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Abstract If attention is distributed among multiple moving
objects, how does this divided attention affect the temporal
process for detecting a specific target motion? Well-trained
observers in three experiments monitored ongoing random
motions of multiple objects, trying to rapidly detect non-
random target motions. Response time hazard rates revealed
a simple lawful structure of the detection processes. Target
detection rates (hazard rates, in bits/s) were inversely propor-
tional to the number of observed objects. Detection rates at
any response time and in any condition equaled a product of
two parallel (functionally independent and concurrent) visual
processes: visual awareness and motion integration. The rate
of visual awareness was inversely proportional to Set Size (n
= 1–12), constant over time, and invariant with integrated
motion information. Thus, a single rate parameter, indicating
a constant channel capacity of visual awareness, described
detection rates over a wide range of conditions and response
times. During an initial interval of roughly 0.5 s, detection
rates increased proportionally with the duration and length
of motion; but after this initial integration, detection rates were
constant, independent of the time the target remained unde-
tected. The relationship between the quantity of visual infor-
mation and detection rates was simpler than anticipated by

contemporary theories of attention, perception, and
performance.
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Introduction

Human attention is often spread over multiple streams of in-
formation — multiple objects and events in overlapping tem-
poral patterns. Natural scenarios often demand attention to
multiple tasks. When attention is divided this way, perception
may be slower and observed objects less well resolved
(Broadbent, 1958; Cherry, 1953; Eriksen & Johnson, 1964).
Such results have indicated that attention has Blimited
capacity.^

Two general questions motivated the present study: If vi-
sual attention and perception have limited capacity, then how
is this capacity distributed over multiple moving objects?
How does the spread of attention affect temporal processes
for detecting a target motion? These questions arose in a pro-
ject to identify risks of information loss by human observers
when multiple pieces of salient information compete for
attention.

We investigated dynamic scenarios with (a) multiple mov-
ing objects, (b) no involvement of visual memory, and (c)
continuous observation intervals in which target information
occurs unpredictably. These task conditions distinguished the
present study from many other laboratory studies of related
issues, but these conditions are not ecologically unusual.
Experiments with discrete trials and predictable and distinct
onsets add non-visual information about stimulus onset times.
In contrast, visual target information here depended entirely
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on perceived differences between the target and background
motion paths.

Target motions in this task were indistinguishable from the
background at any single time or place. The target trajectory
was an approximately linear path toward a distinct moving
Bprey^ object. Before onset of the target motion, all of the
displayed objects moved randomly; any one could initiate a
target motion. Target motions occurred at multiple, unpredict-
able random times during a continuous observation period of
several minutes. The main independent variable was the Set
Size (n) of randomly moving objects. The dependent variable
was the speed of the observer’s detection responses.

Mean response times (RTs) increased linearly with Set
Size, as shown in Fig. 2a. This result is easily recognized as
a common characteristic of visual search (see Eckstein, 2011;
Logan, 2004; Wolfe & Horowitz, 2004). A linear relation
between Set Size and mean RT is not surprising, although a
nonlinear effect might have been predicted: A limited span of
apprehension (e.g., Fisher, 1984; Luck & Vogel, 1997; Miller,
1956; Pylyshyn & Storm, 1988) might encompass a small set
of objects (e.g., n = 2) while larger sets (e.g., n = 6 or 8) might
not be perceived simultaneously, requiring serial search. The
obtained Set Size effect did not support this limited span hy-
pothesis, but the linear relation was not surprising.

One might wonder, however, whether the RT distributions
offer a fuller picture of the temporal processes. Indeed, the RTs
were highly variable, with standard deviations for each ob-
server in each condition larger than the effect of Set Size on
mean RT. Accordingly, we began exploratory analyses of the
RT distributions, with special interest in the hazard functions.
(The nature and rationale of hazard rate analyses are described
below.) Surprisingly, the hazard rates revealed an unexpected-
ly simple structure of the visual processes. That finding is the
focus of this report.

This study was not designed to test specific hypotheses.
Instead, we sought to clarify visual capacity limitations in
perceiving changing patterns of multiple moving objects.
The Set Size of observed objects determined both the quantity
of spatiotemporal information and the observer’s uncertainty
about which object might become a target for detection.

Overview of experiments

The principal independent variable was the number of ran-
domly moving objects the observer had to monitor to detect
a non-random target motion. Across experiments, Set Size, n,
varied from 1–12 objects. The principal dependent variable
was the RT for detecting a target motion. Rather than the usual
parameters for RT distributions, however, the detection pro-
cess was revealed more clearly by the response time hazard
rates.

Experiment 1 varied only the Set Size (n = 2, 4, 6, 8) of
moving objects monitored by the observers. Experiment 2
tested the generality of the results by investigating the effects
of Motion Speed and the effects of Set Sizes of n = 1 and 12 as
well as 4. Experiment 3 tested the visual role of a distinct
Bprey^ object by comparing performance both with and with-
out this visible target destination.

General method

Displays of multiple moving objects Visual information
consisted of multiple randomly moving objects. Prior to the
onset of a target motion (described below), display informa-
tion and target uncertainty were proportional to the number of
moving objects.

The objects were high-contrast solid black circles, 3.53-
mm diameter, and 17 arcmin at a viewing distance of 72 cm.
These objects (1.4 cd/m2) appeared on a medium grey back-
ground (102 cd/m2). A Set Size of n = {1, 2, 4, 6, 8, 12} such
objects was randomly distributed within a 26.5 × 26.5 cm
(20.1 × 20.1° visual angle) area marked by visible boundary
lines. To reduce local clusters, each dot was initially posi-
tioned near the center of a randomly selected cell in a 5 × 5
imaginary grid, with only one dot per cell. Visual fixation was
unconstrained, and there was no fixation point. Observers
controlled viewing distance by aligning head position with
the table supporting the video monitor (ViewSonic VX924,
60 Hz, 19 in., 1,280 × 1,024 pixels). Displays and timing were
controlled by a Mac Mini computer and by Matlab and
PsychToolbox software.

Prior to the onset of a non-random target motion, each of
the objects moved independently in randomly changing direc-
tions. The probability of a direction change was 0.5 in each
successive frame. A new direction was given by a vector sum
of the previous direction plus a random direction uniformly
distributed in the interval 36–324°, weighted by a Bwiggle^
parameter. (The formula for direction change was
NewDirection = OldDirection + w • rand, where rand =
{36°, 72°, 108°,…324°}, and the wiggle parameter, w, was
w = 0.2.) In Experiments 1 and 3, the random motion speed
was 2 pixels/frame = 2.79°/s; and in Experiment 2, the speed
was varied— 1, 2, or 3 pixels/frame = 1.40, 2.79, or 4.19°/s.

Moving target detection task The observers’ task was to
rapidly detect a salient target motion directed in Bpursuit^
toward a visibly designated Bprey^ object. The Bprey^ was a
visibly distinct bright red circle (53 cd/m2) of the same size as
the other moving objects. The prey object also moved, though
slowly and with less random direction change than the other
randomly moving objects. The speed of the prey object was
1.40°/s in all three experiments, and the random Bwiggle^
parameter for the prey was w = 0.03. The prey object was
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clearly visible throughout the ongoing observation period.
Observers reported using the prey as a reference point for
the motions of other objects, to aid detection of a target motion
toward the prey. The trajectory of target motion was approx-
imately linear and directly toward the position of the red prey
object, changing in direction with the moving prey, with in-
creasing directional change as the pursuer was closer to the
prey. Figure 1 illustrates this target detection task.

Target (pursuit) motions occurred unpredictably, with a
constant probability in each 60 Hz frame, unless (a) an unde-
tected target motion was already underway, (b) a detection
response (including false alarms) had occurred within the pre-
ceding 0.2 s, or (c) the pursuit object was within 96 pixels (=8
object diameters) of the prey. Time between successive target
motions was highly variable (exponentially distributed); and
the number of targets within a given 3 min observation period
was also variable, averaging 18 targets per min.

A detection response terminated the pursuit motion,
causing resumption of the object’s random motion. If the
observer failed to detect the pursuit before it was within
1.5 object diameters (18 pixels) of the red prey, then this
was recorded as a missed target motion. Over all condi-
tions and observers in Experiment 1, 0.9 % of the target
motions were missed, ranging from 0.1 % with set size 2
to 1.7 % with set size 8. If the observer failed to detect the
target motion before it reached the prey, then the pursuing
object jumped immediately to its original position at the
start of the 3- or 4-min observation period. This event was
quite visible, and gave immediate feedback that the target
had been missed.

Performance was evaluated mainly by RTs for correct de-
tections (hits), measured from the onset of target motion to

depression of the keyboard spacebar. Frequencies of hits,
misses, and false alarmswere also evaluated. Responses when
there was no target motion were recorded as false alarms,
though RTs for the false alarms were undefined. RTs in the
interval 200–300 ms were also counted as false alarms. (RTs
< 200 ms were removed from analysis, in order to eliminate
inadvertent response chains caused by observers failing to
release the spacebar or pressing it repeatedly.) Also, with no
explicit ‘NO’ response, frequencies of Bcorrect rejections^
were undefined. A choice task would have provided an accu-
racy measure; but pilot work found that multiple alternative
responses to multiple alternative targets (two sets of pursuit
objects with different colors) yielded very unreliable RTs and
accuracies. A primary aim was to measure detection speed, so
the present single-response task was found to be best for our
purposes.

Procedures Observers practiced for at least three sessions,
until their response times were not decreasing. All observers
understood the purpose of the experiments.

Observers responded by pressing the spacebar on the
computer keyboard as quickly as possible to the onset of a
target motion. The objective was to minimize RTs, num-
bers of missed detections, and false alarms. The observers
understood that the aim was to estimate reliable and valid
measures of detection times, and that occasional misses
and false alarms were inevitable but should be very infre-
quent relative to the hits. Misses and false alarms varied
slightly between conditions and observers, but the magni-
tude and variations of these errors were insufficient to
alter interpretation of the detection RTs.

Fig. 1 Schematic illustration of the target motion detection task. Prior to
a target motion, all the black objects moved randomly and independently.
At unpredictable random times during a continuous observation interval,
the motion directions of one object changed from random to Bpursuit^
toward the red Bprey^ object. This prey object was also moving but (in

most conditions) more slowly and with less direction change than the
other moving objects. The Set Size (n = 1–12) of randomly moving
objects was an independent variable; and the dependent variable was
the RT for detecting the non-random target motion
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Experiment 1 involved 12 sessions, each consisting of four
3-min observation periods, one for each of the four set size (n
= 2, 4, 6, 8) conditions. Each observer started the computer
program for that session. There was a brief break between
each observation period while the observer recorded on paper
the average RT and numbers of false alarms and misses for
that condition. The observer then initiated the next observa-
tion period when he or she was ready. The computer random-
ized the order of the four set size conditions within each ses-
sion. Each such session required about 20–25 min. Observers
often ran two sessions during the same visit to the laboratory,
typically with at least a 5-min break between sessions. The
number of target motions in each observation period was var-
iable, averaging 55 target motions. Thus, the number of target
motions for each observer in each set size condition averaged
about 663 trials for the 12 sessions. The mean RT for each
session, observer, and condition was sufficiently stable to jus-
tify pooling data across sessions for each condition and
observer.

Procedures for Experiments 2 and 3 were essentially the
same. Changes in procedures are noted below for those
experiments.

Observers The observers included the authors, a post-
doctoral researcher at Vanderbilt with previous experi-
ence in studies of motion perception, and an undergrad-
uate research assistant. The age range was from approx-
imately 20–73 years. Performance was similar across
observers; though the two youngest observers tended
to be slightly faster. Three were male and two were
female. All had normal or corrected-to-normal acuities.
All were fully informed about the nature and purposes
of the experiments.

Five observers served in Experiment 1, four in
Experiment 2, and three in Experiment 3. JL, DM, and
KD served in all experiments, AS in Experiments 1 and 2,
and BD in Experiment 1.

Hazard rates Our initial analyses relied on the mean RT. The
RT distributions for each observer in each condition were
highly variable, however, and this motivated additional anal-
yses of temporal structure the RT distributions. Specifically,
hazard functions were found to provide a detailed and clear
picture of the temporal process.

The hazard rate at any time t is based on the rate of
change in the survival function of not-yet-detected tar-
gets. The present analysis was adapted from previous
work especially by Townsend and colleagues (e.g.,
Godwin et al ., 2015; Houpt & Townsend, 2012;
Townsend, 1990; Townsend & Ashby, 1983; Townsend
& Eidels, 2011; Townsend & Wenger, 2004b; Wenger &
Gibson, 2004).

If f(t) is a probability density, and F(t) is the cumulative
distribution function (CDF), then the survival function is S(t)
= 1 – F(t), and the hazard rate, h(t), is

h tð Þ ¼ f tð Þ=S tð Þ: ð1Þ

The integrated hazard function, H(t), is useful and easily
computed:1

H tð Þ ¼
Z t

0
h t0ð Þdt0 ¼ −logS tð Þ: ð2Þ

This integrated function, H(t), is simply a logarithmic
transform of the cumulative distribution function, F(t),
preserving the ordinal structure of the RT distribution.

The base of the logarithm is arbitrary, affecting only the
numerical scale. The natural log, ln(x), is conventional in the
literature, but for heuristic reasons and terminology, we
adopted log2: H(t) = –log2S(t).

2 Thus, the units of H(t) are
given here in bits. The median RT is the time t at which H(t)
= 1.0; H(t) = 2.0 is at the 25th percentile of the survivor
function, and so forth. The hazard rate, h(t), is the temporal
derivative ofH(t), with units of bits/s. The reciprocal, 1/h(t), in
s/bit, is the half-life of targets not yet detected at time t.

Analyses of RT data often focus on probability distri-
butions as the principal objects of interest, but the hazard
functions can provide more direct information about the
temporal processes (Bloxom, 1984; Godwin et al., 2015;
Luce, 1986; Townsend, 1990; Townsend & Eidels, 2011;
Townsend & Nozawa, 1995; Wenger & Gibson, 2004).
Importantly, the form of a hazard function can be invari-
ant with substantial changes in the RT mean and variance.
The present results illustrate that fact.

Hazard functions, both h(t) and H(t), are ratio-scaled
measures of detection rates at a given point in time.
Hazard rates, h(t), are based on the differential structure
rather than the RT probability distributions as such (see
Townsend, 1992). Hazard functions are non-parametric
descriptions requiring no assumptions about the RT prob-
ability distributions or the underlying stochastic process.
These ratio-scaled measures were essential to the findings
of this study.

1 This formula exemplifies an elementary integration formula: ∫ f(t)/(1–
F(t)) dt = – log (1–F(t)) + C. Here, C = 0, since F(0) = 0. As an illustra-
tion, imagine that the detection process involves randomly drawing balls
from an urn, replacing the ball after each selection, and continuing until a
target ball is found. If p is the probability of detecting the target ball on
each draw, and if P(N) is the probability of finding the target ball withinN
draws or fewer, then the probability of not finding the target within N
draws, the survival function, is 1–P(N) = (1–p)N. Thus, log (1–P(N)) = N
log (1–p).
2 log2(x) = ln(x)/ln(2) = (1.4427) ln(x) = log10(x)/log10(2) = (3.3219)
log10(x).
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The momentary hazard rate, h(t), measures the slope or
rate of change in H(t) at time t; and it is not determined
by the value of H(t) at that time. H(t) is scaled in bits, and
h(t) is scaled in bits/s. Functional differences between the
integrated and momentary hazard functions, H(t) and h(t),
are examined in Appendix 1.

Unfortunately, estimates of momentary hazard rates are
often unreliable, with local irregularities amplified especially
as response frequencies diminish toward the lower tail of the
survivor function (see Cechile, 2003; Luce, 1986; Houpt &
Townsend, 2012; Van Zandt, 2000). The integrated, H(t),
functions can bypass aspects of this estimation problem (see
Houpt & Townsend, 2012;Wenger & Gibson, 2004). Relative
values of hazard functions for two conditions can be quanti-
fied by differences in their log H(t) values. Wenger and
Gibson (2004) provide an empirical demonstration of the
power of this method; and Houpt and Townsend (2012) de-
velop basic statistical analyses. Comparisons of the log H(t)
functions were also used to evaluate the effects of Set Size in
Experiment 1 of the present study, as shown in Appendix 1.
Limitations of analyses of the integrated functions,H(t), how-
ever, led us to focus instead on the momentary hazard rates,
h(t). The structure and variations of the temporal process were
described more clearly in the momentary hazard rates, h(t),
than in the integrated functions, H(t). Appendix 1 examines
differences between these two analytic approaches, and jus-
tifies reliance on the momentary hazard rates.

Descriptive and statistical analyses of hazard rates in this
study developed through exploratory analyses with several
computational methods.3 Consistent results were obtained by
estimating slopes of the integrated hazard functions at five
quantiles — corresponding to 20 % intervals of the CDF of
RTs, where F(t) = {0.10, 0.30, 0.50, 0.70, 0.90}. Thus, the
estimated momentary hazard rate was obtained from the dif-
ference in values of the integrated functionH(t) relative to the
difference in RTs at two points where F(t) and S(t) changed by
20 %. Specifically, the estimated hazard rate at time t was h(t)
= [H(t+Δt) – H(t)]/Δt, where t and t+Δt were the RTs at
successive 20 % differences in the distribution function F(t)
—10–30 %, 30–50 %, 50–70 %, and 70–90 %. The values of

H(t) and H(t+Δt) were specified and equal across conditions,
but the t and Δt values were empirical and differed between
conditions. Evaluating H(t) at five quantiles yielded four in-
dependent estimates of the local slopes and hazard rates, h(t).4

Experiment 1

The purpose was to evaluate the effect of Set Size on target
detection speed. The independent variable was Set Size, n =
{2, 4, 6, 8}.

Prior to onset of the target motion, the task demanded at-
tention to the entire set of nmoving objects, although no overt
behavioral response was needed. Perception was measured by
the speeds with which observers detected a target motion by
one of the objects — a change from random to non-random
pursuit toward the moving prey, which occurred at unpredict-
able times. These two aspects of visual information — the
multi-object random motion background and the non-
random individual target motion— jointly influenced the de-
tection responses.

Results and discussion of Experiment 1

Analyses of these RT data developed through exploratory
analyses. The principal results were discovered, not predicted
or anticipated when data analyses began. The hazard rates
turned out to be essential.

Mean RTs and relative frequencies of hits, misses, and false
alarms were examined for each session, and were found to be
consistent across sessions. Accordingly, these data were com-
bined across the 12 sessions for each observer in each Set Size
condition.

Data for individual observers were qualitatively and quan-
titatively similar. For simplicity, most of the following graphs
describe responses combined over all observers, as if from a
single observer. The data for individual observers were also
examined numerically, graphically, and statistically.
Individual observers differed only in quantitative details, with
no apparent significant qualitative differences. Naturally, the
spreads of combined distributions were slightly greater than
those for individual observers, but this increased spread was
small. The combined distributions were more stable and were
quite representative of the individual results. Descriptive
models and statistical tests were applied to the data of individ-
ual observers as well as the combined data.

3 Exploratory analyses compared the effects of Set Size at the same time
bins and at the same CDF quantiles for different conditions. Analyses
with the same time bins for different conditions were all hampered by
large differences in response frequencies for different Set Size conditions
in specified time bins. When response frequencies were small, estimated
hazard rates were unreliable. Estimating the slopes of the integrated H(t)
functions at specific quantiles of the CDF yielded the clearest compari-
sons across Set Size conditions. These quantiles also preserved informa-
tion about the medians and spreads of the distributions.

Choosing the intervals between successive quantiles involves a
tradeoff between the number of data points and the number of responses
in each quantile interval— i.e., between temporal resolution and reliabil-
ity of the local estimates. For the present data, the most consistent results
seemed to be obtained with 20% quantile differences. This ad hoc choice
was based on the present data, and might not generalize to other data.

4 Each estimate of the local slope, h(t) = ΔH(t)/Δt, is independent of the
estimates at other points because each is computed from a different set of
responses. The estimated hazard rate, or slope, is determined by the de-
nominator, Δt — by the duration containing the next 20 % of the
responses.
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Means and standard deviations Figure 2a shows the mean
RTs and standard deviations (SDs) of the detection hits for
each observer in each condition. The error bars are SDs, not
standard errors. With an average of 663 responses for each of
the displayed means, standard errors were roughly 4 % of
these SDs. Thus, the effect of Set Size was highly significant,
for each of the individual observers as well as across
observers. The linear increase of mean RT with Set Size was
620 + 60 ms/item (r = 0.998). The average F-ratio for the five
individual observers was F(3/dfave) = 162.2, where the
average dfave= 2622. As may be seen, the rank-orders of mean
RTs for the four Set Size conditions were the same for each of
the five observers.

The linear relation between Set Size and mean RT, how-
ever, is an insufficient description of the detection process.
First, the SDs were large. Detection times were quite variable
from one trial to the next, even for the same observer and same
condition. The SDs averaged 31 % of the mean RT; and the
slope of the increase in SDwith Set Size was similar to that for
the mean RTs: 58 + 47 ms/item (based on the RMS SDs for
each observer and condition). This variability was partly
attributable to the displayed information, with random spatial
patterns and motions, but it also reflects variability of the
detection processes.

Second, because the spread of the RT distributions
increased with Set Size, the slope of the relation between
Set Size and RT depends on the detection probability
criterion (a quantile of the CDF of RTs). Figure 2b illus-
trates the functional importance of the probability-of-
detection criterion. Detection times/item increased more
than fivefold for a 90 % detection criterion as compared
to a 10 % detection criterion. (These regression lines
were computed on the combined RT distributions of all
observers.)

Table 1 gives the frequencies of hits, misses, and false
alarms, and the mean RT for hits for each observer in each
Set Size condition. Misses were infrequent, occurring for
1 % of the target motions. False alarms accounted for 2.5–
3 % of the overt detection responses, and were slightly
more frequent in the Set Size 2 condition with the fastest
detection responses.

Hazard rates Effects of Set Size on the RT distributions may
be described by integrated hazard functions, H(t) = –
log2(S(t)). These functions are shown in Fig. 3a. The unit of
measure on the vertical axis is bits, where 1 bit corresponds to
a 50 % reduction in the number of undetected target motions;
and the median RT is the value of t where H(t) = 1.0. The
integrated hazard functions in Fig. 3a were computed from the
combined responses of all observers. The data points corre-
spond to the 90th, 70th, 50th, 30th, and 10th percentiles of the
survivor functions, S(t), for the combined responses from all
observers.

Salient features of these integrated functions are their
slopes — which decreased as n increased. These inte-
grated functions were roughly linear, but initially accele-
rated during the fastest RTs, at the lower left of the
curve. The slopes of the nearly linear segments of these
functions are approximately proportional to 1/n. Thus,
most of the data in Fig. 3a are consistent with a single
parameter!

Slopes of the Hn(t) integrated functions correspond to haz-
ard rates, hn(t), in bits/s. These hazard rates, hn(t), were esti-
mated by the ratios of differences in the vertical and horizontal
axes ofH(t): h(ti) = [H(ti+1) –H(ti)]/[ti+1– ti], where the index i
= {1, 2, 3, 4} denotes the first four points from the left on the
integrated functions H(t) (at the 10th, 30th, 50th, and 70th
percentiles of the CDF).

Figure 3b shows detection hazard rates as a function of
time from onset of the target motion for each Set Size con-
dition, based on the combined RTs of all observers. The
hazard rates plotted in this graph have been multiplied by

Fig. 2 a Means and standard deviations for each observer in each Set
Size condition in Experiment 1. (Error bars are SDs, not standard errors.
The number of responses for each data point averaged 663.) b Set Size
effects for three values of detection probability, F(t)
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the Set Size, n•h(t), to show the common temporal structure
of the hazard functions for all four Set Size conditions. As
may be seen, the obtained hazard rates are closely approx-
imated by two straight lines: (1) For c ≤ t ≤ k, n•hn(t) = a•(t –
c)/(k – c); and (2) for t > k, n•hn(t) = a. Thus, three param-
eters describe the 16 data points: c = 0.42 s, k = 0.86 s, and
a = 27.9 bits/s.

The parameters were estimated by minimizing standardized
squared deviations between obtained and predicted hazard
rates: (hn(t) –Pn(t))

2/Pn(t), where hn(t) andPn(t) are the obtained

and predicted values of the hazard rates.5 These three-parameter
equations account for 98% of the variance of the 16 data points
(df = 12). This descriptive model was suggested by the

5 This chi-square-like standardized measure scaled deviations relative to
the predicted scores, which varied substantially with both Set Size, and
time. Ordinary least-squares deviations depended mainly on the small Set
Size conditions, which had higher hazard rates and relatively larger devi-
ations from predictions. Ordinary least-squared deviations assume
interval-scaled data, for which ratios are not meaningful. The hazard rates,
however, are ratio scales, for which ratios such as (O – P)2/P are mean-
ingful. The degrees of freedom for the sums of squared deviations wasN–
1–Q, where N is the number of data points and Q is the number of
parameters. The total sums of squares was similarly scaled relative to
the mean: ∑(X–M)2/M, with df = N–1. Thus, adjusted R2= 1 –
(SSpredicted/(N–1–Q))/(SStotal/(N–1)).

Fig. 3 a Integrated hazard functions for each Set Size in Experiment 1.
Data points correspond to the 90th, 70th, 50th, 30th, and 10th percentiles
of the survivor functions for the pooled data of all five observers. The
measure on the vertical axis isH(t) = –log2S(t), where S(t) is the survivor
function. b Hazard rates for the data in a. Each data point is the slope
(bits/s) of the line segment between successive pairs of points on H(t).
Three parameters specify the descriptive model given by the two solid
black lines: for c ≤ t ≤ k, n•hn(t) = a• (t–c)/(k-c); and for t > k, n•hn(t) = a;
where a = 27.9 bits/s, c = 0.42 s, and k = 0.86 s

Table 1 Frequencies of hits, misses, false alarms (FAs) and mean re-
sponse time (RT) (ms) for each observer and Set Size in Experiment 1

Observer 2 4 6 8 Totals Hit rate

AS

Hits 608 652 653 635 2,548 0.993

Misses 0 5 6 8 19

FAs 20 11 15 15 6

Mean RT 772 936 1,047 1,115

JL

Hits 661 690 742 692 2785 0.983

Misses 2 15 9 21 47

FAs 34 24 20 30 108

Mean RT 752 883 1,022 1,134

DM

Hits 665 701 698 692 2,756 0.990

Misses 1 2 12 13 28

FAs 18 25 19 28 90

Mean RT 740 876 1,019 1,112

BD

Hits 636 626 615 609 2,486 0.992

Misses 1 3 10 7 21

FAs 22 14 20 6 62

Mean RT 638 780 884 1,005

KD

Hits 611 662 653 627 2,553 0.995

Misses 0 1 4 7 12

FAs 5 13 12 5 35

Mean RT 754 877 983 1,100

Total 2 4 6 8

Hits 3,181 3,331 3,361 3,255 13,128 0.990

Misses 4 26 41 56 127

FAs 99 87 86 84 356

Mean RT 731 871 991 1,093

Hit Rate 0.999 0.992 0.988 0.983 0.990

FA/(H+FA) 0.030 0.025 0.025 0.025 0.026
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observation that slopes of the Hn(t) functions were approxi-
mately proportional to 1/n. Parameter estimation and the eval-
uation of the model’s goodness of fit were based on the obtain-
ed hazard rates, not multiplied by Set Size (unlike Fig. 3b).

This model was also fit to the 16 data points for each ob-
server. Figure 4 shows obtained and predicted hn(t) values for
four of the five observers. (Data for observer BD are not
included in the graph merely for reasons of space. Also, BD

did not participate in Experiments 2 or 3.) Estimated parame-
ters and R2 (df = 12) measures of fit are given in Table 2 for
each observer and for the combined data. The model parame-
ters were similar across the five observers. Observer BD
(youngest of the five observers) exhibited slightly faster time
parameters, c, k, and k – c, and a higher asymptotic detection
rate, a, than the other observers— effects also indicated by her
faster mean RTs and smaller SDs (Fig. 2a).

The temporal structure described in Figs. 3b and 4 and
Table 2 indicates that the detection rate (hazard rate, not RT)
at any given time was a product of two parallel (independent
and concurrent) visual processes. These two functionally in-
dependent processes are identified by the observed selective
influence of two variables, Set Size and time: The effects of
varied Set Size were invariant with time; and the effects of
time were invariant with Set Size. The mutual influence of
both factors across the range of RT and hazard rates indicates
that the two processes had concurrent influence. Thus, a wide
range of observed hazard rates can be closely approximated as
a product of two very simple and independent functions, each
associated with a different visual process.

(1) Rate of visual awareness and detection: At any time
throughout the temporal process, the hazard rate for

Fig. 4 Obtained and predicted detection hazard rates for four of the five
observers in Experiment 1. Parameters of the predicted functions are
given in Table 2. Parameters were estimated by minimizing

standardized squared deviations, (y–P)2/P, where y is the observed
hazard rate and P is the predicted value. Parameters are in Table 2

Table 2 Parameters of estimated hazard functions, hn(t) = A(n)•M(t),
where A(n) = a/n, a is the detection rate in bits/s, n is Set Size,M(t) = (t –
c)/(k – c) for c ≤ t ≤ k, and M(t) = 0 if t < c, M(t) = 1 if t > k. Estimated
parameter values are given for each observer and for the combined
response times of all five observers in Experiment 1. The obtained and
predicted data are shown in Figs. 3b and 4

Observer c (s) k (s) a (bits/s) R2

AS 0.474 0.889 27.5 0.95

JL 0.448 0.848 27.3 0.89

DM 0.456 0.788 25.4 0.98

BD 0.379 0.704 30.3 0.97

KD 0.480 0.843 29.4 0.93

Average 0.447 0.814 28.0 0.95

Combined 0.423 0.856 27.9 0.98

2476 Atten Percept Psychophys (2016) 78:2469–2493



target detection was proportional to 1/n. Across wide
variations in response time and Set Size, detection rates
were specified by a single rate parameter, a, such that
hn(t) ∝ a/n. Evidently, the awareness rate parameter, a,
corresponds to a constant capacity limit divided by the
number of observed objects. Importantly, the hazard
rates in Figures 3 and 4 were approximately constant
after reaching an asymptote. Constant hazard rates iden-
tify an exponential probability distribution.

(2) Motion integration: Detection rates, however, did in-
crease in proportion to elapsed time between about
0.45–0.81 s, on average, as given by parameters c and
k. Linearly increasing detection rates proportional to the
duration and distance of motion are compatible with the
increasing optical and statistical differences between the
target and random background motions. Visual integra-
tion of the motion paths would produce such a propor-
tional relation between duration and target detection.
Parameters c and k evidently mark the beginning and
end of this visual integration. Parameter c is a minimum
RT, probably reflecting response processes. The differ-
ence k – c estimates the duration of motion integration.
Optical information about the target motion continues for
a longer duration, so this temporal limit of visual inte-
gration is noteworthy. Importantly, the motion integra-
tion times were invariant with Set Size and mean RT.

Thus, the obtained detection rates reflect contributions of
two functionally independent visual processes— one inverse-
ly proportional to Set Size and invariant with time, and the
other invariant with Set Size and proportional to elapsed time
in a specified interval. The functional relations may be con-
cisely represented by a three-parameter equation:

hn tð Þ ¼ A nð Þ �M tð Þ ð3Þ
A nð Þ ¼ a=n ð4Þ
M tð Þ ¼ 0; if t < c

¼ t−cð Þ= k−cð Þ if c≤ t≤k
¼ 1 if t > k:

ð5Þ

For the data in Fig. 3b, a ≈ 28 bits/s is an asymptotic rate
parameter, quantifying the detection rate for targets not yet
detected at any time t after onset of the target motion6; and c
≈ 0.42 s and k ≈ 0.86 s are time constants specifying the start
and end of visual motion integration. The function M(t) is
simply proportional to elapsed time in the interval c ≤ t ≤ k,
with a value of 0 before and 1 after this interval. The primary

determinant of detection rates was the capacity parameter a,
the rate of visual awareness.

Equations 3, 4, and 5 are intended as both a description and
a theoretical explanation of the obtained results. These lawful
relations involve the hazard rates, not the RT distributions as
such. Indeed, the parameters of both visual awareness and
motion integration were invariant with mean RT. The lawful-
ness and generality of these relationships documents the pow-
er of hazard rates for measuring the underlying processes.

The lawful relations described by these equations were not
anticipated before this experiment. The finding that a single rate
capacity parameter described detection rates over wide varia-
tions in Set Size, motion information, and RT is a new result.
Aspects of the results are consistent with some previous results
and theories, of course, but the principal features of the results
are new. The General Discussion will consider specific com-
parisons of these findings with previous results and theories.

Experiment 2

Experiment 2 tested the generality of these phenomena by
evaluating the effects of changes in optical input information
on the two hypothesized visual processes.

First, we evaluated effects of variations in motion speed.
Three Motion Speeds were 1.40, 2.79, and 4.19°/s, as com-
pared to 2.79°/s in Experiment 1. Motion Speed affects the
spatial length of target motion within a given time, and this
spatial information would be expected to affect detection
rates. Pilot work confirmed this expectation. How, then, does
this variation in visual information influence the two underly-
ing visual processes?

Second, the Set Size of potential targets was expanded to
evaluate detection performance for smaller and larger sets of
objects: n = {1, 4, 12}. For n = 1, there is no uncertainty about
which object will be the target; the only uncertainty is tempo-
ral. At the other extreme, patterns of 12 independently moving
objects have substantially greater spatial uncertainty and opti-
cal complexity, with potential effects of visual crowding. Can
a single detection rate parameter apply to Set Sizes 1 and 12 as
well as 4? A related question concerns the possible invariance
of Motion Integration with such large variations in Set Size.

Method

Methods and procedures were essentially the same as in
Experiment 1, with the following exceptions. First, the obser-
vation period for detecting target motions was lengthened
from 3min to 4min. Second, the probability of a target motion
at any given moment was reduced from Experiment 1 —
averaging about 13/min in the present experiment, as com-
pared to about 18/min in the previous experiment, averaging
about 51 target motions in each 4-min observation period.

6 Estimation and meaning of the detection rate parameter, a: This
parameter was estimated by slopes of the integrated hazard functions:
a(t) = [H(t+Δt) – H(t)]/Δt = –log2[S(t+Δt)/S(t)]/Δt. By hypothesis,
the ratio S(t+Δt)/S(t) = s(Δt) is a constant, invariant with t. Thus, a =
(–log2s(Δt))/Δt.
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Third, Motion Speed varied between sessions — 1.40, 2.79,
or 4.20°/s, in counterbalanced order for successive sessions,
with order randomized between observers.

Each session consisted of three 4-min observation periods,
one for each of the three Set Sizes. With a short break between
each of these observation periods, each session took less than
20 min. Observers usually collected data for three such brief
sessions in a single sitting. Each observer participated in 18
sessions, six sessions for each of the nine Speed x Set Size
conditions. On average, each observer made 304 correct de-
tection responses (range = 247–353) in each of the nine con-
ditions. The number of responses by each observer in each
condition was about half that in Experiment 1, resulting in
greater variability.

Four observers participated in Experiment 2, all of whom
had participated in Experiment 1. (Observer BD in
Experiment 1 was no longer available.)

Results and discussion of Experiment 2

Agraphic summary of the results is given in Fig. 5, which shows
the hazard rates for the three Set Size conditions for eachMotion
Speed, based on the combined data for all four observers.
Table 3 gives the estimated parameter values of the two-process
model for each observer in each Motion Speed condition.

Hazard rates for Set Sizes 1–12 were described by the
same equations As may be seen, variations in hazard rates
are well described by the same two-process model as in
Experiment 1, extended here to a wider range of Set Sizes
and Motion Speeds. The same model described hazard rates
in both the Set Size 1 and Set Size 12 conditions — even

though the hazard rates of these conditions differed by about
12-fold, occurred in different phases of the detection process,
and had median RTs differing on average by more than 1 s.
Hazard rates for Set Size 4 involved both phases of the detec-
tion process, increasing for c ≤ t ≤ k, and approximately con-
stant with a value of a/4 for t > k.

Rate of awareness increased with Motion Speed Figure 5
shows that the rate of visual awareness, A(n), was strongly
influenced by Motion Speed. Threefold variations in speed,
from 1.40 to 4.19°/s, caused twofold variations in the rate
parameter a for the combined-observer data in Fig. 5. All four
observers exhibited similar effects, as seen in Table 3.

Faster speeds produced shorter motion integration Figure
5 suggests that Motion Speed may have had little influence on
the duration of motion integration. Indeed, a preliminary data
analysis found that a very large percentage of the variance in
hazard rates (hn(t)) could be described with the awareness rate
parameter a as the only free parameter, using the parameter
values for c and k estimated in Experiment 1 for all three
Motion Speed conditions in Experiment 2. This initial analysis
was misleading, however. Parameter k has little influence on
predicted hazard rates except in a small temporal region near
the end of the integration period.

When the effect of Motion Speed on motion integration
was evaluated more directly, independently of the rate param-
eter a (see Appendix 2), we found that speed had a similar and
complementary influence on both motion integration and vi-
sual awareness. Because Motion Speed had no reliable effect
on the onset of motion integration, at time c, we independently
evaluated the effects of Motion Speed on parameters k and a,

Fig. 5 Hazard functions for each
of the nine Set Size x Motion
Speed conditions, based on the
combined RT distributions of all
four observers. The two-process
model given by the two black
lines in each panel is the same as
in Figs. 3b and 4, with
independently estimated
parameters. (See text and
Appendix 2 for the estimation
procedure)
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as described in Appendix 2. When Motion Speed increased,
the rate of visual awareness increased and the estimated dura-
tion of motion integration was found to decrease. Table 3 gives
the estimated integration durations (k – c) and awareness rates
(a) for each Motion Speed and each observer. For each of the
four observers, the longest integration (k – c) occurred when

Motion Speed = 1.40°/s and the shortest integration oc-
curred when Motion Speed = 4.19°/s. The average estimated
integration durations for Speeds 1.40, 2.79, and 4.19°/s re-
spectively, were 620, 420, and 330ms. These effects were
statistically reliable — by Friedman’s two-way analysis of
variance by ranks, using the four observers as independent
replications of the effects of Speed, Fr= 8.00, p ≤ 0.01.

Nevertheless, the rate of visual awareness, A(n), accounts for
most of the variance in obtained hazard rates, with little influ-
ence of the temporal parameters of motion integration, M(t).
Regardless of the effects of Motion Speed, the rate of visual
awareness remained inversely proportional to Set Size, n,
throughout the detection process. The effects of Set Size and
Motion Speedwere functionally independent andmultiplicative.

Spatial and temporal dimensions of motion Faster motions
travel greater spatial lengths per unit time, offering a greater
rate of spatial information. Faster detection rates for faster
speeds are not surprising. Indeed, one can quantify the effects
of Motion Speed in spatial as well as temporal units— in bits/°

of visual angle. Dividing the time-based detection rates in bits/s
by velocity, in °/s, yields space-based measures in bits/°. Thus,
for the three successively faster Speeds, the time-based scale in
Fig. 5 (13.5, 19.3, and 26.6 bits/s) becomes 9.6, 6.9, and 6.4
bits/°. Reduced variations in the space-based measures as com-
pared to the time-based measures indicate that detection perfor-
mance was influenced more strongly by the spatial extent than
the temporal extent of motion. Nevertheless, time also matters.
Increased Speeds produced lower space-based detection rates
because the time per unit space was reduced.

A difference in the results of Experiments 1 and 2
Detection rates for Motion Speed 2.79 °/s were lower in
Experiment 2 than Experiment 1. The awareness rate param-
eter for these four observers averaged a = 21.3 bits/s in
Experiment 2, but was a = 27.4 bits/s in Experiment 1. All
four observers exhibited a lower rate of visual awareness in
Experiment 2 than Experiment 1, although the difference was
small for observer KD— 28.5 and 27.4 bits/s in Experiments
1 and 2 respectively. The reason for this difference is not
known. One possible cause could be that the relative rates of
target events were lower in Experiment 2— about 13/min, as
compared to 18/min in Experiment 1. Subjectively, this differ-
ence in target rates seemed inconsequential, and its effect was
not noticed before data analysis. The potential effect of the
target rate variable is one of several questions requiring addi-
tional investigation.

Experiment 3

Experiment 3 addressed a question about the target motion
information in this study. Was the moving Bprey^ object a
basic element of the target motion, or was the target defined
by its approximately linear trajectory? Does the moving
Bprey^ object enhance target detection, or might it even com-
pete and interfere with recognition of the target motion?

Experiment 3 tested this question by comparing detection
performance with and without a visible prey object. In an
Invisible Prey condition, the red prey object was simply not
displayed, while the target motion was directed toward the same
slowly moving positions as in the Visible Prey condition. The
Visible Prey condition was the same as in Experiments 1 and 2.
Random background motions were the same in both conditions.

Method

As in Experiments 1 and 2, Set Size determined the task dif-
ficulty. Four Set Sizes in Experiment 3 were n = {1, 2, 4, 8}.

Results were obtained for three observers who had also
served in Experiments 1 and 2 — JL, DM, and KD. Each
observer served in eight sessions. Each session was devoted
to either the Visible Prey or the Invisible Prey condition,

Table 3 Estimated parameters and adjusted R2 (df = 8)measures of fit
for the hazard rates (hn(t)) for each observer and Motion Speed condition
of Experiment 2 (See text for parameter estimation method)

Observer Speed (°/s) c (s) k (s) k – c (s) a (bits/s) R2

AS 1.40 0.45 0.84 0.39 13.0 0.98

2.79 0.45 0.69 0.24 20.0 0.95

4.19 0.45 0.64 0.19 26.7 0.94

Ave. 0.45 0.72 0.27 0.96

JL 1.40 0.40 0.92 0.52 15.2 0.95

2.79 0.40 0.90 0.50 20.7 0.95

4.19 0.40 0.76 0.36 25.7 0.92

Ave. 0.40 0.86 0.46 0.94

DM 1.40 0.47 1.48 1.01 11.9 0.90

2.79 0.47 0.99 0.52 16.5 0.76

4.19 0.47 0.93 0.46 24.1 0.93

Ave. 0.47 1.13 0.66 0.86

KD 1.40 0.40 0.97 0.57 19.5 0.99

2.79 0.40 0.80 0.40 27.7 0.96

4.19 0.40 0.72 0.32 32.0 0.92

Ave. 0.40 0.83 0.43 0.96

Ave. 1.40 0.43 1.05 0.62 14.9 0.96

2.79 0.43 0.85 0.42 21.2 0.91

4.19 0.43 0.76 0.33 27.1 0.93

Ave. 0.43 0.89 0.46 0.93
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which occurred in counterbalanced order. As in Experiments 1
and 2, each session contained four blocks of trials, one block
for each Set Size, which occurred in a randomly permuted
order in each session. An average of about 210 target events
occurred for each observer in each of the eight conditions. The
amount of data for each observer and condition was reduced in
this experiment but sufficient for comparing performance in
the Visible and Invisible Prey conditions. Estimated hazard
rates were less reliable, however, than in Experiments 1 and 2.

Results and discussion of Experiment 3

A graphic summary of the results is given in Figs. 6 and 7.
Table 4 lists the mean RTs, hit rates, and false alarms for each
observer in each of the eight conditions.

Hazard rates were consistently lower in the Invisible Prey
condition (Fig. 6). Hit rates were also lower and false alarm
probabilities consistently higher in the Invisible Prey condi-
tion (Table 4). Thus, visibility of the Bprey^ location aided
target detection — by adding information about the direction
of the target motion. Adding information about the prey might
conceivably have competed for visual attention and hindered
detection, but this did not happen. The result is interesting but
not surprising.

Figure 6 shows Badjusted^ hazard rates, n•hn(t), as a func-
tion of Set Size, with separate graphs for the Visible and
Invisible Prey conditions. The solid black lines describe the
two-process model developed in Experiment 1, fit to the haz-
ard rates for the Visible Prey condition combined over the
three observers. The model estimation procedure was the
same as in Experiment 1, minimizing standardized squared
differences between observed and predicted values of the haz-
ard rates, [hn(t) – Pn(t)]

2/Pn(t), at each of the 16 data points.
The estimated parameter values were a = 24.2 bits/s, c = 0.40s,
and k = 0.93 s. This model accounted for 91 % of the variance

(R2= 0.908, df = 12) in hazard rates for the Visible Prey con-
dition. The same descriptive model is shown for both Visible
and Invisible Prey conditions, to facilitate visual comparison
between the two conditions.

Not surprisingly, due to the reduced amount of data for
individuals (average of 203 correct responses for each Set
Size in the Visible Prey condition), the hazard functions for
individual observers in the Visible Prey condition were more
variable than in Experiments 1 and 2. (For observers JL, DM,
and KD, respectively, the model accounted for 68 %, 86 %,
and 81 % of the variance; but the estimated awareness capac-
ity parameters were consistent with those in Experiment 2: a =
{26.0, 23.0, 26.0}.) Each individual observer performed con-
sistently worse in the Invisible Prey conditions.

Data for the Invisible Prey condition were not well de-
scribed by this three-parameter model. When these three pa-
rameters were estimated for response times in the Invisible
Prey condition, they accounted for only 54 % of the variance
of the obtained hazard rates. Apparently, ambiguities of mo-
tions toward an invisible prey disrupted the consistency of
visual processes observed in the Visible Prey conditions.
RTs were longer and probabilities of missed detections and
false alarms were also much higher in the Invisible Prey con-
dition. Because RTs are not defined for misses and false
alarms, the influence of error-related factors cannot be identi-
fied in the hazard rates for the Invisible Prey condition.

The hazard rates in Fig. 6 do not offer a clear quantitative
comparison of performance in the Visible and Invisible Prey
condition— partly because the hazard rates were evaluated at
different times for the two conditions. A clearer evaluation of
the performance difference between these two conditions was
obtained from half-life times measured at the same RTs for
both Visible and Invisible Prey conditions. For each of the
four Set Size conditions, the survivor function was evaluated
for a single RT distribution combined from both Visible and

Fig. 6 Effects of Set Size on the adjusted hazard functions, n•hn(t), for
the Visible Prey and Invisible Prey conditions of Experiment 3. Plotted
data are from the combined RT distributions of three observers. The solid
black lines describe the predicted hazard rates for the Visible Prey

condition, with the same model shown for both left and right graphs
respectively. Estimated parameter values were a = 24.2 bits/s, c =
0.40 s, and k = 0.93 s
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Invisible Prey conditions, using the four time values at which
S(t)Combined = {0.90, 0.70, 0.50, 0.30}. At all of these times, the
percentage of survivors was lower for the Visible than for the
Invisible Prey condition. Using these four time values, we then
computed the half-life times for the Visible and Invisible Prey
conditions separately. The half-life times are the added response
times at which the number of survivors was reduced by one half.

Figure 7 shows these half-life detection times for the
Visible and Invisible Prey conditions in each Set Size condi-
tion. Underlying data are the same as in Fig. 6. These time-
based measures, however, are (a) reciprocals of the hazard
rates, 1000/hn(t), in units of ms/bit, (b) estimated by the em-
pirical half-life of targets undetected at a given time t, and (c)
estimated at the same RT values for both Visible and Invisible
Prey conditions. Figure 7 complements the description of de-
tection rates shown in Fig. 6, using units of time, ms/bit.

As may be seen, half-life detection times were consistently
faster for the Visible Prey than for the Invisible Prey condition.
Interestingly, time differences in all four Set Size condition
averaged about 50 ms longer in the Invisible Prey conditions,

despite large variations in RTacross the four Set Size conditions
— averaging 47, 54, 56, and 50 ms/bit differences for Set Sizes
1, 2, 4, and 8, respectively. Each observer provided 16 compar-
isons of half-life detection times for the Visible and Invisible
Prey conditions (4 RTs X 4 Set Sizes). Across observers, half-
life times were longer in the Invisible Prey condition in 43 of
the 48 comparisons (15/16, 12/16, and 16/16 for observers JL,
DM, and KD, respectively). These results plus the accuracy
data in Table 4 demonstrate that detection performance was
consistently less efficient for the Invisible Prey condition.

General discussion

This study found that a constant rate of visual awareness was
consistent with widely varying rates of target detection obtain-
ed over wide ranges of Set Sizes, performance levels, response
times, and motion information. The effects of divided atten-
tion on the temporal process of target detection were very
large, but surprisingly simple and consistent.

Fig. 7 Detection half-life times (ms/bit) for the Visible and Invisible Prey
conditions at each Set Size condition in Experiment 3. Predicted values
are from the same model and parameter values as in Fig. 6. The data
patterns differ between Figs. 6 and 7 because (a) the scales of hazard rates
in Fig. 6 and half-life times in Fig. 7 are reciprocal; (b) at the first two RTs,
half-life times were computed over longer time intervals than for the

hazard rates; and (c) half-life times in Fig. 7 were computed at different
RT values from those in Fig. 6. Discrepancies between the obtained and
predicted times for Set Sizes 4 and 8 result from estimating half-life times
over large ranges of RT that involved responses from both increasing and
asymptotic hazard rates
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The lawful structure of these phenomena was revealed
by hazard rates, involving temporal derivatives of the de-
tection RTs. Rates of change in detection probability were
more informative than detection probabilities as a func-
tion of time. A significant advantage of the hazard rate
measures, as compared to the underlying RT probability
distributions, is that they provide a ratio scale of relative
performance in different conditions and at different times.
Such ratios were essential to the present results.

Importantly, the hazard rates in this study revealed effects
of Set Size that were not only different but also simpler, more
precise, and more lawful than those described by the relation
between Set Size and mean RT. Comparison of Figs. 2 and 3

illustrates how an experimenter’s choice of performance mea-
sure can influence the resulting picture of phenomena and
processes. How would evaluations of hazard rates alter inter-
pretations of previous visual search experiments based on
mean RTs? The answer is not known.

The novel results of this study as compared to those of
other related experiments on visual attention, search, motion
perception, and performance may also reflect methodological
differences. In particular, experiments with discrete trials and
predictable distinct target onsets add non-visual information
about the occurrence of a target, and such information would
likely affect response criteria and RT distributions in some
studies of visual search. Target onset information in the pres-
ent study, however, was entirely visual and driven by tempo-
rally increasing differences between target and background
motions.

Equations 3–5 and Figs. 3b, 4, and 5 constitute a de-
scriptive model of the results. To clarify the rationale for
this descriptive model, the empirical observations on
which it is based are listed below. These empirical obser-
vations involve interpolations and extrapolations of the
hazard rates evaluated at local RTs. The wide range of
obtained hazard rates were closely approximated (within
small random error) by a simple continuous function of
time given by the product of two functions, one a function
of Set Size (n) and the other a function of RT (t). Three
parameters of this descriptive model were estimated with-
out additional assumptions beyond the approximation, in-
terpolation, and extrapolation of empirical hazard rates.

Empirical observations The following statements indicate
the empirical basis for the abstracted general description
of the results.

(1) If hi(t) and hj(t) are the momentary hazard rates (interpo-
lated or extrapolated) for two conditions with Set Sizes i,
j = {1, 2, 4, 6, 8, 12}, then the ratio of these two hazard
rates approximately equaled the reciprocal of those two
Set Sizes: hi(t)/hj(t) ≈ j/i [with different Set Sizes and
hazard rates, hn(t) in different experiments].

(2) The equivalence of relative hazard rates and relative Set
Sizes, described in observation (1), was invariant with
RT (t) and with changes in hazard rates corresponding
to changes in the duration and length of motion.

(3a) For RTs within the temporal interval c ≤ t ≤ k, hazard
rates were approximately proportional to the temporal
duration, (t – c)/(k – c), where c and k are RTs (in units
of s). That is, if t and u are two RTs in the interval (c, k),
then hn(t)/hn(u) ≈ (t – c)/(u – c).

(3b) If RT > k, then hazard rates were constant and propor-
tional to Set Size, n — i.e., hn(t) = a/n, where the con-
stant parameter a is quantified in bits/s.

Table 4 Hit Rates (HR), proportion of False Alarms among total
detection responses (FA/(Hit+FA)), and Mean RTs (ms) for each
observer and condition in Experiment 3

Set Size Prey Observer Hit Rate p(FA|r) Mean RT

1 Visible JL 1.00 0.04 638

DM 1.00 0.02 747

KD 1.00 0.01 665

Average 1.000 0.026 683

Invisible JL 0.99 0.12 734

DM 1.00 0.03 859

KD 0.99 0.00 766

Average 0.996 0.052 786

2 Visible JL 1.00 0.10 784

DM 1.00 0.03 844

KD 1.00 0.03 769

Average 1.000 0.051 799

Invisible JL 0.98 0.09 939

DM 0.98 0.07 883

KD 0.98 0.01 917

Average 0.982 0.058 913

4 Visible JL 0.99 0.04 941

DM 0.99 0.03 960

KD 1.00 0.01 865

Average 0.992 0.028 922

Invisible JL 0.91 0.09 1,045

DM 0.93 0.08 1,025

KD 0.95 0.04 1,026

Average 0.930 0.070 1,032

8 Visible JL 1.00 0.02 1,209

DM 0.99 0.06 1,228

KD 1.00 0.01 1,122

Average 0.994 0.029 1,186

Invisible JL 0.82 0.07 1,286

DM 0.81 0.15 1,162

KD 0.85 0.04 1,262

Average 0.826 0.083 1,237
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(3c) The time parameters, c and k, were invariant with Set
Size.

Corollaries and inferences based on these empirical state-
ments include:

(C1) Two functionally independent and temporally con-
current processes were identified by the selective in-
fluence of different experimental variables. One pro-
cess, termed Visual Awareness, was a function of Set
Size n, but was invariant with time; and a second
process, termed Motion Integration, was a function
of time t, but invariant with Set Size.

(C1a) A detection rate capacity parameter, a, was invariant
with Set Size (n) and RT (t). The detection process
governed by Set Size (n) and the rate capacity param-
eter a was represented symbolically as

A nð Þ ¼ a=n: ð4Þ
The concept of BVisual Awareness^ was based
partly on the finding that for RTs > k, hazard
rates remained constant — despite longer dura-
tions of target motion, maintaining hazard rates
at the level given by target information visually
integrated up to time k. The Bawareness^ concept
also corresponded to the subjective impression
that sometimes, on trials with slow RTs, when
we finally detected the target motion we realized
that it had been moving toward the Bprey^ for an
extended time and distance. Thus, we must have
Bseen^ the target motion, but, paradoxically,
failed to consciously notice and detect it.

(C1b) A time-dependent visual process was characterized by
temporal parameters c and k, which are values of RT.
These parameter values were invariant with Set Size
and mean RT. The process is described by the simple
equations:

M tð Þ ¼ t−cð Þ= k−cð Þ; if c≤ t≤k;

M tð Þ ¼ 0; if t < c;

M tð Þ ¼ 1; if t > k:

ð5Þ

The proportionality of hazard rates and elapsed time
between c and k corresponds to the increase in optical
target information with increasing duration and length
of motion.

(C1c) Awide range of hazard rates found in Experiments 1,
2, and in the BVisible Prey^ condition of Experiment
3, covering a range of Set Sizes, RTs, and Motion
Speeds were well characterized by a product of two
simple linear functions,

hn tð Þ ¼ A nð Þ �M tð Þ; ð3Þ

where the two functions A(n) andM(t) are defined by
Equations (4) and (5) above. (Parameter a varied
substantially with Motion Speed in Experiment 2,
and differed slightly but significantly for the same
Motion Speed in Experiments 1 versus 2 and 3.
Parameter k also varied with Motion Speed, but
Motion Speed did not affect the temporal parameter
c.)

(C1d) The same parameters cannot account for the effects of
both Set Size (n) and time (t). The joint effects of these
two functionally independent factors must involve
two independent visual processes rather than one
process.

(C2) The temporal process of target detection rates, charac-
terized by parameters a, c, and k, was invariant over
large changes in the RT means and variances.

The same equations and same three parameter
values, a, c, and k, described the hazard functions for
entirely different RT distributions produced by differ-
ent Set Sizes. This finding was especially striking in
Experiment 2, where the RT distributions for Set Sizes
1 and 12 had only negligible overlap.

(C3) The temporal structure of the target detection process
was defined on hazard functions— on the differential
structure of log survivor functions — but not on the
RT distributions as such.

Equation (3) describing the obtained hazard rates
as a function of Set Size and RT does not describe the
RT probability distributions. Hazard rates are condi-
tioned on the survival function at a given time t, but
they do not specify the survival probability at that
time.

The hazard rate measure The RT distributions in these ex-
periments were highly variable, offering an uncertain index of
target detection speeds. We explored the processes underlying
these distributions by applying theoretical research by
Townsend and colleagues on hazard functions and perceptual
capacity (e.g., Houpt & Townsend, 2012; Townsend&Ashby,
1983; Townsend & Eidels, 2011; Townsend &Nozawa, 1995;
Townsend & Wenger, 2004b; Wenger & Gibson, 2004). The
hazard functions revealed a clear picture that was not evident
in the RT means and variances. Indeed, a basic result implicit
in these data is that the structure of the hazard functions was
invariant with substantial changes in the RT distributions.
That invariance was an important secondary finding of this
study.

Hazard rates h(t) measure the detection rate at any given
time t after target onset. The bits/s units offer convenient ter-
minology and interpretation, but the base of the logarithms is
otherwise arbitrary. The reciprocal measure in temporal units
of s/bit is the Bhalf-life^ of targets not yet detected at time t—
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i.e., the additional time needed to reduce the number of unde-
tected targets by half. The half-life measure is directly propor-
tional to the time constant τ commonly used to quantify ex-
ponential decay functions.

An important advantage of hazard functions is that they
provide scale-free (dimensionless) ratios of relative perfor-
mance at different times and in different conditions. Such
ratios were essential to the present findings.

Hazard rates in this study were estimated from the slopes of
integrated hazard functions, H(t). And these slopes were eval-
uated at four intervals defined by 20% increments in the CDF,
from the 10th to 90th percentiles. That is, h(t) = ΔH(t)/Δt, as
described above. (Fig. 9 in Appendix 1 shows hazard func-
tions defined in much the same way, but evaluated at 5 %
intervals from 5th to 95th percentiles, using a running window
of 20 % differences in the RT CDFs.) Details of this analysis
depart from the methods developed by Townsend and col-
leagues, though these departures involve secondary details
but not fundamental rationale. The specific methods adopted
here evolved by exploring and comparing several different
analyses of the obtained data. No doubt, different methods
may be needed to reveal different relational structures of data
from different experimental methods.

Two departures of the present measurement methods from
previous methods may be noted. First, descriptive analyses of
the momentary hazard rates, h(t), were found to represent our
results more clearly than the integrated hazard functions,H(t),
investigated by Townsend and colleagues (e.g., Houpt &
Townsend, 2012; Townsend & Eidels, 2011; Townsend &
Wenger, 2004a, b; Wenger & Gibson, 2004). A principal ad-
vantage of the momentary hazard rates for our study is that
they revealed a temporal process quantified by the detection
rates at one time relative to another. Ratios of integrated haz-
ard functions at given times would not have revealed this
temporal structure of the detection process. Moreover, tempo-
ral variations in ratios of integrated hazard functions in
Experiment 1 gave a misleading description of the relative
detection rates for Set Size 2 as compared with Set Sizes 4,
6, and 8 — as demonstrated and examined in Appendix 1.

Second, hazard rates were evaluated at times identified by
specific quantiles of the RT distribution function (CDF) —
rather than evaluating and comparing hazard functions at the
same times for different conditions. Exploratory analyses
found that comparisons between conditions were sometimes
unreliable when the same time bins were used for multiple
conditions, due to large differences in response frequencies
for different conditions in the same time intervals. These dif-
ferences in RT distributions for different Set Size conditions
were especially striking in Experiment 2, where RT distribu-
tions for Set Sizes 1 and 12 had negligible overlap. Despite
these differences in the RT distributions for different Set Size
conditions, a common temporal structure emerged from com-
parisons between hazard rates based on quantiles of the RT

distributions. The specific number and intervals of quantiles at
which to evaluate the hazard functions were ad hoc, based on
exploratory comparisons, but this procedure may not be best
in general.

The rate of visual awareness The rate of visual awareness
was the primary determinant of detection performance in this
task. The process of awareness was quantified by the function,
A(n) = a/n, where a is a constant rate (in bits/s) and n is the
number of observed objects. The rate parameter a quantifies
the capacity limit of a time-shared system in which the time to
detect any individual item increases in direct proportion to the
number of items being processed (see Townsend & Ashby,
1983, pp. 85-88; Townsend & Nozawa, 1995, p. 334). To
our knowledge, a similar capacity limit has not been found
in previous studies of response time. Hyman’s (1953) classic
study of the dependence of mean RT on information transmit-
ted is analogous, but the task variables and quantitative results
were quite different. Here, Set Size had large, linear effects on
mean RT, but the relative hazard rate at any given time was
approximated by a/n. In Experiment 1, this awareness rate
parameter was a ≈ 28 bits/s. This rate parameter was constant
over time; it did not determine the RT distribution as such. The
pervasive influence of this rate capacity suggests that it might
reflect a conserved property of neurophysiological matter and
energy, but evidence about such physical grounding is not yet
available.

Experiment 2 found that this parameter depended on
Motion Speed, ranging about 12–30 bits/s for motions of
1.4–4.2°/s. This effect of Motion Speed implies that the lim-
ited rate of visual awareness and detection was spatiotempo-
ral. One can equally well express the rate of awareness in
spatial units, in bits/°. Expressing the rates in spatial units
yields less variation with Motion Speed — indicating that
the spatial dimension was more important than the temporal
dimension, but both dimensions had influence. The present
study offers limited initial evidence about this spatiotemporal
dimension of visual awareness, but the issue warrants addi-
tional investigation.

Motion speed was not the only influence on the rate of
awareness. Experiments 2 and 3 found different values for this
capacity parameter than did Experiment 1 for the sameMotion
Speed. One hypothesis is that the quantitative difference
might have been caused by a difference in the target probabil-
ities in these experiments— ∼18 targets/min in Experiment 1
and ~13/min in Experiments 2 and 3. Subjectively, the differ-
ence in target probability was barely noticeable, and seemed
inconsequential. Further investigation is needed.

Importantly, the awareness rate, a, was essentially time-
invariant. That is, the detection rate for a not-yet-detected
target was independent of how long it had been undetected.
A constant hazard rate identifies a stochastic process with
exponentially distributed event times. Such constant-rate
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processes are found in many physical phenomena, such
as radioactive decay, Brownian motion, and molecular
diffusion. Diffusion processes have been shown to ac-
count for speed and accuracy in a variety of discrimi-
nation, decision-making, and attention tasks (e.g.,
Ratcliff, 2014; Ratcliff et al., 2016; Smith, 2010;
Smith & Ratcliff, 2009). A diffusion process is also
compatible with aspects of the present results.

Unlike previous studies of RT distributions, however, the
process of visual awareness was characterized here by the
detection rates, not by the RT distributions as such. The haz-
ard rate at a given time is independent of the RT distribution
up to that time. Constant hazard rates were found by
partitioning the influence of time and Set Size on two parallel
processes — motion integration and visual awareness.
Constant hazard rates characterized visual awareness but not
motion integration. The observed RT distributions have an
exponential component that varies with the multiplicative in-
fluence of motion integration.

Awareness as a parallel process with a divisible rateVisual
attention to varied Set Sizes had a decisive influence on the
rate of target recognition. This influence, however, did not
occur at a particular stage in a sequence of processes, contrary
to some conceptions of attention. Instead, the influence of
attention was uniform throughout the temporal process, oper-
ating in parallel with visual integration of motion.

The conclusion that a process of visual awareness operates
in parallel with other visual processes is consistent with grow-
ing evidence: Observers often fail to notice highly visible
optically salient objects or events when they are attending to
other aspects of a scenario (e.g., Chabris & Simons, 2009;
Drew et al., 2013; Mack, 2003; Mack & Rock, 1998;
Simons, 2000; Simons & Chabris, 1999; Wayand et al.,
2005). The same limitations of awareness undoubtedly under-
lie interactions with information technology (Levin & Baker,
2015; Varakin et al., 2004), effects of distracted driving
(McCarley et al., 2004; Strayer et al., 2003), and other forms
of distraction (Eriksen & Johnson, 1964; Stothart et al., 2015).

The present study documents a related phenomenon and
illuminates additional characteristics of the process of aware-
ness: First, visual awareness in the present task involved a
processing rate that varied with the attentional demands of
the context.

Second, the rate of awareness was limited in this task by a
constant capacity. A single capacity parameter was invariant
across a wide range of Set Sizes, response times, and motion
lengths. Evidently, visual awareness involves a capacity-
limited parallel process (Townsend & Ashby, 1983, pp. 85-
88; Townsend & Nozawa, 1995, p. 334). This rate capacity
was influenced by other factors, such as Motion Speed,
though currently available evidence about these factors is
limited.

Third, the rate of awareness was evenly divisible by the
number of observed objects from which the target was sam-
pled. Thus, the rate of awareness for any given stimulus item
depends on the attentional demands of the task environment.
The present methods do not reveal variations in levels of
awareness nor how such variations might be distributed over
space, time, or multiple objects.

Motion integration Hazard functions did increase over time
— but the increases occurred within an initial time interval.
The effects of time and Set Size were functionally separable
— with different parameters for different processes. Motion
integration, M(t), varied with time but not Set Size. Motion
integration in this study was quite simple — with output in-
formation proportional to the elapsed time between c ≈ 0.4 s
and k ≈ 0.9 s. Thus,M(t) = (t – c)/(k – c) for c ≤ t ≤ k, andM(t)
= 0 if t < c, and M(t) = 1 if t > k. Within this temporal
integration period, hazard rates, hn(t), were directly propor-
tional to the relative elapsed time and inversely proportional
to Set Size.

That hazard rates increased over time is certainly not sur-
prising: Spatiotemporal information for discriminating target
motions from random background motions was proportional
to the time and distance of the target motion. Motion percep-
tion entails visual integration over time and space. The func-
tion M(t) quantifies this visual integration.

Two other noteworthy findings involved the duration (and
spatial length) of motion integration: First, the duration of
integration was limited, with RTs > k unaffected by the dura-
tion of motion. A possible mechanism is a leaky integrator
similar to that proposed for certain decision-making phenom-
ena byUsher andMcClelland (2004). If evidence accumulates
at a constant rate and also decays at a rate proportional to the
cumulative total, then the rates of gain and loss are equal after
a certain period.

Second, the integration duration was unaffected by Set
Size, despite the large effect of Set Size on detection rates.
Thus, if the duration of motion integration reflects a balance
of information integration and decay rates, then those integra-
tion and decay rates were independent of the Set Size param-
eter that governed the observed detection rates. Motion inte-
gration duration was surprisingly consistent across both Set
Size and observers. Evidently, visual awareness and motion
integration are functionally independent.

Motion integration duration did vary with Motion Speed,
however. Nevertheless, the effect of Motion Speed on the
integration duration had only a small influence on detection
performance, which depended primarily on the rate of visual
awareness, A(n).

How does the obtained linear integration duration of rough-
ly 500 ms compare with other results in the literature? A
similar integration time, about 400–500 ms was obtained by
Watamaniuk et al. (1995) using stimulus patterns and a
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detection task very different from the present study. Linear
motions of a single target dot, at speeds of 10–15°/s, were
embedded in dense randommotion backgrounds that preclud-
ed focused attention to individual dots. Unlike the present
study, the moving targets Bpopped out^ visually from the ran-
dom backgrounds. Watamaniuk et al. evaluated detection ac-
curacies as a function of temporal duration, whereas integra-
tion times in the present study were estimated from RTs in a
task challenged by the spread of attention. The similar inte-
gration durations found in these studies may be coincidental.

The temporal characteristics of motion integration certainly
depend on the specific signal/noise properties of a particular
target in a particular task. Watson and Turano (1995), for
example, found highly non-linear temporal integration char-
acteristics over durations like those in the present study, when
detection thresholds for a single Gabor patch were measured
in terms of minimum contrast energy. Contrast energy thresh-
olds were minimized for motion durations of 133 ms.

The stimulus and task conditions that yield linear motion
integration similar to that in the present study are not yet
known.

Multiplicative relationshipsMultiplicative (and divisive) in-
fluence relations were found in two aspects of these data: (1)
Attending to multiple objects evenly divided the detection rate
for a given target object. That is, hn(t) = (1/n)•h1(t).
Equivalently, detection half-life times (s/bit), say ln(t) = 1/
hn(t), were directly proportional to n: ln(t) = n•l1(t). These
relationships held across variations in t.

(2) As expressed by the equation hn(t) = A(n) • M(t), the
behavioral detection rate at any time t was jointly determined
as the numerical product of two concurrent visual functions,
labeled visual awareness and motion integration.

The relationships described by Equations 3–5 involve
scale-invariant ratios of performance at various times and in
various task conditions. The units of time (s), Set Size (n),
hazard rates (bits/s), and logarithm base (2) are arbitrary.
The simplicity of these lawful relations validates the hazard
rate as a fundamental performance measure. The equation
hn(t) = A(n)•M(t) is also independent of mean RT.

The multiplicative relations in Equations 3–5 contrast with
the additive factors framework often used to model the com-
bined effects of multiple factors on RTs. The additive factors
framework is exemplified in statistics by the general linear
model for ANOVA and multiple regression. Additive factors
models generally assume interval-scale variables, for which
products and ratios are not meaningful. The linear relation be-
tween Set Size and RT in this study also exemplifies such ad-
ditive effects. But this linear relation barely hinted at the multi-
plicative and divisive relations revealed by the hazard rates.

Limited-span models of attention The role of attention in
perception and performance often involves limitations of

visual working memory, VWM. The limited capacity of
VWM has been an important focus of research on attention
(e.g., Averbach & Coriell, 1961; Eriksen & Lappin, 1967;
Fougnie et al., 2010; Luck & Vogel, 1997; Miller, 1956;
Sperling, 1960; Woodman et al., 2007). Visual attention and
VWM both have limited capacity, and these capacities are
often linked, either implicitly or explicitly.

The limited capacity of visual awareness documented in
the present study did not involve limitations of VWM. As in
visual search tasks, target detection here was based on optical
information, requiring no memory. Spatiotemporal integration
was necessary for detecting these target motions, but this mo-
tion integration obviously differed from the VWM required by
tasks in studies of the span of apprehension.

Motion patterns in this study were adapted from studies of
multi-object tracking (e.g., Alvarez & Franconeri, 2007; Fehd
& Seiffert, 2010; Franconeri et al., 2010; Pylyshyn & Storm,
1988). Unlike the MOT task, the targets here were optically
defined, requiring no memory to specify a target. Performance
in MOT tasks exhibits a non-linear dependence on size of the
memory-based target set, with a sharp decline for n > ~3, but
the present results exhibited no such non-linearity. In contrast
to hypotheses about the limited spans of apprehension and
memory, the present results reflected quite different limita-
tions, exhibiting no non-linear effect of the number of
attended objects.

Normative statistical theories with unlimited capacity
Statistics of the input information are sufficient to explain
many reductions in speed and accuracy caused by spreading
attention to more objects. Increased Set Size reduces target
detection by even unlimited-capacity perceptual systems.
Signal detection theory (e.g., Green & Swets, 1966; Tanner,
1956) and choice theory (e.g., Luce, 1963) offer conceptually
related, parsimonious, quantitative theories that predict re-
duced target detection caused by increased background noise
or distractors. Do such normative statistical theories account
for the present observations?

The short answer is BNo.^ Quantitative and qualitative as-
pects of the present Set Size effects differ from the predictable
performance effects of changes in input noise. In choice the-
ory, increasing the Set Size increases the probability that a
distractor will be mistaken for the target. The predicted effect
is a nonlinear function of Set Size: If D1 is the choice theory
measure of the discrimination between a target and a single
distractor (D= –ln η, a ratio scale measure similar to d′), and if
Dn measures discrimination between the target and n equally
confusable distractors, then Dn= ln [(eD1+ n – 1)/n] (see
Lappin & Staller, 1981). A similar nonlinear formula approx-
imates the signal detection theory prediction (Peterson et al.,
1954). The proportionality of detection rates and Set Size in
the present study, hn(t) = h1(t)/n, is inconsistent with these
nonlinear predictions.
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Normative theories with noise-limited target detection pro-
cesses, however, are consistent with the motion integration
phase of the present detection process, when hazard rates in-
creased proportionally with time and inversely with Set Size.
In addition, a linear system of independent parallel processes
with stochastic input sequences would produce a direct rela-
tion between Set Size and response time (Lappin, 1978). If T is
the process time needed to reach a given response criterion for
Set Size n, then Set Size b•n should require b•T process time.
The hazard rates observed during the motion integration phase
satisfy such a proportional relation between Set Size and pro-
cess time.

After this initial integration phase, however, the rate of
awareness, A(n), was not influenced by added motion infor-
mation, contrary to this normative statistical prediction. Visual
awareness and motion integration, A(n) and M(t), were func-
tionally separable, influenced by different parameters, and
with no apparent tradeoff between the two processes.

Thus, the rate of visual awareness, a, evidently reflects a
capacity limit— inconsistent with unlimited-capacity norma-
tive models. Statistics of the input information might well
influence the rate of visual awareness, but this nature of this
influence is not yet known.

Visual search hypotheses Visual search tasks are useful for
quantifying the effect of Set Size on rates of search and rec-
ognition. Like many other visual search experiments (see
Eckstein, 2011; Logan, 2004; Wolfe & Horowitz, 2004), the
present study also found a linear relation between Set Size and
mean RT. Such linear functions have often suggested serial
processes, but the present results contradict the intuitive con-
cept of a serial search process that progressively reduces the
set of not-yet-searched items. Here, the rate of visual aware-
ness was constant over time, independent of the preceding
duration of visual process. Other studies have also found that
visual search involved such temporal independence, as if the
search processes had no memory (e.g., Horowitz & Wolfe,
1998, 2001). However, if visual process rates — hazard rates
— remain constant over time, then a serial/parallel distinction
seems insubstantial; and the distinction is not empirical in
terms of RTs for detecting a single target in varied Set Sizes
(Townsend, 1972, 1976).

An added constraint is that detection rates in this study
were always proportional to Set Size — i.e., h1(t)/h2(t) ≈
h2(t)/h4(t) ≈ h4(t)/h8(t). Thus, the processing time for each
observed sample increased in proportion to all the displayed
items — regardless of whether the observed samples
encompassed only one or many objects at a time, and regard-
less of whether these samples were processed sequentially or
concurrently.

Visual search studies have also suggested sometimes that
visual attention operates to select and integrate visual features
supplied by Bpre-attentive^ vision (e.g., E. Palmer et al., 2011;

Treisman & Gelade, 1980; Wolfe et al, 1989). Pre-attentive
vision is sometimes conceived as an unlimited capacity paral-
lel process. And capacity limitations are thought to influence a
second stage of selective attention. In the present study, how-
ever, two functionally independent component processes were
concurrent. The rate of visual awareness was constant
throughout, the same both during and after initial motion
integration.

How does attention affect visual awareness and resolution?
Are levels of visual awareness binary (aware/unaware) or con-
tinuously variable?Were observers equally aware at any given
time of all the observed objects, or was visual awareness un-
evenly distributed over the set of objects with greater aware-
ness of an attended subset? The experimental methods and
results of this study do not identify variations in levels of
awareness nor how such variations might be distributed over
time, space, or objects. The direct proportionality of Set Size
and detection times, 1/hn(t), is consistent with the hypothesis
that divided attention reduced resolution equally for all ob-
served objects, but the empirical results do not reject several
alternative hypotheses.

Regardless of how divided attention may have actually
reduced visual resolution of objects and motions in this study,
the practical effect was as if resolution was divided in propor-
tion to the spread of attention. Indeed, multiple lines of theo-
retical and experimental research indicate that attention does
affect the resolution and/or processing rates for input signals.
The following are noteworthy examples.

1) The limited-capacity parallel-process models developed
by Townsend and colleagues (e.g., Eidels et al., 2015;
Townsend & Ashby, 1983; Townsend & Eidels, 2011;
Townsend & Nozawa, 1995; Townsend & Wenger,
2004a, b) are directly supported by the present results.
Wenger & Gibson (2004) found that attentional pre-cues
produced a roughly one-third increase in hazard rates for
targets in multi-element displays.

2) The zoom-lens model of Eriksen and colleagues (Eriksen
& Hoffman, 1974; Eriksen & St. James, 1986; Eriksen &
Yeh, 1985) postulates that resolving power is inversely
correlated with the area of focus. Pre-cues to target loca-
tion produced faster RTs for discriminating target forms
and reduced interference from neighboring forms.

3) Bundesen’s (1990) Btheory of visual attention^ (TVA)
and expanded neural theory (NTVA) represents the acqui-
sition rate and resolution of visual information as a fixed-
capacity parallel race among independent visual signals
(e.g., Bundesen, 1990; Bundesen et al., 2005, 2011;
Logan, 2002, 2004; Shibuya & Bundesen, 1988).

4) Neurophysiological normalization: Suppressive feedback
from surrounding population activity has been found to
reduce firing rates of individual neurons; and this model
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has been used recently to describe effects of attention on
both cortical neural responses and behavioral discrimina-
tions (e.g., Carandini & Heeger, 2012; Reynolds &
Desimone, 2003; Reynolds & Heeger, 2009; Reynolds
et al., 2000).

5) Contrast resolution: Pre-cueing can enhance contrast res-
olution in various tasks requiring detection, localization,
and orientation discrimination (Carrasco et al., 2000).
Covert attention elicited by a pre-cue increased subjective
contrast (Carrasco et al., 2004). Voluntary attention al-
tered perceived relative contrasts of superimposed colors
moving in opposite directions (Blaser et al., 1999).

6) Spatial resolution: Yeshurun and Carrasco (1999) found
that spatial pre-cuing improved both speed and accuracy
in spatial acuity tasks.

7) Spatiotemporal resolution: Koenderink (2012) and
Koenderink et al. (2012) demonstrated that attention to
meaningful structure reduced perception of motions pro-
duced by perturbing spatial and temporal positions of
image elements in movies.

The present results are at least qualitatively consistent with
the preceding theories and results. The reduced detection rates
found here, however, were larger and simpler than in most of
these previous studies. The inverse proportionality of hazard
rates and Set Size involves no additional free parameters be-
yond the rate capacity of visual awareness.

A generalized channel capacity of visual awareness? A
constant rate-capacity of visual awareness was the primary
determinant of target detection in this study. A single rate
parameter was invariant with Set Sizes, response times, and
motion durations. This invariance is striking, but much re-
mains to be learned about the functions of awareness in com-
plex task environments. Is this a visual capacity, for example,
or is it a general multi-modal and cross-modal capacity limit
that affects multiple sensory modalities at the same time?
Divided attention certainly affects the auditory modality
(e.g., Cherry, 1953; Dehais et al., 2014), reducing detection
of even noxious multi-modal stimuli (Wayand, Levin, &
Varakin, 2005). The hypothesis that cognitive awareness of
virtually all forms of sensory information might be limited
by a single channel capacity certainly awaits clarification by
a larger research program. And this issue certainly cannot be
resolved by a single experiment. The definition and measure-
ment of diverse forms of ‘information’ entails difficult theo-
retical problems.

The finding in Experiment 2 that Motion Speed had a sub-
stantial effect on the rate of awareness demands further inves-
tigation. Importantly, the effects of Motion Speed were both
reduced and opposite when the rate of target detection is
expressed in spatial units, as bits/°. Thus, the rate of visual
awareness evidently entails both spatial and temporal

dimensions of motion. Do similar spatial capacity limits apply
to the visual awareness of stationary object properties? The
answer is not now available.

Analogous questions concern potential effects of the output
responses. Invariance of the rate parameter (a) with RT sug-
gests that this capacity limit might not be specific to the re-
sponse system, but the present evidence is limited.
Applications to measures of accuracy and speed/accuracy
tradeoff are of particular interest.

An incidental finding was that the rate of awareness was
higher in Experiment 1 than in Experiments 2 and 3 for the
same Motion Speed. The possibility that differences in tem-
poral uncertainty yield differences in the rate of awareness
demands further investigation.

General conclusion

A constant rate of awareness was a primary determinant of the
rate of target detection when attention was divided among
multiple moving objects. Visual awareness operated in paral-
lel, independently and concurrently, with visual processes that
integrated spatiotemporal information about object motions.
The role of visual awareness and its constant capacity were
revealed by the hazard rates of target detection.
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Appendix 1: Evaluating temporal processes
by integrated hazard functions and by momentary
hazard rates

This Appendix clarifies the rationale for evaluating relative
performance in different conditions and over time by momen-
tary hazard rates, h(t) — rather than by the integrated func-
tions, H(t). Townsend and colleagues have developed a theo-
retical framework for experimental methods (e.g., Eidels et al,
2015; Townsend & Nozawa, 1995; Townsend & Wenger,
2004a, b), statistical methods (Houpt & Townsend, 2012;
Wenger & Gibson, 2004), and empirical support (Godwin
et al., 2015;Wenger &Gibson, 2004) for evaluating efficiency
and capacity by ratios of the integrated hazard functions for
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different conditions. In the present study, however, relative
performance was evaluated by ratios of the momentary hazard
rates, h(t) — estimated here by slopes of the integrated
functions.

Naturally, the two measures have much in common.
Both measures are functions of the rank-ordered RTs, in-
dependent of the trial sequence, and independent of
events in preceding trials; both evaluate survival func-
tions, the numbers of responses that have not yet occurred
at a given time; both are ratio scales of performance at a
given time; and both trace the time course of a temporal
process underlying observed RTs.

Nevertheless, integrated and momentary hazard func-
tions measure different properties of the temporal pro-
cess. Specifically, suppose that HA(t), hA(t), HB(t), and
hB(t) are the integrated and momentary hazard rates at
a given time t for two different experimental conditions,
A and B. Then HA(t)/HB(t) = y does not imply that hA(t)/
hB(t) ≈ y.

The truth of this proposition follows immediately from the
fact that the integrated and momentary hazard functions are
defined on different sets of RTs: The integrated function is
determined by the relative frequency of responses in the pre-
ceding RT interval (0, t), but the momentary hazard rate h(t) is
estimated by the relative frequency of responses in a following
interval (t, t+Δt).

Houpt and Townsend (2012) develop statistical
methods for estimating and comparing integrated hazard
functions for sets of discrete trials. If the hazard function
is estimated from a total of N response times, and if M is
the number of survivors at time t, then an unbiased esti-
mate of the integrated function H(t) is a sum of the hazard
rates for each individual response preceding time t:

H tð Þ ¼ −ln S tð Þ≈ 1=N þ 1= N−1ð Þ þ…þ 1= M þ 1ð Þ½ �: ðA1Þ

By the same BNelson-Aalen^ procedure (see Houpt &
Townsend, 2012), the momentary hazard rate for an inter-
val of Δt beginning at time t containing Q responses is
estimated from a similar sum of a succeeding subset of
responses:

h tð Þ ¼ ln S tð Þ−ln S t þΔtð Þ½ �Δt≈
1=M þ 1= M−1ð Þ
þ…þ 1= M−Qþ 1ð Þ

" #
=Δt: ðA2Þ

Empirically, these two computational procedures produced
different descriptions of relative performance in different con-
ditions in the present study. Fig. 8 plots the relative values of
integrated hazard functions, log2Hn(t) – log2H1,est.(t). The four
Set Size conditions, n = {2, 4, 6, 8}, are each compared with

an estimated baseline performance for Set Size n = 1, where
this baseline was estimated by averaging, in each successive
10ms bin, values of n•Hn(t) for the conditions with n = 4, 6,
and 8. (That is, the estimated value of H1,est.(t) = [4•H4(t) +
6•H6(t) + 8•H8(t)]/3 for those bins in which 0.05 ≤ Fn(t) ≤ 0.95
for all three of these Set Size conditions. When the dis-
tribution function at a given time t for one or two of these
three Set Size conditions was not within the 5th–95th
percentiles, then the baseline was computed by averaging
values from the others.)

Before making this graph, we compared the log2Hn(t)
values for all six pairs of the four Set Size Conditions.
Those comparisons demonstrated what is seen in Fig. 8:
The values of n•Hn(t) for the Set Size 2 condition were
initially greater than those for n = 4, 6, or 8, while relative
values for the latter conditions were approximately pro-
portional to their respective Set Sizes: Hi(t)/Hj(t) ≈ (i/j),
for Set Sizes, i, j = {4, 6, 8}. Thus, to show these relations
among the several Set Size condition, the baseline for the
hypothetical n = 1 condition was estimated from the three
larger Set Sizes. For Set Sizes 4, 6, and 8, the relationship
between Set Size and hazard function was similar to that
in Fig. 3b, where hi(t)/hj(t) ≈ (i/j). For Set Size 2, howev-
er, Fig. 8, does not correspond to Fig. 3b.

Figure 9 shows relationships among the momentary
hazard rates. Figure 9 is similar to Fig. 3b except that
hazard rates are estimated at successive 5 % quantiles
for the 5–75th quantiles, using a sliding 20 % window
to compute the hazard rate for the time interval beginning
at each successive 5 % increase in the quantile. And the
Nelson-Aalen procedure was used to estimate the

Fig. 8 Log2 of ratios of integrated hazard functions, Hn(t), for each Set
Size condition in Exp. 1. Data in the three lower curves, for n = 4, 6, and
8, were averaged to estimate the baseline for a hypothetical n = 1
condition. Each curve describes the distribution function for RTs from
the 5th to 95th percentile; and the deciles from 10th to 90th aremarked for
each condition. (The curve for Set Size 2 begins at the 16th percentile.)
Compare with Fig. 3b, based on the same data
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integrated functions from which these differentials were
computed. The RT distributions underlying Figs. 8 and 9
are identical, but these graphs yield different descriptions
of relative performance in different conditions and at dif-
ferent times. Figure 8 indicates that the relationship be-
tween Set Size and detection performance was relatively
better for Set Size 2 than for the three larger Set Sizes;
and, additionally, that this Set-Size effect varied with
time. Figure 9, however, shows quantitatively consistent
and functionally independent effects of both time and Set
Size. The descriptive analysis in Fig. 9 is clearer and
simpler, as well as more detailed.

The discrepancy between the analyses in Figs. 8 and 9
results from two factors: First, Fig. 8 describes ratios of inte-
grated functions, whereas Fig. 9 describes local rates of
change in the integrated functions. Second, as indicated
above, the two functions are defined on different subsets of
the ordered RTs: The integrated functions in Fig. 8 evaluate
the set of RTs ≤ t, whereas Fig. 9 is based on a subset of slower
RTs, t < RT ≤ t+Δt.

Would the integrated functions and momentary rates be
similar if both evaluated RTs ≤ t? The momentary hazard rate
could be evaluated at the upper bounds of each time interval,
rather than at the lower temporal bounds as in Fig. 9 and
elsewhere in this paper. Suppose this difference function lo-
cated at the upper-time-bound is identified as g(t2) = [H(t2) –
H(t1)]/(t2– t1). The measures of detection rate given by this
upper-bound function g(t2) are identical to those of the lower-
bound function h(t1), but they are evaluated at different times.
The integrated function H(t) may also be considered as an
integral of the g(t2) function, with both functions based on
RTs ≤ t. Graphically, data points for the g(t2) and h(t1) func-
tions have the same vertical axis coordinates, but the g(t2) data

points are shifted to the right on the time axis relative to h(t1);
and the temporal shift increases nonlinearly with time. A
graph of these g(t2) functions, Fig. 10, has the same format
as Fig. 9, but with data points plotted at the 25–95th percen-
tiles in 5 % increments. Figure 10 resembles Fig. 9, but the
relative effects of Set Size and time differ especially for the
faster RTs influenced by the Motion Integration process.
Consistent with Fig. 8, Fig. 10 displays detection rates for
Set Size 2 relatively higher than for the other conditions.
Relative performance for Set Size 4 is also higher than for
Set Sizes 6 and 8. The adjusted detection rate functions,
n•g(t2), vary among the four Set Size conditions more in
Fig. 10 than in Fig. 9. A similar three-parameter model de-
scribed 91.8 % of the variance in the Bupper-bound^ hazard
rates, g(t2), in Fig. 10, as compared to 97.8 % of the data in
Fig. 9. [The fitting method was the same as for the data in
Fig. 3b. The three-parameter model was fit to 16 independent
data points, four values of h(t1) or g(t2) for each of the four Set
Size conditions— at the 10th, 30th, 50th, and 70th percentiles
for the h(t1) functions, and 30th, 50th, 70th, and 90th percen-
tiles for g(t2). The hazard rates were not multiplied by n.]

The conclusion indicated by these analyses is that the mo-
mentary hazard rates, h(t) provide a more consistent, more
lawful, and simpler description of the temporal process of
target detection than descriptive analyses of the integrated
hazard functions, H(t).

Appendix 2: Parameter estimation for Experiment 2

The three parameters of the equations for results of
Experiments 1 and 2 are not independent. To evaluate the

Fig. 9 Momentary hazard rates, n•hn(t), for the data in Fig. 8. Data points
are plotted at succeeding 5 percentiles, using a running window of 20 %,
for 0.05 ≤ Fn(t) ≤ 0.95. These values were derived from integrated
functions estimated by the Nelson-Aalen method (Houpt & Townsend,
2012)

Fig. 10 Hazard rates plotted at the upper bounds of time intervals.
Hazard rates on the vertical axis are the same as in Fig. 9, but the time
coordinates on the horizontal axis are different. The error variance is
almost four times larger in Fig. 10 than Fig. 9 (See text)
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effects of Motion Speed independently for the two component
processes, visual awareness and motion integration, a four-
step method was applied to the data for each observer as well
as the combined-observer data in Fig. 5:

1) Adjusted hazard rates, n•hn(t), were computed and
graphed for each of the nine conditions and each of the
four observers — yielding 12 graphs like the three in
Fig. 5. These graphs provide visual guidance and a check
on the parameter estimation methods.

2) Next, the asymptotic detection rate parameter, a, was
estimated by averaging adjusted hazard rates, n•hn(t),
for data points with the longest RTs for which the
hazard rates were uncorrelated with time. These data
points were selected by comparing the slope of the
regression line between RT and n•hn(t) for successive-
ly larger sets of points, beginning with the two lon-
gest RTs and including successively more points with
faster RTs. Parameter a was then estimated by the
mean value of n•hn(t) in the set for which the absolute
value of the slope was smallest. This comparative
procedure yielded three to seven data points on the
right side of the space of h(t) versus RT. These data
points were primarily from Set Size 12 and none from
Set Size 1. This method insured that the parameters
for visual awareness and motion integration were es-
timated from different sets of data.

3) Using this estimate of parameter a, we then estimated the
motion integration parameters c and k, minimizing the
standardized deviation measures, (O – P)2/P, with O and
P the obtained and predicted hazard rates, as in
Experiment 1. Because estimates of parameter c, for each
observer, varied only slightly and unsystematically be-
tween Motion Speed conditions, we used the average of
these three estimates of c for all three Motion Speed con-
ditions for each observer.

4) Finally, we estimated parameter k—where the two linear
segments intersect — by the value that minimized the
squared deviations between obtained and predicted
values. Thus, the estimated duration of motion integration
is determined solely by parameter k. Results are given in
Fig. 5 for the combined observers and in Table 3 for the
individual observers.
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