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Abstract
All perception takes place in context. Recognition of a given speech sound is influenced by the acoustic properties of surrounding
sounds. When the spectral composition of earlier (context) sounds (e.g., more energy at lower first formant [F1] frequencies)
differs from that of a later (target) sound (e.g., vowel with intermediate F1), the auditory systemmagnifies this difference, biasing
target categorization (e.g., towards higher-F1 /ɛ/). Historically, these studies used filters to force context sounds to possess desired
spectral compositions. This approach is agnostic to the natural signal statistics of speech (inherent spectral compositions without
any additional manipulations). The auditory system is thought to be attuned to such stimulus statistics, but this has gone untested.
Here, vowel categorization was measured following unfiltered (already possessing the desired spectral composition) or filtered
sentences (to match spectral characteristics of unfiltered sentences). Vowel categorization was biased in both cases, with larger
biases as the spectral prominences in context sentences increased. This confirms sensitivity to natural signal statistics, extending
spectral context effects in speech perception to more naturalistic listening conditions. Importantly, categorization biases were
smaller and more variable following unfiltered sentences, raising important questions about how faithfully experiments using
filtered contexts model everyday speech perception.
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Introduction

Objects and events in the environment are highly structured
across space, across time, and in their physical compositions.
According to the Efficient Coding Hypothesis (Attneave,
1954; Barlow, 1961), sensory systems detect and exploit these

regularities in order to make processing efficient. Since the
formulation of this hypothesis, considerable research has
shown how neural processing and/or perceptual responses
capitalize on systematicity in sensory stimuli, particularly in
vision. A wide range of studies has documented the inherent
statistical structure of natural images (i.e., statistical character-
istics that effectively describe the composition of natural stim-
uli – e.g., Field, 1987; Ruderman, 1994; Olshausen & Field,
1996; Bell & Sejnowski, 1997; Simoncelli, 2003; Torralba &
Oliva, 2003). This structure has been linked to neural response
properties in the visual system (Field, 1987; Ruderman,
Cronin, & Chiao, 1998; van Hateren & van der Schaaf,
1998; Simoncelli & Olshausen, 2001) and theories of sensory
coding of natural stimuli (Field, 1994; Vinje & Gallant, 2000).
Finally, these statistical regularities inform observer perfor-
mance in visual perception tasks (Geisler, Perry, Super, &
Gallogly, 2001; Geisler, 2008; Burge, Fowlkes, & Banks,
2010; Tkačik, Prentice, Victor, & Balasubramanian, 2010).

Given its abundant success, one might expect this efficient
coding approach to be productive for studying other classes of
natural stimuli, including speech. The speech signal is highly
redundant, often displaying multiple acoustic properties that are
correlated with each other at any given time (e.g., Lisker, 1986;
Repp, 1982; McMurray & Jongman, 2011; Kluender, Stilp, &
Kiefte, 2013). Yet, thus far, most investigations elected to focus
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not on the statistical structure of the speech signal, but on the
statistics of stimulus presentation (e.g., probability density func-
tions of stimulus presentation: Maye, Werker, & Gerken, 2002;
Clayards, Tanenhaus, Aslin, & Jacobs, 2008; Toscano &
McMurray, 2010; transitional probabilities between sounds:
McQueen, 1998; Vitevitch & Luce, 1999; transitional probabil-
ities between syllables: Saffran, Aslin, & Newport, 1996).
Methods for analyzing the statistical structure of natural images
have been directly extended to speech, but these approaches
have faced considerable limitations. For example, Lewicki
(2002) used independent components analysis to derive digital
filters that optimally encoded the statistical structure of brief
speech segments. The center frequencies and sharpness of these
digital filters closely resembled those of auditory nerve fibers in
the mammalian auditory system, suggesting that the statistical
structure of speech was processed efficiently. However, ques-
tions abound regarding the sharpness of human auditory nerve
tuning and comparisons between broadband speech stimuli and
narrowband (pure tone) stimuli used to measure auditory nerve
tuning (see Sayles &Winter, 2010; Stilp &Lewicki, 2014; Stilp
& Assgari, 2015, for discussions). Also, it is unclear how this
finding informs speech perception. So far, the clearest demon-
strations of perceptual sensitivity to stimulus statistical structure
utilized nonspeech sounds, including auditory textures
(McDermott & Simoncelli, 2011; McDermott, Schemitsch, &
Simoncelli, 2013; McWalter & McDermott, 2018) and heavily
edited musical instrument sounds (Stilp, Rogers, & Kluender,
2010; Stilp & Kluender, 2011, 2012, 2016). These findings
with nonspeech stimuli might not necessarily inform the natural
acoustic ecology or speech and/or everyday speech perception.

Perhaps the most formidable obstacle to studying the effi-
cient coding of speech is its extreme acoustic variability.
Historically, measurements of natural signal statistics in
speech have been conducted on individual phonemes.
Phonemes famously lack any necessary and sufficient stimu-
lus properties to cue their identity (the “lack of invariance”;
Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967).
However, while speech exhibits extreme acoustic variability
across short (phoneme-level) timescales, this variability at
least partially cedes to stable longer-term signal properties
across longer timescales. For example, the long-term average
spectrum of speech displays higher energy at lower frequen-
cies (below 1 kHz) and a steady roll-off in energy at higher
frequencies (Voss & Clarke, 1975; Byrne et al., 1994; ANSI,
1997). The amplitude envelope of medium-rate speech mod-
ulates most often from 2–5 Hz, and these modulations shift to
lower and higher frequencies for slower and faster speaking
rates, respectively (Houtgast & Steeneken, 1985; Stilp, Kiefte,
Alexander, & Kluender, 2010). The speech spectrum also
modulates primarily at low rates, with distinct ranges of spec-
tral modulations for formants (<2 cycles/kHz) and talker pitch
(4–6 cycles/kHz for women, 7–10 cycles/kHz for men; Singh
& Theunissen, 2003; Elliot & Theunissen, 2009). This list is

certainly not exhaustive nor does it dissolve the lack of invari-
ance, but it provides relatively well known examples of statis-
tical regularities that are evident across 1+ seconds of speech.
Furthermore, when nonspeech sound textures were of suffi-
cient duration (0.5–2 s), they were represented according to
their time-averaged statistical properties (McDermott et al.,
2013). This supports the examination of time-averaged statis-
tical regularities in speech and their links to speech perception.

These longer timescales are an important context for speech
perception. Speech sound recognition is accomplished using
acoustic properties of the speech sounds themselves (i.e., in-
trinsic cues) as well as information from neighboring sounds
(i.e., extrinsic cues; Ainsworth, 1975; Nearey, 1989). Extrinsic
cues are of particular interest in speech research because they
can help listeners perceptually adjust to different talkers’ voices
(Ladefoged & Broadbent, 1957; Johnson, 1990; Sjerps,
Mitterer, & McQueen, 2011) or acoustic environments in gen-
eral (Watkins, 1991; Stilp, Alexander, Kiefte, & Kluender,
2010; Stilp, Anderson, Assgari, Ellis, & Zahorik, 2016).
Importantly, when extrinsic and intrinsic cues to a stimulus
differ, perceptual systems tend to magnify this difference,
resulting in a contrast effect. For example, Ladefoged and
Broadbent (1957) examined how listeners perceived vowels
that followed an introductory sentence. Listeners reported
whether the vowel was / / (as in “bit”; lower first formant fre-
quency [F1]) or /ɛ/ (as in “bet”; higher F1). When the sentence
was edited to make lower F1 frequencies more prominent, lis-
teners labeled the subsequent target vowel as the higher-F1 /ɛ/
more often; when the sentence was edited to make higher F1
frequencies more prominent, listeners labeled the target vowel
as the lower-F1 / / more often. Subsequent work revealed these
spectral contrast effects (SCEs)1 to be basic, low-level phenom-
ena that do not require talkers or even speech to occur (e.g.,
Watkins, 1991; Lotto & Kluender, 1998; Holt, 2005; Stilp,
Alexander, et al., 2010; Stilp, Anderson, & Winn, 2015;
Sjerps et al., 2011; Kingston et al., 2014; Sjerps & Reinisch,
2015; Bosker, Reinisch, & Sjerps, 2017). These effects are
widespread in speech perception, occurring even for incredibly
small spectral differences (adding a +3 dB spectral peak to the
context; Stilp & Assgari, 2018a). SCEs bias categorization of a
wide range of speech sounds (see Stilp et al., 2015 for review)
and to varying degrees, depending on the size of the spectral
change across earlier and target sounds (Stilp et al., 2015; Stilp
& Assgari, 2017). This reveals acute sensitivity to spectral
differences across sounds during speech categorization.

1 There are two types of SCEs in the auditory perception literature, short term
and long term. In short-term SCEs, the preceding acoustic context is typically
the sound immediately preceding the target sound (e.g., Lotto & Kluender,
1998). In long-term SCEs, the preceding acoustic context is a series of sounds
generally 1+ seconds in duration immediately preceding the target sound.
These long-term SCEs are the focus of the present report. While short-term
and long-term SCEs produce effects in consistent directions and are related to
each other, short-term SCEs will not be discussed further here.
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In most investigations of SCEs, the preceding acoustic con-
text was a sentence or phrase that was filtered to produce some
desired property in its long-term average spectrum. The same
stimulus was filtered two slightly different ways, each time
introducing a different spectral property (e.g., adding a spec-
tral peak from 100–400 Hz or from 550–850 Hz to the long-
term average spectrum). On every trial of a given experiment,
listeners heard one of these two filtered contexts precede the
target phoneme. These filtered contexts biased speech catego-
rization, producing an SCE. While this approach affords good
acoustic control and likely maximizes the probability of ob-
serving an SCE, it is largely agnostic to the inherent spectral
composition of the speech context. Some speech stimuli might
inherently possess the desired spectral properties without any
additional filtering. As such, these inherent spectral character-
istics (equivalently, natural signal statistics) could bias speech
categorization in much the same way that highly acoustically
controlled filtered contexts do. This approach would signifi-
cantly advance understanding of how these context effects
influence speech perception in more naturalistic listening con-
ditions. Yet, to date, this possibility has gone unexplored.

Here, natural signal statistics and speech perception are
linked through measures of SCEs that bias vowel categoriza-
tion. The pervasiveness and replicability of SCEs in speech
perception make them ideal for testing perceptual sensitivity
to statistical regularities in earlier sounds. In each of eight
experiments, unfiltered and filtered context sentences were
presented before target vowels, measuring the resulting biases
in vowel categorization (i.e., SCEs). Unfiltered contexts were
selected based on their statistical properties, defined as the
natural balance of average energy across two frequency re-
gions (see Methods). Filtered contexts were generated to have
matching spectral statistical properties, serving as a control
condition. Across conditions, it was hypothesized that SCEs
are not produced by an absolute spectral cue (an added spec-
tral peak via filtering), but by a relative spectral cue (more
energy in one frequency region than another, whether natural-
ly present or introduced by filtering). Thus, unfiltered and
filtered contexts should both produce SCEs in vowel catego-
rization. More importantly, vowel categorization following
unfiltered contexts provides a clearer perspective on how
SCEs shape everyday speech perception.

Methods

Participants

A total of 146 undergraduate students at the University of
Louisville participated in this study in exchange for course
credit. All reported being native English speakers with no
known hearing impairments. Eight individual experiments
were conducted (n = 17, 15, 17, 17, 20, 20, 20, and 20 for

Experiments 1–8, respectively), and no listener participated in
multiple experiments.

Stimuli

Unfiltered contexts

Sentences were analyzed and selected according to spectral
properties in the low-F1 (100–400 Hz) or high-F1 (550–850
Hz) frequency regions, as amplifying these regions has been
highly successful in producing SCEs in previous studies (Stilp
et al., 2015; Assgari & Stilp, 2015; Stilp & Alexander, 2016;
Stilp, 2017; Stilp & Assgari, 2018a). Each sentence was ana-
lyzed using two separate bandpass filters. The passband was
either 100–400 Hz or 550–850 Hz, with 5-Hz transition regions
between the passband and stopbands. Filters had 1,000 coeffi-
cients and were created using the fir2 command in MATLAB
(MathWorks, Inc., Natick, MA, USA). The amplitude envelope
in each frequency region was obtained by rectifying the signal
and low-pass filtering using a second-order Butterworth filter
with a cutoff frequency of 30 Hz. The root-mean-square energy
for each envelope was converted into dB. The difference in
energy across these two frequency regions was termed the
Mean Spectral Difference (MSD; Fig. 1). MSDs were always
subtracted in one direction (low-F1 energy minus high-F1 ener-
gy), with positive MSDs indicating more energy in the low-F1
region and negative MSDs indicating more energy in the high-
F1 region. MSDs are likely to stem from a number of sources,
including but not limited to phonemic content (particularly vow-
el formants) and talker size (with shorter talkers often possessing
shorter vocal tracts that produce higher formants, and taller
talkers often possessing longer vocal tracts that produce lower
formants).2 MSDs were calculated for every sentence in the
TIMIT database (Garofolo et al., 1990), the HINT database
(Nilsson, Soli, & Sullivan, 1994),3 and 338 TIMIT sentences
spoken by the first author. Long-term average spectra and dis-
tributions of MSDs for these databases are shown in Fig. 2.

Sentences were selected from these databases for use as
experimental stimuli according to two criteria. First, all
sentences were spoken by men. This matched the talker who
produced the filtered context and the target vowels (the first
author). Second, sentences were selected on the basis of having
MSD magnitudes in one of two groups: large (averages of the
absolute values of MSDs tested in the same block between 11
and 15 dB) or small (averages of the absolute values of MSDs
tested in the same block between 5 and 8.5 dB). Sentenceswith

2 These measures are also at the mercy of factors such as recording conditions
and equipment, which were not controlled in the present investigation. The
degree to which MSD measures are representative of everyday speech could
be influenced by these factors.
3 Several sentences in the HINT database are repeated across the Adult and
Child sentence lists. Here, MSDs are presented only for the 275 unique
sentences in the database.
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large MSDs were expected to maximize the probability of
observing SCEs in vowel categorization. Additionally, testing
sentences with smaller and larger MSDs afforded an examina-
tion of whether SCE magnitudes scaled along with the sizes of
spectral prominences in context sentences, as has been report-
ed for filtered sentences (Stilp et al., 2015; Stilp & Alexander,
2016; Stilp & Assgari, 2017). By prioritizing talker gender and
MSDs during stimulus selection, many other signal

characteristics were allowed to vary freely, such as fundamen-
tal frequency, semantic and syntactic content, and duration.
Sentence characteristics are listed in Table 1.

In a given block of an experiment, one of two unfiltered
sentences was presented on each trial. Generally, one sentence
had a positiveMSD favoring low-F1 frequencies and the other
had a negativeMSD favoring high-F1 frequencies (see Table 1
for details).

Fig. 2 (Top row) Long-term average spectra for 6,300 sentences in
the TIMIT database (left), 275 unique sentences in the HINT data-
base (center), and 338 sentences from the TIMIT database recorded
by the first author (right). Spectra are depicted up to 1 kHz to illus-
trate low-F1 (100–400 Hz) and high-F1 (550–850 Hz) frequency

regions used in calculations of MSDs. (Bottom row) Histograms
showing the distributions of MSDs for the TIMIT database (left),
HINT database (center), and sentences from the first author (right).
Experimental stimuli were selected from these distributions (see
Table 1)

Fig. 1 Procedure for calculating Mean Spectral Differences (MSDs). Two
frequency regions are excised from the sentence via bandpass filtering: low
F1 (100–400 Hz) and high F1 (550–850 Hz). In each frequency region, the
signal is rectified and low-pass filtered to produce its amplitude envelope.

Energy in each frequency region is calculated using the root-mean-square
amplitude of the envelope. The MSD is defined as energy in the low-F1
region minus energy in the high-F1 region. Here, for the sentence
BVietnamese cuisine is exquisite,^ MSD = 11.23 dB
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Filtered contexts

Experiments also tested filtered renditions of a single sen-
tence, a recording of the first author saying “Please say what
this vowel is” (2,174 ms). This stimulus has been highly suc-
cessful in biasing vowel categorization (Stilp et al., 2015;
Assgari & Stilp, 2015; Stilp & Alexander, 2016; Stilp, 2017;
Stilp &Assgari, 2018a). Here, this stimulus provided an upper
limit of SCE magnitudes when talker variability, duration, and
all other acoustic properties were held constant from trial to
trial. Filtered contexts served as control conditions in a second
sense, ensuring that listeners were responding consistently in
conditions where SCEs were most likely to occur based on
past research.

This stimulus possessed nearly equal energy in low-F1 and
high-F1 frequency regions before any spectral peakswere added
(MSD = –0.91 dB). This stimulus was then processed by the
same narrowband filters used to introduce spectral peaks in

previous studies: 300-Hz-wide finite impulse response filters
spanning either 100–400 Hz or 550–850 Hz. Filters were cre-
ated using the fir2 function in MATLAB with 1,200 coeffi-
cients. Filter gain was determined according to the following
procedure. First, the native MSD of the to-be-filtered context
sentences was compared to that of an unfiltered context sen-
tence (e.g., unfiltered sentence MSD = 15.00 dB, a strong bias
toward low-F1 frequencies). Gain for the appropriate filter
(here, amplifying low-F1 frequencies) was set to a value just
below the difference between these two MSDs. The context
sentence was filtered and its MSD was remeasured. If its new
MSD differed from the target MSD by more than 0.1 dB, filter
gain was increased slightly (e.g., adding slightly more energy to
the low-F1 region) and the process repeated. This continued
iteratively until theMSDs for the unfiltered and filtered contexts
were functionally equal (within 0.1 dB of each other). Thus,
each unfiltered context sentence in an experiment was accom-
panied by a filtered context sentence with an equivalent MSD.

Table 1 Characteristics of sentences presented as unfiltered contexts in the present experiments

Exp. Block Sentence Database Duration (ms) MSD (dB)

1 1 Vietnamese cuisine is exquisite TIMIT 1,516 11.23
1 1 Beg that guard for one gallon of gas TIMIT 1,940 –13.73
1 2 Go change your shoes before you turn around TIMIT 1,836 7.91
1 2 The drunkard is a social outcast TIMIT 1,904 –7.09
2 1 Vietnamese cuisine is exquisite TIMIT 1,516 11.23
2 1 A large household needs lots of appliances TIMIT 2,700 –13.81
2 2 Go change your shoes before you turn around TIMIT 1,836 7.91

2 2 Lots of foreign movies have subtitles TIMIT 1,993 –7.88
3 1 She uses her spoon to eat HINT 1,844 21.61
3 1 The ball bounced very high HINT 2,072 –1.66
3 2 She's helping her friend move HINT 1,673 11.64
3 2 The front yard was pretty HINT 1,820 1.61
4 1 Vietnamese cuisine is exquisite TIMIT 1,516 11.23
4 1 Straw hats are out of fashion this year TIMIT 2,158 –16.68
4 2 Go change your shoes before you turn around TIMIT 1,836 7.91
4 2 Straw hats are out of fashion this year TIMIT 2,158 –16.68
5 1 Vietnamese cuisine is exquisite TIMIT 1,516 11.23
5 1 A large household needs lots of appliances TIMIT 2,700 –13.81

5 2 Go change your shoes before you turn around TIMIT 1,836 7.91
5 2 Lots of foreign movies have subtitles TIMIT 1,993 –7.88
6 1 Vietnamese cuisine is exquisite TIMIT 1,516 11.23
6 1 Straw hats are out of fashion this year TIMIT 2,158 –16.68
6 2 Go change your shoes before you turn around TIMIT 1,836 7.91
6 2 Straw hats are out of fashion this year TIMIT 2,158 –16.68
7 1 She uses her spoon to eat HINT 1,844 21.61
7 1 The ball bounced very high HINT 2,072 –1.66
7 2 The two children are laughing HINT 1,713 12.75
7 2 The football hit the goalpost HINT 2,135 0.59
8 1 They were pursuing him 1st author 1,089 12.52

8 1 Alfalfa is healthy for you 1st author 1,381 –3.78
8 2 Amoebas change shape constantly 1st author 1,843 11.03
8 2 BWatch it, big shot!^, a hoarse voice yelled back 1st author 2,624 –2.31
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Targets

Target vowels were the same / /-to-/ɛ/ continuum as previously
tested by Stilp and colleagues (Stilp et al., 2015; Assgari & Stilp,
2015; Stilp & Alexander, 2016; Stilp, 2017; Stilp & Assgari,
2018a). For a detailed description of the stimulus generation
procedures, see Winn and Litovsky (2015). Briefly, tokens of
/ / and /ɛ/ were recorded by the first author. Formant contours
from each token were extracted using PRAAT (Boersma &
Weenink, 2017). In the / / endpoint, F1 linearly increased from
400 to 430 Hz while F2 linearly decreased from 2,000 to 1,800
Hz. In the /ɛ/ endpoint, F1 linearly decreased from 580 to 550
Hz while F2 linearly decreased from 1,800 to 1,700 Hz.
Trajectories for each formant were linearly interpolated to create
a ten-step continuum of formant tracks. A single voice source
was extracted from the / / endpoint, and F1/F2 tracks were used
to filter this source, producing the 10-step continuum of vowel
tokens. Energy above 2,500 Hz was replaced with the energy
high-pass filtered from the original / / token for all vowels. Final
vowel stimuli were 246 ms in duration with the fundamental
frequency set to 100 Hz throughout the vowel.

All context sentences and vowels were low-pass filtered at
5 kHz and set to equal root mean square (RMS) amplitude.
Experimental trials were then created by concatenating each
target vowel to each context sentence with 50-ms silent inter-
stimulus intervals.

Procedure

All experimental procedures were approved by the
Institutional Review Board of the University of Louisville.
After acquisition of informed consent, participants were
seated in a sound-attenuating booth (Acoustic Systems, Inc.,
Austin, TX, USA). Stimuli were D/A converted by RME
HDSPe AIO sound cards (Audio AG, Haimhausen,
Germany) on personal computers and passed through a pro-
grammable at tenuator (TDT PA4, Tucker-Davis
Technologies, Alachua, FL, USA) and headphone buffer
(TDT HB6). Stimuli were presented diotically at an average
of 70 dB sound pressure level (SPL) over circumaural head-
phones (Beyerdynamic DT-150, Beyerdynamic Inc. USA,
Farmingdale, NY, USA). A custom MATLAB script led the
participants through the experiment. After each trial, partici-
pants clicked the mouse to indicate whether the target vowel
sounded more like “ih (as in ‘bit’)” or “eh (as in ‘bet’)”.

Participants first completed 20 practice trials. On each prac-
tice trial, the context was a sentence from the AzBio corpus
(Spahr et al., 2012) and the target was one of the two end-
points from the vowel continuum. Listeners were required to
categorize vowels with at least 80% accuracy in order to pro-
ceed to the main experiment. If they failed to meet this crite-
rion, they were allowed to repeat the practice session up to two
more times. If participants were still unable to categorize

vowels with 80% accuracy after the third practice session,
they were not allowed to participate in the main experiment.

Each experiment consisted of four blocks: two blocks pre-
senting unfiltered contexts and two blocks presenting filtered
contexts. Every block tested two context sentences. In unfil-
tered blocks, one sentence typically had a low-F1-biasedMSD
and the other sentence had a high-F1-biased MSD (see Table
1). In filtered blocks, the single sentence spoken by the first
author was filtered two different ways in order to produce the
same MSDs as those tested in the corresponding unfiltered
block. Thus, each individual experiment tested two MSD
values, once each in unfiltered and filtered conditions. There
were 160 trials per block, with each unique context/vowel
pairing tested eight times.4 Blocks were presented in
counterbalanced orders across participants, and trials within
each block were randomized. The experiment was self-paced,
allowing participants the opportunity to take short breaks be-
tween each block as needed. No feedback was provided. The
total experimental session lasted approximately 1 h.

Results

After passing the practice session, a performance criterion was
implemented such that listeners were required to achieve at
least 80% accuracy identifying vowel continuum endpoints in
a given experimental block. If listeners exhibited difficulty
categorizing vowel endpoints, that seriously compromised
the interpretability of shifts in their vowel category boundaries
due to SCEs. Eighteen blocks (out of 580 blocks total) were
removed from further analysis: seven listeners failed only one
out of the four blocks in their respective experiments, two
listeners failed two blocks, one listener failed three blocks,
and one listener failed all four blocks in that experiment so
his/her data were removed entirely.

Omnibus analysis

Results were analyzed using mixed-effect models in R (R
Development Core Team, 2016) using the lme4 package
(Bates, Maechler, Bolker, & Walker, 2014). Mixed-effects
modeling allowed estimation of the variables under study
(fixed effects) separately from variability due primarily to in-
dividual differences of participants randomly sampled from
the population (random effects). In the model, responses were
transformed using the binomial logit linking function. The
dependent variable was modeled as binary (“ih” or “eh” re-
sponses coded as 0 and 1, respectively). Fixed effects in the
model included: Target (coded as a continuous variable from 1

4 Some of the experiments presented a third context sentence chosen for its
MSD being near zero. As this manipulation was not shared across all experi-
ments, these trials have been removed from data analyses.
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to 10 then mean-centered), Spectral Peak (contrast coded;
high F1 = –0.5, low F1 = +0.5), Condition (contrast coded;
filtered = –0.5, unfiltered = +0.5), and the absolute value of the
MSD (whether naturally occurring [unfiltered sentences] or
implemented via filtering [filtered sentences]; coded as a con-
tinuous variable then mean-centered). Including the interac-
tions between Target and other fixed effects did not signifi-
cantly improve model fit [χ2(7) = 3.70, p = 0.81], so these
interactions were excluded from the final model. Otherwise,
all two-way and three-way interactions between Spectral
Peak, Condition, and MSD were included in the model.

Random slopes were included for each main fixed effect to
allow the magnitudes of these factors to vary by listener.5 A
random slope was also included for the Spectral Peak ×
Condition interaction, which allowed the differences in SCE
magnitudes across filtered and unfiltered sentences to vary by
listener. Finally, a random intercept of listener was included to
account for individual differences relative to each listener’s
baseline level of performance. All models were run using
bobyqa optimization with a maximum of 800,000 iterations.
The final model had the following form:

Response∼Targetþ Spectral Peakþ ConditionþMSDþ Spectral Peak−by−Conditionþ Spectral

Peak−by−MSDþ Condition−by−MSDþ Spectral Peak−by−Condition−by−MSDþ
�
1þ Targetþ

Spectral Peakþ ConditionþMSDþ Spectral Peak−by−Condition j Listener
�

Results from this model are shown in Table 2. The model
intercept was significant, indicating more “eh” responses than
“ih” responses to the vowel targets. The significant effect of
Target predicts more “eh” responses with each rightward step
along the vowel target continuum (toward higher F1 frequen-
cies and the /ɛ/ endpoint), as expected. The significant positive
effect of Spectral Peak predicts an increase in “eh” responses
when the filtering condition is changed from high F1 (the level
coded as –0.5) to low F1 (the level coded as +0.5), consistent
with the hypothesized direction of SCEs. Listeners were also
more likely to respond “eh” to vowel targets following unfil-
tered sentences (significant main effect of Condition) and at
higher MSD values (significant main effect of MSD).

Model interactions including the Spectral Peak term (SCEs)
are of particular importance. First, the significant negative in-
teraction between Spectral Peak and Condition indicates that
SCE magnitudes were significantly smaller following

unfiltered sentences than following filtered sentences.
Second, the significant positive interaction between Spectral
Peak and MSD indicates that SCE magnitudes increased line-
arly as MSDs increased. This replicates and extends similar
findings in studies that used only filtered sentence contexts
(Stilp et al., 2015; Stilp & Alexander, 2016; Stilp & Assgari,
2017, 2018a). Finally, the three-way interaction between
Spectral Peak, Condition, and MSD was not statistically sig-
nificant. This indicates that the rate at which SCE magnitudes
increased at larger MSDs (i.e., the observed significant inter-
action between Spectral Peak and MSD) did not significantly
differ across filtered and unfiltered sentence conditions.

This omnibus analysis confirms the relationship between
MSDs and SCEs in vowel categorization following filtered
and unfiltered sentences, but important characteristics of each
condition are not immediately evident. For example, while
SCEs were significantly smaller following unfiltered
sentences than following filtered sentences, it cannot speak
to the amounts of variability in each condition. One might
expect more variable results following different context
sentences (potentially spoken by different talkers) compared
to filtered renditions of a single sentence by a single talker.
Also, this omnibus analysis models the probability of
responding “eh” on a given trial, but the primary phenomenon
of interest is the SCE, which occurs across all trials in a given
block. This model offers predictions about the magnitudes of
SCEs, but does not readily reveal the actual SCEs in each
block of each experiment. Therefore, follow-up analyses were
conducted to reveal these characteristics.

5 Inclusion of a random slope for context sentence was explored (to reflect
item variation by using different unfiltered sentences in different blocks/ex-
periments). However, the fixed-effect model matrix was rank-deficient and the
model failed to converge when this term was included, so it was omitted from
analyses.

Table 2 Results from the generalized linear mixed-effects logistic re-
gression on listeners’ responses. See main text for description of factors
and the model structure. SEM indicates the standard error of the mean

Estimate SEM Z p

(Intercept) 0.254 0.056 4.559 5.1e-6

Target 1.098 0.031 34.971 <2e-16

Spectral Peak 0.708 0.042 16.965 <2e-16

Condition 0.335 0.049 6.846 7.6e-12

MSD 0.011 0.005 2.229 0.026

Spectral Peak × Condition –0.665 0.060 –11.082 <2e-16

Spectral Peak × MSD 0.061 0.009 6.962 3.4e-12

Condition × MSD 0.004 0.006 0.779 0.436

Spectral Peak × Condition × MSD –0.006 0.013 –0.447 0.655
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Analysis of SCEs

SCEs were calculated at the group level for each block of each
experiment in the following manner. First, given their signifi-
cant difference reported above, results were separated accord-
ing to condition (filtered vs. unfiltered context sentences).
Then, for each block in each condition, listeners’ responses
were fit with a mixed-effects logistic regression with fixed
effects of Target and Spectral Peak, random slopes for each
of these fixed effects, and a random intercept for each listener.
Model coefficients were used to quantify the magnitude of the
SCE that occurred in that block using the following established
procedures (Stilp et al., 2015; Stilp & Assgari, 2017, 2018a;
see Fig. 3). The 50% points were identified on the logistic
regression fits to the aggregated vowel responses following
low-F1-emphasized contexts and responses following high-
F1-emphasized contexts. These 50% points were then convert-
ed into the stimulus step number that listeners would label as
/ɛ/ 50% of the time. Vowel targets were numbered from 1 to
10, so this stimulus number was interpolated as needed. The
SCE magnitude was defined as the distance between these
50% points, measured in the number of stimulus steps.

In the ecological survey (Fig. 2) and the omnibus analysis
reported above, sentences with positive MSDs possessed
more energy in the low-F1-frequency region, and sentences
with negative MSDs possessed more energy in the high-F1-
frequency region. Each block presented two context sentences
(generally one with a positive MSD and one with a negative
MSD; see Table 1), which produced an SCE of some

magnitude (possibly even zero magnitude, or a failure to bias
vowel categorization). To facilitate comparisons between
MSDs and SCEs, MSD for an experimental block was calcu-
lated as the difference between the two context sentences’
MSDs divided by two.6 This more broadly reflects the average
imbalance of energy in the spectrum of the context sentences,
whether biased towards low-F1 energy or high-F1 energy.

SCEs in each block of each experiment are portrayed in
Fig. 4 and listed in Table 3. For filtered context sentences,
SCEs were significantly correlated with sentence MSDs (r =
0.83, p < .0001). A mixed-effects linear regression was fit to
these data, using the fixed effect of MSD and the random
effect of listener group (i.e., experiment number, from one to
eight) to predict the magnitude of the resulting SCE. MSDs
were indeed significant predictors of SCE magnitudes (t =
7.84, p < .0001). For unfiltered context sentences, SCEs were
again significantly correlated with sentenceMSDs (r = 0.65, p
< .01). The samemixed-effects linear regressionmodel was fit
to these data, revealing that MSDs were again significant pre-
dictors of SCE magnitudes (t = 3.90, p < .005). Finally, the
slopes of these linear regressions were highly similar (filtered
sentences = 0.053 stimulus steps per additional dB filter gain,
unfiltered sentences = 0.072 steps/dB), indicating that SCEs
grew at similar rates asMSDs (in unfiltered sentences) or filter
gain (in filtered sentences) increased in the context sentence.
This is consistent with the non-significant three-way interac-
tion between Spectral Peak, Condition, and MSD reported in
the omnibus analysis above.

While SCE magnitudes exhibited similarities across fil-
tered and unfiltered conditions (both being significantly cor-
related with MSDs, both sharing comparable regression
slopes), important differences were also evident. In the omni-
bus mixed-effects model, SCE magnitudes were significantly
smaller following unfiltered sentences than filtered sentences
(significant negative interaction between Spectral Peak and
Condition). This point was tested directly via a paired-samples
t-test on the SCEs calculated in follow-up analyses. SCEs
following unfiltered context sentences (mean = 0.34 stimulus
steps) were significantly smaller than SCEs following filtered
context sentences (mean = 0.94; t15 = 10.07, p < .0001).
Additionally, the magnitudes of SCEs produced by unfiltered

Fig. 3 Calculation of SCEs. Logistic regressions derived from the mixed-
effect model are fit to group responses following low-F1-emphasized
(blue) and high-F1-emphasized (red) context sentences. The 50% point
is calculated for each regression fit, then translated into the stimulus step
number (from 1 to 10, interpolated as needed; dashed vertical lines) that
would be categorized as Beh^ 50% of the time. The SCE is defined as the
shift in 50% points, measured in stimulus steps. Here, the SCE is 0.79
stimulus steps. Logistic regressions and SCEs for each block in every
experiment are illustrated in the Supplementary Figures (see online
supplementary material)

6 When one MSD is positive (low-F1 bias) and the other MSD is negative
(high-F1 bias), this formulation is mathematically equivalent to adding the
absolute values of each MSD and dividing by two. This was the case for 14
out of the 16 blocks listed in Table 1. When MSDs are both positive or
negative, however, averaging the absolute values overstates their expected
influence on listener performance. For example, if both MSDs in an experi-
mental blockwere +10, the average of absolute values is +10 but the difference
divided by two is 0. The latter calculation is more appropriate given that
perception is not expected to be differentially biased by two identical MSDs
(in this case, both biasing responses towards high-F1 “eh”). In Experiment 3
Block 2, the average of the absolute values of the two MSDs tested (11.64 and
1.61) is +6.63, but the difference divided by two is +5.02. The net difference
between these MSDs is a better estimate of their ability to bias phoneme
categorization
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context sentences were more variable compared to SCEs pro-
duced by filtered context sentences (variances = 0.110 and
0.036, respectively). This was confirmed by a statistically sig-
nificant Bartlett’s test, rejecting the null hypothesis of equal
variances [χ2(1) = 4.23, p < .05].

Timecourse analysis

Unfiltered sentences were selected according to their MSDs,
which reflect the long-term balance of energy across low- and
high-F1-frequency regions. While these sentences significant-
ly biased vowel categorization (Fig. 4), these long-term aver-
ages collapse across local spectral characteristics of sentences.
A sentence can produce a given MSD value an infinite num-
ber of ways, with different phonemes having energy biased
toward low-F1 or high-F1 frequencies to varying degrees at
different times throughout the sentence. Additionally, unfil-
tered sentences varied in their durations (see Table 1), but
MSD calculations removed this information by averaging
across time. Thus, the results illustrated in Fig. 4 cannot speak
to any influence of more local spectrotemporal characteristics
of the unfiltered context sentences.

Exploratory analyses were conducted to evaluate the pre-
dictive power of MSDs across different time-courses. These
analyses were akin to reverse correlation: MSDs were calcu-
lated for different durations of the unfiltered sentences, then
these values were correlated with SCE magnitudes (which
were fixed values throughout the analyses; see Table 3). The
analyses proceeded as follows. First, all unfiltered sentences
were aligned at their offsets. This made all stimuli uniform in
terms of temporal proximity between their offsets and the on-
set of the vowel target 50 ms later in experimental trials, irre-
spective of total sentence duration. Next, an analysis window
duration was specified (e.g., t = 20 ms). For a given context
sentence, this duration was excised from the end of the sen-
tence (in effect, its last t ms). To facilitate spectral analysis of
short-duration signals, 1-ms linear onset and offset ramps were
applied, and 1 s of silence was prepended and appended to the
excerpt. TheMSD of the excerpt was then calculated. Spectral
analysis was conducted for both context sentences in a given
experimental block; the block MSD value was calculated as
the difference inMSD values divided by two. After excising t-
ms excerpts from all 16 context sentences, block MSDs were
correlated with SCE magnitudes and the correlation coeffi-
cient was saved. This process was repeated for all integer
multiples of the analysis window duration (e.g., t = 40 ms,
60 ms, 80 ms, etc.) until it approached 1,089 ms, which was
the duration of the shortest sentence tested (“They were pur-
suing him” from Experiment 8). Exceeding this duration was
undesirable because that would require removing behavioral
results from the time-course analysis.

The optimal window duration for analyses was not known
a priori, so ten different window durations were explored (t =
5–50 ms, in 5-ms steps).7 The results of all analyses are
superimposed in Fig. 5, with MSD/SCE correlation coeffi-
cient plotted as a function of the temporal analysis window
(the last t ms of every sentence). For brief window durations
(<500 ms), MSDs did a very poor job of predicting SCE
magnitudes; correlation coefficients were almost exclusively
within the range of ±0.30. This is far weaker than the correla-
tion reported between full-sentence MSDs and SCEs (r =
0.66; denoted by the ‘X’ on the ordinate of Fig. 5). In general,
correlation coefficient magnitude grew with longer analysis
window durations. Correlation magnitudes exhibited sharp
increases between 550 and 650 ms owing to the temporal
patterns of phonemic content in a few stimuli. For example,
“Straw hats are out of fashion this year” (high-F1 MSD sen-
tence in Experiments 4 and 6) exhibited many high-F1 peaks
earlier in the sentence (during “Straw hats are out of fa-”) but

7 Given the large number of correlations calculated, an inflated Type I error
rate is an obvious concern. However, statistical significance is neither reported
nor sought for these exploratory analyses. Instead, the primary focus is reveal-
ing the overall pattern of MSD/SCE correlation coefficients at different time-
courses, including how the predictive power of longer analysis windows ap-
proaches that of full-sentence MSDs (the ‘X’ in Fig. 5).

Fig. 4 Spectral contrast effect (SCE) magnitudes in each block of each
experiment. SCEs produced by filtered context sentences (circles) are
plotted as a function of filter gain. SCEs produced by unfiltered context
sentences (triangles) are plotted as a function of relative spectral promi-
nence (MSD). All values are obtained through mixed-effects models fit to
each individual dataset (see Table 3). Icons that share color indicate re-
sults contributed by a single participant group (each completed four
blocks, thus four SCEs). Solid lines represent the linear regression fits
to results in each condition
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none in the last 580ms (“-shion this year”). Similarly, “A large
household needs lots of appliances” (high-F1 MSD sentence

in Experiments 2 and 5) exhibited several high-F1 peaks but
only half of one peak in the last 550 ms (during “-iances” in

Table 3 Results for each block of each experiment. Each block lists the
half of the difference between the two MSDs tested in the context
sentences (Block MSD), the resulting SCE measured in stimulus steps
(Filtered SCE, Unfiltered SCE), the coefficient (β), and standard error for

the Spectral Peak factor of the mixed-effects model fit to each dataset, and
the corresponding icons in Fig. 4. Asterisks indicate model coefficients
that are significantly different from zero (i.e., the presence of an SCE): * p
< .05, ** p < .01, *** p < .001

Exp. Block
Block
MSD

Filtered 
SCE Icon

Unfiltered 
SCE (se) (se) Icon

1 1 12.48 1.08 1.33 (0.23)*** 0.55 0.75 (0.19)***

1 2 7.50 0.80 0.92 (0.18)*** 0.04 0.05 (0.15)

2 1 12.52 1.08 1.15 (0.17)*** 0.56 0.66 (0.19)***

2 2 7.90 0.99 1.10 (0.24)*** 0.34 0.45 (0.19)*

3 1 11.64 1.12 1.33 (0.16)*** 0.89 1.02 (0.26)***

3 2 5.02 0.66 0.80 (0.15)*** 0.08 0.10 (0.15)

4 1 13.96 1.12 1.18 (0.14)*** 0.99 1.10 (0.17)***

4 2 12.29 1.06 1.22 (0.21)*** 0.33 0.37 (0.16)*

5 1 12.52 0.80 0.89 (0.14)*** 0.38 0.39 (0.13)**

5 2 7.89 0.67 0.65 (0.12)*** -0.05 -0.06 (0.20)

6 1 13.96 1.20 1.31 (0.18)*** 0.18 0.17 (0.19)

6 2 12.29 1.05 1.10 (0.19)*** 0.24 0.26 (0.13)*

7 1 11.64 1.14 1.29 (0.18)*** 0.76 0.96 (0.18)***

7 2 6.08 0.79 0.96 (0.14)*** 0.00 0.00 (0.15)

8 1 8.14 0.75 0.91 (0.15)*** -0.09 -0.11 (0.17)

8 2 6.66 0.70 0.91 (0.16)*** 0.23 0.38 (0.24)

Fig. 5 Analyses of the timecourse of MSDs for predicting behavioral results.
The abscissa depicts the duration of sentence spectra (relative to sentence
offset) utilized for calculating MSDs. The ordinate depicts the correlation

coefficient for these shorter-duration MSDs with SCEs in the unfiltered con-
dition. Superimposed lines reflect the different window durations utilized in
analyses (5–50 ms at a time, in 5-ms steps). See text for details
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“appliances”). Early high-F1 peaks in these sentences contrib-
uted significantly to their respective overall MSDs (–16.68
and –13.81), which then drove block MSDs toward their final
magnitudes and improved the predictive power of time-course
analyses. The longest analysis windows approached the effi-
cacy of predicting SCEs using full-sentenceMSDs (maximum
correlation coefficient observed in Fig. 5: r = 0.60). However,
this finding does not prescribe any particular temporal win-
dows for context effects in speech perception. Unfiltered stim-
uli were selected without any regard for local temporal char-
acteristics of MSDs; only their long-term (sentence-length)
properties were considered. Future research using stimuli with
more carefully controlled short-term MSDs (analogous to the
generation of pure tone sequences with different local statis-
tics in Holt, 2006) may shed more light on context effects in
speech categorization at different temporal windows.

Discussion

Review of the present results

Objects and events in the sensory environment are highly
structured across space and time. Considerable success has
been achieved in documenting this statistical structure in nat-
ural images (Field, 1987; Ruderman, 1994; Olshausen &
Field, 1996; Bell & Sejnowski, 1997; Simoncelli, 2003;
Torralba & Oliva, 2003; Geisler, 2008). However, efforts to
reveal the statistical structure of speech have seen limited suc-
cess due to its extreme acoustic variability. An alternative
approach examines statistical regularities in the speech signal
across longer timescales (1+ seconds) in order to reduce this
variability (see Introduction for examples). The present report
introduces a new statistical regularity in speech: the MSD,
which captures the inherent balance of acoustic energy across
two frequency regions. This statistical regularity is directly
relevant to speech categorization, as MSDs in unfiltered
sentences predicted the magnitudes of resulting SCEs in vow-
el categorization (Fig. 4). This validates the present approach
and offers a promising direction for further research that links
the statistical structure of the speech signal to perception.

Unfiltered context sentences were tested alongside filtered
sentences that were tailored to test equivalent MSDs. Results
across conditions shared two important similarities. First, SCE
magnitudes were significantly correlated with spectral prom-
inences in the context sentences, whether naturally present
(unfiltered condition) or artificially added (filtered condition).
This substantially increases the ecological validity of SCEs
because they are not limited to careful laboratory manipula-
tions that generate multiple renditions of the same token.
Instead, SCEs were produced in acoustically variable condi-
tions that more closely resemble everyday speech perception.
Second, the slopes of linear regressions fit to each condition

were very similar, indicating that the rates at which SCEs
increased at larger MSDs were very similar for filtered and
unfiltered sentences. Previous studies reported that this linear
relationship existed for filtered context sentences (Stilp et al.,
2015; Stilp & Alexander, 2016; Stilp & Assgari, 2017), but
here the relationship is extended to unfiltered sentences as
well. This increases the generality of these effects such that
whatever the reason the preceding acoustic context possesses
certain spectral characteristics (whether naturally present or
added via filtering), subsequent categorization shifts in speech
scale in orderly ways.

There are also two very important differences in the results
across filtered and unfiltered conditions. First and foremost,
SCEs were significantly smaller following unfiltered
sentences than following filtered sentences. This is apparent
in multiple ways: the visual separation between these results
in Fig. 4, the significant interaction between Spectral Peak and
Condition in the omnibus mixed-effects model analysis, and
the significant t-test on filtered-context SCEs and unfiltered-
context SCEs. This is particularly true at small MSDs, where
filtered sentences still produced significant SCEs but unfil-
tered sentences failed to bias vowel categorization (SCE mag-
nitudes ≈ 0). Second, results were three times more variable in
the unfiltered condition where different sentences (sometimes
spoken by different talkers) were presented. These are essen-
tial points for evaluating different approaches to measuring
spectral context effects in speech categorization.

It is difficult to isolate precisely why results varied across
unfiltered and filtered conditions, as several possibilities exist.
First, each filtered block tested the same context sentence by
the same talker on every trial, differing only in which frequen-
cy region was amplified. Listeners heard the same low-F1 and
high-F1 patterns of energy on every trial, differing only by a
matter of filter gain. Conversely, each unfiltered block tested
two different sentences, each with its own patterns of low-F1
and high-F1 energy. Greater acoustic variability could have
made listeners less sensitive to these spectral regions, slightly
diminishing their effectiveness in producing SCEs. Second,
conditions differed in overall uncertainty. By presenting the
same talker reading the same sentence on every trial, filtered
blocks contained zero uncertainty. In unfiltered blocks, lis-
teners did not know whether the next trial would be the same
talker as the previous trial or not. Even in same-talker blocks
(Experiments 3, 7, and 8), listeners were uncertain which con-
text sentence would be presented next. Third, characteristics of
the context talkers’ voices might influence listener perfor-
mance. For example, talkers’ fundamental frequencies interact
with vowel categorization (Barreda & Nearey, 2012); this
could conceivably affect the influence of acoustic context.
Additionally, given that acoustic variability across talkers di-
minishes SCE magnitudes (Assgari & Stilp, 2015; Assgari,
Mohiuddin, Theodore, & Stilp, 2016; under review), one
might intuit that different-talker blocks (Experiments 1, 2, 4,
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5, and 6) might produce smaller SCEs than single-talker blocks
(Experiments 3, 7, and 8), but this was not the case (different-
talker mean SCE = 0.35, same-talker mean SCE = 0.31).
Fourth, conditions potentially vary in the degree to which lis-
teners associate spectral peaks with the talker’s speech or some
other source. In Assgari and Stilp (2015), listeners displayed
no sensitivity to changes in talker when large (+20 dB) spectral
peaks were added to the context sentences, but were disrupted
by talker variability when small (+5 dB) peaks were added.
Spectral peaks in filtered sentences might be associated with
some other external source (e.g., distortion in the communica-
tion channel; Watkins, 1991). Spectral peaks were not added to
unfiltered sentences but were the result of talker and/or pho-
neme characteristics. This might make listeners less sensitive
to these spectral characteristics, thus producing smaller SCEs
overall. Finally, unfiltered sentences with negative MSDs
(more energy in 550–850 Hz than 100–400 Hz) also tended
to have more energy between 850 and 1,500Hz than sentences
with positive MSDs. This elevated spectral energy could have
reduced the prominence of the high-F1-frequency region
through suppression and/or lateral inhibition. This inhibitory
influence would produce a smaller effective spectral peak,
resulting in a smaller MSD and thus a smaller SCE magnitude.
Conversely, filtered contexts possessed the same energy above
850 Hz on every trial, holding any suppressive or inhibitory
influences constant across all experiments. These and other
factors might underlie the differences in SCE magnitudes
across filtered and unfiltered context sentences, but systematic
experimentation is necessary to evaluate each possibility.

Efficient coding of natural signal statistics in speech
perception

Results from these experiments are consistent with the
Efficient Coding Hypothesis (Attneave, 1954; Barlow,
1959), which states that sensory and perceptual systems adapt
and evolve to efficiently capture statistical structure in the
environment. Stimulus selection is a central consideration in
efficient coding research. Several calls have been made to use
naturalistic stimuli instead of synthetic stimuli to study senso-
ry processing (e.g., Felsen & Dan, 2005; Einhauser & Konig,
2010). Visual and auditory psychophysics share long histories
of using simple stimuli to assess sensory and perceptual sys-
tem function (e.g., in vision: sinusoidal gratings, square wave
gratings, white noise; in audition: pure tones, clicks, white
noise of varying bandwidths). Simple stimuli afford excellent
acoustic control but are sorely lacking in ecological validity
(just as using ecologically valid stimuli like natural images and
speech come at the cost of acoustic control; Winn & Stilp,
2018). Thus, there are limits to how much synthetic stimuli
can inform our understanding of sensory systems that have
adapted and evolved to process natural stimuli. For example,
a wide range of studies reported more accurate predictions of

neural responses and greater and more efficient information
transmission when using naturalistic sounds rather than syn-
thetic sounds (Rieke, Bodnar, & Bialek, 1995; Theunissen,
Sen, & Doupe, 2000; Escabi, Miller, Read, & Schreiner,
2003; Lesica & Grothe, 2008; Theunissen & Elie, 2014). In
the present report, all experiments used the naturalistic stimu-
lus of speech, but the spectral compositions of precursor
sentences varied in their naturalness. Sentences either already
possessed the desired spectral characteristics (i.e., MSDs, the
naturalistic approach), or were compelled to possess these
spectral characteristics (i.e., through filtering, the synthetic
approach). Granted, this distinction is clearly not as stark as
the difference between natural (speech) sounds and synthetic
(tones, clicks, noise) sounds listed above, but it is still an
important one given that unfiltered and filtered sentences bi-
ased vowel categorization to different degrees. According to
the Efficient Coding Hypothesis, it is advantageous to study
context effects using unfiltered sentences because that models
the natural acoustic ecology of speech perception far more
closely than artificially manipulated sentences.

A new understanding of spectral contrast effects

The present results radically reconceptualize SCEs in four im-
portant ways. First, the longstanding view of SCEs was that
they were “channel effects.”Whenever the transmission chan-
nel (or equivalently, the communication channel; room, loud-
speaker, telephone, etc.) introduced systematic distortion to
sound spectra, SCEs were viewed as a means of perceptually
compensating for this distortion (Watkins, 1991; Watkins &
Makin, 1994, 1996a, 1996b; for further discussion see
Assmann & Summerfield, 2004). This notion was advanced
so far as to cast this perceptual process as “inverse filtering” of
the transmission channel distortion (Watkins & Makin, 1994,
1996a). The present results directly challenge this view. SCEs
were produced by unfiltered sentences absent from any distor-
tion from the communication channel (i.e., absent from any
filtering, which modeled systematic channel distortion in the
studies of Watkins and Makin). Thus, one cannot relegate
SCEs tomere “channel effects”; instead, they are better viewed
as a general means of maintaining perceptual constancy irre-
spective of the sources or causes of spectral changes across
successive sounds (Kluender, Coady, & Kiefte, 2003; Stilp,
Alexander, et al., 2010; Stilp et al., 2015; Winn & Stilp, 2018).

Second, the magnitudes of SCEs require close consider-
ation. The fact that spectral properties of earlier sounds influ-
ence speech categorization has long been known (Ladefoged
& Broadbent, 1957). This and subsequent investigations gen-
erally employed a common approach, presenting multiple fil-
tered renditions of a single context stimulus (akin to the fil-
tered condition tested here). In the present study, unfiltered
sentences were tested alongside filtered sentences for the first
time, revealing smaller and more variable SCEs in speech
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categorization than those produced by filtered sentences.
These differences are extremely important considerations for
just how closely highly acoustically controlled studies (i.e.,
filtered conditions) model everyday speech perception and
its considerable acoustic variability (i.e., unfiltered condi-
tions). Ostensibly, the filtered-sentence approach is designed
to model (unfiltered) sentences in everyday listening condi-
tions, but highly acoustically controlled conditions may exert
greater influence over speech categorization than less con-
trolled/more acoustically variable conditions. Future research
should be cognizant of which approach is under study at a
given time and what conclusions or generalizations are appro-
priate to make. For example, one cannot accurately predict the
magnitudes of context effects based solely on spectral energy
in the preceding acoustic context. Other factors must be taken
into consideration, such as whether the contexts are different
stimuli or merely different renditions of a single token.

Third, recent research revealed that SCE magnitudes vary
continuously: larger spectral differences between context and
target stimuli (as introduced by larger filter gains) produced
increasingly larger SCEs (Stilp et al., 2015; Stilp &Alexander,
2016; Stilp & Assgari, 2017). In some cases, this linear rela-
tionship was extremely strong (r2 = 0.98 in Stilp & Alexander,
2016; Stilp & Assgari, 2017). Previous studies tested filtered
context sentences exclusively, but here, strong linear relation-
ships were replicated for filtered context sentences and ex-
tended to unfiltered sentences. Far more variability was ob-
served in the latter case; this variability is important because it
reflects acoustic variability commonly encountered in every-
day speech perception. The extreme linearity in previous stud-
ies might have been facilitated by extremely low acoustic
variability when presenting filtered renditions of the same
context sentence on every trial. This discrepancy should guide
expectations about the degrees to which speech categorization
biases can be predicted from acoustic characteristics of sur-
rounding sounds.

Finally, Stilp et al. (2015) suggested that filter power was
an effective predictor of SCE magnitudes. As filter power
increased (whether increasing peak gain for narrowband filters
or filtering by larger percentages of the difference between
target vowel spectral envelopes), SCE magnitudes increased
linearly. Here, SCE magnitudes varied following sentences
that inherently contained certain spectral characteristics with-
out any filtering, rendering this particular predictor irrelevant.
It is thus more effective and generalizable to predict SCE
magnitudes from the size of the spectral difference between
context and target, whether this difference occurs naturally
(via unfiltered sentence contexts) or synthetically (via filters).
In both cases, the larger the spectral prominence in context
sentences (larger MSD or larger filter gain), the larger the
change between that context and the subsequent target vowel,
the larger the resulting shift in speech categorization will be
(see Fig. 4).

Mean spectral differences

This study introduces MSDs as a statistical regularity in
speech acoustics. MSD magnitudes vary widely across
sentences (Fig. 2), stemming from the fact that MSD values
differ as a function of phonemic content and possibly also
talker. For example, several experiments utilized a recording
of the sentence “Vietnamese cuisine is exquisite” because its
MSDwas heavily biased towards low-F1 frequencies (MSD =
11.23; Table 1). This low-F1 bias likely stems from the large
number of high vowels with lower center frequencies for F1.
Conversely, stimuli drawn from the other end of the MSD
distributions (biases toward high-F1 frequencies) contained
more low vowels (e.g., “Straw hats are out of fashion this
year”, MSD = –16.68). Sentences that have more even bal-
ances of (energy in) low and high vowels are expected to have
MSD values closer to 0. Thus, some sentences are expected to
bias phoneme categorization based on having relatively large
MSDs whereas other sentences are not. Additionally, talker
characteristics might also affect MSD values. Talkers with
longer vocal tracts produce formants at lower frequencies than
talkers with shorter vocal tracts for a given segmental context;
this could result in more low-F1-biased MSDs. Likewise,
talkers with shorter vocal tracts produce higher formant fre-
quencies than talkers with longer vocal tracts for a given seg-
mental context; this could result in more high-F1-biased
MSDs. Talker vocal tract lengths were not available for the
present materials, but it is intriguing that the talker of the
HINT database and the first author are both adult men with
low-F1-biased distributions of MSDs (Fig. 2). Further analy-
ses are needed to identify the relative contributions of what is
being said (phonemic content, particularly high-energy for-
mant peaks) and who is talking (vocal tract length) to MSDs.

Across thousands of sentences, MSD values were
constrained to a finite range (minimum value = –17.56 dB in
TIMIT; maximum value = +21.61 dB inHINT). The existence
of such limits (whether specifically these values or if they are
modestly exceeded in future analyses) offer clear direction for
future research on spectral context effects. SCEs in speech
categorization have long been studied by filtering a context
sentence to change its spectral composition. This approach
faces no constraints as to the degree to which speech spectra
can be altered; a +30-dB spectral peak can be added just as
easily as a +3-dB peak can. However, there is little utility in
manipulating speech spectra beyond the limits of MSD distri-
butions. Such extreme manipulations do not occur naturally,
so testing such stimuli neither models nor informs everyday
speech perception.

MSDs reflect spectral energy averaged across an entire
sentence, but this energy waxes and wanes over time depend-
ing on acoustic characteristics of phonemes within the sen-
tence (see Supplementary Figures in online supplementary
material). Variability in these patterns of energy modulations
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might have contributed to the significantly reduced SCE mag-
nitudes following unfiltered context sentences. In unfiltered
blocks, listeners heard two unfiltered sentences, each with its
own patterns of energy modulation in low-F1- and high-F1-
frequency regions. This is far more variability than listeners
encountered in filtered blocks, where they heard the same
sentence stimulus and thus the same patterns of energy mod-
ulations in low-F1- and high-F1-frequency regions. These pat-
terns only varied as a matter of degree due to amplification in
one of the two frequency regions. SCE magnitudes signifi-
cantly differed despite stimuli being matched in terms of their
MSDs. This finding challenges arguments that the long-term
average spectrum of the preceding acoustic context fully ex-
plains subsequent biases in phoneme categorization (Huang&
Holt, 2012). Other information beyond the long-term average
spectrum must be considered.

MSDs in F1 frequency regions are far from the only per-
ceptually significant statistical regularity in speech. Each sen-
tence can be viewed as possessing several differentMSDs that
could be relevant for categorization of different phonemes.
The present experiments selected and tested sentences based
on their energy in 100–400 Hz and 550–850 Hz frequency
regions, which are relevant for categorization of / / and /ɛ/
but obviously not for all phoneme pairs. Analogous to the
present study, sentences with skewed distributions of higher-
frequency energy would be expected to bias categorization of
phonemes distinguished by higher-frequency energy.
Research has confirmed this expectation, as sentence MSDs
in low-F3 (1,700–2,700 Hz) or high-F3 (2,700–3,700 Hz) fre-
quency regions influence categorization of /d/-/g/ varying in
F3 transition onset frequency (Stilp & Assgari, 2018b).
Statistics beyond MSDs also influence spectral context ef-
fects. For example, when hearing speech from many different
talkers in a given block, variability in their fundamental fre-
quencies can restrain the magnitudes of context effects in
vowel categorization (Assgari & Stilp, 2015; Assgari et al.,
2016, under review) or slow speech recognition (Goldinger,
1996; Assgari, 2018). Statistics such as mean speaking rate
(which is tied to amplitude envelope modulations; Stilp,
Kiefte, et al., 2010) can also shift phoneme categorization
(e.g., Ainsworth, 1973; Repp, Liberman, Eccardt, &
Pesetsky, 1978; Summerfield, 1981). Thus, efforts tying sta-
tistical characteristics of speech to perception are a fruitful
direction for ongoing and future research.

Conclusion

The sensory environment is highly structured, and the present
report reveals close correspondence between this structure and
perception. This report linked the natural statistical structure
of speech acoustics (MSDs in unfiltered sentences) to speech
perception, demonstrating its significant influence on vowel

categorization. Importantly, this influence was smaller and
more variable than the traditional approach of using digital
filters to impose spectral characteristics on context stimuli.
This reveals the occurrences and magnitudes to which these
statistical regularities bias categorization in everyday speech
perception, while also raising important questions about how
faithfully this has been modeled in past studies that used high-
ly acoustically controlled filtered stimuli.
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