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Abstract Peripheral visual perception is characterized by re-
duced information about appearance due to constraints on
how image structure is represented. Visual crowding is a con-
sequence of excessive integration in the visual periphery.
Basic phenomenology of visual crowding and other tasks
have been successfully accounted for by a summary-statistic
model of pooling, suggesting that texture-like processing is
useful for how information is reduced in peripheral vision. I
attempt to extend the scope of this model by examining a
property of peripheral vision: reduced perceived numerosity
in the periphery. I demonstrate that a summary-statistic model
of peripheral appearance accounts for reduced numerosity in
peripherally viewed arrays of randomly placed dots, but does
not account for observed effects of dot clustering within such
arrays. The model thus offers a limited account of how
numerosity is perceived in the visual periphery. I also demon-
strate that the model predicts that numerosity estimation is
sensitive to element shape, which represents a novel predic-
tion regarding the phenomenology of peripheral numerosity
perception. Finally, I discuss ways to extend the model to a
broader range of behavior and the potential for using the mod-
el to make further predictions about how number is perceived
in untested scenarios in peripheral vision.
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Peripheral vision is subject to lossy encoding such that sub-
stantial information content is not available to observers.
Basic examples of how information is lost due to the con-
straints imposed by visual physiology are the reductions in
acuity and color sensitivity in peripheral vision. Peripheral
visual acuity is poor largely due to changes in photoreceptor
size as eccentricity increases (Virsu & Rovamo, 1979) and,
similarly, peripheral color sensitivity is reduced as a direct
result of the decreasing proportion of cones versus rods as
retinal eccentricity increases (Martin, Lee, White, Solomon,
& Rüttiger, 2001).

Beyond these initial limitations, downstream constraints on
peripheral vision further limit the fidelity of the visual sys-
tem’s representation of visual structure. In particular, the phe-
nomenology of visual crowding (Whitney & Levi, 2011) is an
important example of how perception is limited by processes
that further reduce representational fidelity in peripheral vi-
sion. Visual crowding refers to deficits in peripheral target
recognition induced by neighboring flanking items.
Crowding does not impair target detection, which differenti-
ates crowding from masking (Pelli, Palomares, & Majaj,
2004), and observers’ ability to identify isolated peripheral
targets rules out accounts based on visual acuity in the periph-
ery. Crowding thus results from additional constraints on vi-
sual processing that limit representational fidelity.
Understanding the nature of these constraints and determining
how they limit visual processing in computational terms is an
ongoing enterprise. A range of factors alter crowding strength,
and the effects of manipulating flanker/target similarity
(Bernard & Chung, 2011), the geometric arrangement of
flankers relative to targets (Manassi, Sayim, & Herzog,
2012), and other spatial and temporal factors that influence
performance (Kooi, Toet, Tripathy, & Levi, 1994), all offer
important constraints on the computational mechanisms that
lead to crowding, and by extension, may also govern a wide
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range of phenomena observed in peripheral vision
(Rosenholtz, 2011). Here, I consider how these mechanisms
may govern the perception of numerosity in peripheral vision
using a recent model of peripheral visual function to explain
recent empirical data.

A key issue in understanding how peripheral vision works
is characterizing the nature of integration in peripheral vision.
A fundamental assumption of most descriptions of crowding
and related phenomena is that image structure is somehow
pooled over increasingly large chunks of the visual field as
eccentricity increases. In the context of crowding, the size of
the regions in which crowding occurs scales with eccentricity
(Pelli & Tillman, 2008; Rosen, Chakravarthi & Pelli, 2014), a
relationship referred to as Bouma’s law (Bouma, 1973). This
is a quantitative description of where information is pooled,
but it does not tell us how information is pooled. Subjectively,
peripherally viewed image features often appear jumbled or
mixed together, but what is the nature of that jumbling and
mixing? What processes lead to a description of image struc-
ture such that visual features appear to be rearranged and
combined in strange ways? One proposal is that image struc-
ture may be represented by summary statistics that describe
visual features using distributional information (e.g., texture
descriptors), leading to a histogram-like representation of ap-
pearance that is sufficient to capture some aspects of what
objects or targets are present in a peripheral region, but that
lacks joint encoding of form and location. In general, models
based on summary statistics record some information about
what features were present in a stimulus, but tend to lack
information about where those features were and how they
co-occurred spatially with other features. Initially, summary-
statistic models of crowding used simple distributional mea-
surements to account for behavior. For example, Parkes,
Lund, Angelucci, Solomon, and Morgan, (2001) suggested
that stimulus averaging within a crowded array could explain
observers’ responses in an orientation discrimination task.
Rather than representing each item in a crowded array, they
proposed that observers were subject to compulsory averaging
of the orientations in the stimulus and made responses based
on that average. Although adequate for simple scenarios (e.g.,
oriented bars), it is difficult to understand exactly what aver-
aging would mean for an array of complex objects (Wallace &
Tjan, 2011). Recently, texture-based summary-statistic
models that address this issue have been applied to a range
of problem domains. Such models rely on texture features to
describe image structure and are applicable to arbitrary image
inputs. Also, using models that support texture synthesis
makes it possible to test model predictions behaviorally using
Bmongrel^ images that reflect the image constraints imposed
by the statistical descriptors imposed by the model. If the
model captures the information loss imposed by peripheral
vision, then performance with original images presented in
the periphery should match performance with mongrels. In

several recent reports, performance with mongrels generated
using the Portilla–Simoncelli texture synthesis algorithm
(Portilla & Simoncelli, 2000) correlates significantly with per-
formance in peripheral tasks, suggesting this is a useful model
of peripheral encoding. For example, Balas, Nakano, and
Rosenholtz (2009) demonstrated that mongrels could account
for performance across a range of visual crowding tasks.
Visual search performance, which depends on observers’ abil-
ity to identify candidate target locations in the periphery, is
also accounted for by mongrels that reflect local summary
statistics (Rosenholtz, Huang, Raj, Balas, & Ilie, 2012).
More broadly, the texture statistics in the Portilla–Simoncelli
model may be a good approximation of midlevel computa-
tions carried out in area V2 (Freeman, Ziemba, Heeger,
Simoncelli, &Movshon, 2013) used to encode scene structure
across the visual field (Freeman & Simoncelli, 2011). This set
of summary statistics is thus a promising candidate model of
peripheral visual function that may explain performance in
many tasks.

In this study I have applied the model to numerosity per-
ception in the visual periphery, which is an interesting prob-
lem domain for several reasons. Perceived numerosity in large
arrays of items appears to depend upon texture-like properties
of the array including density and local area computations
(Durgin, 2008; Raphael, Dillenburger, &Morgan, 2013), sug-
gesting that texture features may be appropriate descriptors of
array appearance. Though numerosity judgments are not nec-
essarily texture based in all settings (Mandler & Schebo,
1982; Palomares, Smith, Pitts, & Carter, 2011), texture repre-
sentations do appear to be employed for numerosity judg-
ments as a function of stimulus features such as array density.
For example, Anobile, Cicchini, and Burr (2014) demonstrat-
ed that when element density is relatively low, numerosity
discrimination thresholds have a constant Weber fraction (lin-
ear increases as a function of numerosity). However, when
density is comparatively high, numerosity discrimination
thresholds increase according to a square-root law, which sug-
gests a different, texture-like mechanism for low- versus high-
density arrays.

Perceived numerosity has also been shown to change as a
function of peripheral viewing in ways that are consistent
with visual crowding. The aforementioned transition be-
tween linear versus square-root threshold increases as a func-
tion of numerosity occurs at different dot densities as a func-
tion of eccentricity—for example, such that texture mecha-
nisms appear to be used at lower densities in the periphery
(Anobile, Turi, Cicchini, & Burr, 2015). This dependence on
eccentricity is consistent with the impact of visual crowding
on other tasks, and the square-root dependence between dis-
crimination thresholds and numerosity further supports the
use of texture descriptors as a tool for understanding
peripheral numerosity in particular. Moreover, other unique
features of how number is perceived in the periphery are
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intriguing targets for a model of peripheral vision.
Specifically, Valsecchi, Toscani, and Gegenfurtner (2013)
showed that the numerosity of peripherally viewed arrays
of dot is reduced relative to numerosity perceived in the
fovea. They reported that numerosity was reduced by ap-
proximately 60 % to 80 %, depending on the specific stim-
ulus configuration and eccentricity used in their experiments,
suggesting that the appearance code that supports peripheral
visual processing represents the array in a way that number
is consistently reduced. By manipulating various stimulus
properties including the minimum distance between ele-
ments, the authors demonstrated that visual crowding may
drive this effect. Given the success of explaining visual
crowding via specific summary statistics and the evidence
indicating that crowding contributes to behavioral perfor-
mance in peripheral numerosity perception, I therefore chose
to investigate whether the Portilla–Simoncelli texture statis-
tics could account for the reduction in perceived numerosity
reported by Valsecchi et al. (2013).

Specifically, I focused on examining whether parameter
values that were sufficient to explain observers’ performance
in previously reported visual crowding tasks (Balas et al.,
2009) yielded numerosity underestimates when the model
was presented with arrays similar to those used in
Valsecchi et al. (2013). In particular, I chose to examine
whether the model could account for the amount of underes-
timation when randomly placed dots were presented to ob-
servers in the periphery and also whether the model would
exhibit similar sensitivity to varying interdot distance.
Overall, these simulations reveal that decreased numerosity
emerges naturally from the model in all conditions. However,
while the quantitative fit is good when randomly placed dots
are used as target stimuli, the model does not exhibit sensi-
tivity to interdot distance that is consistent with human per-
formance. Despite this shortcoming, I also demonstrate that
the model exhibits sensitivity to element shape, which repre-
sents a novel prediction regarding peripheral numerosity per-
ception that remains to be tested in human participants.
These particular summary statistics thus offer limited explan-
atory power for understanding peripheral numerosity percep-
tion, which constrains the scope of this model of peripheral
vision. Nonetheless, I argue that the model may still suggest
interesting directions for future research and also discuss
principled extensions of the model that may reveal critical
properties of peripheral vision that must be adequately char-
acterized to increase the generality of summary-statistic
models of the periphery.

Method

In the simulations I report here, my aim was to examine three
distinct aspects of peripheral numerosity perception, two of

which were reported by Valsecchi et al. (2013) and a third
scenario that has not been tested psychophysically. With re-
gard to the former, I carried out simulations to determine (1) if
peripheral numerosity would be underestimated in Bmongrel^
images created using the Portilla–Simoncelli algorithm, and
(2) if varying the minimum interdot distance between ele-
ments in a peripherally viewed array would affect underesti-
mation in mongrel images. With regard to the latter, I carried
out additional simulations to determine if changing element
shape (e.g., dots vs. crosses/circles) led to changes in
numerosity underestimation. In general, the model supports
quantitative measurement of the amount of underestimation,
allowing direct comparison between human observers and the
model.

Creating dot arrays

To generate the arrays that mongrel images would be based
on, each simulation began by plotting randomly placed ele-
ments using basic graphing routines inMATLAB. To examine
peripheral numerosity subject to random element placement
(Experiment 1), element positions were sampled from a regu-
lar grid spanning zero to 255 units in both the x- and y-axes,
with element centers spaced 10 units apart (to eliminate over-
lap) within a bounding frame 10 units wide (to eliminate ele-
ments being cut off during plotting). Each dot was then ran-
domly perturbed horizontally and vertically by sampling x and
y displacements independently from a normal distribution
with zero mean and a standard deviation of 2 units. To exam-
ine the impact of clustering (varying interelement distance) on
peripheral numerosity (Experiment 2), element positions were
sampled according to a satellite algorithm (Allik & Tuulmets,
1991) that guarantees that each newly sampled element is
positioned within some fixed distance from a previously plot-
ted element. Finally, to examine the potential effects of ele-
ment shape on numerosity perception (Experiment 3), the
markers used to plot randomly selected points could either
be dots (closed circles), crosses, or naughts (open circles). In
all cases, the MATLAB plot depicting all of the dots was
resized (if necessary) to 256 × 256 pixels before texture anal-
ysis and synthesis.

Synthesizing Bmongrels^ from dot arrays

To create a mongrel from each simulated dot array, I applied
the Portilla–Simoncelli texture synthesis algorithm to each
image. This involves first using analysis routines to describe
the target image using a set of joint wavelet statistics. The
analysis algorithm includes free parameters that specify the
number of spatial scales (N_sc) used to compute wavelet co-
efficients, the number of orientation bands (N_or) used to
describe image structure, and the size of the spatial neighbor-
hood (N_neigh) over which local correlations are computed. I
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chose these parameter values to match those reported in Balas
et al. (2009) to test the hypothesis that values that proved
adequate for accounting for visual crowding may also account
for numerosity underestimation in the periphery (N_sc = 4,
N_or = 4, N_neigh = 9). Following texture analysis, synthesis
proceeded by generating a random starting image and
adjusting this image iteratively until it matched the target im-
age’s statistics (see Fig. 1).

Counting dots in original and synthetic arrays

To objectively measure numerosity in each dot array, I applied
morphological operators to thresholded versions of the origi-
nal and synthetic arrays generated for each simulated trial. The
synthetic arrays were histogram-matched to the parent image
used to generate them, and an intensity threshold was applied
to both images to convert them to binary images. Both images
consistently had bimodal intensity histograms with narrow
peaks centered near intensity values of 2 (near-black) and
200 (near-white), making it possible to impose a threshold in
between these values without concern that the outcome
depended critically on the exact intensity threshold used.
Next, I applied MATLAB functions for labeling contiguous
regions to obtain the size of each black region in both the
original and synthetic image. Each original and synthetic array
was thus described in terms of the number of segmented re-
gions in the thresholded image. Regions in the synthetic array
were counted only if they were at least as large as the smallest
region in the original array. In keeping with the original report
by Valsecchi et al. (2013), I expressed model performance
using the ratio of dot numerosity in the synthetic image rela-
tive to its parent. Perfect performance would yield a ratio of 1,
while overestimates would be larger and underestimates
smaller than this. For each combination of stimulus parame-
ters (target numerosity, clustering conditions) I conducted 50
simulations to obtain mean underestimation ratios and boot-
strap estimates of 95 % confidence intervals.

Results

To summarize the results of the model, I briefly describe the
parameters that were allowed to vary across the three experi-
mental scenarios considered here, and report underestimation
ratios for all conditions as compared to the results reported in
Valsecchi et al. (2013).

Experiment 1—Random dot placement

In these simulations, target numerosity was either 30, 60, or 90
dots, and elements were randomly positioned in the original
arrays. Dot size was set to aMATLABmarker size of 18 units.
The observed underestimation ratios for each target
numerosity (with 95 % confidence intervals) are listed in
Table 1.

These ratios exhibit the stability across target numerosities
reported in Valsecchi et al. (2013) and are quantitatively a
good fit to their results from the 12-degree eccentricity condi-
tion in their Experiment 1 (these means vary between 79 %
and 85 % across the same target numerosities).

Experiment 2—Clustering

In these simulations, target numerosity was either 20, 40, or 60
dots. For each target numerosity, the minimum allowed
interdot distance was controlled via Bsatellite^ sampling to
yield Bsmall,^ Bmedium,^ and Blarge^ clustering. In Table 2,
I have listed the mean underestimation ratio for each condition
along with 95 % confidence intervals. At best, the model
exhibits only a mild sensitivity to clustering (an increase of
approximately 5 % between the small and large clustering
conditions), which is far smaller than the approximately
30 % difference reported in Valsecchi et al.’s (2013)
Experiment 2. Clustering thusmatters somewhat to the model,
but not nearly as much as it matters to human observers.

Experiment 3—Element shape

In these final simulations using Portilla–Simoncelli mongrels
(which have not been tested psychophysically), target
numerosity was either 40 or 60 elements. For each numerosity,
target shape was either dots (closed circles) 18 units in size,

Fig. 1 An example of an original dot array and a synthetic array created
from this parent image. These images have been processed per the
description in the text, which includes resizing of the original array and
thresholding of both the original and synthetic arrays to yield a binary
image

Table 1 Mean underestimation ratios for dots as a function of target
numerosity

Mean underestimation ratio

30 dots 85.2 % [82 %, 88 %]

60 dots 85.4 % [83 %, 87 %]

90 dots 86.0 % [84 %, 87 %]

Values in brackets represent 95 % confidence intervals of the mean
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crosses that were eight units in size, or naughts (open circles)
that were also eight units in size. The marker size of naughts
and crosses was selected so that element size in the original
arrays would be matched when naughts and crosses were
drawn with a line of sufficient thickness to guarantee that
elements in the original images were counted correctly using
our morphological operators. The mean underestimation ratio
for each condition with associated 95 % confidence intervals
is listed in Table 3. At both target numerosities, underestima-
tion varies with shape: Crosses lead to greater underestimation
than dots, and naughts lead to even greater underestimation.

Image blur as an alternatemodel of peripheral numerosity

Finally, to assess whether or not increased image blur in pe-
ripheral vision could also account for the results, I carried out
additional simulations in which I generated Bblur mongrels^
made by convolving the original dot arrays with Gaussian
filters with increasingly large spatial kernels. In these simula-
tions, I observed a clear effect of target numerosity on the
underestimation ratio—for numerosities of 30 or 60 dots, even
severe blur tended to yield underestimation ratios of approxi-
mately 90 %, while the same amount of blur applied to an
array of 90 dots yielded a much larger underestimation ratio
of approximately 15 % to 20 %. These effects were further
exacerbated when clustered dots were used because small
interdot distance could lead to arrays that were dramatically
underestimated due to the vast majority of dots being blurred
together. This discrepancy between an extreme effect of target
numerosity on Bblur mongrels^ and the lack of such an effect
in human observers suggests that reduced numerosity is likely
not the result of blur, which is consistent with arguments made
in prior reports.

Discussion

These simulations demonstrate that some (but not all) aspects
of peripheral numerosity perception emerge naturally from a
summary-statistic model of peripheral vision. This is consis-
tent with an emerging computational description of peripheral
vision in terms of the constraints imposed by a texture-like
statistical code for appearance (Rosenholtz, 2011) and also
with the proposal that perceived numerosity depends on
crowding and texture statistics in some settings. The model
is limited in scope, however. Although performance when
dots are placed randomly is quantitatively good, it fails to
reproduce the phenomenology associated with dot clustering.
This latter outcome complicates matters a good deal, because
the psychophysical impact of clustering (and related results
concerning element density) is an important piece of
supporting evidence for the putative relationships being ex-
plored here between peripheral vision, visual crowding, tex-
ture representations, and numerosity perception. I conclude by
discussing the implications of the limited success of the model
first, then consider how the model may be extended in a prin-
cipled fashion to account for a broader range of data.

To speak first of what the model can do, like prior reports
describing correspondences between summary-statistic codes
for appearance and the perception of peripheral targets, I find
that the basic phenomenology of a task that depends on pe-
ripheral vision is a natural consequence of using texture fea-
tures to describe discrete objects: Mongrels underestimate
numerosity. Critically, the observation that the same parameter
values that predict visual crowding performance across a range
of conditions also accounts for perceived numerosity in arrays
of randomly placed dots (Experiment 1) suggests that at least in
some cases, numerosity judgments are affected by the infor-
mation lost due to the imposition of an image-based texture
representation of image structure. An advantage of this model
is that it does not require an explicit description of items in an
array in terms of their position or Boccupancy^ (Allik &
Tuulmets, 1991), nor does it depend on special computations
that capture numerosity/density (Dakin et al., 2011). Instead,
the model depends on a general texture-based description of
appearance that can be applied to arbitrary inputs. This does
not preclude specific mechanisms for number processing that
operate at later stages of visual cognition, but does offer a
means of accounting for some properties of number perception

Table 3 Mean underestimation ratios as a function of element shape
and target numerosity

40 elements 60 elements

Dots 85.3 % [84 %, 86 %] 85.9 % [84 %, 87 %]

Crosses 76.8 % [73 %, 78 %] 78.0 % [75 %, 80 %]

Naughts 66.8 % [64 %, 70 %] 66.6 % [65 %, 68 %]

Values in brackets represent 95 % confidence intervals of the mean

Table 2 Mean underestimation ratios as a function of interelement distance (clustering) and target numerosity

20 elements 40 elements 60 elements

Small 80.2 % [75 %, 86 %] 81.0 % [79 %, 83 %] 84.4 % [82 %, 87 %]

Medium 84.6 % [72 %, 99 %] 83.3 % [77 %, 87 %] 83.0 % [80 %, 85 %]

Large 86.4 % [84 %, 89 %] 86.5 % [82 %, 88 %] 86.5 % [85 %, 89 %]

Values in brackets represent 95 % confidence intervals of the mean
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in terms of lower-level processes. This model also succeeds
where some simpler ones fail: Estimating numerosity after
blurring dot arrays has a tendency to lead either to catastrophic
amounts of underestimation as clustering or target numerosity
increases or to very little underestimation at all.

But what to make of the failure to reproduce the effects of
clustering? This obviously signals that this model (which has
been successful in many domains) fails to capture some feature
of peripheral vision or numerical cognition. That the model has
such a limit is not surprising, and delineating the boundaries of
the model’s ability to account for behavior is an important step
towards developing better theories of peripheral vision.
Though mongrel-like images of natural scenes have been de-
scribed as metameric stimuli that make it possible to assay
specific stages of processing along the ventral visual stream
(Freeman & Simoncelli, 2011), it is also the case that adult
observers are quite sensitive to discrepancies between natural
images and synthetic images made from them (Balas, 2006;
Wallis, Bethge, &Wichmann, 2016). Portilla–Simoncelli mon-
grels are thus known to not capture all the information ob-
servers have access to in peripheral vision, and here we are
likely seeing a consequence of that imperfect representation.
Applying full-field texture synthesis with multiple, overlap-
ping pooling regions (per Freeman & Simoncelli, 2011) may
be one way to extend the scope of the current model in a
principled fashion, and perhaps this may account for a wider
range of phenomena in this domain. Alternatively, it may also
be necessary to include a wider class of texture descriptors
(e.g., center-surround descriptors) to arrive at a more expres-
sive vocabulary for peripheral image structure. Of course, it
may also be the case that there are simply other mechanisms
at work here, and this is as far as summary statistics will take us
in terms of understanding how numerosity is perceived.

With regard to this latter possibility, however, I want to
emphasize the novel results included here regarding the im-
pact of shape on underestimation. To my knowledge, this
outcome has not been observed experimentally and contra-
dicts the overall characterization of number perception as be-
ing sufficiently abstract to be robust to manipulations of ele-
ment shape or orientation. Although the current model clearly
has limits, its moderate success also argues for its utility as a
means of generating novel hypotheses regarding peripheral
vision. My results suggest in part that we need a better model
of the periphery to account for some of the ways people per-
ceive number, but they also suggest that we can potentially
learn more about how peripheral vision in general (and num-
ber perception in particular) works by querying appearance-
based models such as this one. I conclude, therefore, that
although summary-statistic representations of the periphery
cannot currently get us all the way toward a comprehensive
account of peripheral numerosity, they offer enough explana-
tory power to be an important platform for further exploration
of peripheral visual function.
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