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Abstract Blindwalking to replicate an instructed distance re-
quires various sensory signals. Recent evidence in movement
science across many organisms suggests that multifractal or-
ganization of connective tissue supports the use of these sig-
nals. Multifractal structure is a multiplicity of power laws
defining distribution of proportion across many time scales
that helps predict judgments of the objects’ length. Present
work tests whether the multifractal structure in postural
accelerometry during blindwalking predicts blindwalking dis-
tance replications. Ten undergraduate student participants
each completed 20 trials of distance-perception each compris-
ing two laps. On each Lap 1, experimenters led participants to
walk on any of five prescribed distances, randomly assigning
half to walk Lap 1 with eyes open and another half to walked
Lap 1 with eyes closed. On Lap 2, all participants walked with
eyes closed to replicate instructed distances from Lap 1. We
collected postural accelerometry from the torso during each
lap. Regression modeling showed that multifractality of pos-
tural accelerometry on both Lap 1 and Lap 2 contributed sig-
nificantly to Lap-2 blindwalking responses. According to this
model, more accurate Lap-2 replications of Lap-1 distance
came from eyes-closed participants whose posture had com-
parable multifractality on both laps. Multifractality provides
insights into the sequence of exploratory behaviors for
blindwalking responses to distance perception.
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Distance perception draws on multiple physiological systems.
Optical variables inform sighted distance judgments (e.g.,Wu,
He, & Ooi, 2007), and participants with eyes closed can blind-
ly walk a distance commensurate with distance to that target
(Thomson, 1983; Elliott, 1986). Blindwalking participants use
haptic information from footfalls and postural corrections to
feel their way on “how long” it is to the target (Loomis, Da
Silva, Fujita, & Fukusima, 1992; Loomis et al., 1993).
Vestibular signals provide self-motion cues (e.g., Etienne &
Jeffery, 2004; McNaughton, Battaglia, Jensen, Moser, &
Moser, 2006). Blindwalking participants must integrate their
visual trace with an efference copy encoding muscular effort
together with various vestibular, tactile, and proprioceptive
signals (Ivanenko, Grasso, Israel, & Berthoz, 1997).

Signal transmissions from footfall to central executive
rely on the nesting of connective tissues across various
scales weaving muscle, tendon, bone, and nervous tissue
together. Of course, the signals travel through neural tracts
in humans, but postural adaptations occur faster than neural
transmission allows in multicellular organisms much smaller
than humans posing shorter neural distances to traverse (e.g.,
Endlein & Federle, 2013) but also in humans, supporting
quiet standing (Marsden, Merton, & Morton, 1983), speech
(Kelso, Tuller, Vatikiotis-Bateson, & Fowler, 1984), and
hopping (Moritz & Farley, 2004). The connective tissues
constitute a hierarchically organized network of small pre-
stressed structures (e.g., at the level of actin filaments com-
posing a single cell’s skeleton) nested within larger pre-
stressed structures (e.g., extracellular matrix) nested within
yet larger pre-stressed structures (e.g., the fascial encasings
around muscles and joints). This nested structure allows rap-
id interactions across multiple scales, supporting rapid antic-
ipatory response to perturbation and making the best use of
sometimes sparse stimulation, e.g., allowing us to walk flu-
idly on feet rather than our hands despite having fewer

* Damian G. Kelty-Stephen
keltysda@grinnell.edu

1 Psychology Department, Grinnell College, 1115 8th Ave,
Grinnell, IA 50112, USA

Atten Percept Psychophys (2016) 78:2320–2328
DOI 10.3758/s13414-016-1213-5

http://crossmark.crossref.org/dialog/?doi=10.3758/s13414-016-1213-5&domain=pdf


mechanoreceptors in our feet than in our hands (Turvey &
Fonseca, 2014). For another perceptual example, hair cells
in the ear only respond to acoustic stimulation as auditory
perception requires because of connective tissues maintain-
ing the tautness of the hair cells (Ingber, 2006). Indeed, this
hierarchically nested background support for neural trans-
mission gives human locomotion its unique form (Kiely &
Collins, 2016).

This commitment to hierarchical organization of nested struc-
tures interacting across scales entails a specific geometry called a
multifractal system (Mandelbrot, 1983).Multifractality refers to a
specific case of heterogeneous distribution across measurement
scales. Standard linear statistics emphasize themean and variance
of adistribution.However, theyassumehomogeneity across time,
such that theamountofameasuredquantity in subsetsof theentire
sequence should relate to the total amount of ameasured quantity
in a fixed, single power-law relationship defined by subset size.
Sequence subsets comprising half the total-series lengthwill con-
tain .5 proportion of the total-series sum, subsets with one-quarter
of the series length contain .25 of the total series sum,

etc. Proportion P follows a relationship with subset length n, i.e.,
P(n) ~ n1, which trivial relationship only holds for a homogenous
series.Multifractal seriesare thoseserieswhose temporal structure
is sufficiently heterogeneous across time as to warrant rephrasing
the above once-trivial relationship into a more generic P(n) ~ nα.
Processes built hierarchically allowing interactions across scales
exhibit multiples of these power-law relationships between pro-
portion and subset length. These exponents compose the
“multifractal spectrum,” and its range is the distribution’s
“multifractality.” If the hierarchical relationships across scales
of connective tissue provide an important medium for haptic
information, then multifractality of blindwalking should contrib-
ute to predictions of how well participants estimate path length.

Multifractality is a statistical property definable for a
spatial array (e.g., the connective tissues of the human
body) as well as for a measurement series (e.g.,
amount of postural sway over time). Previous work
has shown both that multifractality estimated for
postural-sway time series successfully predicts how qui-
etly standing participants estimate the lengths of unseen

Fig. 1 Panels depicting temporal and spatial organization of a trial (top and bottom panels, respectively)

Fig. 2 Example of a postural accelerometry series from a lap of blindwalking. Directionless summed acceleration equals the square root of summed
squared accelerations across all axes
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objects felt only haptically against the spine (Palatinus,
Dixon, & Kelty-Stephen, 2013) and that multifractality
differs significantly as these same participants learn to judge
these objects with selective attention to the whole object or just
to one side of it (Palatinus, Kelty-Stephen, Kinsella-Shaw,
Carello, & Turvey, 2014). Touch relies on a similar set of sen-
sory signals to locomotion (Lederman, Klatzky, & Barber,
1985;Moscatelli, Naceri, & Ernst, 2014), and, thus, we propose
that multifractal temporal structure at the torso during gait may
help to predict information collected through locomotion. We
should be able to predict changes in the resulting estimation of
path length based on changes in the multifractal patterning of
torso fluctuations during locomotion.

We recruited participants for a distance-perception task that
tested all participants’ blindwalking ability. We led them
through a conventional procedure (e.g., Sun, Campos,
Young, Chan, & Ellard, 2004), walking distances instructed
by the experimenter (Lap 1; L1) and then turning in a different
direction to replicate that distance (Lap 2; L2). One group had
their eyes closed for the duration of the experiment, and the
other group had their eyes open only during L1.

Our reasoning for manipulating vision was that effects of
multifractality of the torso should differ when participants had
the benefit of visual information. Visual information during
walking might diminish the relative importance of haptic in-
formation during walking in estimating path length for later

Fig. 3 Schematic representation of first steps of a multifractal algorithm that bin a repeated measure on many scales (left panel) and that estimate linear
relationships between logarithmic average proportion and bin size as well as between Shannon entropy and bin size

Fig. 4 Concluding steps of multifractal analysis that use parameter q to accentuate proportions of different size (left panel) and then re-estimate the same
exponents as in Fig. 3 for each new value of q (bottom panels). The multifractal spectrum comprises ordered pairs of exponents for matching q
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reproduction. Hence, we expected in Hypothesis 1 that effects
of L1 torso multifractality (MFL1) would depend on the par-
ticipants having eyes closed on L1. Given the prospective
nature of perception (Gibson, 1979), blindwalking might
serve not just to maintain upright stance but actually to tune
the movement system’s multifractal structure towards the in-
tention to later reproduce the distance. Hypothesis 2 was that
effects of L2 torso multifractality (MFL2) on L2 blindwalked
distance (DistL2) would depend on the participant having their
eyes closed for L1. Blindwalking to reproduce a previously
seen distance has already shown itself to be an ongoing re-
sponse that participants make up as they go (Hajnal, Bunch, &
Kelty-Stephen, 2014).

A related question (and Hypothesis 3) was whether
multifractality of the torso during L1 or L2 might influence
the accuracy of reproduction of DistL1. For instance, the
matching of multifractal complexity between L1 and L2 might
support a participant’s memory for the original distance (L1)
when attempting to replicate it (L2). The more similar
multifractality is to L1 and L2, the more similarly poised the
body’s cross-scale interactions should be to support the flow of
sensory information during walking. So, we might suppose that
the transfer of information gathered during the instructed Lap 1
(L1) would improve recall for instructed distance during Lap 2
(L2), and so perhaps matching multifractality from L1 to L2
strengthens the informational linkage between training and test.

Method

Participants

Ten adults (four female, six male) aged 18–22 years partici-
pated after providing informed consent according to Grinnell
College’s Institutional Review Board.

Materials

Theater-rigging harnesses secured an iPhone running Chris
Wozny’s “Data Collection” app (https://itunes.apple.
com/us/app/data-collection/id479348835?mt=8) to the
participant’s back. The app collected accelerometry at 120
Hz. Surveyor’s wheels provided distance measurements.

Design

Experimenters randomly assigned participants to one of two
groups differing only in keeping eyes open or closed during L1.

Procedure

Experimenters led participants through blindwalking re-
sponses on a flat, open grassy field on Grinnell College

campus for five instructed distances (10 m, 20 m, 30 m,
40 m, and 50 m), each presented once in each of four blocks
randomized within blocks (i.e., a total of 20 trials).
Participants walked at a self-selected comfortable speed.
Experimenters explicitly instructed participants not to count
steps and further prevented step-counting by engaging partic-
ipants in small talk.

Each trial comprised two laps (Fig. 1). Lap 1 (L1)
involved experimenters starting accelerometry, instructing
participants when to start and stop walking. Participants
with eyes open for L1 closed their eyes and experimenters
turned participants in a randomly selected direction, and
Lap 2 (L2) involved participants blindwalking forward

Table 1 Coefficients from regression modeling predicting blindwalked
distance response (Lap 2) as a function of summed triaxial accelerometry
from both Lap 1 and Lap 2 as well as of availability of vision during Lap 1

Predictor B SE p

Intercept 4,276.28 843.62 < .0001

First-lap predictors

DistInstructed .87 .06 < .0001

Eyes-shut 356.37 127.84 < .0001

DurationL1 -.0059 .0009 < .0001

MeanL1 137.59 125.67 .28

SDL1 -66.55 38.24 .08

MFL1 6.67 111.80 .95

Eyes-shut×MeanL1 -374.44 131.36 < .01

Eyes-shut×SDL1 101.28 35.32 < .01

Eyes-shut×MFL1 -301.91 113.27 < .01

Second-lap predictors

DurationL2 .0071 .0006 < .0001

MeanL2 -4,414.03 867.49 < .0001

SDL2 -20,109.82 3,474.38 < .0001

MFL2 -68,901.24 17,819.55 < .001

Eyes-shut×MFL2 283.40 114.39 < .05

MeanL2×SDL2 20,161.82 3,483.71 < .0001

MeanL2×MFL2 68,990.40 1,788.63 < .0001

SDL2×MFL2 332,138.71 7,291.04 < .0001

MeanL2×SDL2×MFL2 -322,316.42 7,298.19 < .0001

Table 2 Coefficients from dramatically smaller regression model
predicting blindwalked distance response (Lap 2) as a function of
summed triaxial accelerometry from both Lap 1 and Lap 2

Predictor B SE p

Intercept 1.34 4.28 < .0001

DistInstructed .97 .05 < .0001

Eyes-shut 3.43 1.39 < .0001

MFL1 305.77 78.64 < .0001

MFL2 -324.39 72.11 < .001
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until they felt that they had replicated the instructed dis-
tance. Experimenters followed participants to prevent col-
lisions, but left them free to choose when to stop, stop-
ping accelerometry after the participant stopped. Despite
always walking forward, participants did not walk in
completely straight paths. Experimenters measured total
path length; instruction was to replicate distance and not
to locate a starting point (e.g., Harrison & Turvey, 2010).

Data analysis

Experimenters recorded triaxial accelerometry for each
lap. The square root of the sum of squared acceleration
in each of three axes provided an unsigned accelerometry
series (Fig. 2).

Multifractal algorithm The quasiperiodic accelerometry war-
ranted the proportion-based multifractal analysis (Chhabra &
Jensen, 1989). Multifractal analysis diagnoses homogeneity or
heterogeneity of repeated measures. It partitions (or “bins”) the
series according to various bin sizes, usually from four points to
a fourth of series length (Fig. 3; left panel).

Multifractal analysis continues by calculating statistics on
binned quantities and examining how these statistics changewith
bin size, i.e., time scale. Next, it estimates exponent α defining
how average bin proportion grows with bin size and an f expo-
nent relating bin size to Shannon entropy (Shannon, 1948).

The procedure repeats for different settings of a parameter
q. Proportions raised to exponent q provides “mass” μ to
weight proportions selectively according to proportion size
(see Fig. 4, left panel). q-Based variability with mass μ(q)
generalizes single α and f estimates from earlier steps into
continua α(q) and f(q). Multifractal analysis distinguishes
temporally heterogeneous series from homogenous series by
the amount of variety inα(q) and f(q). Plottingα(q) and f(q) as
ordered pairs yields the multifractal spectrum, an often-asym-
metric and inverted U-shaped curve (Fig. 4, right panel). We
included α(q) and f(q) whenever log-scaled linear fits corre-
lated at r of .995 for the log-scaled linear fit. We excluded
values of q either (1) for which mass-weighted proportion
and for which Shannon entropy were undefined (e.g., due
to masses rounding to zero) or (2) power-law fits for which
r < .995.1

1 See the Appendix for algebraic representation of the algorithm as well
as a brief step-by-step example using an extremely small 32-measurement
series that outlines the calculation of each bin proportion and mass, bor-
rowing from a tutorial on multifractal analysis (Kelty-Stephen, Palatinus,
Saltzman, & Dixon, 2013). Link: http://sites.google.com/site/foovian/PP-
SR-16-021Supp.pdf.

Fig. 5 Example of Lap-2 blindwalking responses (black solid lines) with regression-model predictions on each trial (gray dashed lines) from both
groups and for participants with strongest and weakest agreement according to correlation coefficient r

Table 3 Lap-2 blindwalking responses for participants randomly
assigned to the condition with eyes open for Lap 1

Instructed distance
(DistIntended)

High Lap-1
multifractality (MFL1)

Low Lap-1
multifractality (MFL1)

Low MFL2 High MFL2 Low MFL2 High MFL2

10 11.17 11.71 11.07 11.62

20 19.86 20.40 19.76 20.31

30 28.55 29.09 28.45 29.00

40 37.24 37.78 37.14 37.69

50 45.93 46.47 45.83 46.38

Note: MFL1 and MFL2 are both scalar values estimated on a continuous
positive scale and we only use the third and first quartiles to define the
“high” and “low” values of these variables for the purposes of depicting
what the model in Table 1 predicts for a hypothetical participant with
relatively high and relatively low multifractal-spectrum width MFL1 or
MFL2
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Subsequent modeling focused on the dependent variable of
DistL2. We used function “lmer” in the R package “lme4” for
linear mixed-effect modeling (Bates, Maechler, Bolker, &
Walker, 2015) as well as R package “lmerTest” for the
Satterthwaite estimation of F-test-based p-values for fixed ef-
fects (Kuznetzova, Brockhoff, & Christensen, 2016). We es-
timated coefficients for the predictors of instructed distance
(DistInstructed), eyes’ openness on Lap 1 (Eyes-shut = 1 for
closed, 0 for open), as well as all of the following numeric
values: duration of each lap in terms of 120-Hz accelerometry
samples (DurationL1 and DurationL2 for L1 and L2, respec-
tively), mean acceleration (MeanL1 and MeanL2), standard
deviation of acceleration (SDL1 and SDL2), and multifractal-
spectrum width (MFL1 and MFL2). We fitted only a random-
effect intercept for individual participants. The fixed-effects
equation was as follows:

DistInstructed þ Eyesshut þ DurationL1 þ DurationL2 þ Eyesshut*MeanL1

þ Eyesshut*SDL1 þ Eyesshut*M FL1 þ Eyesshut*M FL2

þMeanL2*SDL2*M FL2;

as well as all lower-order interactions and main effects includ-
ed in the foregoing terms.

Results and discussion

DistL2 correlated with DistL1, r = .84. Also, summed triaxial
accelerometry exhibited extremely similar descriptive statis-
tics between L1 and L2 with mean time-series durations
3,335.35 and 3,354.61 1/120-s frames (SEs = 111.18 and
129.92), average triaxial acceleration per sample 1.0029 and
1.0021 gravities (SEs both = .0007), and standard deviation of

triaxial acceleration per 120-Hz sample SDs .23 and .23 (SEs
= .0031 and .0032), respectively.

All predictors were significant except for Lap-1 main effects
ofMean, SD, andMF (Table 1).2 Themodel reiterates the strong
positive relationship between instructed distance andDistL2 (B =
.87, SE = .06, p < .0001). DistL2 covaried with duration of L2
accelerometry (i.e., the time spent walking, DurationL2, B =
.0071, SE = .0006, p < .0001), but varied inversely with duration
of L1 accelerometry (DurationL1, B = −.0059, SE = .0009, p <
.0001). A dramatically reduced model including only
DistInstructed, Eyes-shut, MFL1, and MFL2 showed significant
effects of both laps’ multifractality for all participants with ef-
fects in the same directions (Table 2) as in Table 1. Given that
effects for multifractal spectrum width might be confounded
with effects moving more or moving more variably (i.e., mean
or variance; Kantelhardt et al., 2002), the larger model will be
more conservative for interpretation. Because interactions be-
tween Eyes-shut and MFL1 or MFL2 fail to improve the reduced
model, this reduced model leaves us with the strange entailment
that torsomultifractality of both laps contributes significantly for
all participants, regardless of whether they have the benefit
of visual input. In any event, the larger model is an overwhelm-
ing improvement upon the reduced model, χ2(12) = 167.76,
p < .0001.

Regression-model predictions correlated with trial-by-trial
DistL2 responses, r = .96 (Fig. 5).

Fig. 6 Model-predicted Lap-2 blindwalked responses as a function of
Lap-1 instructed distance and of multifractal-spectrum width for
participants with eyes closed compared to veridical responses (gray
dashed line). Third and first quartiles serve as “high” and “low”

multifractal (MF) values to portray Table 1 model predictions for
hypothetical participants with high and low multifractal-spectrum width
MFL1 or MFL2

2 We maintain the heuristic 10-to-1 observation-to-predictor ratio to pre-
vent overfitting (e.g., Babylak, 2004; Finlay, 2014; Harrell, Lee, &Mark,
1996). Resampling L2 data with replacement 1,000 times showed ade-
quate power for all predictors but MFL1, exhibiting nonzero coefficients
for >80 % of the 1,000 resamplings (e.g., Yuan & Hayashi, 2003).
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Hypothesis 1: Lap-1 postural accelerometry contributes to
Lap-2 responses for participants with eyes closed Closed
eyes during L1 led participants to overestimate DistL2
(Eyes-shut, B = 356.37, SE = 127.84, p < .0001) but
also exhibited significant L1 accelerometry effects on
Lap-2 blindwalking distance responses for MeanL1,
SDL1, and MFL1 (Bs = −374.44, 101.28, and −301.91,
SEs = 131.36, 35.32, and 113.27, respectively, ps all <
.01) on DistL2.

Hypothesis 2: Lap-2 multifractality contributes to Lap-2
responses for participants with eyes closed in Lap 1 Main
effects and full-factorial interactions of MeanL2, SDL2, and
MFL2 were significant (ps < .001), with MeanL2 and SDL2

moderating effects of MFL2 such that, for average values of
MeanL2 and SDL2, they reduce predicted effects of MFL2 to
near zero. However, the positive effect of Eyes-shut×MFL2 (B
= 283.40, SE = 114.39, p < .05) indicates that having experi-
enced L1 with eyes closed amplifies a positive effect of MFL2
predicting greater DistL2.

Hypothesis 3: Participants whose Lap-2 multifractality
matches Lap-1 multifractality have the most accurate
Lap-2 responses MFL1 and MFL2 showed no effect on
DistL2 for participants with eyes open during L1 (Table 3).
However, multifractal-spectrum width had stronger effects
on the veridicality of DistL2 for those participants
experiencing L1 with eyes closed. Figure 6 plots
regression-modeling predictions for different combina-
tions of low and high multifractal-spectrum widths across
L1 and L2. Figure 6 contains a grey dashed line indicating
the ideally veridical Lap-2 responses. Regression model-
ing predicted more accurate L2 responses for participants
with comparable multifractal-spectrum width on both
laps, i.e., high MFL1 and high MFL2, or low MFL1 and
then low MFL2. Regression-modeling predictions for
these low-matching or high-matching participants differed
slightly, but the predicted values were so close that the
lines for each on Fig. 6 are visibly indistinguishable.

Under- and over-estimation of DistL2 under disparate
pairings of different multifractal-spectrum widths warrants
further interpretation. Low and high multifractality indi-
cates heterogeneity reflecting sparsity and rich diversity,
respectively. Thus, when higher MFL2 follows lower
MFL1, it may indicate a distance-replication walk whose
exploratory capacity draws a far richer amount of informa-
tion, opening the floodgates for stimulus energy and
allowing extraneous information potentially distracting to
path-length estimation. Conversely, lower MFL2 following
higher MFL1 might indicate a replication blindwalk too
constrictive to draw in the requisite amount of information
for a path length commensurate to the first lap.

The present study offers an early multifractal view of ex-
ploratory properties of postural accelerations in blindwalking.
First, these findings may account for effort effects on
blindwalking responses previously quantified as average
walking speed (Hajnal, Bunch, & Kelty-Stephen, 2014).
Second, the benefit of multifractal fluctuations to touch during
quiet standing appears to extend to distance perception by
blindwalking. Finally, the matching of multifractal fluctua-
tions may support coordination for haptic information from
training (e.g., Lap 1) to test (e.g., Lap 2). When human par-
ticipants attempt to coordinate with unpredictable stimulus,
they will unwittingly exhibit similar multifractal structure to
the unpredictable stimulus (Stephen & Dixon, 2011).
Conversely, similar complexity can facilitate communication
between two separate systems (West, Geneston, & Grigolini,
2008). Similar multifractality may facilitate memory-like
communication between past and present states of the same
organism. More generically, multifractality is an important
window on the sequence implicit in exploratory behavior,
quantifying the trajectory from curious, uncertain exploration
to satisfaction with a complete response.
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Appendix

Chhabra and Jensen’s (1989) multifractal analysis for non-
negative length-N series x(t)

Step 1: Bin x(t) using Nn nonoverlapping windows of length
4≤n≤N/4, where Nn is the greatest integer ≤N/n.
Step 2: For each n, calculate proportion P for ith bin
(i=1,2,…,Nn−1,Nn),

Pi nð Þ ¼

Xni

k¼n i−1ð Þþ1

x kð Þ

XnNn

m¼1

x mð Þ
; ðA1Þ

Multifractal analysis examines proportion growth with n. For
homogeneous series, Pi(n) approximately follows one power
law:

P nð Þ∼n1
P Nnð Þ∼N−1

n :
ðA2Þ

Otherwise, Pi(n) may vary across bins, yielding

P nð Þ∼nα qð Þ;
P Nnð Þ∼N−α qð Þ

n :
ðA3Þ
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with real values for α(q) estimated by weighting Pi(n) with
“mass” (Step 3).
Step 3: Calculate mass μi(q,n):

μi q; nð Þ ¼ Pi nð Þ½ �q
X

j¼1

Nn

Pi nð Þ½ �q
; ðA4Þ

emphasizing higher or lower proportions for q > 1 or q < 1,
respectively.
Step 4: Calculate α(q) as

α qð Þ ¼

X

i¼1

Nn

μi qð ÞlogPi nð Þ

logn
;

α qð Þ ¼ −

X

i¼1

Nn

μi qð ÞlogPi Nnð Þ

logNn
;

ðA5Þ

when numerator and denominator correlate, r ≥ .995. If
Shannon entropy of μi(q,n) yields a linear relationship with
logn, then

f qð Þ ¼

X

i¼1

Nn

μi q; nð Þlogμi q; nð Þ

logn
;

f qð Þ ¼ −

X

i¼1

Nn

μi q; nð Þlogμi q; nð Þ

logNn
;

ðA6Þ

for a single point f(α(q)) in the multifractal spectrum.
Step 5: Recalculate f(q) and α(q) allowing relationships in
Eqs. A5 and A6 to drop below r = .995 at both extrema for
q. We used range −300≤q≤300, incremented by .5.
Step 6: Spectrumwidth is max(α(q))−min(α(q)) where f(q) is
defined.
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