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Abstract In socially important visual search tasks, such as
baggage screening and diagnostic radiology, experts miss
more targets than is desirable. Computer-aided detection
(CAD) programs have been developed specifically to improve
performance in these professional search tasks. For example,
in breast cancer screening, many CAD systems are capable of
detecting approximately 90% of breast cancer, with approxi-
mately 0.5 false-positive detections per image. Nevertheless,
benefits of CAD in clinical settings tend to be small (Birdwell,
2009) or even absent (Meziane et al., 2011; Philpotts, 2009).
The marks made by a CAD system can be Bbinary,^ giving the
same signal to any location where the signal is above some
threshold. Alternatively, a CAD system presents an analog
signal that reflects strength of the signal at a location. In the
experiments reported, we compare analog and binary CAD
presentations using nonexpert observers and artificial stimuli
defined by two noisy signals: a visible color signal and an
Binvisible^ signal that informed our simulated CAD system.
We found that analog CAD generally yielded better overall
performance than binary CAD. The analog benefit is similar at
high and low target prevalence. Our data suggest that the form
of the CAD signal can directly influence performance. Analog

CAD may allow the computer to be more helpful to the
searcher.
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Introduction

Visual search in the real world is a difficult process. We know
from personal experience that searching for a friend or family
member in a huge crowd can quickly become a daunting task.
The task is even more daunting for professional searchers,
such as radiologists or airport baggage screeners. For these
searches, the targets may be from a complex, ill-defined cate-
gory like Bthreat^ and the image may be ambiguous. The
situation is made worse by the low prevalence of targets in
many screening tasks (e.g., the prevalence of breast cancer is
about 0.5% in a North American screening population
(Rosenberg et al., 2006)). Low prevalence tends to elevate
false-negative (Bmiss^) errors (Biggs, Adamo, Mitroff, 2014;
Wolfe, Brunelli, Rubinstein, & Horowitz, 2013; Wolfe,
Horowitz, & Kenner, 2005), even when the consequences of
a missed target can be deadly.

Computer-aided detection (CAD) systems represent one
effort to improve the situation. CAD systems are divided into
CADe and CADx variants. CADe systems aid in the search
for targets. CADx (computer-aided diagnosis) help to deter-
mine if a specific item is or is not a target. In radiological
screening, CADe systems typically mark potential abnormal-
ities on the image, indicating to the radiologist that they
should further scrutinize those portions of the image (Fig. 1).
In airport checked baggage screening, CADe systems mark all
potential threats (generally explosives). These then must be
individually dismissed by the screener or examined by hand.
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In checkpoint baggage screening, the object recognition prob-
lem is extremely difficult because of the diversity of Bthreat^
(e.g., a gun is a threat at the checkpoint but not in checked
luggage). Some detection algorithms have been designed to
detect not only explosives, but other threat objects, such as
knives and guns (Singh & Singh, 2003), but at this writing,
CAD is not used in US checkpoint screening. CADe systems
can be quite accurate. In breast cancer screening, good CADe
systems might detect 90% of breast cancer, with a false-
positive rate of approximately 0.5 false detections per image
(Zheng et al., 2001). Nevertheless, performance of radiolo-
gists using CADe is not as good as one might expect.
Overall, the added benefit of CADe in screening mammogra-
phy is small (Birdwell, 2009; Gilbert et al., 2006) or nonexis-
tent (Meziane et al., 2011; Philpotts, 2009). It has been sug-
gested using CADe should be like having two radiologists
reading a case (Gilbert et al., 2008). However, a meta-
analysis demonstrated that screening situations with two ra-
diological readers enhauces screening more so than a single
reader with CAD (Taylor & Potts, 2008). Some studies have
suggested that CADe does not increase hit rate in clinical
settings (Brem & Schoonjans, 2001; Gur et al., 2007b).
Others have indicated that CADe increases false alarm rate
(Fenton et al., 2011). In contrast, there are studies that have
shown substantial benefits. For instance, Freer and Ulissey
(2001) found that the use of CADe increased cancer detection
rates by roughly 20%. Finally, researchers have demonstrated
that differences between radiologists in their decision-making
with CADe can influence its utility (Alberdi et al., 2014).

Thus, there is something of a mystery; CADe systems are
quite proficient and yet the combination of a good CADe

system and a good human expert does not produce the benefits
that one might expect. As evidence that at least part of the
problem lies in the interaction of human expert and computer,
consider that while several studies have shown that CADe can
detect up to 77% of cancers missed by radiologists (Brem
et al., 2003; Karssemeijer et al., 2003; Nishikawa et al.,
2012; Warren Burhenne et al., 2000), Nishikawa and
colleagues (2012) have shown that radiologists only respond
to a correct CADe prompt 30% of the time.

How might this high rate of unsuccessful use of CADe be
explained? Approximately 75% of all mammograms in
America are read with the help of CADe programs (Rao
et al., 2010). Typically, CADe is used as a Bsecond reader,^
invoked after the radiologist has examined of the image.
Because the prevalence of both disease in radiology and dan-
gerous objects in baggage screening is extremely low in a
screening population, we can imagine why the interaction
between CAD systems and the operator is problematic.
Imagine 1,000 images, containing 5 cancers/dangerous ob-
jects. Let us suppose that the CADe system marks all five. If
it is making 0.5 marks per image that makes (at minimum) 500
marks, of which 5 are true positives. The CADe advice, there-
fore, would have a positive predictive value of approximately
1%. It makes sense to ignore advice that is useful only 1 in 100
times.

Perhaps if each CADe mark were more informative, users
would find more utility in the information that CAD systems
can provide. One approach that partially addressed this issue
was recently outlined by Samulski and colleagues (2010).
They evaluated a system that only offers an opinion if asked.
When the radiologist actively queried a specific location, that
CADe system offered a graded assessment of the features at
that location. A follow-up study by Hupse et al. (2013) found
that when radiologists used an interactive CAD system such
as this, reader performance significantly increased. Their
study can be considered to be a computer-aided diagnosis
(CADx) system (Fraioli, Serra, & Passariello, 2010). In this
paper, we will focus on a related approach to CADe.
Specifically, we will consider how CADe information is con-
veyed to the observer. CADe systems can utilize a binary
approach to signaling an abnormality to the user (e.g., putting
a mark next to a potential tumor). However, these binary ap-
proaches are all-or-nothing, meaning that they do not convey
any form of likelihood from the CAD probability distribution.
Alternatively, information could be presented in the form of an
analog signal that specifically indicated the likelihood that a
location contained a target. Would observers make more ef-
fective use of CADe information if that information was pre-
sented as an analog signal at all locations rather than as binary,
discrete marks on locations that exceed a likelihood threshold?

Before it would be reasonable to suggest field studies in
radiology, airport security, or other such venues, it is important
to work out the basic principles in the lab, typically with

Incorrect CAD

CAD Miss

Correct CAD

Fig. 1 Artificial example of a computer-aided detection program for
mammography. CAD marks shown as white arrows. The reader would
typically view the image without CAD and then CAD is utilized as a
second reader. The dotted line square marks abnormality that the hypo-
thetical CAD system failed to mark
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nonexpert observers. Thus, in this paper, we compare binary
and analog presentation of information in an artificial task,
designed to make it possible to study these questions in
naïve observers. Findings from lab studies using artificial
stimuli certainly can predict search behavior in professional
search settings. Previous work has shown that naïve partici-
pants and radiologists use CAD in similar ways during search
(Drew et al., 2012; Taplin et al., 2006). Simlarly, a large body
of research in radiology investigates Satisfaction of Search:
the successful detection of one lesion appears to hinder the
detection of subsequent additional pertinent findings
(Berbaum, El-Khoury, Franken, Kuehn, Meis, Dorfman,
et al., 1994; Berbaum, Franken, Caldwell, & Schartz, 2009;
Berbaum, Franken, Dorfman, Caldwell, & Krupinski, 2000;
Berbaum, Franken, Dorfman, Miller, Caldwell, Kuehn, et al.,
1998; Samuel, Kundel, Nodine, & Toto, 1995). This body of
research has been paralled by research with naïve observers
(Biggs & Mitroff, 2014; Cain, Dunsmoor, LaBar, & Mitroff
2011; Fleck, Samei, & Mitroff, 2010). Similarly, as men-
tioned, low prevalence raises miss error rates—a finding that
was described and explored in a series of studies with nonex-
pert populations (Wolfe, Horowitz, & Kenner, 2005; Wolfe,
Horowitz, Van Wert, Kenner, Place, & Kibbi, 2007; Wolfe, &
VanWert, 2010; Rich, Kunar, Van Wert, Hidalgo-Sotelo,
Horowitz, &Wolfe, 2008) before being confirmed with cytol-
ogists (Evans, Tambouret, Wilbur, Evered, & Wolfe, 2011),
radiologists (Evans, Birdwell, & Wolfe 2013), and airport
screeners (Wolfe, Brunelli, Rubinstein, & Horowitz, 2013).

The current study focuses on whether we can improve ob-
server performance by altering how CAD information is con-
veyed to the observer. We created an artificial task where
naïve observers were asked to detect the presence of difficult
to diagnose Btargets^ with or without the help of a simulated
CAD system. Because we are not specifically interested in the
image processing algorithm of a CAD system, this simulated
CAD system simply has access to a signal about target pres-
ence that is uncorrelated with visible signal, seen by the ob-
server. The critical variable was the mode in which this artifi-
cial CAD signal was presented. In Experiment 1, we com-
pared discrete, binary CAD signals to an analog CAD signal
in which a graded signal gave the CAD system’s estimate of
the likelihood that each item was or was not a target.

Method

Participants

Fifteen observers (mean age = 22.8, standard deviation [SD] =
8.1; 6 females) were tested in Experiment 1. One participant
was eliminated from the analysis because that observer
responded that a target was present on >99% of trials, where
actual target prevalence was 50%. Twelve observers (mean

age = 24.42, SD = 9.34; 7 females) were tested in
Experiment 2. Finally, 15 observers were tested in
Experiment 3. Observers ranged in age from 19-52 years (av-
erage = 25.66, 8 females, SD = 9.28). All observers gave
informed consent and were paid $10/hr to participate in this
experiment. All had at least 20/25 vision with correction, all
passed the Ishihara Color Test, and all were fluent speakers
and readers of English.

Apparatus, stimuli, and experimental setup

All experimental sessions across all three experiments were
performed on a Macintosh G4 computer running Mac OS
10.5. Experiments were written in Matlab 7.5 (The
Mathworks) using the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997), version 3. Stimuli were presented on 20^
CRT monitor (Mitsubishi Diamond Pro 91TXM) with resolu-
tion set to 1280 × 960 pixels, and an 85-Hz refresh rate.
Observers were placed so that their eyes were 57.4 cm from
the monitor. At this viewing distance, 1 cm subtends 1° of
visual angle. Observers were placed in a silent dimly lit room
by themselves for the duration of the task.

Stimuli

Observers were looking for targets based on their color. On
each trial, six ambiguously colored patches of dots were pre-
sented in a circular array in the center of the screen (Fig. 2).
Each dot cluster consisted of a patch made up of 200 smaller
dots (approximately 2 pixels in diameter) randomly dispersed
around the center of the solid color circle. The color of dot was
drawn from one of two normal distributions separated by a d’
of 2.5 (Fig. 3). Dots in a target circle were drawn from a

Fig. 2 Dot cluster stimuli. Observers are making a judgment about the
average color of the dots. The ring around the dots is the CAD signal.
Four conditions are shown from Experiment 1: binary CAD with color
signal; analog CAD with color signal, and analog only without a color
signal. In the second row, a color signal only accompanied by the
response confidence scale. Observers clicked on the stimulus item they
thought was Bmost like a target^ and rated their confidence, using the 6-
point response scale
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distribution biased toward red. Dots in a distractor circle were
drawn from a distribution biased toward blue-green. The d’ of
2.5 set an upper bound on the performance of either a perfect
CAD system or a perfect human observer. In one condition,
the color signal was eliminated and all dots were achromatic
and uninformative.

In all cases when CADwas present, the CADwas based on
a signal that was independent of the color signal that was
visible to the observer. Specifically, the signal for the dot stim-
uli (e.g., targets and distractors) and the signal for the CAD
stimuli were drawn from two separate independent distribu-
tions with the same d’. Thus, the combination of CAD and
human had more information than was available to either
alone. Three simulated CAD systems were used: binary
CAD, analog CAD, and analog only. Binary CAD consisted
of a grey ring that was placed around the outside of any dot
clusters with a CAD signal that were above a threshold. This
threshold was set so that CAD would mark 90% of target
items and false alarm on 10%. In Banalog CAD^ conditions,
a ring was presented around every dot cluster. The ring indi-
cated the strength of its CAD signal by its color. Analog CAD
marked all of the six disks. Items that were more likely to be
targets would have CAD rings of a more saturated turquoise
color and items that were more likely to be distractors had
rings that were closer to a desaturated grey. The color, of
course, is arbitrary and is intended merely to produce a gradi-
ent of CAD information. Importantly, the Analog CAD signal
is a mapping of the independent CAD signal, mentioned
above, to a range of colors. This means that the color of the
CAD signal was not dependent on the prevalence of targets
and distractors. In the analog only condition, the dots were
neutral in color so observers had to base their response entirely

on the CAD signal. This is simply a control to show that
observers could successfully evaluate the CAD color code.
All other experimental conditions included the color signal
in the dots.

Prior to initiating each trial, observers were shown a row of
18 examples of randomly generated target dot clusters and
another row of 18 distractor clusters. These were given as a
reference for the observer to get a sense of the appearance of
target clusters and distractor clusters. On the right side of the
screen was a 6-point rating scale (Fig. 2). The six levels were
labeled: BCertainly a Target^; BProbably a Target^; BMaybe a
Target^; BMaybe NOT a Target^; BProbably NOT a Target^;
and BCertainly NOT a Target.^ The scale went from red to
green, red being BCertainly a Target^ and BCertainly NOT a
Target^ in green.

Experimental procedures and design

The Experiment 1 consisted of four blocks with a different
condition for each: analog CAD only (no dot color signal),
analog CAD with the color signal, binary CAD with the color
signal, and color signal only (no CAD). Observers were asked
to complete 20 practice trials and 150 experimental trials for
each block. The block order was randomized. Target preva-
lence was 50%. On each trial, the observers were shown an
array of six dot clusters. They were instructed to choose the
dot cluster that looked most like a target item. After clicking
on the item, observers then rated how likely the item was a
target item. For example, in some cases all of the dot clusters
were actually distractors, so the observer would pick the
distractor that appeared most like a target but might rate it as
Bcertainly NOT a target.^ Additionally, reaction times were
recorded for each trial. Participants were instructed to try to
find the correct answer as quickly as possible and told to slow
down if they made any inadvertent errors where they quickly
selected the wrong option. Medical image perception studies
frequently use this method of forcing observers to mark the
most suspicious location, even if the case is deemed to be
negative (Seltzer, et al. 1995, 1998).

Simulating the conditions of experiment 1

To determine if the analog condition could produce better
performance, then the binary conditions, we simulated a vari-
ety of possible versions of our basic paradigm. Similar to
Experiments 1-3, our model simulation considered virtual
search displays that had a visual set size of six items. For target
present trials, five of the six items were designated as
distractors. These distractor items were assigned a Bvisual^
color signal that was randomly chosen from the distractor
color distribution (i.e., a normal distribution). The remaining

Fig. 3 Distributions of the targets and distractors associated with the
color signal and how the different CAD signals would flag those items.
Note that the CAD markings were based on an independent signal,
distributed in the same way but invisible to the observer
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target item’s Bvisual^ color signal was drawn from a normal
distribution with the same standard deviation but a higher
mean that could be varied between simulated conditions. For
target absent trials, all six items were treated as distractors.
The independent CAD signal (for both analog and binary)
was simulated in the same way. The strength (d’) of the sim-
ulated CAD signal could be varied independently of the
strength of the simulated visual signal. To simulate the analog
condition, the CAD and visual signals were added together. To
simulate the binary condition, the CAD signal was recoded to
zero if the value fell below threshold and to the mean strength
of the signal of the CAD if it fell above threshold. The binary
CAD signal was then added to the visual signal. The relative
weights of visual and CAD signals can be parametrically var-
ied.We will present examples where the two signals are equal-
ly weighted.

To simulate a response, we determined if the largest sig-
nal of the six simulated stimuli was above a criterion value.
On target present trials, if the signal was above criterion, the
trial was scored as a hit or true positive; if not, it was a miss
(false negative). For absent trials, if the signal was above
criterion, the trial was scored as a false alarm (false posi-
tive); if not, it was a correct rejection (true negative). By
sweeping the criterion value from low to high, it is possible
to create receiver operating characteristic (ROC) curves for
each condition. To produce the ROC plots shown in Fig. 4,
we simulated 10,000 trials each condition for each set of
parameters.

Figure 4 shows simulation results for three different stim-
ulus strengths. The analog (green) curve lies above the binary
curve in all conditions. Thus, our simple simulation predicts
that performance with analog CAD should be superior to bi-
nary CAD as long as our human observers combine CAD
information and visual information in a manner similar to
the decision criteria outlined above.

Behavioral results and discussion

Experiment 1: Are analog CAD signals better than binary
CAD signals?

ROC curves can be derived from rating scale data and these
are shown in Fig. 5. The area under the curve (AUC) was
computed as the figure of merit for performance on this task.
As shown in the figure, AUC for the analog condition is great-
er than the AUC for the binary conditions (t(14) = 2.7, p =
0.017). As should be the case, the Analog CAD combination
of analog signal and colored dot signal is better than either
analog alone (t(14) = 4.18, p < 0.001 or no CAD (color only)
(t(14) = 7.37, p < 0.001). AUC is a better measure than d’ in
this case, because the ROC curves are not symmetrical, indi-
cating that underlying, internal signal, and noise distributions
do not have equal variance. The zROC functions (z(false
alarm) x z(hit)) have slopes less than 1.0, indicating that the
noise variance is less than the signal variance. Interestingly,
this is seen in true radiological search tasks as well (Kundel,
2000) and in other complex search tasks (Figure 18 of Wolfe
et al., 2007). In the present case, the zROC functions also
deviate from linearity making alternatives to D’ like D(a) un-
reliable. AUC seems to be the best choice for assessing the
difference between tasks, although the same pattern is seen if
other signal detection measures are analyzed.

To determine whether our different CAD formats had an
impact on the time required to make a decision, we analyzed
reaction time (RT) on each trial. We removed RTs larger than
3.5 standard deviations from the mean for each condition and
responses shorter than 100 milliseconds. Figure 6 shows the
RTs for the four conditions. There are no significant differ-
ences among the conditions, with the exception of the analog
only (no color signal) control condition, which is faster, pre-
sumably because observers do not have to evaluate the

Fig. 4 ROC curves comparing simulations of visual, CAD, analog, and binary conditions over a range of signal strengths
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average dot color. A repeated measures ANOVA comparing
the reaction times across all four conditions revealed a signif-
icant main effect of CAD condition (F(3, 39) = 4.81, p < 0.05,
Greenhouse-Geisser corrected, partial η2 = 0.27). Contrasts
revealed that the analog only condition was the only condition
that was statistically distinct from the other conditions (p <
0.01).

Discussion

Overall, the behavioral of Experiment 1 results are consistent
with our simulation: When observers are asked to detect a
target among distractors, different methods of conveying the
same information influence the ability to perform the task ac-
curately. Specifically, the analog CAD format produced higher
AUC values than binary CAD. Although these tasks were cre-
ated to capture some aspects of the difficult visual searches that

professional searchers might encounter, the 50% target preva-
lence rate was much higher in than it would be in most profes-
sional search environments. In Experiment 2, we examine the
effects of prevalence on the analog CAD advantage.

Experiment 2: Do prevalence or criterion point
matter?

In Experiment 1, we compared observers’ performance on a
target detection task where observers were instructed to search
for the item that looked most like a target. On some trials, they
were provided with simulated CAD information either in the
form of binary CAD or analog CAD signal. Results from
Experiment 1 revealed that observer’s performance was
higher when they were given analog CAD compared with
binary CAD. Experiment 2 investigates whether target preva-
lence modulates the relative utility of binary CAD and analog
CAD systems. Additionally, we were interested in whether
there would be effects of manipulating the criterion of the
binary CAD. That is, like a human, a binary CAD algorithm
is set for one point on an ROC. If one is concerned about a low
true positive rate, one can increase that rate by moving crite-
rion to a point where the CAD systems marks more items. Of
course, this also increases the false positive rate. It is possible
that the improvement, seen with analog CAD, could be seen
with a binary CAD operating at a different criterion, if we
could modulate performance by simply shifting criterion point
of the CAD system, that would be a very simple way to po-
tentially improve radiologist performance. In Experiment 1,
we had binary CADmark 90% of target items and false alarm
on 10%. For Experiment 2, we created two separate binary
CAD conditions: liberal binary CAD and conservative binary
CAD. In the conservative binary CAD condition, the system
marked 80% of targets and 5% of distractors. The liberal bi-
nary CAD condition marked 95% of target dot clusters and
20% of the distractors. At 50% prevalence, this corresponds to
a d’ of 2.5 in both conditions with a criterion of −0.4 for the
liberal binary CAD and 0.4 for the conservative.

Two prevalence levels were used: 50% and 10%. The valid-
ity of CAD marks varies with prevalence and with the liberal/
conservative manipulation. Consider 100 trials at a prevalence
of 50%. The liberal CAD will mark 47.5 of the targets and 10
distractors for a validity of 47.5/(47.5 + 10) = 0.825. The con-
servative CAD yields 0.94 validity at 50% prevalence. An in-
dication of the difficulty faced by CAD at lower prevalence is
revealed by performing the same calculation at 10% preva-
lence. Now the liberal CAD validity is 0.34 and the conserva-
tive CAD validity is 0.64. CAD signal validity would be worse,
of course, at the prevalence levels of 1% or less, which are seen
in medical screening or airport security tasks.

Note that it is something of a misnomer to call our criterion
values of ±0.4 Bconservative^ and Bliberal^ when the

Fig. 5 ROC curve plot for all observers across all conditions in
Experiment 1. The black dashed line is chance performance. Each point
on the condition lines represents a criterion point. We can see that
performance in the Analog CAD condition was better (higher) compared
with all of the other conditions

Fig. 6 Reaction times for the four conditions. The critical analog CAD
with color condition (green bar) is not statistically different from the other
conditions with color signals. The only condition that is statistically
different is the analog CAD only (no color signal) condition. Error bars
show ±1 standard error of the mean
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prevalence is 10%. Conservative and liberal are defined rela-
tive to a neutral criterion where the probability of a positive
response is the same as the probability of a negative response
(where the two normal curves intersect). For 50% probability,
that neutral point lies at zero. For 10% prevalence, it is a z-
score of 0.9, because the area under the target curve is somuch
smaller than the area under the distractor curve. Thus, criteria
at −0.4 and +0.4 both are liberal relative to the neutral point.
At 10% prevalence, it is better to think of 0.4 as Bmore
conservative^ than −0.4 but not as absolutely conservative
relative to a neutral point.

At 10% prevalence, the positive predictive value (PPV) of
liberal CADmark will mark a target goes down because of the
increased chance that the CAD will mark a nontarget. For our
stimuli, the PPV for the more conservative CAD criterion is
0.64. For the more liberal criterion, it is 0.35. PPVis high if we
make the CAD criterion truly conservative, relative to the low
prevalence neutral point of 0.9. At a CAD criterion of 1.3 (0.9
+ 0.4), the PPVwould be 0.91. CADwould mark only 48% of
targets, although it would incorrectly mark only 0.5% of the
absent trials. The high positive predictive value of 0.91 is
good but the failure to mark half of the targets would be a
problem. In any case, in Experiment 2, we used the same
criterion in low and high prevalence conditions, understand-
ing that at low prevalence, the criteria are both liberal. We will
refer to them as Bmore liberal^ and Bmore conservative^
below.

The stimuli for this experiment were otherwise similar to
the previous experiment. To incentivize observers to use the
full 6-point rating scale, a point system was implemented.
Observer would receive 3 points for correct responses at the
extremes of the scale (1 and 6). They received 2 points for a 2
or 5 and 1 point for a 3 or 4. Observers lost 1 point for an
incorrect response regardless of placement on the scale. The
following four experimental conditions were used: more con-
servative binary CAD condition, more liberal binary CAD
condition, analog CAD with color signal condition, and the
no CAD color signal only condition. These four conditions
were crossed with the two target prevalence levels: high prev-
alence and low prevalence, yielding eight conditions in a 2 × 4
design. The procedure was otherwise the same as the previous
experiment. Observers were instructed to choose the item that
lookedmost like a target and rate how confident they were that
it was a target item on a 6-point scale. The high prevalence
blocks consisted of 15 practice trials and 80 experimental
trials and low prevalence blocks consisted of 15 practice trials
and 400 experimental trials to have adequate numbers of tar-
get present trials; 40 target present trials at each prevalence
level. Each observer completed high and low prevalence
blocks for all of the CAD conditions (8 blocks total). The
order of the blocks was randomized. Additionally, the presen-
tations of trials that contained true targets were randomly
intermixed with the trials that did not contain targets.

Results

Figure 7 shows average AUC values for each of the eight
conditions, calculated as in Experiment 1. There is a modest
advantage of Analog CAD over the other CAD conditions. We
conducted a 2 × 4 repeated measures ANOVA across all four-
CAD conditions and the two prevalence conditions. Results
revealed a significant main effect of CAD condition (F(3, 33)
= 3.5, p < 0.035, Greenhouse-Geisser corrected, partial η2 =
0.24), suggesting that performance varied as a function of CAD
condition. There was nomain effect of the prevalence condition
(F(1, 11) = 1.2, p = 0.30, partial η2 = 0.10), The interaction
between target prevalence and CAD condition was not statisti-
cally reliable (p > 0.05). A priori contrasts revealed that analog
CAD led to significantly better performance than the more
liberal binary CAD conditions (p < 0.03). The analog advan-
tage over the more conservative binary CAD was weaker (p =
0.10). The two binary CAD conditions did not differ signifi-
cantly (p > 0.05). Additionally, we averaged the more conser-
vative binary CAD and more liberal binary CAD conditions
and compared the performance on binary CAD, in general, to
the analog CAD performance, which resulted in a significant
difference (t(11) = 2.38, p = 0.04).

Discussion

Results from Experiment 2 weakly replicated the advantage of
analog CAD over binary CAD systems. The added information
from this experiment is that this pattern of results is essentially
the same for low and high prevalence. We also found that
criterion point for the CAD system had no effect on observer
performance regardless of target prevalence. This argues
against the idea that the positive predictive value of each
CAD mark strongly influences how the observer uses the

Fig. 7 Results from Experiment 2. Performance was better when
observers were given analog CAD compared to both conservative
(Con.) and liberal (Lib.) binary CAD. This was consistent across both
high and low prevalence environments. Error bars show ±1 standard error
of the mean
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CAD system. The difference in PPV between our BMore
Liberal^ and BMore Conservative^ CAD systems strongly in-
teracts with target prevalence, yet this strong manipulation had
no observable effect on performance. Despite the predictive
value of each CAD mark in the more conservative CAD block
being much higher than in the more liberal CAD block, there
was no evidence that the observers used the CAD systems any
differently. Furthermore, the main effect of prevalence is on
criterion and, thus, on the pattern of errors rather than on mea-
sures of overall performance like the AUC (Gur et al., 2007a;
Gur et al., 2003). This standard pattern of increased miss errors
and reduced false alarms at low prevalence is seen Fig. 8.

For the data in Fig. 8, ratings of 1-3 were taken to be Babsent^
ratings, whereas 4-6 were scored as present. For each condition,
rates of miss (false negative) errors are higher at low prevalence
and rates of false alarm (false positive) errors are lower (all paired
t(11) > 3.2, all p < 0.01). It would have been interesting if the
analog condition had ameliorated the prevalence effect.
However, the basic pattern is the same in each condition.
Prevalence effects remain a robust aspect of visual search. For
present purposes, themain conclusion of Experiment 2 is that the
patterns of results are similar at high and low prevalence and that
analog presentation of CAD information preserves a weak ad-
vantage over binary. Efforts to change the effectiveness of binary
CAD by changing the criterion of the CAD (more liberal vs.
more conservative) had no effect in this experiment. It is, of
course, possible that a larger manipulation of CAD criterion or
a much larger population of observers would reveal an effect but
there is no hint of an effect of CAD criterion here.

Experiment 3: What makes Analog CAD better?

Experiments 1 and 2 demonstrated that Analog CAD systems
produce somewhat better performance than binary CAD.

What is the source of this advantage? It could be that analog
is beneficial because it provides richer information about all
likely target items. Alternatively, because analog CAD also
provides information about low probability items, it might
be useful to allow observers to rule out unlikely items. In
Experiment 3, we evaluated these two possibilities. We also
investigated whether the analog advantage would survive a
change in the form of the CAD information.

The stimuli for this experiment were similar to Experiment
2 unless otherwise noted. Prevalence was 50% in Experiment
3. There was no low prevalence condition. One notable dif-
ference was a change in the presentation of the CAD informa-
tion. Previously, we used a circular ring around the dot clus-
ters. In Experiment 3, we used an asterisk (*) next to each dot
cluster to deliver the CAD signal. In the no CAD condition, all
asterisks remained white. In other conditions, the color of the
asterisks conveyed CAD information. In Experiment 3, there
were four different conditions: no CAD, binary CAD, analog
CAD, and thresholded analog CAD. In the binary CAD con-
dition, the asterisk was white if the CAD signal was below
threshold and blue if the CAD signal was above threshold.
Binary CAD marked 90% of target items and would false
alarm on 10%. Analog CAD was the same as analog CAD
in Experiment 1; however, instead of a ring around the dot
cluster, the asterisk color varied continuously as a function of
the CAD signal from black (likely nontargets) to blue (likely
targets). Finally, the new, thresholded analog CAD condition
showed an analog signal (again, black to blue) but only for the
90% of targets and 10% of nontargets that would be marked
by a binary CAD. For the other items in the display, the aster-
isks were white. For example, if the binary CAD conditions
marked two dot clusters in a display, the threshold analog
CAD also would mark those items but with an analog color-
ation of the relevant asterisks while the other asterisks
remained white.

The procedure was the same as the previous experiment.
Observers were instructed to choose the item that looked most
like a target and rate how confident they were that it was a
target item on a 6-point scale. Observers completed one block
for each condition, with 4 blocks total. Each block consisted
of 20 practice trials and 180 experimental trials. Block order
was randomized across observers.

Results

Figure 9 shows average AUC values for each of the four
conditions, calculated as in Experiment 1 and Experiment 2.

Overall, the analog CAD condition produces the highest
average AUC followed by the thresholded analog and binary
CAD conditions. No CAD, as expected, is the worst. A re-
peated measures ANOVA across all four CAD conditions re-
vealed a significant main effect of CAD condition (F(3, 42) =

Fig. 8 Effects of prevalence on the pattern of errors in Experiment 2.
Low (10%) prevalence produces high rates of miss (false negative) errors
and low rates of false alarm (false positive) errors. Error types are more
balanced at high (50%) prevalence. Error bars show ±1 standard error of
the mean
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5.98, p < 0.006, Greenhouse-Geisser corrected, partial η2 =
0.299), indicating that performance varied as a function of
CAD condition. As in the other experiments, a priori contrasts
revealed that performance in the analog condition was higher
than performance in the binary condition (p = 0.02).
Additionally, performance in the thresholded analog condition
was higher than performance in the binary condition (p =
0.036). Finally, although its average AUCwas somewhat low-
er, the thresholded analog condition did not statistically differ
from the analog condition (p = 0.139).

Discussion

Based on these results, we can reject the hypothesis that the
analog CAD advantage requires that graded information be
provided about every item in the image, because thresholded
CAD is better than binary CAD. We cannot conclude that the
graded marking of likely distractors is useful, because the
difference between analog and thresholded analog conditions
is small and not statistically significant. This could be a power
issue. The roughly 1% difference in average AUC would be
statistically significant with approximately twice the 15 ob-
servers tested or with approximately twice the number of trials
per observer. In any case, any advantage of analog over
thresholded analog presentation of CAD information appears
to be small.

General discussion

This study investigated how different forms of a simulated
computer-aided detection systems influence performance in
a challenging visual search task. In previous work, we
have shown that there are conditions under which CAD
can produce a decrement in performance (Drew et al.,

2012). In the present work, we were interested in deter-
mining whether different modes of presenting CAD infor-
mation might be differentially effective. Experiment 1
compared binary CAD and analog CAD systems and
found that, when CAD systems provided analog informa-
tion, overall performance was significantly improved.
Experiment 2 showed that these results generalized to low-
er (10%) target prevalence, although the analog advantage
was relatively weak in this experiment. Finally,
Experiment 3 replicated the advantage of analog over bi-
nary CAD and showed that the analog advantage persisted
even if the CAD only marked items above some thresh-
old. This last finding may have practical consequences in
considering how analog CAD might be implemented. In
our experiment, there were six discrete items to evaluate.
A lung or breast is a more continuous stimulus. One way
to provide analog information would be a Bheat map^ of
some sort that produced a CAD likelihood value at every
location. A different method would be to provide graded,
analog CAD information only for a set of locations above
some threshold of suspicion. That would be similar to the
thresholded analog condition of Experiment 3, and the
results suggest that such a method might still be superior
to a binary CAD mark. Many current CAD systems pro-
vide this graded information when queried (CADx). Our
results suggest that conveying this information as part of a
CAD detection (CADe) system may improve performance.

Obviously, these experiments are a long distance from the
clinic. The experiments presented are, at best, abstract labora-
tory approximations of the use of CAD in professional search
situations. The observers are not trained experts and the stim-
uli are entirely artificial. However, we believe that results from
nonexpert observers are informative nonetheless. Experts and
nonexperts all use the same human search engine. Experts can
do things with that search engine that amateurs cannot, but
expertise does not seem to change the basic rules of visual
search. For example, prevalence effects look similar in expert
and nonexpert populations (Evans, Birdwell, & Wolfe 2013;
Evans, Tambouret, Wilbur, Evered, & Wolfe, 2011; Wolfe,
Brunelli, Rubinstein, & Horowitz, 2013) and experts, like
nonexperts, are subject to limits like those producing
inattentional blindness (Chabris & Simons, 2011; Drew, Vo,
& Wolfe, 2013; Mack & Rock, 1998; Simons & Chabris,
1999). The differences in stimuli are more problematic.
Discrete clusters of colored dots are a rather schematic ap-
proximation to the sorts of complex perceptual decisions
made by experts. Consequently, it would be valuable to test
the analog/binary difference with a more realistic set of stim-
uli, ideally with an expert population.

These experiments present one of the first inquiries into
how visual search and decision-making are influenced by dif-
ferential CAD systems. Whereas this initial inquiry addresses
some critical questions about the utility of binary and analog

Fig. 9 Average AUC from Experiment 3. Performance was better when
observers were given analog CAD or thresholded analog CAD compared
with binary CAD. All CAD conditions produced better performance
compared to the color only (no CAD) condition. While there was no
significant (n.s.) difference between the analog and the thresholded
analog conditions (p > 0.05), both conditions were significantly
different from the Binary condition. Error bars show ±1 standard error
of the mean
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CAD signals in visual search, several future experiments
would greatly improve upon this work. For example, in many
real-world radiological tasks, there often are multiple cancers
presented in a given search display. How would decision-
making change when this is the case? More specifically,
would the benefits of analog CAD systems change as a func-
tion of the number of possible targets in a given display? We
know from a number of Satisfaction of Search studies that the
presence of multiple targets can influence target detection
rates in visual search (Adamo, Cain, & Mitroff, 2013;
Berbaum, El-Khoury, Franken, Kuehn, Meis, Dorfman,
et al., 1994; Berbaum, Franken, Caldwell, & Schartz, 2009;
Berbaum, Franken, Dorfman, Caldwell, & Krupinski, 2000;
Berbaum, Franken, Dorfman, Miller, Caldwell, Kuehn, et al.,
1998; Biggs & Mitroff, 2014; Biggs & Mitroff, 2015; Fleck,
Samei, & Mitroff, 2010; Samuel, Kundel, Nodine, & Toto,
1995). Would decision making change differentially for dif-
ferent CAD signals? Additionally, CAD systems in the real
world rely heavily on image processing information from a
given search display. In our experiments, we were interested
in whether analog CAD was more useful compared with bi-
nary CAD, given that the two system were on equal footing
(i.e., CAD signals did not incorporate the likelihood of a target
on a given trial). Future work should investigate how CAD
systems influence decision making and search behavior when
information about the search display is incorporated into the
CAD signal. For example, does incorporating prevalence in-
formation, under a Bayesian framework, into Analog and
Binary CAD signals influence observers’ reliance on those
systems? Overall, it appears that this body of work would
benefit greatly from further studies.

Whereas there may be a benefit to analog CAD signals,
the modest size of the effects in the present set of experi-
ments suggests that analog CAD is not going to be the
Bmagic bullet^ that can make CAD clearly valuable in a
clinical setting. Although the analog CAD seems to offer a
small improvement, it is worth noting that small statistically
reliable improvements, spread over thousands of patients,
can represent real progress. The problem of the low positive
predictive value of CAD in clinical and other screening sit-
uations seems likely to be a much more substantial chal-
lenge. One solution is continued improvement of CAD al-
gorithms. If the system were perfect or nearly so, prevalence
would cease to be a problem. Until the computer scientists
produce those algorithms, it will fall to the behavioral sci-
ences to determine how to deliver more effectively CAD
information to the humans who will be using it. While
CAD algorithms are adept increasingly at pulling signal
out of the noise in complex images, the expert human
searchers remain the final arbiters of the information con-
veyed by most CAD systems. Under these circumstances,
behavioral research can provide valuable insight towards
optimizing the CAD-expert searcher interaction.
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