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Abstract
Auditory perception is shaped by spectral properties of surrounding sounds. For example, when spectral properties differ between
earlier (context) and later (target) sounds, this can produce spectral contrast effects (SCEs; i.e., categorization boundary shifts)
that bias perception of later sounds. SCEs affect perception of speech and nonspeech sounds alike (Stilp Alexander, Kiefte, &
Kluender inAttention, Perception, & Psychophysics, 72(2), 470–480, 2010).When categorizing speech sounds, SCEmagnitudes
increased linearly with greater spectral differences between contexts and target sounds (Stilp, Anderson, &Winn in Journal of the
Acoustical Society of America, 137(6), 3466–3476, 2015; Stilp & Alexander in Proceedings of Meetings on Acoustics, 26, 2016;
Stilp & Assgari in Journal of the Acoustical Society of America, 141(2), EL153–EL158, 2017). The present experiment tested
whether this acute context sensitivity generalized to nonspeech categorization. Listeners categorized musical instrument target
sounds that varied from French horn to tenor saxophone. Before each target, listeners heard a 1-second string quintet sample
processed by filters that reflected part of (25%, 50%, 75%) or the full (100%) difference between horn and saxophone spectra.
Larger filter gains increased spectral distinctness across context and target sounds, and resulting SCE magnitudes increased
linearly, parallel to speech categorization. Thus, a highly sensitive relationship between context spectra and target categorization
appears to be fundamental to auditory perception.
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Introduction

Human perception relies heavily on context for the interpreta-
tion of stimuli. Context provides a background against which

a target stimulus is judged, shaping its perception. When the
context and target stimulus differ, that difference may be per-
ceptually magnified, resulting in a contrast effect. Consider
the perceived brightness of a cell phone screen. For a given
level of physical luminance, the screen will be perceived as
less bright in well-lit conditions (such as sitting on a beach in
the daytime) than in dimly lit conditions (on the same beach
long after the sun has gone down). This is an example of
brightness contrast in vision, but contrast effects can occur
in every modality (von Békésy, 1967; Warren, 1985;
Kluender, Coady, & Kiefte, 2003).

Contrast effects play an important role in speech percep-
tion. In a seminal paper, Ladefoged and Broadbent (1957)
demonstrated that the spectrum of a preceding sentence con-
text (BPlease say what vowel this is^) can influence vowel
perception. When first formant frequencies (F1) of the context
sentence were shifted up, listeners perceived the subsequent
target vowel as / / (low F1) more often. When the first formant
of the context sentence was shifted down, listeners perceived
the target as /ε/ (high F1) more often. In this example, spectral
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characteristics differed across context and target sounds,
resulting in spectral contrast effects (SCEs). These effects
have been widely reported in speech perception (e.g.,
Ladefoged & Broadbent, 1957; Watkins, 1991; Lotto &
Kluender, 1998; Holt, 2005; Sjerps, Mitterer, & McQueen,
2011; Kingston et al., 2014; Sjerps & Reinisch, 2015;
Assgari & Stilp, 2015; Stilp, Anderson, & Winn, 2015; Feng
& Oxenham, 2018; Sjerps, Zhang, & Peng, 2018; Stilp &
Assgari, in press; but see Mann, 1980; Mann & Repp, 1980;
Fowler et al., 2000; Mitterer, 2006; Viswanathan, Fowler, &
Magnuson, 2009; Viswanathan, Magnuson, & Fowler, 2010,
2013, for alternative accounts with mechanisms tied directly
to speech production). SCEs are not exclusive to the use of
speech stimuli. Contrast effects also bias speech categoriza-
tion following nonspeech contexts, such as signal-correlated
noise (Watkins, 1991) and pure tones (Lotto & Kluender,
1998; Holt, 2005; Kingston et al., 2014).

Stilp, Alexander, Kiefte, and Kluender (2010) predicted
that SCEs were just as important in nonspeech sound catego-
rization as they were in speech categorization. They tested this
prediction by measuring context effects in the perception of
music. Music was chosen as the nonspeech stimulus because,
while it is spectrotemporally complex, listeners are generally
far less familiar with music than with speech. In Stilp et al.
(2010), listeners categorized musical instrument sounds that
varied from French horn to tenor saxophone. In one experi-
ment, the preceding acoustic context was speech (BYou will
hear^). In a separate experiment, the preceding acoustic con-
text was a brief excerpt of a string quintet. These contexts
were processed by filters that emphasized the difference be-
tween horn and saxophone spectra (spectral envelope
difference filters; Watkins, 1991; see Method). In both exper-
iments, when the context was filtered to emphasize frequen-
cies in the horn spectrum, listeners categorized target sounds
as a saxophone more often. When the context was filtered to
emphasize frequencies in the saxophone spectrum, listeners
categorized target sounds as the hornmore often. These results
were observed irrespective of whether the context was speech
or music. Thus, despite having far less experience perceiving
musical instruments as compared to speech, listeners’ re-
sponses were similarly shaped by SCEs in both conditions.
This supported the generality of these context effects for au-
ditory perception at large.

While SCEs in speech perception have a long history, the
underlying mechanism responsible for these effects is fiercely
debated. Ladefoged and Broadbent (1957) initially interpreted
their findings as a means for adjusting for talker differences.
They suggested that listeners learn properties of a talker’s
voice and use that information to inform perception of speech
from that talker. Subsequent research interpreted these types
of context effects as being rooted in speech production,
reflecting the listeners’ effort to compensate for coarticulation
(Mann, 1980; Mann & Repp, 1980). Lotto and Kluender

produced similar shifts in speech categorization for nonhuman
animals perceiving speech (Lotto, Kluender, & Holt, 1997)
and humans perceiving nonspeech (Lotto & Kluender, 1998;
see also Watkins, 1991; Holt, 2005; Kingston et al., 2014),
leading to the proposal that general auditory mechanisms pro-
duced these context effects and not speech production per se.
This launched a decades-long debate that is still ongoing (for
reviews, see Fowler et al., 2000; Diehl, Lotto, & Holt, 2004;
Fowler, 2006; Lotto & Holt, 2006; Kingston et al., 2014). In
this debate, it is important to acknowledge that multiple time-
scales of context effects are being studied. The context pre-
ceding the categorized phoneme target can be short term (a
single sound or syllable, as in Mann, 1980; Lotto & Kluender,
1998; and others) or longer term (several sounds or a sentence,
as in Ladefoged & Broadbent, 1957; Holt, 2005; and others).
The spectral contrast account offers the same mechanism(s)
and consistent predictions across short-term and long-term
context effects. While compensation for coarticulation has
been proposed as the mechanism responsible for these short-
term effects (e.g., Mann, 1980; Mann & Repp, 1980; Fowler
et al., 2000; Viswanathan et al., 2009; Viswanathan et al.,
2010; Viswanathan et al., 2013), this mechanism cannot speak
directly to longer-term context effects (Viswanathan & Kelty-
Stephen, 2018).

The magnitudes of SCEs in auditory perception are also
poorly understood. Irrespective of whether one might intuit
that these effects have variable magnitudes, past studies over-
whelmingly ignored this possibility and instead treated them
as being merely present or absent. This was due in part to
researchers processing context sounds using high-gain filters.
High-gain filters introduced large spectral differences between
context and target sounds, which maximized the probability of
observing an SCE (if one should theoretically be present).
While this approach was informative for when perception
might be influenced by SCEs, it failed to address the question
of to what extent perception was influenced by context.

Stilp and colleagues (Stilp et al., 2015) addressed this ques-
tion by testing the effects of a variety of filters and filter gains
on vowel categorization. Filter gains ranged from small (e.g.,
adding a +5 dB spectral peak to the context sentence spec-
trum, amplifying/attenuating context frequencies by only 25%
of the difference between target spectral envelopes) to large
(e.g., +20 dB peak, amplifying/attenuating frequencies by
100% of the difference between spectral envelopes). Not only
were SCEs observed in nearly every condition tested, but their
magnitudes varied continuously: As larger filter gains were
tested, spectral differences between the context sentence and
target vowel progressively increased, and SCE magnitudes
increased in kind (see also Stilp & Alexander, 2016). This
relationship was later replicated and extended in consonant
categorization (Stilp & Assgari, 2017). Each of these studies
reported strong linear relationships between filter gain (which
introduced spectral differences between context and target
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sounds) and biases in speech categorization (i.e., SCEs mag-
nitudes), supporting acute sensitivity to context when perceiv-
ing and categorizing speech sounds.

The magnitudes of SCEs vary continuously in speech cat-
egorization (Stilp et al., 2015; Stilp & Alexander, 2016; Stilp
& Assgari, 2017), but it is unknown whether the same is true
for SCEs influencing musical instrument categorization (as in
Stilp et al., 2010). One possibility is that continuous variation
in SCE magnitudes only occurs for highly familiar stimuli
(e.g., speech). If this is the case, SCEs for less familiar stimuli
(e.g., music) would not vary gradually in their magnitudes but
instead skew toward being either present or absent. On the
other hand, the magnitudes of these context effects might vary
continuously irrespective of this difference in listening expe-
rience. While the occurrence of SCEs in auditory perception
generalizes across speech and nonspeech (as reviewed above),
it is unclear whether the degrees to which SCEs shape audi-
tory perception is equally generalizable.

To test these possibilities, in the present experiment, the
variable-filter-gain approach of Stilp et al. (2015) was applied
to the nonspeech stimuli used in Stilp et al. (2010). Filters
introduced varying degrees of spectral differences between
the context (string quintet) and the target (brass instrument)
stimuli. Conditions testing high-gain filters are expected to
replicate the SCEs reported in Stilp et al. (2010). The key
question is whether smaller amounts of filter gain (i.e., filters
that reflect less of the difference between horn and saxophone
spectra) bias musical instrument categorization to progressive-
ly smaller degrees, as observed in speech categorization (Stilp
et al., 2015; Stilp & Alexander, 2016; Stilp & Assgari, 2017).

Method

Participants

Seventeen undergraduate participants in this experiment re-
ceived course credit in exchange for their participation. All
self-reported no known hearing impairments.

Stimuli

Targets Target stimuli were the same stimuli as used in Stilp
et al. (2010). Two musical instruments, French horn and tenor
saxophone, were selected from theMcGill University Musical
Samples database (Opolko & Wapnick, 1989). Recordings of
each instrument playing the note G3 (196Hz) were sampled at
44.1 kHz. Three consecutive pitch pulses (15.31 ms) of con-
stant amplitude were excised at zero crossings from the center
of each recording and iterated to 140-ms total duration in Praat
(Boersma &Weenink, 2017). Stimuli were processed by 5-ms
linear ramps at both onset and offset. Stimuli were then pro-
portionately mixed in six steps to form a series in which the

amplitude of one instrument was +30, +18, +6, −6, −18, or
−30 dB relative to the other. Stimuli with 30-dB differences
between instruments served as series endpoints. Waveforms
were then low-pass filtered at 10 kHz cutoff using a 10th-
order, elliptical infinite impulse response filter. Instrument
mixing and filtering were performed in MATLAB.

Filters Similar to Stilp et al. (2010), endpoint French horn and
tenor saxophone stimuli were analyzed to create spectral enve-
lope difference (SED) filters (Watkins, 1991). Spectral enve-
lopes for each instrument were derived from 512-point
Fourier transforms, and were smoothed using a 256-point
Hamming window with 128-point overlap (see Fig. 1).
Spectral envelopes were equated for peak power, then
subtracted from one another in both directions (horn minus
saxophone, saxophone minus horn). A finite impulse response
was obtained for each SED using inverse Fourier transform.
This impulse response reflected 100% of the difference be-
tween spectral envelopes (as in Stilp et al., 2010). Following
the methods of Stilp et al. (2015) and Stilp (2017; see also
Watkins & Makin, 1996), the linear amplitude values of the
impulse responses were scaled down to 75%, 50%, or 25% of
the original SED (see Fig. 1). This produced eight filters in all:
two SEDs (horn minus saxophone, saxophone minus horn)
fully crossed with four levels of filter gain (100%, 75%, 50%,
25%). If SCE magnitudes scale linearly, as observed in speech
categorization (Stilp et al., 2015; Stilp &Alexander, 2016; Stilp
& Assgari, 2017), then relatively large SCEs should be ob-
served following contexts processed by 100% SED filters and
progressively smaller SCEs should be observed following con-
texts processed by smaller amounts of filter gain.

Context The context stimulus was a 1 second excerpt of Franz
Schubert’s String Quintet in C Major, Allegretto, taken from
compact disc. This was the same stimulus as used in Stilp et al.
(2010). The context was processed by each of the eight SED
filters detailed above.

All contexts and targets were matched in root-mean-
squared (RMS) amplitude. Each of the six target instrument
stimuli was concatenated to each of eight contexts, making 48
unique pairings in all. The two target instrument endpoints,
absent any preceding context, were also RMSmatched for use
in a familiarization task. Finally, all stimuli were resampled at
44.1 kHz for presentation.

Procedure

After obtaining informed consent, each participant was led
into a sound-attenuating booth (Acoustic Systems, Inc.,
Austin, TX). The participant sat at a small table on top of
which was a computer screen, mouse, and keyboard. All
sounds were D/A converted by RME HDSPe AIO sound
cards (Audio AG, Haimhausen, Germany) on a personal
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computer and passed through a programmable attenuator
(TDT PA4, Tucker-Davis Technologies, Alachua, FL) and
headphone buffer (TDT HB6) before being presented
diotically at 70 dB sound pressure level (SPL) over
circumaural headphones (Beyerdynamic DT-150,
Beyerdynamic Inc. USA, Farmingdale, NY).

A custom MATLAB script guided participants through the
experiment, which consisted of four phases. The first phase
was Exposure, where participants heard each musical instru-
ment endpoint played twice along with its verbal label.

The second phase was Practice, where participants
categorized endpoints from the French-horn–tenor-saxo-
phone series. Participants used the mouse to click a
response button, indicating whether they heard a
French horn or a tenor saxophone. Practice consisted
of 120 practice trials. A performance criterion was im-
plemented where participants were required to achieve
at least 90% correct before proceeding to the next phase
of the experiment. All participants met this criterion.

The third phase was the Main Experiment. On each
trial, participants heard a filtered context stimulus follow-
ed by a musical instrument target. Participants clicked the
mouse to indicate whether the target sounded more like a
French horn or a tenor saxophone. The experiment
consisted of four blocks, with each block composed of
120 trials (2 SED filters: horn minus saxophone, saxo-
phone minus horn × 6 target instruments × 10 repetitions)
at a single level of filter gain (100%, 75%, 50%, or 25%).
Stimuli were randomized within each block, and blocks
were tested in counterbalanced orders across participants.

The fourth and final phase was the Survey. This survey, the
same as that used in Stilp et al. (2010), consisted of five ques-
tions that broadly assessed each participant’s musical experi-
ence. The first question asked participants to rate their musical
performing ability from 1 (no experience) to 5 (virtuoso) on a
Likert-type scale. The second and third questions asked partic-
ipants to report the number of years of solo or ensemblemusical
performance experience (with formal training/instruction) they
had, respectively. The fourth question asked participants to re-
port any other relevant musical experience they had to share.
The fifth question asked participants whether they recognized
or could name the musical selection used as the context stimu-
lus. Participants clicked the mouse and typed on the keyboard
to enter their responses to survey questions. In all, the entire
session took approximately 50 minutes to complete.

Results

All participants met the inclusion criterion of 90% correct in
the practice block. However, two participants failed to main-
tain 90% accuracy on target endpoint stimuli throughout the
experiment. Their results were removed from subsequent
analyses. Responses from the remaining 15 participants were
analyzed using a generalized linear mixed-effect logistic mod-
el in R (R Development Core Team, 2016) using the lme4
package (Bates, Maechler, Bolker, & Walker, 2014). Initial
model architecture matched that used by Stilp et al. (2015)
and Stilp and Assgari (2017). The dependent variable was
modeled as binary (Bhorn^ or Bsaxophone^ responses coded

Fig. 1 Construction of spectral envelope difference (SED) filters. Top
row depicts spectral envelopes for endpoints of the musical instrument
target series. Bottom row depicts SED filter responses that reflect 100%
(left) or progressively less of the difference between horn and saxophone

spectral envelopes. Here, filter responses reflect SEDs for horn minus
saxophone; subtraction in the opposite direction (saxophone minus horn)
produced complementary filter responses to those shown here
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as 0 and 1, respectively). Fixed effects in the model included
Target (coded as a continuous variable from 1 to 6, then mean
centered), Filter Frequency (categorical variable with two
levels: saxophone minus horn and horn minus saxophone,
with horn minus saxophone set as the default level), Filter
Gain (in percentage of SED; coded as a continuous variable
from 25 to 100 in steps of 25, then mean centered), and the
interaction between Filter Frequency and Filter Gain. Random
slopes were included for each fixed main effect and interac-
tion, and a random intercept of participant was also included.
Preliminary analyses indicated that inclusion of the random
slope for the Filter Frequency × Filter Gain interaction did not
explain any additional variance, χ2(5) = 1.56, p = .91, so this
term was omitted from the final model, which had the follow-
ing form:

Response∼Targetþ FilterFrequency

þ FilterGainþ FilterFrequency� FilterGain

þ 1þ Targetþ FilterFrequencyþ FilterGainjParticipantð Þ

Results from the mixed-effects model analysis are present-
ed in Table 1, and behavioral results are depicted in Fig. 2. The
fixed-effect Target was statistically significant, indicating that
the log odds of responding Bsaxophone^ increased with each
rightward step along the musical instrument series, as expect-
ed (see Fig. 2). The fixed-effect Filter Frequency was signif-
icant, indicating that the log odds of responding Bsaxophone^
decreased as the filtering condition was changed from horn
minus saxophone to saxophone minus horn, consistent with
the predicted direction of SCEs (i.e., more Bhorn^ responses
following the saxophone-minus-horn-filtered context, with
which it is spectrally contrastive). The fixed effect of Filter
Gain was also significant, indicating an increase in the log
odds of responding Bsaxophone^ as larger amounts of filter
gain were used in processing the context musical passages.
Critically, the interaction between Filter Frequency and Filter
Gain was statistically significant. This indicates that SCEs
increased linearly as filter gain increased, reflecting a system-
atic increase in SCE magnitudes as the spectral difference
between context and target increased.

Following Stilp et al. (2015) and Stilp and Assgari
(2017), post hoc analyses were performed by coding the
interaction term Filter Frequency × Filter Gain as a categor-
ical factor. This manipulation removes the model’s assump-
tion that SCEs scaled linearly with different amounts of
filter gain (as verified in the significant Filter Frequency ×
Filter Gain interaction in Table 1) and tests each SCE inde-
pendently. This analysis selected one level of filter gain as
the default level, then tested its model coefficient against
zero using a Wald z test. All other model parameters
matched those in the previous analysis. This process was
repeated for all four levels of filter gain (25%, 50%, 75%,
100%). In each analysis, SCE magnitude was operational-
ized as the distance between logistic function 50% points
measured in stimulus steps along the target continuum
(visible as the horizontal spacing between functions in
each panel of Fig. 2). For responses following the horn-
minus-saxophone-filtered context, the 50% point was

Table 1 Mixed-effects logistic model results

Estimate SE Z p

Intercept 1.10 0.14 7.86 <.0001

Target 2.21 0.28 7.87 <.0001

FilterFreq −0.77 0.12 −6.18 <.0001

FilterGain 0.01 0.002 2.11 .035

FilterFreq × FilterGain −0.01 0.003 −3.96 <.0001

Note. BTarget^ refers to the slope of the logistic function, defined as the
change in log odds of the listener responding Bsaxophone^ resulting from
one rightward step along the target instrument series (toward the saxo-
phone endpoint). BFilterFreq^ lists the change in log odds of the listener
responding Bsaxophone^ resulting from changing the context filtering
from the horn-minus-saxophone SED filter to the saxophone-minus-
horn SED filter. BFilterGain^ lists the change in log odds of a
Bsaxophone^ response resulting from increasing filter gain by 1% of the
difference between target instrument spectra. BFilterFreq × FilterGain^
indicates the change in the size of the FilterFreq effect (i.e., SCE) per
percentage of filter gain. SE = standard error of the mean

Fig. 2 Behavioral responses. Response proportions are on the ordinate
and target instrument series is along the abscissa (1 = French horn
endpoint, 6 = tenor saxophone endpoint). Symbols depict the mean
proportions of Bsaxophone^ responses across the participant sample to a
given member of the target instrument series; error bars represent one
standard error of the mean. Fits to these responses were generated by

the mixed-effects logistic model detailed in Table 1. Blue circles and lines
depict responses following contexts processed by the horn-minus-
saxophone difference filter; red triangles and lines depict responses fol-
lowing contexts processed by the saxophone-minus-horn difference filter.
(Color figure online)
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calculated as −Intercept/Target. For responses following the
saxophone-minus-horn-filtered context, the 50% point was
calculated as −(Intercept + Filter Frequency)/Target. At ev-
ery level of filter gain, SCEs were significantly greater than
zero (all Zs > 2.03, all ps < .05). Critically, SCE magnitude
was again linearly related to filter gain (r = .96, p < .05; see
Fig. 3). This replicates the linear relationships reported for
vowels (Stilp et al., 2015; Stilp & Alexander, 2016) and
consonants (Stilp & Assgari, 2017).

Finally, survey responses were used to predict two dif-
ferent outcome variables. First, responses were used to pre-
dict SCEmagnitudes in the 100% SED condition. If musical
experience influences SCE magnitude, then SCEs would be
expected to be larger for participants with more musical
experience and smaller for listeners with less musical expe-
rience. This analysis was conducted by Stilp et al. (2010),
who reported no significant relationships between items.
The analysis was repeated here to inform whether substan-
tive differences existed across participant groups (if such a
relationship is observed in the present report) or not (null
results in both studies). Second, linear regressions were cal-
culated on each participants’ SCEs as a function of SED
percentage, and survey responses were used to predict the
slopes of these regressions. If musical experience promotes
sensitivity to spectral differences across sounds, then re-
gression slopes should be steeper for more experienced mu-
sicians (i.e., more differentiation across SCE magnitudes)
and shallower for those with less musical experience.

The first questionnaire item, self-rated musical performance
ability (median rating = 2, range: 1–4), had no predictive power
for behavioral performance. Given the ordinal nature of these rat-
ings, Spearman’s correlations were calculated. This questionnaire
itemwas not correlatedwith 100%SEDSCEmagnitudes (ρ= .02,
p = .93) or linear regression slopes (ρ = .12, p = .66). Subsequent
analyses used Pearson correlation coefficients. The second ques-
tionnaire item, years of solomusical performing experience (mean
= 2.00 years, SD = 2.83), was not correlatedwith 100%SEDSCE

magnitude (r = −.22, p = .42) or linear regression slopes (r = −.06,
p = .82). The third questionnaire item, years of ensemble musical
performing experience (mean = 1.73 years, SD = 2.43), was not
correlated with 100% SED SCE magnitude (r = −.20, p = .48) or
linear regression slopes (r = −.10, p = .73). No listeners had any
other relevantmusical experience to share, and none recognized or
accurately identified the string quintet context.

Discussion

Spectral contrast effects have a long history in speech percep-
tion research (see the introduction). Yet, much of this research
focused on whether SCEs did or did not influence speech
categorization, giving little to no consideration to the magni-
tudes of these effects. Recent work showed that SCE magni-
tudes scaled linearly in predictable ways: As spectral differ-
ences across context and target sounds increased, biases in
target sound categorization increased in kind (Stilp et al.,
2015; Stilp & Alexander, 2016; Stilp & Assgari, 2017).
While SCEs have also been shown to bias categorization of
musical instrument sounds (Stilp et al., 2010), whether this
acute sensitivity to preceding context generalized to non-
speech categorization was unclear. The current study demon-
strated that SCE magnitudes also scaled linearly as a function
of spectral differences in nonspeech categorization, just as
they do in speech categorization. This suggests that in general,
perception of complex sounds is acutely sensitive to spectral
characteristics of preceding sounds.

Musical performance experience was not a reliable predic-
tor of performance in the present study. Whether reported
subjectively (rated on a Likert-type scale) or more objectively
(years of performing experience), no survey items were cor-
related with SCE magnitudes in the 100% SED condition, nor
with the rate of SCE growth as SED percentage increased
(linear regression slopes fit to each listeners’ SCEs). Null re-
sults were also reported in Stilp et al. (2010), who tried to
predict SCEmagnitudes using the same questionnaire. It bears
mentioning that musicians were not explicitly recruited to par-
ticipate in the present study. But, if these null results are rep-
resentative, it would suggest that musical training does not
modulate the proposed low-level mechanisms that are respon-
sible for SCEs (adaptation or adaptation-like mechanisms in
the early auditory system; Delgutte, 1996; Delgutte,
Hammond, Kalluri, Litvak, & Cariani, 1996; Holt, Lotto, &
Kluender, 2000; Holt & Lotto, 2002; Stilp & Assgari, 2018).
Future research with a highly musically trained participant
sample would provide a stronger test of this suggestion.

The present results are highly relevant to listeners who
use hearing aids or cochlear implants to hear. Signal pro-
cessing algorithms in these devices prioritize processing of
the current sound, with much less emphasis on incorporat-
ing effects of preceding acoustic context. However, recent

Fig. 3 Spectral contrast effects (SCEs) calculated independently at each
level of filter gain. Solid line depicts the linear regression fit to these
SCEs. A strong linear relationship exists between these variables (r =
.96, p < .05), replicating similar results reported in studies of speech
categorization
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reports indicate that hearing-impaired listeners’ speech per-
ception is also influenced by SCEs. Stilp and Alexander
(2016) reported that listeners with sensorineural hearing
loss exhibited SCEs whose magnitudes were larger than
those for normal-hearing listeners. Similarly, in Stilp
(2017), SCE magnitudes were significantly larger when
normal-hearing listeners categorized noise-vocoded speech
compared to the spectrally intact stimuli tested in Stilp et al.
(2015). This was directly confirmed by Feng and Oxenham
(2018), who reported larger SCEs for cochlear implant users
than for normal-hearing listeners. Finally, SCE magnitudes
for hearing-impaired listeners increased in a linear fashion
at higher filter gains, similar to normal hearing listeners (but
with a steeper slope owing to larger SCE magnitudes; Stilp
& Alexander, 2016). Thus, healthy hearing is not a prereq-
uisite for having speech perception be influenced by SCEs.
However, the magnitudes of these effects appears to differ
based on hearing health. Larger-than-normal SCEs encour-
age miscategorization of otherwise unambiguous speech
sounds, resulting in poorer speech recognition than that
achieved by appropriately sized SCEs (see Stilp, 2017 for
discussion). Future research should consider how finely
SCE magnitudes might vary with hearing health, whether
this context sensitivity generalizes to nonspeech perception
by hearing-impaired listeners as well, and how signal pro-
cessing in assistive listening devices might exert similar-
sized context effects to those experienced by normal-
hearing listeners.

Results extend the long history of replicating effects ob-
served in speech perception using nonspeech sounds.
Following several early demonstrations (Stevens & Klatt,
1974; Miller, Wier, Pastore, Kelly, & Dooling, 1976; Pisoni,
1977), strong converging evidence was offered by Diehl and
colleagues, including trading relations and context effects
influencing medial voicing distinctions (Parker, Diehl, &
Kluender, 1986; Kluender, Diehl, & Wright, 1988), temporal
cues to consonant manner (Diehl & Walsh, 1989), and related
subsequent studies demonstrating the efficacy of nonspeech
contexts biasing speech categorization (Lotto & Kluender,
1998; Holt, 2005). Here, not only were contrast effects observed
in perception of nonspeech target sounds (as in Stilp et al.,
2010), but patterns of contrast effects were replicated across
speech and nonspeech sounds, as both scaled linearly as a func-
tion of filter gain. In other words, the larger the spectral differ-
ence between earlier and later sounds (irrespective of whether
they were speech or nonspeech), the greater the extent to which
categorization was biased. This reifies contrast as a fundamental
mechanism that contributes substantially to perception of speech
and other complex sounds (Diehl, Elman, & McCusker, 1978;
Kluender, Coady,&Kiefte, 2003; Kluender&Alexander, 2007;
Stilp et al., 2015; Stilp &Assgari, in press).

In conclusion, larger spectral differences across context and
target sounds produced systematically larger biases in musical

instrument categorization. This pattern of results replicated
similar reports in vowel categorization (Stilp et al., 2015;
Stilp & Alexander, 2016) and consonant categorization
(Stilp & Assgari, 2017). Thus, acute sensitivity to spectral
differences across sounds and the contrast effects that are pro-
duced appear to be fundamental to auditory perception.
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