate
ANOVAs were conducted for each magnitude level.
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Fig. 5 Results of Experiment 2. Mean estimates in log-log space are
shown as a locally smoothed plot with between-subjects standard errors
(medium gray). The dashed lines represents actual number (black), as
well as the fit line (red; log-log slope = 0.5) found for the upper range
of the full range group in Experiment 1. (Color figure online)
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One ANOVA on the mean log estimates at each numeric
value above 25 in the shared range of the present experiment
used number (i.e., 28 to 72) and display area (three levels) as
within-subjects factors, and contextual range (high or low) as
a between-subjects factor. It is of no surprise that log estimates
varied as a function of number, F(7, 322) = 112.6, p < .001, η2

= 0.28, and that the effect of display size was also reliable,
F(2, 92) = 20.0, p < .001, η2 = 0.02. What is most pertinent is
that log estimates were higher for this range when the contex-
tual range included higher numbers rather than lower num-
bers, F(1, 46) = 4.94, p = .031, η2G = 0.05.

A second ANOVA on mean log estimates at each numeric
value below 25 in the shared range of the present experiment
used number (i.e., 9 to 24) and display area (three levels) as
within-subjects factors, and contextual range (high or low) as
a between-subjects factor. Again, estimates varied as a func-
tion of number, F(7, 322) = 392.4, p < .001, η2 = 0.66, and the
effect of display size was also reliable in this range, F(2, 92) =
15.7, p < .001, η2 = 0.02. However the estimates for these
numerosities below 25 did not differ reliably as a function of
the contextual range, F(2, 28) = 2.28, p = .138.

Discussion

Eliminating the subitizing range did not remove the disconti-
nuity in the number estimation function that seems to occur at
about 20 items. Despite the absence of a subitizing range,
there still appeared to be two different types of estimation at
play, and the transition between them occurred at about the
same value. Eliminating the subitizing range did allow the
slope of the log-log estimates above 25 to increase relative
to the full-range condition of Experiment 1.

Experiment 3: Truncating the upper range

As a test of the stability of this discontinuity point, we sought
to truncate the upper range of values to see if eliminating
numbers above 40, for example, could eliminate the disconti-
nuity. Perhaps numbers between 20 and 40 could be absorbed
into the same process used to evaluate 10 to 20 if no higher
numbers had to be evaluated during the same experimental
procedures. To achieve a cap of 40 while retaining 24 distinct
values, we sampled more densely from the range of 26–40.
The experiment otherwise proceeded as before. Could
restricting visual analysis to this range eliminate the shift to-
ward the lower slopes associated with the upper range of
numbers in the previous experiments? Alternatively, if the
location of the elbow is impervious to the range of numbers
used, it may reflect a transition between two distinct
visuocognitive processes for number estimation.

Method

The methods were largely the same as in low-range condition
of Experiment 2, and were designed to allow comparison to
the lower range employed there (1–72). That is, the same
number of estimates were collected and the analysis
proceeded as before.

Participants Twenty-four undergraduate students participated
in partial fulfillment of a research requirement for the
Introductory psychology course. None had participated in
Experiments 1 or 2.

Numeric range Numbers from 2 to 40 were tested. In addition
to 16 values between 2 and 24 (i.e., the eight numbers from 2
to 9, and the eight even numbers from 10–24), the upper
portion of the range was now represented by the eight even
numbers from 26 to 40.

Results

A plot of the mean log estimates is shown in Fig. 6a against
the fit line from Experiment 1. The same data are shown as a
function of display size in Fig. 6b. It is evident that capping the
upper range at 40 did not substantially alter the estimates in
this range. Mean estimates of the log-log slope for each par-
ticipant for numerosities greater than 25 (M = 0.52, 95% CI
[0.38, 0.66]) did not differ from those in Experiment 2 in
upper range (26–72) of the low-range condition (1–72),
t(47) = 0.12, p = .904.

As in Experiment 1, there was a small size effect in the
upper range. That is, a within-subjects ANOVA on mean log
estimates for numerosities greater than 25 (i.e., 26–40), dem-
onstrated that estimates in the upper range differed by display
area, F(2, 48) = 11.5, p < .001, η2G = 0.02. The magnitude of
this effect was equivalent to an 11% increase in estimates from
the smallest to the largest displays, which is similar to that
found in Experiment 1 (i.e., 10%) for the upper range of the
full-range condition.

Discussion

Experiment 3 showed that the location of the elbow seems
stable even when the range of number values tested is shifted
dramatically. Even with the subitizing range in place, the el-
bow remained in essentially the same location when the upper
range was capped at 40, as when it extended to 224
(Experiment 1) or to 72 (Experiment 2). The evidence for this
is that the very same overall fit lines drawn to capture the
estimation data in Experiment 1 provided a good fit to the data
from Experiment 3. Of course, as before, these two fit lines
intersect at 20.

1518 Atten Percept Psychophys (2019) 81:1512–1521



The display area effects (amounting to a 10% increase in
estimates with a 125% increase in area) appear to emergemost
clearly at the transition betweenmidrange numerosities (8–16)
and the upper range (25 and up). This provides additional
support for the idea that numerosity estimation is based on
different visuo-cognitive processes in these two ranges. The
effects of area may be consistent with an imperfect scaling of
the integration of density and area information in the upper
range.

General discussion

Our goal in this paper has been to explore the effects of nu-
meric range on the estimation of numerosity in order to estab-
lish the existence of a transition between two different types of
estimation at about 20 dots. Across three experiments, we
tested ranges that started in the subitizing range (i.e., at 1 or
2), above the subitizing range (at 9) or in a range starting
above 25. In these studies, we observed that the log-log slope
of the numerosity estimation function above 25 was lowest
(about 0.5) in the three experimental tests where the subitizing
range was included, and highest (about 0.7) when all numbers
tested were above 25.When estimation began at 9, the slope in
the upper range was intermediate between these values (about
0.6). Whatever, the starting point, however, the location of the
change in slope from about 1.0 to a much lower value was
consistently at about 20 dots. Whether or not these particular
slope values would generalize to other types of dots, the strik-
ing elbow repeatedly observed in our data replicates a discon-
tinuity present in the data of Huk and Durgin (1996; Durgin,
2016), as well a Kaufman et al. (1949) using very different
kinds of dots.

Much like the discontinuity at 6 that Kaufman et al. (1949)
argued represented a break between what they labeled the
subitizing range and the estimation range, the present discon-
tinuity is both dramatic and stable across many studies.
Although its precise cause is not understood, there is clearly
a discontinuity in the way estimates are formulated beyond 20
dots. Human language number systems are usually base 10 or
base 20, and this has been linked to the number of “digits”
(fingers or fingers and toes) typically allotted to a human. The
consistent emergence of the elbow at about 20 may therefore
be related to the verbal number system itself somehow: From
five up to 20, visual number can be estimated only approxi-
mately (i.e., with some noise) but there is relatively little bias
in the estimates; there is a near one-to-one correspondence
between presented numbers and the integers represented by
the mean estimates. Beyond this range, estimation becomes
increasingly compressed and one-to-one correspondence is
therefore not maintained.

In this spirit, we propose to call the upper range the
“superdigital” range of numeric estimation. By suggesting
something beyond “digital” (i.e., beyond the typical number
of fingers and toes) this term has the advantage of capturing
both the transition point of the superdigital range (about 20),
and the lowered exponent in the superdigital range: Because
the exponents in this range are consistently less than 1, this
range clearly cannot involve one-to-one correspondence (even
approximately). That is, numerosities in this range are treated
more like continuous magnitudes than discrete multitudes.

It seems unlikely that the discontinuity is just a matter of
the numeric estimation process itself rather than an interaction
between the estimation process and the perceptual processes
that support it. This is because this discontinuity is not a typ-
ical feature of magnitude estimation using numbers (e.g.,

2

4

8

16

32

64

2 4 8 16 32 64

Number presented (log scale)

M
e

a
n

 e
s
ti
m

a
te

 (
lo

g
 s

c
a

le
)

2

4

8

16

32

64

2 4 8 16 32 64

Number presented (log scale)

M
e

a
n

 e
s
ti
m

a
te

 (
lo

g
 s

c
a

le
)

area

large

medium

small

Fig. 6 Results of Experiment 3. Mean estimates in log-log space are
shown as a locally smoothed plot with between-subjects standard errors
(medium gray). a The left panel shows the overall curve, collapsing
across display size. b The right panel shows the curves as a function of

display size. The dashed lines in each graph represent actual number
(black), as well as the fit line (red; log-log slope = 0.5) found for the
upper range of the full range group in Experiment 1. (Color figure online)
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Durgin & Li, 2011). It seems reasonable to suggest that it may
represent a transition to an approximate number domain
where the most efficient means of estimating number involves
combining density and area information (Dakin et al., 2011;
Durgin, 1995, 2001).

Notably, however, the location of the discontinuity does
not appear to be determined by density, per se, and thus may
be unrelated to the density-based transition in number com-
parisons proposed by Anobile et al. (2014). That is, the loca-
tion of the elbow observed here clearly did not change loca-
tion by a factor of 2 when the size of the display (and thus the
density) was altered by a factor of 2.25, as would have to the
case if the transition point were determined by display density.
Moreover, Anobile et al. (2015) suggest that the transition in
their experiment occurred at 2.3 dots/deg2 in central vision,
and 0.5 dots/deg2 15° in the periphery. Anobile et al. (2014)
suggest a transition at 0.25 dots/deg2. However, the transition
point of 20 dots in the present experiment would represent a
density of only 0.11 dots/deg2 in the smallest display, and only
0.05 dots/deg2 in the largest. Thus, the location of the second
number elbow seems likely to have a different origin. After
all, there is a fundamental difference between the estimation
task studied here and the magnitude comparison tasks used by
Anobile et al., in that only estimation tasks require establish-
ing an integer value for a collection.

Nor does this transition point fit with the speculations of
Laski and Siegler (2007) regarding developmental patterns
(see, also Cohen & Quinlan, 2018). Rather, the lowered expo-
nent in the superdigital range is consistent with a great deal of
psychophysical work on the scaling of number itself (e.g.,
Banks & Hill, 1974). This work suggests that logarithmic
encoding predominates in our conceptual representations of
number, and that this is most evident for unbounded ranges (as
in estimation). Bounded ranges (such as number lines) tend to
produce more linear coding (Banks & Coleman, 1981). If the
range up to 20 were considered bounded (because of an esti-
mation process that can only manage up to about 20 ele-
ments), and the range beyond twenty unbounded, the elbow
at 20 might represent that transition.

Perhaps the simplest theory of why approximately linear
estimation breaks down at about 20 can be derived from ap-
plying a subitizing process iteratively. If two to four clusters of
three to five dots can serve as a basis for estimating number
with little bias in the range of 6–20, for example, the elbowwe
have observed here may be bounded by the upper limits of
adding (or multiplying) together a subitizable number of
roughly subitizable clusters. If some sort of grouping and
adding strategy does distinguish the middle range from the
superdigital range, we suspect such a strategy may depend
on the presence of a linguistic system that represents numbers
(e.g., Gordon, 2004) as well as fluency in basic arithmetic
knowledge. For now we leave these speculations for future
tests.
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