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Abstract Observers discriminated the numerical proportion of
two sets of elements (N = 9, 13, 33, and 65) that differed either
by color or orientation. According to the standard Thurstonian
approach, the accuracy of proportion discrimination is deter-
mined by irreducible noise in the nervous system that stochasti-
cally transforms the number of presented visual elements onto a
continuum of psychological states representing numerosity. As
an alternative to this customary approach, we propose a
Thurstonian-binomial model, which assumes discrete perceptual
states, each of which is associated with a certain visual element.
It is shown that the probabilityβwithwhich each visual element
can be noticed and registered by the perceptual system can ex-
plain data of numerical proportion discrimination at least as well
as the continuous Thurstonian–Gaussianmodel, and better, if the
greater parsimony of the Thurstonian-binomial model is taken
into account using AIC model selection. We conclude that
Gaussian and binomial models represent two different funda-
mental principles—internal noise vs. using only a fraction of
available information—which are both plausible descriptions
of visual perception.

Keywords Divided attention and inattention . Theoretical and
computational models .Mathmodeling

Numerous carefully performed experiments have shown that
many animals—such as bees (Gross et al., 2009), fish (Gomez-
Laplaza & Gerlai, 2013; Krusche, Uller, & Dicke, 2010;
Petrazzini, Agrillo, Piffer, & Bisazza, 2014; Piffer, Agrillo, &
Hyde, 2012), salamanders (Krusche et al., 2010), pigeons
(Emmerton&Renner, 2006), dogs (Ward&Smuts, 2007), chim-
panzees (Beran, Evans, & Harris, 2008), to say nothing about
human infants (Brannon&Van deWalle, 2001) or people whose
language lacks words for numbers beyond five (Pica, Lemer,
Izard, &Dehaene, 2004)—are capable of discriminating relative-
ly large quantities with remarkable precision, even when other
cues are not available and there is no opportunity or ability for
one-by-one counting. Considerable progress has been made in
understanding where and how the brain represents quantities,
including numerical proportions (Jacob, Vallentin, & Nieder,
2012). It was noted, for example, that the same cortical regions
participate in the encoding of both absolute quantities and quan-
tity ratios (proportions), and that single neurons in the prefrontal
and parietal cortices of various species are tuned to preferred
proportions (Nieder & Miller, 2004; Vallentin & Nieder, 2010).
Based on these and other observations, it was proposed that the
brain uses an analog, labeled-line code to represent the true nu-
merical values of quantity ratios (Jacob et al., 2012; Moskaleva
& Nieder, 2014; Vallentin, Jacob, & Nieder, 2012; Viswanathan
& Nieder, 2013). Although discrimination of nonsymbolic pro-
portions does not require verbal coding or propositional thinking,
an intuitive approximate number sense, which is believed to form
the basis of the perception of proportions, may serve as an ante-
cedent of higher numerical abilities (Halberda, Mazzocco, &
Feigenson, 2008). However, the last proposition is vigorously
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debated in the recent literature (Agrillo, Piffer, & Adriano, 2013;
Göbel, Watson, Lervåg, & Hulme, 2014).

If the observer’s task is to discriminate the relative proportion
of two distinct sets of randomly distributed elements, these two
sets can be separated in two principal ways. First, the sets occu-
pying two distinct areas can differ by their spatial or temporal
position (Allik & Tuulmets, 1991, 1993); second, they can be
spatially intermixed but distinguished by a certain visual attri-
bute, such as color, orientation (Honig & Matheson, 1995;
Honig & Stewart, 1993; Tokita & Ishiguchi, 2009, 2010), or
motion in two different directions (Raidvee, Averin,
Kreegipuu, & Allik, 2011). As it turned out, the ability to dis-
criminate numerical proportion depends heavily on the visual
attributes by which the two sets can be distinguished. Rather
surprisingly, human observers are extremely inaccurate in dis-
criminating proportion between two spatially overlapping sets of
randomly distributed elements moving in opposite directions
(Raidvee et al., 2011). In a wide range of set sizes, decisions
aboutmotion direction aremade as if only a very limited number
of elements (in some cases, less than 0.5 %) are taken into
account, even if themotion direction of each element in isolation
can be determinedwith near absolute certainty (Raidvee, Averin,
& Allik, 2012). In a similar task, where instead of motion direc-
tion the elements differed by color, observers were able to dis-
criminate the relative number of red and green dots as if they had
taken into account 69 elements from a total of 100 (Tokita &
Ishiguchi, 2009) provided that psychometric response curves are
interpreted in terms of dot counts used in the decision (Raidvee,
Averin, et al., 2012; Raidvee et al., 2011). However, the same
observers’ ability to discriminate between the relative number of
parallel and converging lines was much poorer, with a precision
equal to discrimination decisions made on the basis of no more
than two elements out of the 100 available (Tokita & Ishiguchi,
2009). This maymean that there is no single fixed brain circuitry
for the discrimination of numerical proportions. It is more likely
that differences in the discrimination of proportion based on
varying stimulus attributes share the same late stages in the
processing stream from the sensory code to the motor response.
Nevertheless, the brain’s representation of proportions must also
include sensory codes which are specific to different visual at-
tributes andwhich are probably located in different brain regions
(cf. Gebuis &Reynvoet, 2012, 2013; Tokita & Ishiguchi, 2012).

When the observer’s task is to discriminate between numer-
ical proportions, empirical psychometric functions are typically
approximated by a cumulative normal distribution, with a mean
(μ) roughly corresponding to the perceived level of balance
between the two judged quantities, andwith a standard deviation
(σ) characterizing the precision of numerosity discrimination.
The slope of the psychometric function can be characterized
by the inverse value of the standard deviation, 1/σ. According
to a customary approach, this imprecision σ is caused by a
spontaneous, irreducible noise in the nervous system that sto-
chastically transforms a fixed stimulus value into one of many

possible internal states. All these explanations, relating response
errors to internal noise, are variants of the Thurstonian psycho-
physical analysis (Thurstone, 1927a, b), according to which,
stimuli are projected onto a set of psychological states, thus
forming subjective images with positions varying randomly
among these states. The magnitude of this internal noise, the
discriminal dispersion, in Thurstonian terminology, is believed
to be quite straightforwardly related to the slope of the observed
psychometric function.

Because the normal or Gaussian distribution usually fits em-
pirical data rather well, it has been convenient to assume that the
internal noise can indeed be modeled by a continuum of internal
states with approximately normally distributed occurrence prob-
abilities. Because numerous stochastic distributions, including
discrete ones, closely approach the normal distribution, the as-
sumption about the distribution of internal noise remains hypo-
thetical in the least (cf. Neri, 2013). Furthermore, the assumption
of normally distributed internal noise is not very convincing
when the observer’s task is to estimate other than the magnitude
of continuous physical attributes such as weight, size, or lumi-
nance. For example, it is rather problematic to assume that, in the
numerosity discrimination task, discrete visual elements would
give rise to continuous subjective images. According to this
conception, even small quantities are projected onto a continu-
um of internal states resembling the axis of real numbers. For
instance, sometimes a set consisting of six visual elements may
be perceived as more numerous than another set consisting of
seven elements because the internal image of the first set has a
higher value (e.g., 6.6 perceptual units) than the internal image
of the second set (e.g., 6.5 perceptual units). This is not an
unlikely outcome, provided that the standard deviation of the
internal noise is equal to, for example, three or four elements.
This assumption, however, runs into problems when trying to
explain why there is no confusion when the number of elements
is less than four (Jevons, 1871), to say nothing about finding a
good explanation for what it really means to perceive one half or
two thirds of a dot or of any other geometrical element. In
addition, all Thurstonian–Gaussian models make an unrealistic
assumption that the observer’s decisions are based on all infor-
mation. It is much more realistic to assume that the capacity of
the visual system is strongly limited in the result of which only a
fraction of all information is used.

At least hypothetically, we can entertain a version of the
Thurstonian model in which internal states are represented not
by a continuum, but by a finite set of discrete states. Let us
suppose that a psychophysical function transforms each element
presented on the screen into a correspondingmental state, which
can take only two values: zero (Boff^) when the presence of the
element was not recorded, or one (Bon^) when the element was
noticed and recorded. Each element of a certain type is trans-
formed into its Bon^ state with a probability β. This general
definition leaves the probabilityβ open to various psychological
interpretations. For instance, the probability β can be interpreted
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as perceptual salience of a certain type of elements, but it could
also be considered as the level of attentiveness with which ele-
ments can be noticed and registered by the perceptual system.
We can call this the Thurstonian-binomial approach to discrim-
ination of numerical proportions.

If we accept these simple premises, then the derivation of
computational formulae for the perception of numerical propor-
tions is a matter of simple calculations. Let NA and NB be the
numbers of elements in two distinct sets of elements from
Type A and B (e.g., red vs. green), respectively. It is easy to
predict how many KA and KB elements from the total number
of presented elements NA and NB are on average taken into
account if there is the constant probability βi with which each
element of a certain type is counted (where i = 1, . . . , n, and n is
the number of different types of elements in the display; in this
case, n = 2). These two numbers, KA and KB, are obviously not
constants but two random variables, with the binomial distribu-
tions B(NA, β1) and B(NB, β2), respectively, whereas the two
binomial distributions are assumed mutually independent. The
expected values of these two binomially distributed variables are

E(KA) = NAβ1 and E(KB) = NBβ2. Observers’ decisions about
relative numerosity are assumed to be based on a comparison of
these two binomial values in a given trial: if KA > KB, the
observer answers that BType A is more numerous than Type
B.^ Otherwise, Type B is judged as more numerous than Type
A. In case of equality ofKA =KB, an unbiased observer answers
randomly, with each answer being equally probable. To know
how oftenKA is expected to be larger thanKB, the distribution of
the difference between these two binomially distributed vari-
ables is required.

The exact probability of responding BType A is more
numerous than Type B^ (denoted as BAnswer = A^) is
equal to the sum of the probability of KA being larger
than KB plus 0.5 times the probability of KA being
equal to KB, given certain probabilities β1 and β2 of
detecting Type A and Type B elements, as described
by the following formulae for the situations where
Type A is either less numerous than Type B (Eq. 1),
or more numerous than Type B (Eq. 2; for derivation,
consult Appendix 1):

P Answer ¼ AjNA < NBð Þ ¼ P KA > KB NA < NBjð Þ þ 0:5P KA ¼ KB NA < NBjð Þ

¼
X
k1¼0

NAXk1−1
k2¼0

NA
k1

� �
NB
k2

� �
β1

k1 1−β1ð ÞNA−k1 � β2
k2 1−β2ð ÞNB−k2

þ 0:5
X
k¼0

NA
NA
k

� � NB
k

� �
β1

k 1−β1ð ÞNA−k � β2
k 1−β2ð ÞNB−k

ð1Þ

P Answer ¼ AjNA > NBð Þ ¼ P KA > KB NA > NBjð Þ þ 0:5 P KA ¼ KB NA > NBjð Þ

¼ 1−
X
k1¼0

NBXk1−1
k2¼0

NB
k1

� �
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k2

� �
β2

k1 1−β2ð ÞNB−k1 � β1
k2 1−β1ð ÞNA−k2

− 0:5
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NB
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k

� � NB
k

� �
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k 1−β1ð ÞNA−k � β2
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where NA and NB are the total numbers of elements in the
Categories A and B, respectively (e.g., red vs. green); KA

and KB are the numbers of elements taken into account from
the total number of presented elements NA and NB, given
constant binomial probabilities β1 and β2 with which each
element of a certain type is counted.

If the expectations of KA and KB are sufficiently large, they
are approximately normally distributed (given that with large
N, binomial distribution approximates the Gaussian distribu-
tion) and we can use normal approximation. For this we need
to express the difference between NAβ1 −NBβ2 in z scores
(units of the standardized normal distribution):

z ¼ NAβ1−NBβ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NAβ1 1−β1ð Þ þ NBβ2 1−β2ð Þp : ð3Þ

If these two detecting probabilities are identical, β1 = β2,
then the psychometric function becomes symmetrical, and its
shape can be approximated by a normal cumulative distribu-
tion. In fact, there is a simple equation relating the standard
deviation σ of a cumulative normal distribution to the
counting probability β (see Appendix 2 for derivation):

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1−β
4Nβ

:

s
ð4Þ

(2)
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By a direct analogy, we can also construct the classical
Thurstonian model assuming that there is a continuum of inter-
nal states and the distribution of the internal noise is sufficiently
close to normal. However, it is important to notice that mechan-
ical approximation of empirical data with a single Gaussian
function is not necessarily an implementation of the
Thurstonian model. As with the previously described binomial
model, we need to start from a proposition that each stimulus
element has a stochastic internal representation, and all these
elementary representations are pooled to make a decision about
relative numerosity of elements. A formula describing the
Thurstonian normal or Gaussian model is as follows:

P NA≥NBð Þ ¼ Φ
μ1NA−μ2NBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NAσ1 þ NBσ2

p
� �

; ð5Þ

where P(NA ≥NB) is the probability with which elements from
Category A are judged to bemore numerous than elements from
the Category B (e.g., red vs. green); NA and NB are the total
numbers of elements in the Categories A and B, respectively; μ1
andμ2 are themean values, and σ1 and σ2 standard deviations of
stochastic internal representation of individual visual elements of
Type A and B, respectively; and Φ stands for the standard nor-
mal integral. Please notice that this formula does not coincide
with a simple cumulative normal approximation that is widely
used for the description of empirical psychometric functions. For
its derivation, it is useful to remember that the sum of two inde-
pendent, normally distributed random variables is normal, with
its mean being the sum of the two means, and its variance being
the sum of the two variances. Only when μ1 = μ2 and σ1 = σ2,
Eq. 5 reduces to the most simple case, Case V, in Thurstone’s
(1927a) own terminology.

The aim of this article is to compare the classical
Thurstonian–Gaussian model (Eq. 5) with the Thurstonian-
binomial model (Eqs. 1 and 2). We expect that, in terms of
model residuals, both models perform sufficiently well, espe-
cially because with large N, binomial distribution approxi-
mates the Gaussian distribution. When the greater parsimony
of Thurstonian-binomial model is taken into account (using,
for example, an AIC-based approach), it clearly surpasses the
Thurstonian–Gaussian model.

We expected the differences in the predictions from the two
models to be most pronounced in cases where the number of
trials, or in this case, number of sampled elements, is small.
This could happen, for example, when discriminating between
relatively small numbers of visual elements, or when a visual
attribute by which the two sets of elements can be distin-
guished is not salient enough, and thus the expected values
ofKA andKB are small. This expectation derives directly from
the fact that binomial distribution approaches the normal dis-
tribution when the number of trials—in this case, the number
of elements that are taken into account in the discrimination
process—increases.

For this reason we selected two visual attributes—color
and orientation—which are known to have considerably dif-
ferent capacities to distinguish between two sets of visual
elements (Tokita & Ishiguchi, 2009). We are also going to
discuss which of these two models is intuitively more plausi-
ble and provides a psychologically more reasonable
interpretation.

Method

Participants Four 20-year-old female observers (Agne, Dea,
Kristin, and Moonika), with normal or corrected-to-normal
vision, were asked to decide which of the two distinctive sets
of objects was more numerous.

Stimuli In two separate series, these two sets of objects were
distinguished either by color or by orientation. A schematic
view of the two types of stimulus configurations is depicted in
Figure 1. In the first series, a randomly distributed collection
of red and green circles was presented. The red and green
circles had equal luminance of about 23.5 cd/m2. To diminish
the impact of total red versus green area on responses, the size
of the circles was randomly varied in the range of 11 to 22 mi-
nutes of arc (the summed area being proportional to the num-
ber of elements). In the second series of experiments, a col-
lection of short, black line segments of luminance 0.3 cd/m2

and a tilt of 20°, either to the left or to the right of the vertical
direction, was presented. The width and length of a line
subtended 2' and 19', respectively (and the height of its vertical
projection was 16'). Both types of stimuli were presented
within an elliptical gray background, with a luminance of
54 cd/m2 and with lengths of horizontal and vertical axes of
8.86° and 8.70°, respectively. This elliptical background was
in the center of a rectangular area of luminance 64 cd/m2,
filling the rest of the screen. To avoid overlap between ele-
ments, each element was positioned within an invisible inhib-
itory area that prevented other elements from being closer than
22'. Each stimulus element had contrast sufficient to guarantee
its 100 % identification had it been presented in isolation. The
total number of objects, N, presented on the display was kept
constant through each experimental session and was equal to
N = 9, 13, 33, or 65 elements. During experimental sessions,
the relative proportion of Type A and Type B elements was
varied in random order. The total number of elements was
constant throughout each session. For the total number of
elements N = 9 and N = 13, the relative proportions of A
(red or tilted to the left) and B (green or tilted to the right)
element categories were varied with a change of one element
to the numerosity of both sets: from 1:8 to 8:1 and from 1:12
to 12:1, respectively. For the total number of elements N = 33,
the proportions 13:20, 14:19, 15:18, 16:17, and the reverse,
were used; for N = 65, the proportions 23:42, 26:39, 32:33,
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and the reverse, were used. The given proportions were cho-
sen in an attempt to yield psychometric functions covering
most of the range of response probabilities. The stimuli were
presented for 200 milliseconds, with 3 seconds for
responding. In the case of nonresponse, the trial was repeated
at a later, randomly selected position in the same series of
trials.

Every stimulus condition was replicated 100 times. The
choice probability of red circles was plotted as a function
of the proportion of red elements NA of the total number
of elements on the display N = NA + NB, where NB refers
to the number of green elements. Similarly, in the orien-
tation experiment, the probability of the choice of
leftward-tilted elements was measured as a function of
the proportion of leftward-tilted elements NA in the total
number of elements on the display N.

Part of the data presented here has been published previ-
ously (Raidvee, Põlder, & Allik, 2012) in a different modeling
approach.

ApparatusAll stimuli were presented at a viewing distance of
170 cm on the screen of a Mitsubishi Diamond Pro 2070SB
22-in. color monitor (the frame rate was 140 Hz, with a reso-
lution of 1024 × 768 pixels, subtending 12.9° horizontally and
9.8° vertically) with the help of a ViSaGe (Cambridge
Research Systems Ltd.) stimulus generator.

Statistical analysis The models described by Eqs. 1 and 2,
and 5, were fitted to the data by custom software written in
MATLAB. Nonlinear least squares optimization was used to
find the best fit parameter estimates. The 95 % parameter
confidence intervals were obtained by bootstrap resampling
of the model residuals (1,000 repetitions). The explained var-
iance was estimated by the degrees of freedom adjusted R2 of
the nonlinear regression fit. Corrected Akaike information cri-
terion (AICc; Hurwitsch & Tsai, 1989) was computed as AIC
= n ∙ ln(SSE/n) + 2K, and AICc = AIC + 2K∙(K + 1)/(n-K-1),
where n is the number of data points (in this experiment, varies
from six to 12); K is the number of model parameters + 1; and
SSE is sum of squared errors of the model.

Results

Figure 2 demonstrates empirical data (red circles) fitted
by theoretical psychometric functions: Thurstonian–
Gaussian model (black dotted curves) described by
Eq. 5, and Thurstonian-binomial model (black plus signs),
described jointly by Eqs. 1 and 2. The probability of say-
ing that the number of elements from Type A (red or tilted
to the right) is larger than Type B (green or tilted to the
left) is plotted against the proportion of NA elements: NA /
(NA + NB). Each panel corresponds to the total number of
elements (N = 9, 13, 33, and 65) separately for color and
orientation as two distinguishing attributes, pooled across
the four participants.

Because the majority of binomial predictions lay on the con-
tinuousGaussian psychometric functions it is expected that both
models, Gaussian and binomial, provide similarly close fit to
empirical data. Under the information theoretic approach, the
more parsimonious binomial model has an advantage.

Table 1 provides an overview of the best-fitting values for
both Thurstonian–Gaussian and Thurstonian-binomial
models. The most optimal parameter values were determined
by fitting the functions to empirical data by nonlinear least
squares. There are several points of principal interest in the
presented data, as follows.

Which of the two models provides a better fit? The differ-
ences between the twomodels in terms of R2 and AIC values are
outlined in Table 2. Judging by the values of adjusted R2s, both
models, the binomial and Gaussian, provided approximately
equally good fits to the collected response data. Averaging across
all conditions and observes the binomial function explained on
average 98.87 % of the observed variance. The Gaussian model
explained 98.62 % of the variance in exactly the same set of
response data. Thus, both models left on average only about
1.26 % of variance unexplained. Both models explained color
data about 1.3 % . . . 1.6 % better than orientation data. The
average AIC values were -46.65 and -48.22 for Thurstonian-
binomial and Thurstonian–Gaussian models, respectively. On
average, the AICs were smaller by 3.4 (for the binomial model)
and by 2.86 (for the Gaussian model) for color data compared to

Fig. 1 Schematic view of two types of stimuli used for the study of discrimination of numeric proportions
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the orientation data. The differences in terms of the adjusted R2

(values differ by 0.24 % in favor of the binomial model), and the
AIC statistics (difference of 1.95 in favor of the Gaussian model)
are small and imply that both models should receive full consid-
eration in the explanation of proportion discrimination data.

Because the number of fitted data points in this study
was small, we applied the corrected AIC, denoted as AICc
(Hurvich & Tsai, 1989) as it provides an unbiased esti-
mate of relative loss of information. It is shown that in
practice, AICc should always be preferred over AIC, for
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Fig. 2 Empirical choice probabilities (red circles) and predictions of the
Thurstonian–Gaussian (continuous curves) and Thurstonian-binomial
(black hollow squares) models separately for each subject: a. N = 9, b.
N = 13, c. N = 33, d. N = 65, and e. pooled across the four subjects.

Vertical lines denote the 95 % bootstrap confidence intervals for the
Thurstonian-binomial estimates of the response probabilities. (Color
figure online). %EV denotes the percentage of explained variance in
terms of (adjusted) R2
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AICc will asymptotically reach AIC as n gets large
(Burnham & Anderson, 2004). The average AICc values
were -44.35 and -35.22 for Thurstonian-binomial and
Thurstonian–Gaussian models, respectively. Thus, on av-
erage, the AICc statistics favored the binomial model by
-35.22 - (-44.35) = 9.13, which means that the relative
likelihood of the binomial model, compared to the

Gaussian model, is exp(9.13/2) = 96.1 (Burnham &
Anderson, 2002).

Because there is a simple formula (Eq. 4) on how to convert
binomial β into standard deviation of the normal distribution,
it was expected that in terms of the percentage of explained
variance, both models provided almost equally good fits to the
observed data. One obvious difference between these two
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Fig. 2 (continued)
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models is the number of the model’s free parameters. The
binomial model has only two free parameters, contrary to
the Gaussian model, which has four. For the sake of clarity
we have to notice that Eq. 5 cannot be reduced, unlike cus-
tomary practice, to two parameters, because the difference
between two means μ1 – μ2 and the sum of two standard
deviations σ1 + σ2 cannot be partialled out. Thus, the greater
parsimony of the binomial model compared to the Gaussian
model is irreducible.

What is the impact of the total number of elementsN? The
Thurstonian-binomial model is particularly transparent with
regard to the total number of elements. With the increase of
N from nine to 65, the best fitting value of βi drops approxi-
mately two times, irrespective of the distinguishing attribute,
be it color or orientation. Because the number of elements
increased more than 7 times and probability of counting βi

only 2 times, this means that the relative number of elements
taken into account does not remain constant. In the Gaussian
model, the relationship between the model’s free parameters
μi and σi and the total number of elements is not so evident. It
seems that for color, the mean values μi slightly decrease
whereas the standard deviations σi increase. For the orienta-
tion, there seems to be no simple pattern of changes.

However, it is obvious that the decrease of βi with the
increase on N is not a linear function. If we approximate the
observer’s responses simply with a simple cumulative normal
function, not with the function given in Eq. 5, then the

standard deviation of this function characterizes the minimal
number of elements (just noticeable difference, or JND) that
was required to tell the difference between numerical propor-
tions in 84.1 % of all trials. When we tested how JND is
related to the total number of elements N, it turned out that
the relationship is fairly linear. Many previous studies have
shown that the precision of discrimination of numerical pro-
portions decreases in about proportion to the total number of
elements (Allik & Tuulmets, 1991; Burgess & Barlow, 1983;
Emmerton & Renner, 2006; Halberda & Feigenson, 2008).
This means that Weber’s law JND/N ≈Constant held, approx-
imately at least, for this and many previous studies. Usually,
confirmation of Weber’s law is interpreted as evidence for a
universal measurement unit (Dehaene, Dehaene-Lambertz, &
Cohen, 1998; Merten & Nieder, 2009). Besides single cell
recordings (Nieder & Miller, 2004; Vallentin & Nieder,
2010), Weber’s law is also perceived as evidence for the ex-
istence of neurons tuned for numbers (Piazza, Izard, Pinel, Le
Bihan, & Dehaene, 2004; Ross, 2003). Because N was not
related, transparently at least, to the either model’s free param-
eters, βi in the binomial model and σi in the Gaussian model,
we are slightly cautious of attributing any critical significance
to the fact that the slope of the empirical psychometric func-
tion is very often a linear function of the total number of
elements N.

Which attribute—color or orientation—is perceptually
more salient? Irrespective of the total number of elements
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Table 1 The best-fitting parameter values and goodness of fit indices (percentages of explained variance as reflected by adjusted R2-s, and AIC-s) for
the Thurstonian-binomial and Thurstonian-Gaussian models

Thurstonian-Binomial model

N Subject β1 β1 95 % CI β2 β2 95 % CI adjusted R2 AICc

color

9 S1 0.749 0.682…0.827 0.632 0.567…0.690 99.376 -44.589

S2 0.934 0.900…0.950 0.850 0.827…0.876 99.740 -49.823

S3 0.894 0.872…0.902 0.863 0.852…0.883 99.871 -55.258

S4 0.804 0.786…0.825 0.750 0.731…0.766 99.944 -62.711

All 0.858 0.823…0.886 0.787 0.755…0.817 99.787 -51.946

13 S1 0.792 0.752…0.833 0.633 0.600…0.664 99.817 -87.937

S2 0.809 0.761…0.860 0.714 0.668…0.753 99.704 -82.323

S3 0.755 0.709…0.803 0.723 0.676…0.766 99.662 -80.881

S4 0.730 0.691…0.766 0.632 0.599…0.670 99.816 -87.843

All 0.763 0.732…0.793 0.668 0.641…0.694 99.881 -93.302

33 S1 0.650 0.581…0.706 0.507 0.452…0.557 98.522 -45.639

S2 0.641 0.588…0.696 0.546 0.497…0.592 98.936 -45.687

S3 0.626 0.583…0.666 0.610 0.570…0.651 99.324 -47.888

S4 0.487 0.421…0.556 0.416 0.351…0.475 97.736 -42.442

All 0.583 0.565…0.601 0.504 0.488…0.520 99.866 -63.305

65a S1 0.509 0.477…0.547 0.411 0.385…0.444 99.797 -36.793

S2 0.345 0.316…0.375 0.319 0.293…0.348 99.785 -37.28

S3 0.462 0.384…0.578 0.476 0.391…0.589 99.051 -27.157

S4 0.367 0.321…0.407 0.312 0.274…0.348 99.432 -31.878

All 0.381 0.356…0.406 0.342 0.320…0.365 99.867 -39.865

Thurstonian-Binomial model

N Subject β1 β1 95 % CI β2 β2 95 % CI adjusted R2 AICc

orientation

9 S1 0.514 0.501…0.526 0.514 0.501…0.526 99.971 -73.692

S2 0.462 0.412…0.516 0.396 0.354…0.448 99.361 -50.055

S3 0.686 0.646…0.719 0.608 0.578…0.645 99.807 -57.166

S4 0.480 0.399…0.575 0.437 0.368…0.525 98.341 -42.032

All 0.532 0.491…0.574 0.485 0.449…0.526 99.680 -54.582

13 S1 0.454 0.417…0.495 0.512 0.471…0.557 99.685 -84.798

S2 0.461 0.422…0.510 0.368 0.333…0.405 99.625 -84.154

S3 0.702 0.660…0.745 0.583 0.546…0.618 99.792 -88.610

S4 0.309 0.266…0.361 0.287 0.246…0.335 98.878 -72.694

All 0.454 0.433…0.476 0.415 0.396…0.435 99.896 -99.116

33 S1 0.291 0.214…0.381 0.285 0.211…0.376 93.115 -40.616

S2 0.281 0.224…0.339 0.252 0.199…0.307 96.079 -46.516

S3 0.429 0.384…0.472 0.383 0.340…0.422 98.752 -51.653

S4 0.196 0.139…0.260 0.141 0.095…0.198 91.264 -45.146

All 0.296 0.255…0.337 0.261 0.222…0.299 98.234 -52.676

65 S1 0.224 0.193…0.263 0.207 0.178…0.244 99.040 -35.201

S2 0.168 0.134…0.207 0.129 0.101…0.161 98.090 -33.872

S3 0.254 0.196…0.327 0.233 0.182…0.298 97.613 -29.192

S4 0.153 0.129…0.188 0.105 0.086…0.130 98.289 -35.973

All 0.193 0.170…0.222 0.160 0.140…0.185 99.228 -38.024
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N, color is always more salient attribute than orientation.
For all N elements distinguished by their color had higher
probability to be counted β1 or larger weight μi in an
internal representation. This is not surprising because it
was repeatedly shown that color is a more salient attribute
than form or orientation for the discrimination of numer-
ical proportions at least (Tokita & Ishiguchi, 2009, 2010).
Of course, not only numerosity discrimination has shown

that color is perceptually a stronger or more salient feature
than orientation for segmenting visual scenes and
searching for elements in it (Anderson, Heinke, &
Humphreys, 2010, 2011; Nothdurft, 1993; Zhuang &
Papathomas, 2011). Thus, it was not news that the ob-
servers were more accurate in the discrimination of pro-
portions when elements were discriminated by color rath-
er than by orientation. However, this indicates that exactly

Table 1 (continued)

Thurstonian-Gaussian model
N Subject μ1 μ1 95 % CI μ2 μ2 95 % CI σ1 σ1 95 % CI σ2 σ2 95 % CI adjusted R2 AICc
color
9 S1 0.895 0.830…1.000 0.767 0.682…0.878 0.054 0.000…0.523 0.594 0.165…0.926 99.141 -21.276

S2 0.995 0.939…1.000 0.917 0.849…0.941 0.000 0.000…0.264 0.250 0.000…0.304 99.669 -25.340
S3 1.000 0.935…1.000 0.953 0.896…0.968 0.296 0.193…0.327 0.000 0.000…0.086 99.875 -32.959
S4 0.932 0.897…1.000 0.879 0.835…0.955 0.075 0.000…0.227 0.444 0.248…0.614 99.925 -39.590
All 0.953 0.905…1.000 0.885 0.829…0.943 0.000 0.000…0.340 0.399 0.044…0.506 99.735 -27.668

13 S1 0.978 0.882…1.000 0.790 0.707…0.819 0.000 0.000…0.239 0.610 0.310…0.696 99.879 -87.132
S2 0.893 0.866…1.000 0.786 0.753…0.885 0.267 0.000…0.635 0.212 0.000…0.555 99.626 -75.176
S3 0.922 0.860…1.000 0.894 0.820…0.977 0.000 0.000…0.391 0.625 0.190…0.808 99.666 -75.302
S4 0.846 0.827…0.998 0.722 0.705…0.845 0.486 0.250…0.936 0.160 0.000…0.418 99.804 -82.769
All 0.904 0.857…1.000 0.796 0.746…0.892 0.123 0.000…0.338 0.475 0.219…0.733 99.862 -87.196

33 S1 0.648 0.592…0.804 0.502 0.464…0.620 0.488 0.000…0.876 0.022 0.000…0.420 98.005 -22.481
S2 0.768 0.583…0.849 0.658 0.491…0.728 0.000 0.000…0.464 0.709 0.060…0.861 98.913 -22.977
S3 0.873 0.772…0.989 0.843 0.745…0.951 0.953 0.309…1.198 0.000 0.000…0.487 99.411 -26.450
S4 0.605 0.568…0.803 0.510 0.477…0.678 0.720 0.000…1.349 0.053 0.000…0.918 96.745 -18.782
All 0.632 0.586…0.703 0.543 0.504…0.600 0.427 0.254…0.706 0.171 0.030…0.287 99.844 -41.304

65 S1 0.723 0.663…0.847 0.575 0.532…0.670 1.080 0.222…1.462 0.035 0.000…0.692 99.692 13.568
S2 0.575 0.564…0.699 0.530 0.520…0.643 0.739 0.355…1.669 0.513 0.131…1.065 99.573 14.682
S3 0.802 0.663…0.960 0.830 0.689…0.982 0.000 0.000…0.665 1.651 0.467…2.177 99.399 20.373
S4 0.851 0.610…0.849 0.711 0.515…0.713 2.681 0.897…2.715 0.000 0.000…0.410 99.793 12.339
All 0.590 0.578…0.686 0.529 0.517…0.613 0.559 0.266…1.289 0.555 0.263…1.075 99.721 12.416

Thurstonian-Gaussian model
N Subject μ1 μ1 95 % CI μ2 μ2 95 % CI σ1 σ1 95 % CI σ2 σ2 95 % CI adjusted R2 AIC
orientation
9 S1 0.725 0.719…0.736 0.725 0.718…0.736 0.550 0.490…0.630 0.550 0.490…0.633 99.971 -65.936

S2 0.690 0.655…0.776 0.589 0.543…0.699 0.621 0.362…1.045 0.576 0.304…1.155 99.059 -39.265
S3 0.842 0.813…0.965 0.732 0.703…0.823 0.571 0.348…0.984 0.209 0.017…0.392 99.807 -49.469
S4 0.778 0.680…0.997 0.676 0.589…0.859 1.212 0.546…2.578 0.254 0.000…0.673 98.227 -33.814
All 0.744 0.721…0.838 0.669 0.644…0.736 0.677 0.460…1.142 0.410 0.180…0.667 99.604 -45.191

13 S1 0.642 0.612…0.732 0.724 0.705…0.813 0.532 0.251…1.042 0.531 0.276…0.972 99.578 -79.573
S2 0.724 0.667…0.848 0.585 0.524…0.701 0.448 0.216…0.633 0.785 0.451…1.406 99.638 -82.855
S3 0.938 0.824…1.000 0.760 0.670…0.806 0.887 0.450…1.062 0.033 0.000…0.221 99.872 -92.751
S4 0.586 0.552…0.703 0.542 0.490…0.662 0.836 0.444…1.504 0.748 0.402…1.692 98.479 -67.341
All 0.695 0.682…0.721 0.633 0.617…0.664 0.645 0.521…0.826 0.582 0.442…0.786 99.886 -96.318

33 S1 0.662 0.530…0.846 0.638 0.513…0.822 2.178 0.000…3.449 0.000 0.000…2.819 92.078 -30.019
S2 0.639 0.539…0.799 0.563 0.480…0.706 2.032 0.000…3.484 0.000 0.000…2.430 95.870 -36.626
S3 0.682 0.566…0.771 0.601 0.503…0.681 1.234 0.348…1.491 0.000 0.000…0.585 98.947 -43.539
S4 0.626 0.580…0.844 0.450 0.404…0.609 1.648 0.000…5.168 1.361 0.000…4.815 86.950 -34.246
All 0.595 0.542…0.763 0.517 0.475…0.665 1.556 0.486…2.995 0.071 0.000…1.224 97.725 -42.962

65 S1 0.573 0.516…0.688 0.538 0.481…0.652 0.447 0.000…1.560 1.833 0.569…3.325 98.373 -19.197
S2 0.599 0.562…0.704 0.466 0.434…0.545 0.396 0.000…2.446 3.046 1.005…5.132 97.095 -18.514
S3 0.704 0.528…0.806 0.658 0.484…0.745 0.000 0.000…1.703 2.855 0.378…3.692 97.672 -14.069
S4 0.658 0.595…0.722 0.454 0.403…0.508 0.045 0.000…1.964 4.645 1.931…5.631 98.186 -22.780
All 0.613 0.553…0.677 0.519 0.465…0.576 0.051 0.000…0.620 3.053 1.808…3.773 99.622 -29.463

a In computing the AICc for both models in case of N = 65, the number of data points was taken to be equal to seven instead of six to avoid division by
zero
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the same proportion between the two sets of elements may
have quite different psychological significance (discrimi-
nability), dependent on the distinctive visual attribute.
Therefore, the recent discovery of neurons tuned to a
fixed proportion (Jacob et al., 2012; Nieder & Miller,
2004; Vallentin & Nieder, 2010) remains at least psycho-
logically ambiguous because there is no information
whether this corresponds to all available elements N, or
to a smaller sample of elements, actually represented in
the perceptual system. Thus, results of this study seem to
support those who do not believe in one universal code
for the discrimination of proportions irrespective of visual
attributes which determines segregation visual elements
into two categories (Gebuis & Reynvoet, 2012; Tokita &
Ishiguchi, 2012).

How symmetric are empirical response functions? If
empirical response functions are symmetrical, then there
will be no need for two sets of parameters characterizing

perception, each value of the distinguishing attributes,
green versus red and left tilt versus right tilt (β1 = β2,
μ1 = μ2, and σ1 = σ2). In reality, most of the empirical
responses were nearly symmetric, and the optimal pairs of
values are not very far from each other. Only in a minor-
ity of experimental series, and only for some of the par-
ticipants, the parameter values for the Type A elements
needed to be substantially different from the values for
the Type B elements. The average difference between β1

and β2 was about 7 % for color and 4 % for orientation.
Beside these probably erratic results, both models, the bi-
nomial and Gaussian, also described a systematic asymme-
try in a similar way. Table 1 shows that in 30 out of 32
cases, β1 ≥β2. This means, in terms of the binomial mod-
el, that red dots and bars tilted to the right were noticed
and counted with a slightly higher probability than were
green dots and bars tilted to the left. In the same propor-
tions, μ1 ≥ μ2, in the Gaussian model, red color and right-
ward orientation had slightly more weight than green color
and leftward orientation. Thus, a minor asymmetry in em-
pirical response functions originates from the fact Type A
that elements were perceived slightly differently from the
Type B elements.

Discussion

It has been noted that the idea behind Thurstonian models
is so irresistible that nobody has ever really tried to escape
it (Luce, 1977). Indeed, the Thurstonian–Gaussian model
has been the main tool for the description of empirically
collected psychometric functions. However, its frequent
use has led to numerous abuses. It has become perhaps
too easy to approximate the observer’s choice probabili-
ties with a cumulative normal distribution identifying its
mean and standard deviation that provide the best fit to
data. Very often, the obtained standard deviation is auto-
matically identified with a hypothetical sensory noise, for-
getting that to get an estimate of internal noise it is, in
even the simplest, Thurstonian Case V, necessary to di-
vide the standard deviation by a factor of √2 (Thurstone,
1927a). Perhaps the most typical mistake is to equate the
determined standard deviation with an unidentified gener-
al noise. There is no abstract general noise in perception.
The noise is always associated with particular operations
and originates from specific processes of how these ele-
ments are transformed and represented in a corresponding
set of perceptual states. For this very reason, both pro-
posed models, the binomial and Gaussian, start from the
description of what every single and identifiable visual
element could contribute. General noise can be nothing
but an aggregate of individually identifiable noises that
are pooled together by certain rules.

Table 2 Difference between the two models: the values of adjusted R2

and AIC of the Thurstonian–Gaussian model are subtracted from the
respective values for Thurstonian-binomial model.

Difference between two models

Orientation Color

N Subject Δ(adjusted R2) Δ(AICc) Δ(adjusted R2) Δ(AICc)

9 S1 0 -7.756 0.235 -23.313

S2 0.302 -10.790 0.071 -24.483

S3 0 -7.697 -0.004 -22.299

S4 0.114 -8.218 0.019 -23.121

All 0.076 -9.391 0.052 -24.278

13 S1 0.107 -5.225 -0.062 -0.805

S2 -0.013 -1.299 0.078 -7.147

S3 -0.08 4.141 -0.004 -5.579

S4 0.399 -5.353 0.012 -5.074

All 0.01 -2.798 0.019 -6.106

33 S1 1.037 -10.597 0.517 -23.158

S2 0.209 -9.890 0.023 -22.710

S3 -0.195 -8.114 -0.087 -21.438

S4 4.314 -10.900 0.991 -23.660

All 0.509 -9.714 0.022 -22.001

65a S1 0.667 -16.004 0.105 -50.361

S2 0.995 -15.358 0.212 -51.962

S3 -0.059 -15.123 -0.348 -47.530

S4 0.103 -13.193 -0.361 -44.217

All -0.394 -8.561 0.146 -52.281

a In computing the AICc for both models in case ofN = 65, the number of
data points was taken to be equal to seven instead of six to avoid division
by zero.
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An almost default assumption that each visual event
can be represented by a continuum of ordered sensory
states, occurrences of which are sufficiently well approx-
imated by a Gaussian function, is a result of deeply rooted
habits and computational convenience. The success of
Gaussian approximation is primarily due to lack of viable
alternatives. This study presented, we hope, a feasible
alternative, which describes internal representation, not
by a continuous and infinite Gaussian function, but with
a discrete binomial function. This replacement also means
that, instead of an infinite number of sensory states, it is
sufficient to have a single perceptual mechanism that has
two possible outcomes. Although single neurons can rep-
resent highly sophisticated information (Barlow, 1972,
2009), there is no pressure to identify these hypothetical
processing elements with any known neurophysiological
mechanisms. Indeed, if there are neurons sensitive to hu-
man faces and other complex attributes, it is also realistic
to suppose the existence of neurons, single or joined into
an assembly of neurons, which are able to record relative-
ly simple perceptual elements such as colored dots. For
the construction of the model, it was enough to assume
that these hypothetical perceptual mechanisms or autom-
atons are endowed with a single ability to register the
presence of displayed elements and remember to which
of the two types, A or B, they belonged. Because nothing
is perfect, these perceptual automatons make mistakes.
Each displayed element can be recorded and used in sub-
sequent processing with a more or less fixed probability
β. Although the internal representation of each displayed
element has only two values, on and off, the resulting
psychometric curve of discrimination has the shape that
is practically indiscriminable from that of cumulative nor-
mal distribution.

Like Gaussian models, the binomial models also have a
long and respectable history. This tradition is first associated
with attempts to determine efficiency of visual perception or,
in other words, the proportion out of all available information
that an observer is able to take into account in decision mak-
ing. In many situations, it is obvious that that the observer’s
decisions are not based on all available information. Only a
fraction of all available information appears to be exploited in
many perceptual judgments. For example, from all light quan-
ta that fall on the cornea, only every 10th or even every 100th
is actually used for visual processing (Jones, 1959). At a
higher level of processing, it is also typical that only a small
fraction of all available information is effectively used for
making perceptual decisions. Although, in some exceptional
cases, the estimated efficiency of the perceptual system
reaches the 50 % level (Barlow & Lal, 1980; Burgess,
Wagner, Jennings, & Barlow, 1981; Morgan, Raphael,
Tibber, & Dakin, 2015), it is not uncommon that only a few
percent from all available information are effectively used

(Raidvee et al., 2011; Simpson, Falkenberg, & Manahilov,
2003; Swensson & Judy, 1996). This study provided further
evidence that, under the most favorable conditions, efficiency
hardly surpasses the 70 % level for color and 40 % level for
orientation, and, in many cases, the observer is behaving as if
she can take into account no more than one fifth or even one
tenth of all elements. One relevant conclusion of this study is
that efficiency with which visual elements are counted is not a
fixed value. Different visual attributes, even in their most dis-
tinctive forms, lead to quite different counting probabilities. It
is also obvious that processing efficiency drops with the num-
ber of processed elements N, irrespective of the visual attri-
butes that are used to discriminate between the two sets.
Overall, the proposed binomial model can be conceptualized
as a counting model that gives the following simple meaning
to the parameter β—a probability with which any displayed
element is recorded and processed to make perceptual judg-
ments about numerical proportions.

Based on the str ict formal cri ter ia alone, the
Thurstonian-binomial model wins by greater parsimony
over the Thurstonian–Gaussian model. As we have al-
ready stressed, the formal equality of the goodness of fits
is not surprising, given a relatively simple link (see Eq. 4)
between the parameters of these two models. It is well
known that binomial function becomes practically insep-
arable from the normal distribution with the increase of
the number of binomial trials N. If only the total number
of elements is sufficiently small, it becomes possible to
distinguish between different distributions, even as close
as binomial and hypergeometric (Raidvee, Põlder, et al.,
2012). Thus, we expected to see some meaningful differ-
ences between binomial and Gaussian models, mainly
with the smallest number of used elements, N = 9. This
means that it was necessary to discriminate, for example,
five red dots from four green dots. Nevertheless, even in
the range close to absolute accuracy, which by the way
was established by one of the fathers of neoclassical eco-
nomics (Jevons, 1871), we did not observe that the pre-
dictions of the binomial model were much more accurate
than those of the Gaussian model.

If all preconceptions are left behind, a binomial model,
which among other things does not presume an infinite
continuum of perceptual states, looks as a rather promis-
ing explanation for how numerical proportions are judged.
It does not make unrealistic pledges and is intuitively
transparent. One obvious advantage of the binomial mod-
el before the Gaussian is to question whether the already-
processed elements are separated from the to-be-processed
elements, or is it possible that some of the elements are
processed more than once (Raidvee, Põlder, et al., 2012).
Perhaps the most salient benefit of the binomial model
over the Gaussian is that it is not committed to an unre-
alistic, and only occasionally tested, assumption that all
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available information is used for making perceptual
decisions.

Finally, there may be a good reason why it was so difficult
to distinguish predictions of the Gaussian model from the
predictions of the binomial model. Although their mathemat-
ical predictions are similar, and in limiting conditions even
identical, they are still expressing two fundamentally different
principles. The Gaussian model is based on the idea that every
measurement executed by the perceptual system is susceptible
to an unavoidable internal noise. In contrast, the binomial
model is implementing an equally basic idea that, unlike an
ideal observer, the real perceptual devices have capacity lim-
itations as a result of which perceptual decisions are always
made on the basis of a fraction of available information. These
two fundamental principles—internal noise and using only a
fraction of all information—are complementary, and possibly
both necessary, for the description of how perception operates
(Allik, Toom, Raidvee, Averin, & Kreegipuu, 2013). In this
perspective, the most demanding task is not to decide which of
the two models describes data best, but to devise new exper-
imental protocols that will be able to separate consequences of
both principles operating concurrently.
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Appendix 1

Let us have NA red dots and NB green dots, with N = NA + NB

being the total number of dots. Let β1 and β2 be the probabil-
ities of detecting a red dot and a green dot, respectively.

Then, the probability that more red than green dots would
be detected is:

P KA > KBð Þ ¼X
k1¼0

NAX
k2¼0

NB

I k1 > k2ð Þ NA

k1

� �
NB

k2

� �
β1

k1 1−β1ð ÞNA−k1 � β2
k2 1−β2ð ÞNB−k2 ¼

¼
X
k1¼0

NA Xk1−1ð Þ∧NB

k2¼0

NA

k1

� �
NB

k2

� �
β1

k1 1−β1ð ÞNA−k1 � β2
k2 1−β2ð ÞNB−k2 ;

ð6Þ
where α ˄ b = min {a, b}.The probability that equal numbers
of red and green dots get detected is the following:

P KA ¼ KBð Þ ¼
X NA∧NB

k¼0

NA

k

� �
NB

k

� �
β1

k 1−β1ð ÞNA−k � β2
k 1−β2ð ÞNB−k :

ð7Þ

From Eqs. 6 and 7 it follows that the probability that an
unbiased observer (i.e., an observer for whom the detection
probability is equal for both types of dots) detects more red
than green dots (given less red than green dots in the stimulus),
is:

P Answer ¼ A NA < NBjð Þ ¼ P KA > KB NA <j NBð Þ þ 0:5P KA ¼ KB NA < NBjð Þ

¼
X
k1¼0

NAXk1−1
k2¼0

NA

k1

� �
NB

k2

� �
β1

k1 1−β1ð ÞNA−k1 � β2
k2 1−β2ð ÞNB−k2

þ 0:5
X
k¼0

NA NA

k

� �
NB

k

� �
β1

k 1−β1ð ÞNA−k � β2
k 1−β2ð ÞNB−k :

Similarly (just replace BA^with BB^ and β1 with β2):

P Answer ¼ B
			NA > NB

� �
¼ P KB > KA

			NA > NB

� �
þ 0:5P KB ¼ KA

			NA > NB

� �

¼
X
k1¼0

NB Xk1−1
k2¼0

NB

k1

� �
NA

k2

� �
β2

k1 1−β2ð ÞNB−k1 � β1
k2 1−β1ð ÞNA−k2

þ 0:5
X
k¼0

NB NA

k

� �
NB

k

� �
β1

k 1−β1ð ÞNA−k � β2
k 1−β2ð ÞNB−k :
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Therefore, given more red dots than green dots in the stim-
ulus, the probability of more red than green dots being detect-
ed is:

P Answer ¼ A
			NA > NB

� �
¼ 1 − P Answer ¼ B

			NA > NB

� �

¼ 1−
X
k1¼0

NB Xk1−1
k2¼0

NB

k1

� �
NA

k2

� �
β2

k1 1−β2ð ÞNB−k1 � β1
k2 1−β1ð ÞNA−k2

− 0:5
X
k¼0

NB NA

k

� �
NB

k

� �
β1

k 1−β1ð ÞNA−k � β2
k 1−β2ð ÞNB−k :

Appendix 2

Let NA, NB be the numbers of red dots and green dots, respec-
tively, N = NA + NB, and β be the probability of taking one dot
(of any color) into account. Thus (given that NA is sufficiently
large), the number of red dots taken into account is approximate-
ly normally distributed, with a mean of β NA and a variance of
β(1-β)NA. The same applies for green dots (NA replaced by NB).
Given that the probabilities of taking each dot into account are
mutually independent, then the normal distributions (of the
numbers of red vs. green dots taken into account) are mutually
independent. The difference between two independent normal
distributions is normally distributed (with a variance equal to the
sum of the component variances). Hence, the estimate of the
difference between red and green dots (let this random variable
be denoted as X) is approximately normally distributed, with
mean β(NA-NB) and variance β(1-β)(NA+NB)=β(1-β)N. Thus,

X∼N β NA−NBð Þ;β 1−βð ÞNð Þ: ð8Þ

An observer judges the red dots to be more numerous
if X > 0, so, the probability that an observer estimates the
red dots to be more numerous compared to the green dots
is approximately

P X>0ð Þ ¼ P
X−β NA−NBð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β 1−βð ÞNp >
−β NA−NBð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β 1−βð ÞNp
 !

¼ P −
X−β NA−NBð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β 1−βð ÞNp <
β NA−NBð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β 1−βð ÞNp

 !
¼ Φ

β NA−NBð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β 1−βð ÞNp

 !
;

ð9Þ

where Φ is the distribution function of standard normal distri-
bution (i.e., withmean 0 and variance 1). Equation 9 is derived
from the property that a normally distributed random variable
minus its mean and divided by its standard deviation has stan-
dard normal distribution. Hence,

X−β NA−NBð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β 1−βð ÞNp ∼N 0; 1ð Þ;− X−β NA−NBð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β 1−βð ÞNp ∼N 0; 1ð Þ: ð10Þ

Next, let

pA :¼ NA

N
; pB :¼ NB

N
: ð11Þ

Hence, NA −NB =N(2pA − 1) and

Φ
β NA−NBð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β 1−βð ÞNp

 !
¼ Φ

ffiffiffiffiffiffiffiffiffi
βN
1−β

s
2pA−1ð Þ

 !

¼ Φ c 2pA−1ð Þð Þ; ð12Þ

where

c :¼
ffiffiffiffiffiffiffiffiffi
βN
1−β

s
: ð13Þ

Let Y~N (0,1) be a standard normally distributed random
variable. Thus,

P X > 0ð Þ ¼ Φ c 2pA−1ð Þð Þ ¼ P Y ≤c2 pA−
1

2

� �� �

¼ P
Y
2c

þ 1

2
≤pA

� �
¼ P Z ≤pAð Þ ;

ð14Þ

where

Z :¼ Y
2c

þ 1

2
∼N 1

2
;

1

2c

� �2
 !

: ð15Þ

Here, we use the property that normality is preserved
under linear transformations (only the values of mean
and variance are changed). Hence, the mean of the
sought-after random variable is 1

2 and the standard devi-
ation is

σ β;Nð Þ :¼ 1

2c
¼

ffiffiffiffiffiffiffiffiffiffi
1−β
4βN

s
: ð16Þ

For example,

σ 0:1; 33ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:9

4⋅0:1⋅0:33

r
¼

ffiffiffiffiffiffiffiffiffi
9

4⋅33

r
≈ 0:2611: ð17Þ

The variance is inversely related to β.
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