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Abstract
In the human category of learning, learning is studied in a supervised, an unsupervised, or a semisupervised way. The rare human
semisupervised category of learning studies all focus on early learning. However, the impact of the semisupervised category
learning late in learning, when automaticity develops, is unknown. Therefore, in Experiment 1, all participants were first trained
on the information-integration category structure for 2 days until they reached an expert level. Afterwards, half of the participants
learned in a supervised way and the other half in a semisupervised way over two successive days. Both groups received an equal
number of feedback trials. Finally, all participants took part in a test day where they were asked to respond as quickly as possible.
Participants were significantly faster on this test in the semisupervised group than in the supervised group. This difference was
not found on day 2, implying that the no-feedback trials in the semisupervised condition facilitated automaticity. Experiment 2
was designed to test whether the higher number of trials in the semisupervised condition of Experiment 1 caused the faster
response times. We therefore created an almost supervised condition where participants almost always received feedback (95%)
and an almost unsupervised condition where participants almost never received feedback (5%). All conditions now contained an
equal number of trials to the semisupervised condition of Experiment 1. The results show that receiving feedback almost always
or almost never led to slower response times than the semisupervised condition of Experiment 1. This confirms the advantage of
semisupervised learning late in learning.
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Introduction

Throughout the ages correct categorization has remained es-
sential for human survival. In prehistory, classifying a predator
as a harmless animal was mortal. Nowadays, classifying traf-
fic signs correctly is important to avoid accidents. These ex-
amples explain why categorization has received continuous
attention in the field of cognitive science (e.g., Ashby &
Maddox, 2005; Ashby & Maddox, 2010; Medin & Schaffer,
1978; Nosofsky, 1987; Pothos & Chater, 2002). Although

many categories that people use are acquired during childhood
(French, Mareschal, Mermillod, & Quinn, 2004), adults also
learn new categories. In the human category of learning re-
search the focus is on the learning process itself. In order to
understand this learning process, exemplars and non-
exemplars of unfamiliar categories are typically presented
(Ashby & Maddox, 2005). The behavior of participants is
observed during the period when their ability to assign stimuli
to these categories increases from chance level to a certain
stable above-chance level (Ashby & Maddox, 2005).

Supervised and unsupervised learning

In the past, the human category of learning was studied using
supervised or unsupervised learning paradigms. In supervised
learning paradigms, the participant is presented with a stim-
ulus that has to be classified into two or more contrasting
categories. Immediately after this response, feedback is al-
ways provided about the correct category label. Generally
the participant knows the number of contrasting categories
in advance (see Shepard, Hovland, & Jenkins, 1961 for a
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description of a basic experiment). Numerous studies have
demonstrated that, based on this paradigm, participants can
learn very complex categories if a sufficient number of trials
is provided (e.g., Ashby, Queller, & Berretty, 1999; Ashby,
Maddox, & Bohil, 2002; Maddox, Filoteo, Hejl, & Ing,
2004c ; McKinley & Nosofsky, 1995 ; Medin &
Schwanenflugel, 1981; Maddox, Ashby, & Gottlob, 1998).
In unsupervised learning paradigms, the participant never re-
ceives feedback or information about the category to which
the presented stimulus belongs. The goal is to identify an
intuitive or natural classification for a set of objects (Clapper
& Bower, 1994; Love, 2002; Medin, Wattenmaker, &
Hampson, 1987; Milton, Longmore & Wills, 2008; Pothos
& Chater, 2002, 2005; Pothos et al., 2011). Depending on
the paradigm, the number of contrasting categories may or
may not be known in advance. Findings based on such unsu-
pervised paradigms reveal that performance is dominated by the
use of unidimensional rules, regardless of the complexity of the
underlying category structure or the number of training trials
(Ashby et al., 1999). These unidimensional rules (e.g., Bsmall
stimuli belong to category A and large stimuli to category B^)
are easy to verbalize and to apply, whereas complex categoriza-
tion rules are mostly hard to express. In conclusion, in unsuper-
vised learning people have the tendency to use very simple
categorization rules, whereas in supervised learning participants
are able to learn very complex categorization structures.

Semisupervised learning

Vandist, De Schryver, and Rosseel (2009) argued that both
supervised and unsupervised learning are ecologically rare.
Translated to daily life, supervised learning means that for
every object that we observe we immediately receive correct
information about its category label. In most category learning
situations, it seems very unlikely that this occurs after each
single encounter of a category member. Strictly speaking, su-
pervised learning would imply that, when we walk in the
woods, a label Btree^ is attached to every single tree.
Moreover, this information is unambiguous, implying that
the information provider and receiver always mean the same
object. However, ambiguity often occurs in very rich environ-
ments. For example, when walking in the woods a parent
might point to a bird and call it Bbird^, while the child may
be watching a nest and hence learns the wrong label.
Unsupervised learning on the other hand entails that we
never receive any information about object categories. This
implies that during our entire lives, nobody ever informs us
about the name of an object or about which objects belong
together. Both types of category learning therefore do not
represent our daily reality. In a previous study Vandist et al.
(2009) argued that people instead learn in a semisupervised
way: when confronted with (new) objects (e.g., a dog), some-
times category information will be provided (Blook, a dog^)

and sometimes not. This idea is supported by Gibson, Rogers,
and Zhu (2013). In the semisupervised category learning
paradigm this realistic scenario is incorporated. In a block of
trials a predetermined percentage of category responses is
followed by feedback (i.e., feedback or labelled trials). The
remaining trials do not receive feedback (i.e., no-feedback or
unlabelled trials). For example, a block in a 25%
semisupervised classification learning paradigm consists of
25% feedback trials and 75% no-feedback trials.

Vandist et al. (2009) compared the effects of this
semisupervised learning process to supervised and unsuper-
vised learning processes by using the information-integration
structure. This category structure is frequently used in catego-
ry learning research (e.g., Ashby et al., 2002; Ashby & Ell,
2001; Ell & Ashby, 2006; Maddox, Ashby, Ing, & Pickering,
2004a; Maddox & Filoteo, 2011; Maddox & Ing, 2005;
Maddox, Pacheco, Reeves, Zhu, & Schnyer, 2010b; Paul,
Boomer, Smith, & Ashby, 2011; Spiering & Ashby, 2008a,
b; Vermaercke, Cop, Willems, D’Hooge, & Op de Beeck,
2014). Figure 1 shows an example of the information-
integration category structure used in the experiments reported
in the current study. Although the within-category correlation
is very high, this structure is difficult to learn. To obtain high-
level performance, participants have to combine the perceptu-
al information of the underlying stimulus dimensions simul-
taneously at some predecisional stage (Ashby & Gott, 1988).
This perceptual integration could take many forms – in this
case, by calculating a weighted linear combination of the di-
mensional values. The optimal decision bound is almost im-
possible to describe verbally (Ashby, Alfonso-Reese, Turken,

Fig. 1 An example of the information-integration category structure used
in the learning task in Experiment 1. The BA^ stimuli are shown in
squares, the BB^ stimuli in solid circles. The decision bound that divides
the two categories perfectly is shown in black. The Y-axis is the
Orientation dimension, the X-axis the Frequency dimension
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& Waldron, 1998) and it cannot readily be discovered via an
explicit reasoning process (Ashby & O’Brien, 2007), which
makes the category structure difficult to master for humans
(Vermaercke et al., 2014). Feedback is essential to learn the
structure successfully (Ashby et al., 1999).

The results of the study of Vandist et al. (2009) indicated
that, as expected, learning the information-integration struc-
ture was successful in the supervised condition but not in the
unsupervised condition. In a 50% semisupervised condition,
participants managed to learn the structure, suggesting that
feedback after every trial is not necessary to learn the complex
structure.

The impact of no-feedback trials in semisupervised
learning

An additional goal of the study of Vandist et al. (2009) was to
understand the contribution of the no-feedback trials on the
learning process. In the no-feedback trials, participants were
shown a stimulus, processed it, and categorized it. It was only
clear after the categorization that no feedback followed.
Crucially, it was investigated whether the processing of the
stimulus in the no-feedback trials had an impact on the learn-
ing process or whether the experience was simply neglected.
To achieve this, the no-feedback trials were replaced by irrel-
evant fillers, where no categorization whatsoever takes place.
The number of feedback trials was identical in the condition
with no-feedback trials and the condition with filler trials. The
results indicated that the learning process in both conditions
was similar. Hence, the no-feedback trials neither harmed nor
helped learning. Apparently, when we encounter an object
early in the learning process, we classify it, and when no
feedback follows, this has no effect on our category learning.
The semisupervised learning was also studied giving feedback
after 25% of the trials. In this 25% semisupervised condition,
participants failed to learn the task. This failure was not due to
the low relative percentage of feedback trials in a block, be-
cause when the absolute number of trials was doubled (i.e.,
25% feedback was maintained, but twice as many feedback
trials were received), almost all participants were able to mas-
ter the category structure. Thus, when given enough trials,
even 25% feedback sufficed to learn the category structure.
Again, this result suggests that the no-feedback trials have
little impact on the initial learning process, but that learning
is rather determined by the absolute number of feedback trials
one receives.

An important question is whether these findings imply that
people encounter objects, classify them and then simply delete
this experience because no confirmation or correction is pro-
vided. If so, this would be in contrast to findings frommachine
learning where machines do use no-feedback trials to extend
the knowledge gained from feedback trials. Remarkably,
when supervised and semisupervised machine learning are

compared, semisupervised machine learning can even achieve
faster optimal performance (Chapelle, Scholkopf & Zien,
2006; Zhu & Goldberg, 2009). In machine learning,
semisupervised learning is therefore the method used most
often, also due to practical implications: semisupervised learn-
ing requires fewer feedback items, which must be annotated
one by one by humans and therefore reduces time investment
(Zhu & Goldberg, 2009).

Since Vandist et al. (2009) several human semisupervised
category learning studies were conducted and the findings are
not always consistent. In the study of Mcdonnell, Jew, and
Gureckis (2012) no impact of the no-feedback trials was
found. In this study the category label was shown only on
some trials, but not on others. In the labelled trials all stimuli
originated from one subset of the full category. In the
unlabelled trials, the presented stimuli covered the full catego-
ry. After the training phase, the category presentation of the
participant was tested. Mcdonnell et al. (2012) found that a
large weight was given to the labelled stimuli, making the
unlabelled trials irrelevant.

In other studies, the impact of the no-feedback trials
depended on the circumstances. First, semisupervised learning
was observed in a speeded classification task but not if the
responses were self-paced (Rogers, Kalish, Gibson, Harrison,
& Zhu, 2010). Second, participants did use the no-feedback
trials when the underlying categories were distinct and the gap
between the categories was big. However, if the underlying
categories were more ambiguous and the space between the
categories was small but still existing, no effect of the no-
feedback trials was found (Vong, Perfors, & Navarro, 2014).
Third, Kalish, Zhu, and Rogers (2015) showed that the effect
of the no-feedback trials depends on the age of the partici-
pants: young children (between 4 and 6 years old) were influ-
enced by the no-feedback trials whereas no effects were found
for older children (between 7 and 8 years old).

Finally, some studies did show that the no-feedback trials
aided learning (Gibson, Rogers, Kalish, & Zhu, 2015; Kalish,
Zhu, & Rogers, 2011; Lake & McClelland, 2011; Zhu,
Gibson, Jun, Rogers, Harrison, & Kalish, 2010). However,
all of these studies used unidimensional stimuli and a simple
underlying category structure. Feedback was always given
after a specific subset of stimuli. Based on these feedback
trials only, a certain decision bound that splits the two catego-
ries can be expected. The stimuli of the no-feedback trials had
a different mean and distribution than the stimuli of the feed-
back trials because the latter were extremes of the category. If
participants take these no-feedback trials into account, the
decision bound will be shifted. These studies showed that
participants indeed use a shifted decision bound, implying that
the no-feedback trials do have an impact on the learning pro-
cess (Gibson et al., 2015; Kalish et al., 2011; Lake &
McClelland, 2011; Zhu et al., 2010). Still, it is unlikely that
in our daily life feedback is always provided after the same

Atten Percept Psychophys (2019) 81:137–157 139



subset of examples and other examples of the category are
never followed by feedback. Contrarily, we believe that every
example of a category can be followed by feedback.

Automaticity

Given the inconsistent research results on human semisupervised
learning and the advantages of semisupervised learning in ma-
chines, we aim to further investigate the role of no-feedback trials
in the human semisupervised category of learning. In the current
study, we specifically investigate the role of no-feedback trials in
developing automaticity. Once a learner reaches automaticity,
cognitive or motor skills are executed faster, more accurately
and require less attention in comparison to initial learners
(Ashby & Crossley, 2012; Ashby, Turner, & Horvitz, 2010).
Although various definitions and criteria of automaticity exist,
researchers agree that automaticity is the result of extensive
overtraining after the skilled behavior is well learned (Ashby
et al., 2010; Hélie, Waldschmidt, & Ashby, 2010; Moors & De
Houwer, 2006; Schneider & Chein, 2003; Nosofsky & Palmeri,
1997; Shiffrin & Schneider, 1977). Especially in categorization
this is the main consensus since several studies showed that the
criteria for automaticity proposed by Schneider and Shiffrin
(1977) as no interference of dual task performance (Waldron &
Ashby, 2001; Zeithamova &Maddox, 2006, 2007) and decrease
in performance after switching keys (Ashby, Ell, & Waldron,
2003; Maddox, Bohil, & Ing, 2004b; Maddox, Glass, O’Brien,
Filoteo, & Ashby, 2010a; Spiering & Ashby, 2008a) already
apply for initial information-integration category learning.
Consequently, in this article automaticity will be defined as the
result of overtraining after good performance was obtained.

In cognitive science, two influential models of expertise pre-
sented in the literature are Logan’s (1988) instance theory of
automaticity and Rickard’s (1997) component power laws theo-
ry. Both models assume that feedback remains essential through
the development of automaticity and hence only make predic-
tions about supervised learning, not about semi-supervised learn-
ing. In category learning, two important models explicitly deal
with automaticity: the Exemplar-based random walk model
(EBRW-model) of Nosofsky and Palmeri (1997) and the
Subcortical Pathways Enable Expertise Development (SPEED
model) of Ashby, Ennis, and Spiering (2007). The EBRW-
model assumes that expertise develops as the number of stored
exemplars increases. The more stored exemplars, the faster the
response will be elicited. Since only exemplars followed by feed-
back will be stored (and activated as belonging to the category),
supervised learning is essential and no clear predictions can be
made about semisupervised learning based on this model. For
semisupervised learning, the most relevant model about the de-
velopment of automaticity in the information-integration struc-
ture is the SPEED-model. The SPEED-model assumes that cat-
egorization is regulated by two different pathways, a slow and a
fast one. The slow pathway is supposed to originate in the visual

cortex, passes by the basal ganglia and the thalamus, and ends in
the premotor cortex. This is an indirect and subcortical pathway
that includes at least four synapses. When positive feedback is
given (after a correct categorization), dopamine in the striatum
will be released and the active synapses will be strengthened.
When negative feedback is given (after an incorrect answer) or
no feedback at all, the strength of the synapses will be weakened.
On the contrary, Ashby et al. (2007) state that the fast pathway
only involves one synapse. This is a direct route from the visual
association areas to the premotor cortex. In this cortical-cortical
pathway, synapses are strengthened when there is both pre- and
postsynaptic activation (i.e., Hebbian learning). This occurs in-
dependent of feedback.

In the SPEED-model, the development of categorization
automaticity is defined as a gradual process. Early in learning,
the main pathway is the slow subcortical pathway. As learning
progresses, the fast cortical-cortical pathway becomes more
salient and the subcortical pathway becomes less important.
Eventually, experts only rely on the cortical-cortical pathway
for their categorization (Ashby et al., 2007). Because this
pathway is independent of feedback and the strength of the
connections increases with the number of categorization re-
sponses, SPEED predicts that late in learning every type of
trial will strengthen the connections, regardless of whether the
categorization response is followed by feedback. Hence, late
in learning, adding extra no-feedback trials to the training
would have an impact on the development of automaticity
and faster response times can be expected.

To test this hypothesis in Experiment 1, participants were
trained in a supervised way on the information-integration struc-
ture for 2 days. After reaching an expert level with regards to the
trained category structure, half of the participants continued to
practice supervisedly on days 3 and 4. The other half practiced
according to a 25% semisupervised scheme. Both groups of
participants received an equal amount of feedback trials, imply-
ing that the semisupervised group received four times as many
trials as the supervised group. Based on the premises of the
SPEED-model, we hypothesize that the categorization in the
semisupervised condition will be more automatic, as indexed
by faster response times. If the no-feedback trials in
semisupervised learning have no impact on the automaticity pro-
cess, a similar level of automaticity (and thus equal response
times) should be observed in both conditions.

Experiment 1

Method

Participants In total 34 participants (22 women, average age
21.4 years, SD=1.97, range=18–26 years) took part in the
experiment in return for payment. If participants participated
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for 2 days, they received 20 euro; if they participated for 5
days, the payment was 35–40 euro.

Design The experiment was organized on five consecutive
days. In this way learning could benefit from between-
session consolidation due to sleep (Censor, Karni, & Sagi,
2006; Stickgold, James, & Hobson, 2000a; Stickgold,
Whidbee, Schirmer, Patel, & Hobson, 2000b; Stickgold &
Walker, 2005). Participants were randomly divided into two
conditions: the semisupervised condition (n = 19) and the
supervised condition (n = 15). The first 2 days were equal
for both conditions: on each of these days, 400 training trials
were presented, divided into five blocks of 80 trials. Each trial
was followed by feedback. The goal of this training phase was
to master the category structure. Participants who achieved an
average accuracy rate of 90% ormore on the last two blocks of
the second day were invited to the following phase.
Participants who did not reach this expert level were excluded
from the remainder of the experiment. On the third and fourth
day, participants in the semisupervised condition were pre-
sented with 640 trials (eight blocks of 80 trials) and 25% of
these trials were randomly followed by feedback. Participants
in the supervised condition were shown 160 trials (two blocks
of 80 trials) that where all followed by feedback.
Consequently, the number of feedback trials was equal in both
conditions. On the fifth and final day the test phase took place
where all participants received 134 trials in one block. None of
these trials were followed by feedback. It was decided to or-
ganize this Btest^ on a new day, ensuring that participants in
both conditions were equally fit. Table 1 summarizes the dif-
ferences between the two conditions.

Stimuli and apparatus The experiment was conducted using
Tscope (S t ev en s , Lammer t yn , Ve r b r uggen , &
Vandierendonck, 2006). Participants viewed the stimuli on a
17-in. LCDmonitor with an 800 × 600 resolution at a distance
of approximately one arm’s length. The stimuli were gray 300
× 300 square-pixel Gabor patches, presented on a black
screen. Two examples of Gabor patches can be seen in Fig.
2. In this study the Bgratings^ varied continuously on two
dimensions: the spatial orientation and the spatial frequency.
These dimensions are perceptually separable. The arbitrary
stimulus coordinates were converted to physical units using
the following transformations: spatial orientation was referred

to in x degrees, with x varying between 0 to 100 degrees.
Spatial frequency, expressed in cycles/pixel, was converted
using f(y)=0.01+(y/1500), with y varying between 0 and
100. These coordinates originated from the information-
integration category structure, an example of which is
displayed in Fig. 1. The optimal decision bound, which clas-
sifies the stimuli perfectly in two categories, is diagonal. In the
semisupervised condition, participants viewed 2,080 stimuli
in the first 4 days. These stimuli were generated by randomly
sampling from two bivariate normal distributions, leading to
1,040 BA^ stimuli and 1,040 BB^ stimuli. Category A had a
different mean to category B, but the variance and the
covariance of both categories were the same. Due to random
sampling, the optimal decision bound varied slightly from
block to block, although the mean optimal decision bound in
one day was y=x. The exact parameter values are shown in
Table 2. As in the Ashby et al. (1999) study, the mean, the
variance, and the covariance values were chosen in such a way
that a linear decision bound based on one dimension would
account for an accuracy of maximum 80%. The stimuli in the
supervised condition were constructed in the same way as in
the semisupervised condition, the only difference being that in
this condition participants viewed 1,120 stimuli in the first 4
days, 560 BA^ stimuli and 560 BB^ stimuli. On the last day, all
participants viewed 134 fixed stimuli, half of which were
depicted from the stimuli A range; the other half originated
from the stimuli B range, as can be seen on Fig. 3. Again, the
optimal decision bound was y=x and the category mean was
identical to that of the previous days.

Procedure All participants were tested individually in a
dimly lit room. On the first 2 days, participants were in-
formed that they would see stimuli that would appear one
by one and that originated from two categories A and B.
They were asked to respond by pressing A on the key-
board if they believed that the stimulus was an A and to
press B when they believed the stimulus was a B.
Participants were informed that they would receive feed-
back (i.e., the true category label) after each category
response. They were also informed that it was possible
to do the task without errors. Participants were told that
at the end of day 2 the accuracy would be calculated and
only the participants who achieved an average accuracy of
90% or more would be allowed to continue to the next
days. At the end of each block, the percentage of the
correct responses was printed on the screen. This percent-
age additionally encouraged them to do better in the next
block. A trial started when a stimulus was projected in the
middle of the screen until the participant responded.
Immediately after the response the stimulus disappeared.
The response time was self-paced. After the response, the
feedback, consisting of correct/incorrect and the right cat-
egory label, became visible at the bottom of the screen for

Table 1 Number of trials in each condition of Experiment 1

Condition Type of trial Day 1 Day 2 Day 3 Day 4 Test

Semisupervised Feedback 400 400 160 160 0

No-feedback 0 0 480 480 134

Supervised Feedback 400 400 160 160 0

No-feedback 0 0 0 0 134
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1,500 ms. After that a new trial started. The procedure on days
3 and 4 was similar, except that in the semisupervised condi-
tion participants were informed that some trials would be
followed by feedback and other trials not. In the no-
feedback trials the stimulus disappeared immediately after
the response and the screen remained blank for 1,500 ms.
Afterwards a new trial started. Hence, there is no difference
in post-response events on feedback trials and no-feedback
trials except on the appearance of the feedback on the screen.
Again, in both conditions participants were informed that it
was possible to obtain maximum accuracy and they were en-
couraged to achieve this. On day 5 participants were informed
that they would see similar stimuli to those in the preceding
days and that feedback would no longer be given. In contrast
to the first 4 days, participants were urged to respond as quick-
ly as possible. After a response was given, the stimulus disap-
peared and the screen remained blank for 1,500 ms, after
which a new trial started. To encourage the participants to
respond as fast as possible, the stimulus disappeared when a
response was not given within a time limit of 1,800 ms. In this
case, the message BRespond faster^ was shown during the
subsequent intertrial interval of 1,500 ms. The trials in which
the participant responded too slowly were presented again at
the end of the block. Thus, for each participant we collected
134 valid categorization responses on day 5.

Results

Selection of participants

Before analyzing the response time patterns in both condi-
tions, it was essential to ensure that the participants mastered
the category structure at the end of day 2. Therefore accuracy
and model-based analyses were performed. High accuracy
rates indicate that the participant made few errors.
Nevertheless, it is still unclear whether these errors were just
random mistakes or systematic faults. The model-based anal-
yses are a necessary complement to the accuracy. These
models were calculated based upon the responses of the par-
ticipant on the last two blocks of day 2. For each model the
corresponding BIC score were calculated. The best fitting

Fig. 2 Two examples of Gabor patches

Fig. 3 An example of the information-integration category structure used
in the test (= day 5) in Experiment 1. The BA^ stimuli are shown in
squares, the BB^ stimuli in solid circles. The decision bound that divides
the two categories perfectly is shown in black. The Y-axis is the
Orientation dimension, the X-axis the Frequency dimension

Table 2 Parameter values that define the categories of Experiment 1

Category A B

Mean (frequency) 40 60

Mean (orientation) 60 40

SD (frequency and orientation) 11.88 11.88

Correlation 0.99 0.99

Average optimal slope 1

Average optimal intercept 0
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model was the model with the lowest BIC score. This model is
supposed to correspond to the strategy that the participant
used to solve the categorization task. The strategy that
matched perfect performance in this experiment is called the
optimal decision bound. Combining both criteria rules out the
possibility that a participant increased the accuracy during the
experiment, but this improvement was not reflected in the
model-based analyses. This can be the case if the errors are
systematic and a strategy other than the optimal decision
bound was preferred. Therefore, only participants that passed
both criteria were retained for further analyses.

Criterion 1: High accuracy
Participants could achieve perfect accuracy when using the

optimal decision bound (i.e., by integrating the information
from the two stimulus dimensions at some predecisional
stage). On the other hand, using a unidimensional decision
rule, the accuracy could never exceed 80%. This implies that

participants with an achieved accuracy of more than 80%
probably adopted a (suboptimal) information-integration de-
cision rule. However, since our study aimed at studying auto-
maticity after becoming an expert learner, category learning
was considered successful when an average performance of at
least 90% was obtained. As can be seen in Table 3, 11 partic-
ipants did not pass this criterion and were therefore excluded
from further analyses.

Criterion 2: Optimal decision bound Figures 1 and 2 in the
SupplementaryMaterials show the actual responses during the
last two blocks of day 2 for each of the participants retained
after applying Criterion 1. These responses (i.e., whether a
stimulus belongs to category A or category B) form the basis
on which the individual decision bounds were calculated.
Four different types of models were fit to each participant’s
response (see the Appendix for details). These models were

Table 3 Mean accuracy (%) and model-based analyses (BIC scores) of the last two blocks of day 2 (i.e., blocks 9 and 10) for every participant of
Experiment 1

Condition Participant GLC DIM-
O

DIM-
F

GCC Mean accuracy (%) Continued to day 3

Semisupervised 1 120.76 210.91 151.31 113.88 86.88 No
2 36.84 176.66 118.31 61.79 98.13 Yes
3 18.44 148.80 167.54 52.90 99.38 Yes
4 103.40 184.60 179.89 75.66 91.88 No
5 163.81 173.48 225.16 164.46 78.75 No
6 81.82 148.98 190.57 105.74 93.75 Yes
7 115.00 215.45 143.54 126.24 86.88 No
8 15.23 146.18 150.06 67.04 100.00 Yes
10 106.76 240.21 104.52 109.57 78.13 No
11 67.49 202.81 121.77 78.83 94.38 Yes
12 75.97 160.99 170.85 78.36 95.00 Yes
13 45.92 144.50 171.39 85.92 97.50 Yes
15 113.02 233.09 113.54 118.61 81.88 No
16 45.21 182.43 146.23 95.33 96.88 Yes
17 72.62 166.22 173.66 110.02 95.63 Yes
18 187.60 230.57 191.50 187.31 73.75 No
19 47.01 117.47 202.99 66.36 95.38 Yes
20 33.64 143.68 163.89 74.42 98.75 Yes
26 154.79 241.89 152.85 154.58 74.38 No

Supervised 1 96.75 176.61 173.71 97.82 93.13 Yes
2 51.72 164.90 156.70 79.18 97.50 Yes
3 36.10 156.05 165.01 89.58 98.13 Yes
4 58.12 165.86 161.56 83.26 96.88 Yes
5 115.82 160.44 199.81 117.14 89.38 No
6 108.42 215.85 128.97 127.23 88.13 No
7 90.37 185.83 160.68 106.73 92.50 Yes
8 116.05 204.53 159.70 124.89 89.38 No
9 49.23 171.32 134.58 86.52 96.25 Yes
10 137.92 227.78 148.88 142.17 83.13 No
11 63.21 159.75 180.47 103.53 96.25 Yes
12 49.95 150.89 159.37 62.27 96.88 Yes
14 80.05 168.53 176.18 90.21 95.00 Yes
15 89.64 144.01 206.52 102.48 91.88 No
18 98.25 149.18 194.89 107.51 91.88 Yes

The best fitting model is underlined. Only participants who reached an accuracy of minimal 90% and had the best fitting decision bound model based on
the GLC, continued on to day 3 of the experiment

DIM-O unidimensional classifier based on the orientation, DIM-V unidimensional classifier based on the frequency, GCC General Conjunctive
Classifier, GLC General Linear Classifier
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introduced by Ashby and Gott (1988) and Ashby andMaddox
(1993). Three models, namely the horizontal unidimensional
model (DIM-O), the vertical unidimensional (DIM-V) and the
general conjunctive classifier (GCC), are rule-based. If partic-
ipants adopted one of these category decision strategies, cate-
gory learning failed. The last model, the general linear classi-
fier (GLC), is an information-integration model. Only with
this category decision strategy perfect accuracy could be ob-
tained. Consequently, if the general linear classifier was used
and this decision bound fell in between the two categories,
learning was successful. The model parameters were estimat-
ed using the method of maximum likelihood. To select the
best-fitting model to the data, the model with the smallest
Bayesian Information Criterion (BIC) was selected. The BIC
penalizes according to the number of free parameters. BIC is
defined as BIC = rlnN-2lnL, where r is the number of free
parameters, N is the sample size and L is the likelihood of the
model given the data (Schwarz, 1978). The BIC values of the
four models for each participant are presented in Table 3. In
the semisupervised condition, all participants except partici-
pant 4 favored the general linear classifier. Hence, participant
4 was excluded from further analyses. As can be seen in Fig.
1, all optimal decision bounds fell between the two categories.
In the supervised condition, all participants favored a strategy
based on the general linear classifier. As can be seen in Fig. 2,
all optimal decision bounds fell between the two categories
except for participant 15. Hence, participant 15 was excluded
from further analyses. As a result, the final sample used in the
subsequent analyses consisted of 21 participants (n=11
semisupervised and n=10 supervised), the average age was
21.3 years (SD=1.88, range 18–24 years), and 15 of themwere
women.

In the following sections, four types of analyses are de-
scribed: accuracy and model-based analyses to define the
strategy used by the participant, response time (RT) analyses,
and the speed-accuracy trade-off analyses. The response time
analyses were studied to compare the semisupervised learning
process to the supervised learning process.

Accuracy analysis Figure 4 shows the average percentage of
correct responses and the 95% confidence intervals on each
block of trials received during the first 4 days for the super-
vised and semisupervised condition separately. In the
semisupervised condition, the accuracywas based on the feed-
back trials only. Eighty feedback trials were grouped into a
block to facilitate comparison to the supervised condition. As
expected, the learning process was similar in both conditions.
The mean accuracy increased from an average of 73%
(SD=11.06) in the first block for the semisupervised condition
and an average of 75% (SD=11.72) for the supervised condi-
tion to almost perfect accuracy in the last block of day 2 (97%,
SD=2.76 and 95%, SD=3.62, respectively). During the blocks
on days 3 and 4, the mean accuracy remained high in both

conditions. In the semisupervised condition, mean accuracy
on the last response block on day 3 was 98% (SD=1.80) and
98% on day 4 (SD=1.89). Similarly, in the supervised condi-
tion mean accuracy on the last block was 96% (SD=2.95) on
day 3 and 96% (SD=3.41) on day 4. A repeated measures
ANOVAwas conducted to determine whether the mean accu-
racy on the last two blocks differed depending on the day (4
levels: day 1, 2, 3, and 4) and condition (2 levels: supervised
and semisupervised). Not surprisingly, there was a main effect
of day, F(3,17)=13.97, p<.001, ηp

2=.71, indicating that the
accuracy increased during the succeeding days. Paired sample
t-tests using the Bonferroni correction for multiple compari-
sons showed that in comparison to day 1, mean accuracy was
significantly higher on days 2, 3 and 4 (resp. t(20)=6.41,
p<.001; t(20)=6.80, p<.001; t(20)=7.02, p<.001). There was
nomain effect of condition, F(1,19)=1.71, p=.21, ηp

2=.08, nor
an interaction between day and condition (F<1, p=.99,
ηp

2=.007), suggesting that the accuracy in both conditions
increased similarly across days. The accuracy on the test
(day 5), where the speed of responding was stressed, was
lower in both conditions compared to the accuracy reached
at the end of day 4: 87% (SD=6.53) in the semisupervised
condition and 85% (SD=4.37) in the supervised condition.
This difference was significant for the semisupervised condi-
tion, t(10)=5.42, p<.001, d=1.64, and for the supervised con-
dition t(9)=7.46, p<.001, d=2.36. Finally, an independent
sample t-test revealed that there was no difference in accuracy
between the two conditions on the fifth day, t(19)=0.91,
p=.37, d=0.40.

Fig. 4 Mean accuracy (%) along with the 95% confidence intervals by
block for all participants in the Semisupervised and Supervised Condition
of Experiment 1 from day 1 (blocks 1–5), day 2 (blocks 6–10), day 3
(blocks 11–12), day 4 (blocks 13–14), and day 5 (test). Only the
participants who reached a performance of minimum 90% at the end of
day 2 and revealed a decision bound based on the optimal decision bound
were included in the analyses. In the Semisupervised condition, the
accuracy for every 80 feedback trials is used
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Model-based analysis Table 4 shows the four model fits on
day 4. In both conditions, all participants preferred a decision
bound based on the general linear classifier, indicating suc-
cessful learning. Figures 3 and 4 in the Supplementary
Materials show the actual responses during the last two blocks
of day 4 for each participant. Table 5 presents the model fits on
the test day (i.e., day 5): in the semisupervised condition, most
participants chose a strategy based on the optimal decision
bound, except for participants 6, 12, and 19. For these partic-
ipants a strategy based on the general conjunctive classifier
fitted slightly better than the optimal decision bound.
Figures 5 and 6 in the Supplementary Materials present the
responses and the best fitting decision bound for every partic-
ipant during the test day. In the supervised condition, most
participants preferred the optimal decision bound, except for
participants 1 and 18. For participant 1, the BIC score of the
general conjunctive classifier was slightly lower than the gen-
eral linear classifier. Participant 18 clearly preferred a strategy
based on the general conjunctive classifier.

Analysis of the response times The mean response times
(RTs) along with the 95% confidence intervals for the

semisupervised and supervised condition from day 1 to
day 4 are presented in Fig. 5. These RTs were calculated
on the last two blocks of each day. For day 1, the mean
RTs in the supervised condition was 944 ms (SD =145.48)
whereas the mean RTs in the semisupervised condition
was 858 ms (SD=131.22). Importantly for this investiga-
tion is that participants were equally fast in the last two
blocks of day 2 (semisupervised mean RT=785 ms,
SD=90 . 10 and supe r v i s ed mean RT=801 ms ,
SD=122.22). This was confirmed by an independent sam-
ple t-test, t (19)=0.35, p=.73, d=0.15. On days 3 and 4,
the mean RTs slowly decreased in the semisupervised
condition to, respectively, 794 ms (SD=106.53) and
719 ms (SD=128.59). This decrease in mean RTs was also
observed in the superv ised condi t ion : 719 ms
(SD=108.98) on day 3 and 724 ms (SD=126.85) on day
4. A repeated measures ANOVA was conducted to deter-
mine whether the mean RTs on the last two blocks dif-
fered depending on the day (4 levels: day 1, 2, 3, and 4)
and condition (2 levels: supervised and semisupervised).
Not surprisingly, there was a main effect of day,
F(3,17)=7.12, p=.003, ηp

2=.56, indicating that the RTs

Table 4 Mean accuracy (%) and model-based analyses (BIC scores) on the last two blocks of day 4 (i.e., blocks 7–8 semisupervised condition; blocks
1–2 supervised condition) for every participant of Experiment 1

Condition Participant GLC DIM-
O

DIM-
F

GCC Mean accuracy (%)

Semisupervised 2 37.21 152.60 156.77 83.20 98.75

3 40.21 142.25 169.50 68.89 100.00

6 67.27 157.05 184.21 80.58 96.88

8 15.23 151.83 140.60 64.52 97.50

11 15.23 150.92 162.51 33.45 98.75

12 41.56 161.91 156.19 82.15 95.00

13 28.17 153.32 155.14 58.71 98.75

16 75.25 162.52 157.88 81.30 95.63

17 25.30 159.73 127.14 62.00 98.13

19 57.56 138.92 183.19 68.14 96.25

20 15.23 140.19 145.79 61.59 99.40

Supervised 1 44.37 270.08 164.14 82.63 97.50

2 47.95 258.59 160.92 80.58 97.50

3 80.20 256.55 166.29 99.31 94.38

4 64.59 254.25 137.36 96.71 95.00

7 91.93 262.33 160.30 108.01 93.13

9 58.14 258.02 158.47 73.30 96.88

11 35.34 259.01 143.44 80.13 98.75

12 40.75 265.04 166.17 85.23 98.13

14 64.73 258.52 164.25 89.22 96.25

18 81.47 262.97 189.35 102.19 93.75

The best fitting model is underlined

DIM-O unidimensional classifier based on the orientation, DIM-V unidimensional classifier based on the frequency, GCC General Conjunctive
Classifier, GLC General Linear Classifier
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decreased during the succeeding days. There was no main
effect of condition, F<1, p=.84, ηp

2=.002, but the
interaction between day and condition reached significance
F(3,17)=3.92, p=.027, ηp

2=.41. Post hoc paired-sample t-tests,
adjusted by the Bonferroni correction for multiple compari-
sons, indicated that in the semisupervised condition partici-
pants did not speed up by day, none of the paired sample t-
tests was significant, all p>.09. In the supervised condition,
responses on later days were all faster in comparison to day 1
(all p < .02). None of the other comparisons were significant
(all p>.06). The decrease in RTs is thus only present in the
supervised condition.

Decisive to test our hypotheses was the difference in RTs
on day 5. In the semisupervised condition the mean RT was
579 ms (SD=104.08) whereas the mean RT in the supervised
condition was 767 ms (SD =153.20). An independent sample
t-test confirmed that this difference in RTs on the test day was
significant, t(19)=3.32, p=.004, d=1.45. Participants in the
semisupervised condition responded significantly faster than
participants in the supervised condition. Paired sample t-tests
showed that in the semisupervised condition, participants
responded significantly faster on day 5 compared to day 4,
t(10)=4.71, p=.001, d=1.42whereas participants in the super-
vised condition responded equally fast on days 4 and 5,
t(9)=1.39, p=.20, d=0.44.

Table 5 Mean accuracy (%) and model-based analyses (BIC scores) on all trials of day 5 for every participant of Experiment 1

Condition Participant GLC DIM-
O

DIM-
F

GCC Mean accuracy (%)

Semisupervised 2 66.35 166.04 173.69 113.15 94.78

3 57.34 161.63 175.74 99.05 95.52

6 146.23 178.73 186.08 141.14 80.60

8 111.43 154.48 193.88 122.96 84.33

11 69.64 179.10 160.71 93.81 92.54

12 118.17 171.33 183.52 111.44 85.07

13 148.39 159.83 191.96 148.86 73.88

16 98.29 162.05 185.89 121.93 88.81

17 91.97 179.02 168.41 116.15 89.55

19 116.41 169.27 187.80 111.35 84.33

20 58.78 149.03 184.81 92.53 91.79

Supervised 1 130.18 179.16 182.94 127.17 84.33

2 103.71 202.83 154.30 120.48 85.83

3 125.65 168.79 189.29 139.90 83.58

4 127.66 140.63 197.70 139.62 76.87

7 69.25 174.38 166.44 109.05 92.54

9 100.43 171.17 171.63 103.40 85.82

11 64.10 145.70 181.16 91.09 89.55

12 95.96 157.49 188.50 123.50 87.31

14 104.43 153.38 174.07 130.30 80.60

18 102.03 149.89 197.79 74.00 85.07

The best fitting model is underlined

DIM-O unidimensional classifier based on the orientation, DIM-V unidimensional classifier based on the frequency, GCC General Conjunctive
Classifier, GLC General Linear Classifier

Fig. 5 Mean response times (ms) and 95% confidence intervals for the
semisupervised and the supervised condition of Experiment 1 calculated
on the last two blocks of each day
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Speed-accuracy trade-off On the fifth day, participants were
instructed to respond as fast as possible. This might result in a
speed-accuracy trade-off (SAT): participants gave up decision
accuracy in favor of decision speed (see Heitz, 2014).The
speed-accuracy trade-off was calculated for each condition.
Since data points are limited and errors are rare, the SAT is
calculated by the Pearson correlation between the mean RT
and the mean accuracy rate (Heitz, 2014). In the supervised
condition, there was no SAT-effect, r=-.21, p=.57. In the
semisupervised condition, there was a SAT-effect, r=.61,
p=.046, implying that the faster participants responded, the
more errors they made.

Discussion

The objective of Experiment 1 was to test the hypothesis
based on the SPEED-model that late in learning, when auto-
maticity develops, participants benefit from semisupervised
learning, resulting in faster RTs. Therefore, participants were
trained during two days until a certain expertise was gained
and then either received feedback on all trials (supervised
condition), or on 25% of the trials (semisupervised condition)
for the next 2 days. On days 3–4 both conditions received an
equal amount of feedback trials but the total number of trials
differs: in the semisupervised condition, participants catego-
rized a quadruple of trials compared to the supervised condi-
tion. The results clearly showed that the mean RTs on the test
(day 5) were significantly faster in the semisupervised

condition than in the supervised condition. The participants
in the semisupervised condition revealed more automatic be-
havior than the participants in the supervised condition.
Importantly, this difference in mean RTs on day 5 was not
observed on day 2, ruling out the possibility that participants
in the semisupervised condition were always faster. On day 5
a SAT-effect occurred in the semisupervised condition: partic-
ipants who tended to respond fast, alsomademore errors. This
was not the case in the supervised condition. Note that the
mean accuracy was similar on day 5 in both conditions: even
though semisupervised participants sacrificed accuracy for re-
sponse times, they still performed at the same level with
regards to accuracy as supervised participants.

There are three possible explanations for these findings.
The first is that semisupervised learning does have an impact
late in learning when automaticity develops and that it leads to
faster RTs. Second, confirming the SPEED-model, it is possi-
ble that the higher number of trials in the semisupervised
condition is accountable for the faster RTs. On days 3 and 4
participants in the semisupervised condition responded to a
fourfold number of trials. The SPEED-model postulates that
late in learning the fast pathway is dominant. This pathway is
assumed to be independent of feedback. According to the
SPEED-model, the multiple repetitions in the semisupervised
condition lead to faster response times, regardless whether or
not these trials are followed by feedback. Third, the results
may have been influenced by a confound. The participants
in the supervised condition never experienced no-feedback

Fig. 6 Mean accuracy (%) and 95% confidence intervals by block for all
participants in the Almost supervised and Almost Unsupervised
Condition of Experiment 2 and Semisupervised Condition of
Experiment 1 from day 1 (blocks 1–5), day 2 (blocks 6–10), day 3
(blocks 11–18), day 4 (blocks 19–26) and day 5 (Bt^). Only the

participants who reached a performance of minimum 90% at the end of
day 2 and revealed a decision bound based on the optimal decision bound
were included in the analyses. All trials (feedback and no-feedback trials)
were adopted in the analyses
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trials before day 5 and this inexperience might have slowed
their performance. In Experiment 2 these explanations were
addressed.

Experiment 2

Experiment 2 again examines whether late in learning the
nature of feedback (i.e., feedback on every trial, occasional
feedback, or no-feedback) has an impact on the development
of automaticity, indicated by faster RTs. In order to do this
without the confounds present in Experiment 1, two control
conditions are run and compared to the semisupervised con-
dition of Experiment 1: an almost supervised condition, in
which 95% of the trials are followed by feedback and an
almost unsupervised condition, in which 5% of the trials are
followed by feedback.1 Instead of using fully supervised and
unsupervised control conditions, Balmost^ supervised and un-
supervised conditions are purposefully chosen so that all par-
ticipants have experienced no-feedback trials prior to day 5,
ruling out the possibility that the novelty of no-feedback trials
on day 5 influences the RTs of the supervised condition. The
total number of trials in these two new conditions corresponds
to the semisupervised condition of Experiment 1, to test the
hypothesis that just the higher number of trials in the
semisupervised condition of Experiment 1 led to faster RTs
on day 5. If the total number of trials is indicative for the
development of automaticity, similar RTs are expected in these
two new conditions to those in the semisupervised condition
of Experiment 1. This is the outcome predicted by the
SPEED-model (Ashby et al., 2007). Contrarily, when the
RTs in the two new conditions differ from the semisupervised
condition of Experiment 1, this effect will be due to the dif-
ferent amount of feedback trials. If RTs in the almost super-
vised condition are faster than the semisupervised condition,
either the higher amount of feedback trials in the supervised
condition aids automaticity, or the higher amount of no-
feedback trials in the semisupervised condition slows down
learning. On the other hand, if RTs in the almost supervised
condition are slower than the semisupervised condition,
semisupervised learning aids the development of automaticity,
despite the lower amount of feedback trials.

For the almost unsupervised condition, the SPEED-model
predicts similar RTs to those in the semisupervised condition
of Experiment 1, since only expert participants are selected.
When RTs do differ from the semisupervised condition, this
will provide us with insight into the minimum amount of
feedback trials needed to successfully develop automaticity.

Method

Participants, design, stimuli, apparatus and procedure In total
38 participants (28 women, average age 20.74 years,
SD=3.18, range=18–30 years) took part in the experiment in
return for payment. The background of the participants was
similar to the participants of Experiment 1. Also, the time of
testing in the academic year was comparable. If participants
participated for 2 days, they received 10 euro; if they partici-
pated for 5 days, the payment was 30 euro. Participants were
randomly divided into two conditions: the almost supervised
condition (n=19) and the almost unsupervised condition
(n=19). The organization of Experiment 2 was identical to
the semisupervised condition of Experiment 1 except on the
third and fourth days. In the almost supervised condition, par-
ticipants were presented with 640 trials (eight blocks of 80
trials) and 95% of these trials were randomly followed by
feedback, resulting into 608 feedback trials on days 3 and 4.
In the almost unsupervised condition participants also re-
ceived 640 trials (eight blocks of 80 trials) but only 5% of
these trials were randomly followed by feedback, resulting
into 32 feedback trials on days 3 and 4. Note that the total
number of trials in the semisupervised condition of
Experiment 1 is the same as the total number of trials in the
two conditions of Experiment 2. Table 6 presents the condi-
tions schematically.

Results

Selection of participants

As in Experiment 1, accuracy and model-based analyses were
performed to ensure that the participants mastered the catego-
ry structure at the end of day 2.

Criterion 1: High accuracy Recall that participants could
achieve perfect accuracy in this task. As in Experiment 1,
the criterion was an average performance of at least 90% on
the last two blocks of day 2. As can be seen in Table 7, ten
participants did not pass this criterion and were therefore ex-
cluded from further analyses.

Criterion 2: Optimal decision bound Figures 7 and 8 in the
Supplementary Materials show the actual responses during
the last two blocks of day 2 for each participant who passed
the accuracy criterion. As in Experiment 1, these responses
were used to calculate the individual decision bounds of
four different models and the corresponding BIC scores.
The model with the lowest BIC score is presumably the
strategy that the participant adopted in the last two blocks
of day 2. Only participants who favored the general linear
classifier model with a decision bound falling between the

1 Technically, the almost supervised condition and the almost unsupervised
condition are semisupervised conditions as well, since these conditions consist
of supervised and unsupervised trials. However, for clarity, when we refer to
the Bsemisupervised condition^ we intend the 25% semisupervised condition
throughout the manuscript.
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two categories were retained. In both conditions all re-
maining participants favored a strategy based on the gen-
eral linear classifier. As can be seen in Figs. 7 and 8 in the
Supplementary Materials, all optimal decision bounds fell
between the two categories. As a result, the final sample
used in the subsequent analyses consisted of 28 partici-
pants (19 women; average age of 20.9 years, SD=3.24,
range=18–30 years years; n= 15 in the almost supervised
condition and n=13 in the almost unsupervised condition).

As in Experiment 1, four types of analyses are reported:
accuracy, model-based, response time analyses, and SATanal-
yses. The response time analyses were used to compare the
learning process of the almost supervised and almost unsuper-
vised conditions of Experiment 2 to the semisupervised con-
dition of Experiment 1.

Accuracy analysis Figure 6 shows the average percentage of
correct responses and the 95% confidence intervals on each
block of trials received during the first 4 days for each of the
conditions (almost supervised, almost unsupervised, and the
semisupervised condition of Experiment 1) separately. In all
conditions the accuracy was based on all trials (feedback and
no-feedback trials). During the first 2 days (blocks 1–8) the
learning process was similar in the three conditions. The mean
accuracy increased from an average of 72% (SD=9.93) in the
first block for the almost supervised condition, an average of
75% (SD=11.76) for the almost unsupervised condition, and
an average of 73% (SD=11.06) for the semisupervised condi-
tion to almost perfect accuracy in the last block of day 2 (97%,
SD=3.11, 96%, SD=2.35 and 97%, SD=2.76, respectively).
During the blocks on days 3 and 4, the mean accuracy was
almost perfect in the almost supervised condition: the mean
accuracy on the last block on day 3 was 98% (SD=2.59) and
99% (SD=1.48) on day 4. In the almost unsupervised condi-
tion the mean accuracy was also high: the mean accuracy on
the last block on day 3 was 94% (SD=5.54) and 94%
(SD=4.92) on day 4. For the semisupervised condition of
Experiment 1, the mean accuracy on the last block of day 3

was 97% (SD=2.00) and 97% (SD=2.00) on day 4. A repeated
measures ANOVA was conducted to determine whether the
mean accuracy on the last two blocks differed depending on
the day (4 levels: days 1, 2, 3, and 4) and condition (three levels:
almost supervised, almost unsupervised, and semisupervised).
Not surprisingly, there was a main effect of day, F(3,34)=22.67,
p<.001, ηp

2=.67, indicating that the accuracy significantly in-
creased during the succeeding days. Post hoc paired-sample t-
tests, adjusted by the Bonferroni correction for multiple com-
parisons, indicated that in comparison to day 1, mean accuracy
was significantly higher on days 2, 3, and 4 (resp. t(38)=7.79,
p<.001; t(38)=5.60, p<.001; t(38)=7.18, p<.001). There was
no main effect of condition, F(2,36)=1.60, p=.22, ηp

2=.08 nor
an interaction between day and condition (F(6,68)=1.60, p=.16
ηp

2=.12, suggesting that the increase in accuracy across days
was similar in the three conditions.

The accuracy on the test (day 5), where the speed of
responding was stressed, was lower in all conditions com-
pared to the accuracy reached at the end of day 4, the average
difference was -6.7% (SD=3.35) in the almost supervised con-
dition, -7.5% (SD=7.47) in the almost unsupervised condi-
tion, and -10.69% (SD=6.97) in the semisupervised condition.
Paired sample t-tests showed that these differences were sig-
nificant: accuracy significantly dropped between the last block
of day 4 and day 5, t(14)=7.69, p<.001, d=2.06, for the almost
supervised condition, t(10)=5.08, p<.001, d=1.53 for the
semisupervised condition, and t(12)=3.62, p=.003, d=1.00
for the almost unsupervised condition. Finally and crucially,
a one-way ANOVAwas conducted to determine whether the
mean accuracy on day 5 differed between the almost super-
vised, almost unsupervised, and the semisupervised condition
of Experiment 1. This was the case: F(2,36)=4.18, p=.02,
ηp

2=.19. Independent sample t-tests corrected by the
Bonferroni correction for multiple comparisons showed that
this effect is due to the significant difference in accuracy be-
tween the almost supervised condition (92%, SD=4.08) and
the almost unsupervised condition (86%, SD=6.40),
t(26)=2.94, p=.02. The accuracy in the semisupervised

Table 6 Number of trials in each condition of Experiment 2 and the semisupervised condition of Experiment 1

Condition Type of trial Day 1 Day 2 Day 3 Day 4 Test

Semisupervised Experiment 1 Feedback 400 400 160 160 0

No-feedback 0 0 480 480 134

Total 400 400 640 640 134

Almost supervised Feedback 400 400 608 608 0

No-feedback 0 0 32 32 134

Total 400 400 640 640 134

Almost unsupervised Feedback 400 400 32 32 0

No-feedback 0 0 608 608 134

Total 400 400 640 640 134
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condition (87%, SD=6.53) did not differ significantly from the
almost unsupervised condition (t(22)=.50, p=1) and, most
crucially, did not differ significantly from the almost super-
vised condition (t(24)=2.19, p=.11).

Model-based analysis Table 8 shows the four model fits on
day 4. In the almost supervised condition, all participants pre-
ferred a decision bound based on the general linear classifier,
indicating successful learning. In the almost unsupervised

Table 7 Mean accuracy (%) and model-based analyses (BIC scores) of the last two blocks of day 2 (i.e., blocks 9 and 10) for every participant of
Experiment 2

Condition Participant GLC DIM-
O

DIM-
F

GCC Mean accuracy (%) Continued to day 2

95% 6 43.92 278.61 158.77 83.84 98.13 Yes

8 34.52 262.25 164.44 88.15 98.75 Yes

10 120.39 259.54 132.87 127.56 83.13 No

11 90.23 274.58 164.66 92.92 93.75 Yes

12 101.52 258.13 187.90 125.69 91.88 Yes

13 143.06 242.65 144.00 143.52 78.75 No

14 68.35 264.54 187.13 85.75 95.63 Yes

15 64.38 258.93 169.46 98.06 96.25 Yes

16 104.53 236.14 134.35 84.65 86.88 No

17 28.63 252.74 151.33 64.86 98.75 Yes

18 15.23 272.62 125.92 79.57 100.00 Yes

19 59.41 264.04 157.14 95.63 96.88 Yes

20 33.80 261.05 153.41 157.96 98.75 Yes

21 39.00 257.39 155.33 91.06 98.13 Yes

22 55.66 274.62 147.26 89.00 96.88 Yes

30 87.82 274.10 174.76 105.20 93.75 Yes

31 61.31 273.55 167.50 66.92 96.25 Yes

33 66.43 260.26 164.10 100.90 96.25 Yes

34 112.86 260.82 135.03 132.94 85.63 No

5% 1 122.08 256.69 157.20 133.90 87.50 No

2 52.42 258.24 171.21 96.19 97.50 Yes

3 15.23 259.17 133.39 139.17 100.00 Yes

4 167.87 170.41 168.98 172.67 54.38 No

5 15.23 262.82 134.55 87.14 99.38 Yes

9 47.62 255.85 134.61 98.70 96.88 Yes

23 101.30 255.41 161.08 118.23 91.88 Yes

24 47.76 280.27 139.44 93.26 96.88 Yes

25 86.81 270.69 192.59 101.06 92.50 Yes

26 120.97 267.43 176.05 130.84 88.75 No

27 151.78 253.21 154.40 157.07 80.63 No

28 77.48 279.11 174.92 97.19 95.00 Yes

32 83.84 268.02 180.18 120.27 94.38 Yes

35 136.31 277.26 203.32 128.85 86.88 No

36 73.27 259.55 170.94 103.65 95.00 Yes

37 50.27 278.40 181.38 64.42 95.63 Yes

38 158.81 250.97 205.01 156.82 82.50 No

39 36.39 253.73 135.00 69.26 97.50 Yes

40 52.58 258.91 154.59 74.19 97.50 Yes

The best fitting model is underlined. Only participants who reached an accuracy of minimal 90% and had the best fitting decision bound model based on
the GLC, continued on to day 3 of the experiment

DIM-O unidimensional classifier based on the orientation, DIM-F unidimensional classifier based on the frequency, GCC General Conjunctive
Classifier, GLC General Linear Classifier
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condition, 11 participants of the 13 learned successfully: they
revealed a decision bound based on the general linear classi-
fier. Participants 25 and 37 preferred a decision bound based
on the general conjunctive classifier, indicating that they
switched to another strategy in comparison to day 2.

Figures 9 and 10 in the Supplementary Materials show the
actual responses during the last two blocks of day 4 for each
participant. Table 9 presents the model fits on the test day (i.e.,
day 5). Again, for the almost supervised condition all partic-
ipants used a decision bound based on the general linear clas-
sifier. In the almost unsupervised condition, 11 participants
preferred a decision bound based on the general linear classi-
fier whereas participants 23 and 37 adopted a strategy based
on the general conjunctive classifier. Figures 11 and 12 in the
Supplementary Materials present the responses and the best
fitting decision bounds for every participant during the test
day.

Analysis of the response times Themean response times (RTs)
along with the 95% confidence intervals from days 1–4 for the
almost supervised, almost unsupervised, and the

semisupervised condition of Experiment 1 from days 1–4
are presented in Fig. 7. These RTs were calculated on the last
two blocks of each day. For day 1, the mean RT in the almost
supervised condition was 855 ms (SD =162.41), the mean RT
in the almost unsupervised condition was 825 ms
(SD=156.31), and the mean RT in the semisupervised condi-
tion of Experiment was 858 ms (SD=131.22). Importantly for
this investigation is that participants were equally fast in the
last two blocks of day 2 (almost supervised mean RT=806 ms,
SD=161.29; almost unsupervised mean RT=800 ms,
SD=148.49, and semisupervised mean RT=785 ms,
SD=90.10). This was confirmed by a one-way ANOVA com-
paring the RTs of the last two blocks of day 2 to the three
conditions, almost supervised condition, the almost unsuper-
vised condition, and the semisupervised condition of
Experiment 1, F <1, p=.93, ηp

2=.004. On days 3 and 4, the
mean RTs dropped in the almost supervised condition to, re-
spectively, 783 ms (SD=170.67) and 772 ms (SD=134.68).
This decrease in mean RTs was also observed in the almost
unsupervised condition: 772 ms (SD=134.68) on day 3 and
749 ms (SD=144.54) on day 4. A repeated measures ANOVA

Table 8 Mean accuracy (%) and model-based analyses (BIC scores) on the last two blocks of day 4 for every participant of Experiment 2

Condition Participant GLC DIM-
O

DIM-
F

GCC Mean accuracy (%)

Almost supervised 6 15.23 140.25 158.76 53.95 100.00
8 53.02 162.44 145.39 88.09 97.50
11 36.08 159.57 164.48 86.37 98.75
12 24.06 140.65 160.16 66.73 99.38
14 21.01 158.51 162.55 71.50 99.38
15 82.40 198.44 132.80 107.23 93.13
17 44.84 156.04 169.13 75.68 97.50
18 23.55 133.00 141.50 57.27 99.38
19 15.23 128.30 169.71 70.16 99.38
20 15.23 148.01 134.59 63.61 100.00
21 27.92 144.63 158.16 66.75 98.75
22 32.74 122.05 177.36 60.28 98.75
30 25.60 146.63 171.97 70.64 99.38
31 43.20 175.01 124.65 71.36 97.50
33 52.18 140.59 179.36 78.88 96.88

Almost unsupervised 2 52.19 176.38 153.37 91.42 97.50
3 15.23 155.32 145.85 63.20 99.38
5 34.97 126.98 149.77 64.91 98.75
9 15.23 168.19 147.59 66.24 99.38
23 97.97 168.38 176.41 125.60 92.50
24 105.09 146.89 205.22 123.40 90.00
25 150.37 169.19 216.97 150.16 82.50
28 69.82 166.42 164.11 93.33 95.63
32 53.37 142.10 185.44 99.94 96.88
36 81.49 154.82 193.75 116.22 94.38
37 104.82 160.20 200.55 92.31 90.00
39 51.68 162.09 176.85 87.80 96.88
40 59.34 166.72 174.26 102.01 96.88

The best fitting model is underlined

DIM-O unidimensional classifier based on the orientation, DIM-F unidimensional classifier based on the frequency, GCC General Conjunctive
Classifier, GLC General Linear Classifier
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was conducted to determine whether the mean RTs on the last
two blocks differed depending on the day (four levels: days 1,
2, 3, and 4) and condition (three levels: almost supervised,

almost unsupervised, and semisupervised of Experiment 1).
Not surprisingly, there was main effect of day, F(3,34)=6.81,
p=.001, ηp

2=.38, indicating that the RTs decreased across the
succeeding days. Post hoc paired-sample t-tests, adjusted by
the Bonferroni correction for multiple comparisons, indicated
that participants were significantly faster on days 2, 3, and 4
compared to day 1, t(38)=2.92, p=.03; t(38)=2.95, p=.05 and
t(38)=4.03, p=.001, respectively. None of the other compari-
sons were significant (all p>.42). There was no main effect of
condition, F<1, p=.89, ηp

2=.01, neither was there a significant
interaction between day and condition, F(6,68)=1.85, p=.10,
ηp

2=.14.
Decisive to test our hypotheses was the difference in RTs

on day 5. In the almost supervised condition the mean RTwas
730ms (SD=132.08), the mean RT in the almost unsupervised
condition was 742 ms (SD =84.59), and the mean RT in the
semisupervised condition of Experiment 1 was 579 ms
(SD=104.08). A one-way ANOVA indicated significant dif-
ferences between the RTs of the three groups on day 5,
F(2,36)=8.07, p=.001, ηp

2=.31. Post hoc paired-sample t-
tests, adjusted by the Bonferroni correction for multiple com-
parisons, showed that RTs were faster in the semisupervised
condition of Experiment 1, compared to the almost supervised
condition, t(24)=3.15, p=.004, and to the almost unsupervised

Table 9 Mean accuracy (%) and model-based analyses (BIC scores) on all trials of day 5 for every participant of Experiment 2

Condition Participant GLC DIM-
O

DIM-
F

GCC Mean accuracy (%)

Almost supervised 6 63.81 181.73 155.45 104.78 92.53
8 57.49 171.93 165.23 109.59 95.53
11 98.93 170.44 178.41 121.78 89.56
12 93.64 176.87 171.30 115.55 90.29
14 59.40 178.45 159.58 95.90 94.77
15 137.33 191.39 174.85 145.64 81.35
17 85.57 166.05 179.45 88.06 90.29
18 65.02 154.51 184.79 111.94 93.29
19 58.48 171.18 165.67 109.62 93.29
20 25.86 165.86 165.83 101.39 98.50
21 71.43 162.14 179.59 122.45 94.02
22 58.08 173.09 164.69 109.56 94.77
30 69.64 164.96 175.69 115.15 94.02
31 78.10 136.74 193.03 99.51 88.80
33 88.22 151.80 193.36 125.25 88.05

Almost unsupervised 2 74.23 222.84 170.29 120.24 94.77
3 87.93 233.26 184.67 126.47 89.55
5 102.91 226.44 196.58 127.34 82.83
9 112.09 250.90 198.29 119.71 76.11
23 146.69 216.83 180.00 130.53 79.86
24 66.29 225.13 191.32 123.43 91.80
25 102.65 229.95 211.97 119.91 81.35
28 81.91 226.28 201.71 102.30 85.83
32 103.47 222.37 193.09 123.79 87.32
36 116.88 222.70 187.54 125.02 85.83
37 112.96 234.52 216.60 79.68 76.86
39 71.56 219.76 151.07 97.00 91.05
40 49.29 223.11 166.02 106.68 95.53

The best fitting model is underlined

DIM-O unidimensional classifier based on the orientation, DIM-F unidimensional classifier based on the frequency, GCC General Conjunctive
Classifier, GLC General Linear Classifier

Fig. 7 Mean response times (in ms) along with the 95% confidence
intervals for the almost supervised and the almost unsupervised
condition of Experiment 2 along with the semisupervised condition of
Experiment 1. The mean response times are calculated on the last two
blocks of each day
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condition, t(22)=4.26, p=.003. The difference between the
almost supervised condition and the almost unsupervised con-
dition was not significant, t(26)=0.28, p>.99.

Speed-accuracy trade-off On day 5 participants were deliber-
ately asked to respond as fast as possible. The speed-accuracy
trade-off was again calculated for each condition. In the al-
most supervised condition, there was no SAT-effect, r=-.08,
p=.79. In contrast, there was a SAT-effect in the almost unsu-
pervised condition, r=.85, p<.001: faster responses were cor-
related with more errors. Recall that in the semisupervised
condition of Experiment 1 we also observed a SAT-effect.

Discussion

In Experiment 2 the total number of trials was equal in each
condition to investigate whether the nature of feedback (al-
most supervised, semisupervised, or almost unsupervised)
had an impact on the development of automaticity. Two con-
trol conditions were run to compare the semisupervised con-
dition of Experiment 1: the almost supervised condition (in
which mainly feedback trials were given) and the almost un-
supervised condition (in whichmainly no-feedback trials were
given). The results indicated that the mean RTs on day 5 in the
semisupervised condition of Experiment 1 were significantly
faster than in the two control conditions of Experiment 2,
indicating that a combination of feedback and no-feedback
trials boosted the automaticity process. This result cannot be
due to general faster RTs in the semisupervised condition, as
RTs were equal for all conditions on day 2. This result can also
not be affected by the novelty of the no-feedback trials on the
test day, since all participants already experienced feedback
and no-feedback trials on days 3 and 4. Remarkably, in the
almost unsupervised condition, two participants did not reveal
a strategy based upon the optimal decision bound anymore on
day 4. Apparently, they changed their categorization strategy
during day 3 and day 4. This was not the case in the almost
supervised condition nor in the semisupervised condition.
Thismight imply that for some participants a minimal percent-
age of feedback is still needed late in learning – even though
almost perfect accuracy was obtained long before. On the test
day, the mean accuracy was higher in the almost supervised
condition compared to the almost unsupervised condition.
There was no significant difference in mean accuracy in the
semisupervised condition compared to the almost supervised
condition and the almost unsupervised condition. In the
semisupervised and the almost unsupervised condition, a
few participants showed a drop in accuracy on day 5. This
drop in performance was also reflected in the model-based
analyses: in the almost supervised condition all participants
adhered to a strategy based upon the optimal decision bound
whereas in the semisupervised and the almost unsupervised
conditions three and two participants, respectively, switched.

When these participants who switched strategy were omitted
from the analyses, a one-way ANOVA revealed that the dif-
ference in accuracy disappeared, F(2,31)=2.67, p=.12
ηp

2=.13. The mean accuracy was 87% (SD=5.90) for the al-
most unsupervised, 89% (SD=7.04) for the semisupervised,
and 92% (SD=4.08) for the almost supervised condition.
Still, the effect of faster RTs in the semisupervised condition
remained, one-way ANOVA F(2,31)=6.54, p=.004, ηp

2=.30.
Furthermore, this effect was due to the significant difference
between the semisupervised (577ms, SD=123.14) and the al-
most supervised (730 ms, SD=132.08), t(21)=2.71, p=.015
and the difference between the semisupervised and the almost
unsupervised (760 ms, SD=79.20), t(17)=3.96, p=.005 while
the difference between the almost supervised and the almost
unsupervised condition was not significant, t(24)=0.67,
p>.99. These post hoc t-tests were corrected for multiple com-
parisons by Bonferroni. These results show that the faster
response times in the semisupervised condition were not due
to quick random guessing by some participants, resulting in
fast RTs and low accuracy, since the effect remains when the
switch participants were omitted.

On day 5 a SAT-effect occurred in the almost unsupervised
condition of Experiment 2: participants who tended to respond
fast, alsomademore errors. This was not the case in the almost
supervised condition. This could explain the significantly low-
er accuracy in the almost unsupervised condition on day 5.
Note that we also observed a SAT-effect on day 5 for the
semisupervised condition. Even though this condition showed
a SAT, it has a comparable accuracy as the almost supervised
condition.

As a conclusion, Experiment 2 shows that, even when the
total number of trials is the same, the development of automa-
ticity is enhanced by 25% semisupervised learning. Only in
this feedback scheme the accuracy remained high and re-
sponse times were strikingly faster. When feedback was al-
most always provided, participants maintained a high accura-
cy but were not able to accelerate their responses. In the al-
most unsupervised condition, there is a drop in accuracy –
some participants even unlearned the category structure –
and response times remained high. These results are in con-
trast to the SPEED-model, which predicts a similar develop-
ment of automaticity between the three conditions as the num-
ber of trials, regardless of feedback, is identical in all
conditions.

General discussion

This study investigated the impact of semisupervised category
learning late in the learning process when automaticity de-
velops. Participants were first trained in a supervised way over
2 days on the information-integration category structure and
only participants who performed at least 90% accurately and
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used a decision bound similar to the optimal decision bound
were included in the actual experiments. In Experiment 1, half
of the participants were trained in a 25% semisupervised way
on days 3 and 4: only a quarter of the trials were followed by
feedback. The other half were trained in a supervised way,
implying that feedback was given after every categorization
response. Both conditions received an equal amount of feed-
back trials. On the fifth day, differences in performance be-
tween the semisupervised and supervised learners were stud-
ied. Participants were urged to respond as fast as possible on
this test day. Accuracy was similar in both groups on day 5,
which is to be expected, as accuracywas already above 90% at
the end of day 2. However, the results clearly showed that
participants in the semisupervised condition responded signif-
icantly faster than the participants in the supervised condition
on day 5. This effect cannot be due to general faster RTs and/
or higher accuracy levels in the semisupervised condition, as
evidenced by similar RTs and accuracies for both conditions at
the end of day 2. Thus, the findings of Experiment 1 imply
that late in learning the no-feedback trials in the
semisupervised condition aided the development of
automaticity.

However, two confounds hampered a clear conclusion that
late in learning semisupervised learning is superior. First, even
though the amount of feedback trials was equal in the
semisupervised and the supervised conditions, the total num-
ber of trials differed. Participants in the semisupervised con-
dition received four times as many trials on day 3 and day 4 as
participants in the supervised condition and hence had more
practice. It is therefore possible that the larger total number of
trials caused the faster RTs in the semisupervised condition.
Second, participants in the supervised condition never re-
ceived no-feedback trials on days 3 and 4. Perhaps the sudden
encounter of no-feedback trials on day 5 might have slowed
them down on this test day. To exclude these alternative ex-
planations, two control conditions were administered in
Experiment 2 that were compared to the semisupervised con-
dition of Experiment 1. The percentage of feedback trials on
day 3 and day 4 was manipulated. In the almost supervised
condition 95% of the trials were randomly followed by feed-
back. In the almost unsupervised condition 5% of the trials
were randomly followed by feedback. This implies that in all
conditions (almost supervised, semisupervised, and almost
unsupervised), participants encountered both feedback and
no-feedback trials on days 3 and 4. Crucially, the total number
of trials was identical in all three conditions. Despite these
alterations, the results of Experiment 2 again showed that
the RTs on the fifth day were significantly slower for the
almost supervised and the almost unsupervised conditions
compared to the semisupervised condition, whereas RTs did
not differ at the end of day 2. Since the total number of trials
was now identical in all three conditions, we can conclude that
the semisupervised learners achieved automaticity faster.

Hence, late in learning semisupervised learning should be pre-
ferred. These results are not in line with the predictions of the
SPEED-model since it stipulates that the type of trial (feed-
back or no feedback) should not have an impact on the devel-
opment of automaticity late in learning, and would therefore
expect similar RTs in all the conditions as they all contain the
same number of trials. Why semisupervised category learning
is superior late in learning requires further investigation.
Perhaps semisupervised learning increased participants’moti-
vation and attention compared to a condition where feedback
is almost always offered. Contrarily, participants in the almost
unsupervised learning condition often reported frustration and
they perhaps gave up to perform to their maximum ability.

In the almost unsupervised condition there was a Speed
accuracy trade-off (SAT-)effect: participants who tended to
respond fast also made more errors. This can explain why
the mean accuracy in the almost supervised condition was
significantly higher than in the almost unsupervised condition.
Althoughwe also observed a SAT-effect in the semisupervised
condition, there was no difference in accuracy between the
almost supervised and the semisupervised conditions, sug-
gesting that, even though participants in the semisupervised
condition sacrificed accuracy for speed, they still remained at
a similar accuracy level to participants in the almost super-
vised condition. The model-based analyses on day 5 showed
that a few participants in the semisupervised and the almost
unsupervised condition switched in strategy. This was not the
case in the almost supervised condition where all participants
adhered to the optimal decision bound. Apparently, some par-
ticipants in the almost unsupervised and in the semisupervised
condition unlearned the category structure. Note that when
these participants were omitted from analyses the faster RTs
in the semisupervised condition remained, whereas the differ-
ence in accuracy between almost supervised and almost unsu-
pervised conditions disappeared. These findings suggest that
the faster RTs in the semisupervised condition were not due to
quick random guessing. It rather seems that individual differ-
ences are decisive. In this study, the learning scheme in a
condition was fixed and individual differences in learning
were not taken into account. It is possible that some partici-
pants need a higher percentage of feedback-trials on days 3
and 4 even though they successfully learned the structure at
the end of day 2. Another explanation could be that the switch
point, that is, the point in the learning process on which su-
pervised learning becomes less effective in favor of
semisupervised learning, is later for some participants than
the fixed point of 800 trials (end of day 2) used in this study.
Thus, even though semisupervised learning appears to be the
best learning mode late in learning, there may be exceptions
for some participants. These individual differences in learning
are interesting directions for further research.

The current study supports the idea that no-feedback trials
aid the learning process, as shown in machine learning

154 Atten Percept Psychophys (2019) 81:137–157



(Chapelle et al., 2006; Zhu et al., 2009) and in a few human
semisupervised studies (Kalish et al., 2011; Lake &
McClelland, 2011; Zhu et al., 2010). Contrary to the studies
of Kalish et al. (2011), Lake and McClelland (2011) and Zhu
et al. (2010), in our study all the stimuli (as compared to a
fixed subset) could be followed by feedback, mimicking real-
life category learning. As in the study of Rogers et al. (2010),
semisupervised learning was found when the participants
were urged to respond as fast as possible. It is possible that,
in order to observe semisupervised learning, speed of
responding is essential. Again, this can be an interesting di-
rection for future research. Our study also proves that not only
young children (Kalish et al., 2015), but young adults too are
able to learn in a semisupervised way.

The results of our study may seem to be in contrast to the
study of Vandist et al. (2009) where no effect of the no-
feedback trials was found in learning the information-
integration category structure. However, there are important
differences between both studies. First and most importantly,
Vandist et al. (2009) focused on the effects early in the learn-
ing process whereas the current study dealt with the effects
late in learning, when automaticity develops. Second, the im-
pact of the no-feedback trials was studied on the accuracy
levels in the study of Vandist et al. (2009). In this study re-
sponse time was the dependent variable. Third, in the Vandist
et al. (2009) study, participants in the semisupervised condi-
tion learned from the start in a semisupervised way whereas in
the present study semisupervised learning was only intro-
duced after expert performance was obtained.

Combining the results of both studies suggests that early in
learning the information-integration structure, the no-
feedback trials do not have an impact, but that late in learning
the no-feedback trials facilitate automaticity. Indeed, the ef-
fects of semisupervised learning, at least in the information-
integration structure, might be especially apparent late in the
learning process. These results can also explain why former
semisupervised category studies failed to find convincing ef-
fects, as they all focused on initial learning processes. This
also makes sense if we relate this to category learning in chil-
dren. When a child is first confronted with items of an un-
known category, parents label most of the presented items. As
the child becomes more and more familiar with the category,
the parent still labels information but less often. When the
parent has the idea that the child has acquired the category,
label information diminishes but still takes place from time to
time. In fact, it is ecologically plausible that semisupervised
learning takes place when a solid basis of category expertise
has first been acquired and from that point on, it aids learning.
Experiment 2 even suggests that from a certain expert level
on, semisupervised category learning might be essential to the
development of automaticity, since semisupervised category
learning fastens the development of automaticity whereas
(almost) supervised learning seems to slow it down.

Although speculative, it could for example be that the contin-
uous feedback in the almost supervised condition makes the
expert learner less attentive or less motivated, leading to de-
creased performance. Nevertheless, our results also indicated
that a certain percentage of feedback trials is still needed to
develop automaticity successfully: when feedback was rare in
the almost unsupervised condition, the mean RTs remained at
the same level and at the end of day 4 a few participants even
unlearned the category structure.

In conclusion, this is the first study that examines the
effect of 25% semisupervised learning late in learning. In
Experiment 1, faster RTs were observed in a 25%
semisupervised condition in comparison to a supervised
condition when the total amount of feedback trials in both
conditions was the same. In Experiment 2 the total number
of trials was kept identical in all conditions, but still the
25% semisupervised condition of Experiment 1 showed
faster response times in comparison to the almost super-
vised and almost unsupervised conditions of Experiment 2.
Hence, late in learning (25%), semisupervised learning
seemed to have a beneficial effect as the no-feedback trials
facilitated automaticity. A learning condition containing a
certain amount of no-feedback trials even seems to outper-
form a condition where (almost) all trials are followed by
feedback, as long as a minimal percentage of the trials is
followed by feedback.

Appendix

Four models were fit to each participant’s data: two rule-based
decision bound models, i.e., the vertical and the horizontal
unidimensional models, and one information-integration
model, i.e., the general linear classifier. More details of the
models can be found in Ashby & Gott (1988), Ashby
(1992), and Maddox and Ashby (1993).

Rule-based models

The unidimensional classifier (DIM). The DIM assumes that
participants set a decision criterion on one of the stimulus
dimensions. Because our stimuli have two stimulus dimen-
sions, orientation and frequency, two unidimensional classi-
fiers were fit: one for the frequency dimension and one for the
orientation dimension. An example of a unidimensional rule
used for categorization is: BRespond A if the orientation is
steep, otherwise respond B.^ In this case the frequency is
irrelevant. These models have two parameters: a decision cri-
terion along the chosen classification dimension and a percep-
tual noise variance parameter.

The general conjunctive classifier (GCC). The GCC as-
sumes that the rule used by participants is a conjunction, for
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example: BRespond A if the orientation is steep and the fre-
quency is small, otherwise respond B.^ The GCC has three
parameters: one for each for the single-decision criterion
placed along each dimension (i.e., orientation and frequency)
and finally one for the perceptual noise variance.

Information-integration model

The general linear classifier (GLC). The GLC assumes that a
linear decision bound divided the stimulus space into response
regions. Confronted with a stimulus, the perceived place in the
stimulus space is determined and the contributed categoriza-
tion response elicited. These decision bounds require linear
integration of both stimulus dimensions, resulting in an
information-integration decision strategy. The GLC has three
parameters: the slope and the intercept of the linear decision
bound and finally the perceptual noise variance.
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