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Abstract How does reward guide spatial attention during vi-
sual search? In the present study, we examine whether and
how two types of reward information—magnitude and fre-
quency—guide search behavior. Observers were asked to find
a target among distractors in a search display to earn points.
We manipulated multiple levels of value across the search
display quadrants in two ways: For reward magnitude, targets
appeared equally often in each quadrant, and the value of each
quadrant was determined by the average points earned per
target; for reward frequency, we varied how often the target
appeared in each quadrant but held the average points earned
per target constant across the quadrants. In Experiment 1, we
found that observers were highly sensitive to the reward fre-
quency information, and prioritized their search accordingly,
whereas we did not find much prioritization based on magni-
tude information. In Experiment 2, we found that magnitude
information for a nonspatial feature (color) could bias search
performance, showing that the relative insensitivity to magni-
tude information during visual search is not generalized across
all types of information. In Experiment 3, we replicated the
negligible use of spatial magnitude information even when we
used limited-exposure displays to incentivize the expression
of learning. In Experiment 4, we found participants used the
spatial magnitude information during a modified choice
task—but again not during search. Taken together, these find-
ings suggest that the visual search apparatus does not equally
exploit all potential sources of spatial value information;

instead, it favors spatial reward frequency information over
spatial reward magnitude information.

Keywords Visual search . Spatial attention . Spatial
probability cueing . Statistical learning . Reward learning

Interaction with our spatial environment is inherently goal
driven, aimed at maximizing our behavioral outcomes.
Consider a fisherman choosing between two equidistant
locations to travel to and lower his lines. By a frequency
maximization principle, he will pick the location that
promises more fish caught in a given interval (all other
things being equal). By a magnitude maximization princi-
ple, he will pick the location that promises individual fish
that are more valuable to him (e.g., larger or tastier).
Research has long examined the role of reward frequency
and magnitude in learning (Crespi, 1942; Herrnstein,
1961). One classic demonstration of how these factors
influence behavioral choice comes from Spear and
Pavlik (1966), who used a T-maze procedure. Rats had
to run through the Bstem^ of the T toward a choice point,
where they had to go left versus right to obtain a potential
food reward at the end of the chosen arm. The frequency
manipulation placed a reward more frequently in one arm
than the other; the magnitude manipulation placed re-
wards equally often but altered the number of food pellets
in each arm. Results showed that the rats took advantage
of both frequency and magnitude information to maxi-
mize their overall gains. Humans also incorporate these
two sources of information in their decision-making be-
havior (see Ernst & Paulus, 2005).

How do these principles extend beyond classic scenarios
such as behavioral decision making and spatial navigation?
Here, we bring the question to the domain of human visual

* Bo-Yeong Won
bywon@ucdavis.edu

1 Department of Psychology, Ohio State University, 1835 Neil
Avenue, Columbus, OH 43210, USA

Atten Percept Psychophys (2016) 78:1221–1231
DOI 10.3758/s13414-016-1154-z

http://crossmark.crossref.org/dialog/?doi=10.3758/s13414-016-1154-z&domain=pdf


search. From an ecological standpoint, it is sensible to priori-
tize search to locations containing high-frequency and high-
magnitude rewards. However, the cognitive machinery medi-
ating visual search might not always be penetrable by the
kinds of information used in higher level behavioral choice.
For instance, it has been argued—albeit hotly debated—that
memory for recently inspected locations does not strongly
guide search (Horowitz & Wolfe, 1998; Wolfe, 2003).
Additionally, random visual search is more efficient than
volitionally constrained search (Wolfe, Alvarez, & Horowitz,
2000), suggesting that it might not be desirable or advanta-
geous to integrate all sources of information into a spatial
search task.

A review of the literature does show strong evidence for the
use of frequency information. In studies of probability cueing,
in which targets are presented more often in one display quad-
rant than the others, participants learn to prioritize their search
to the high-frequency locations (e.g., Geng & Behrman, 2002;
Jiang, Swallow, Rosenbaum, & Herzig, 2013; Miller, 1988).
However, evidence for using magnitude information has been
mixed. Just one study has reported that individuals learn to
bias spatial attention to locations containing more valuable
targets (Chelazzi et al., 2014). Note that, overall, the number
of studies of attention and reward have surged in recent years,
most of which have shown robust prioritization of rewarded
nonspatial features (e.g., Anderson, Laurent, & Yantis, 2011;
Della Libera & Chelazzi, 2006; Hickey, Chelazzi, &
Theeuwes , 2010; Kiss , Dr iver, & Eimer, 2009;
Navalpakkam, Koch, Rangel, & Perona, 2010). Given the
traditionally strong focus of attention research on spatial at-
tention (Bisley & Goldberg, 2010; Fecteau & Munoz, 2006),
one might expect more published studies demonstrating learn-
ing of spatial reward magnitude. Moreover, one recent study
has reported a failure to observe such learning (Jiang, Li, &
Remington, 2015).

In the present study, we closely evaluate whether and how
individuals learn to prioritize frequency and magnitude infor-
mation within a visual search task. To advance our work be-
yond previous studies, we focused on a direct comparison of
the usage of these two types of information. Specifically,
when each source of information is manipulated in such a
way that it returns a similar payoff schedule of monetary
gains, will they drive behavior similarly? Our basic approach
was to manipulate different levels of value across the display
quadrants in two ways: In the frequency manipulation, targets
appeared more often in some quadrants than others; in the
magnitude manipulation, targets were more valuable in some
quadrants than others.We contrast two predictions. On the one
hand, the visual search apparatus could be guided simply by
overall expected value, whether it be frequency or magnitude.
On the other hand, some indicators of expected value could be
exploited more than others (e.g., we could see greater exploi-
tation of frequency than magnitude information).

Experiment 1A and 1B

This study is not the first to test the use of both frequency and
magnitude information in a visual search task. Jiang et al.
(2015) recently reported robust effects the former and negli-
gible effects of the latter, although the tasks were not directly
equated. One key difference was that Jiang et al.’s magnitude
manipulation usedmonetary incentives whereas the frequency
manipulation did not. The presence of reward could increase
anxiety, influence attentional deployment, and/or affect
decision/response processes (see Mathews & MacLeod,
2005, for a review). It is thus possible that participants learned
the reward contingencies but did not express their learning; for
instance, participants could have responded more conserva-
tively to targets in expected high-reward locations to ensure
success on these high-stakes trials. This strategy could mask
RT evidence of spatial biasing to the high-reward quadrant.
Moreover, because the incentive structure differed across the
experiments, it is difficult to objectively compare the strength
of the two manipulations. What if the reward manipulation
was weaker than the frequency manipulation?

In the present study, we placed both reward magnitude
(Experiment 1A) and frequency (Experiment 1B) manipula-
tions in a similar monetary incentive context. The goal was for
both sets of participants to earn equivalent amounts and be
similarly motivated. To accomplish this, we closely matched
the display quadrants in both tasks for expected value (EV). In
each experiment, we included high-, low-, and neutral-EV
quadrants. Our inclusion of neutral-EV quadrants allowed us
a baseline for which to measure biasing toward high-EV quad-
rants and biasing away from low-EV quadrants.

For reward magnitude, targets appeared equally often in
each quadrant, and the value of each quadrant was determined
by the average points earned per target. For reward frequency,
we varied how often the target was presented in each quadrant
but held the average points earned per target constant across
the quadrants. If participants are sensitive to the magnitude
and/or frequency information, then we will find significant
RT facilitation in high-EV quadrants and/or RT slowing in
low-EV quadrants (compared to neutral-EV quadrants) in
the respective experiments. We will directly compare the re-
sults of these two experiments to determine the relative differ-
ences in how participants use magnitude and frequency
information.

Method

Participants Twelve individuals participated in Experiment
1A (seven females; mean age = 22.5 years), and 13 participat-
ed in Experiment 1B (six females; mean age = 20.8 years).
One participant was excluded from Experiment 1B for low
accuracy (>3 SD below the group mean). All participants re-
ported normal or corrected-to-normal visual acuity and normal
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hearing. The Ohio State University IRB approved this proto-
col. They were initially informed that their compensation
would range between $15 to $20 for the 1.5 hour session,
based on performance; however, upon completion, we paid
everyone the full $20.

Materials Participants were tested in a dimly lit room. Stimuli
were presented on a 24-in. LCD monitor and generated using
MATLAB (www.mathworks.com), with PsychToolbox
extensions (Brainard, 1997; Pelli, 1997).

Stimuli Search displays contained one target (a white T rotat-
ed 90° clockwise or counterclockwise) and 15 distractors
(white Ls rotated 0°, 90°, 180°, or 270°), on a gray back-
ground. Targets and distractors subtended 1.02° × 1.02° (all
visual angles assume a typical viewing distance of 60 cm).
Item locations were chosen randomly from a 10 × 10 invisible
matrix (15.28° × 15.28°), with four items appearing in each
quadrant. Target and distractor orientations were all selected
randomly with replacement on each trial. The number 20 or 1
(font size: .92°), indicating reward points for a given trial, was
displayed at the target location, in green for correct responses
or in red for errors. Auditory feedback was either a three
Bchirp^ sequence lasting 300 ms for 20-point correct re-
sponses, a single high-pitched 100-ms tone for a 1-point cor-
rect responses, or a 200-ms Bbuzz^ for incorrect responses.
One-s blank displays followed errors to discourage low
accuracy.

Design In Experiments 1A and 1B, correct responses earned
20 points on 50 % of trials and 1 point on the remaining trials,
yielding a mean EVof 10.5 points per trial. Had we distributed
EV equally across the display, each quadrant would be worth
2.625 points per trial (i.e., each trial’s EVequals the sum of EVs
across all quadrants). Thus, we set 2.625 as the neutral EV.

To create low and high EVacross quadrants in Experiment
1A (Magnitude), we held target frequency constant across
four quadrants but unevenly distributed reward magnitude.

Specifically, targets in the high-EV quadrant earned 20 points
on 90 % of trials and 1 point on 10 % of trials. Targets in the
low-EV quadrant earned the opposite: 1 point on 90% of trials
and 20 points on 10 % of trials. Neutral-EV quadrants earned
1 and 20 points equally often. These contingencies yielded
EVs of 4.525, 0.725, and 2.625 for high-, low-, and neutral-
EV quadrants, respectively. We held target frequency and re-
ward magnitude constant across four colors.

In Experiment 1B (Frequency), we maintained constant
reward magnitude across all quadrants but manipulated target
frequency. That is, targets were 20 points and 1 point equally
often in all quadrants. However, targets appeared in the high-
EV quadrant on 41.7 % of the trials, in the low-EV quadrant on
8.3 % of the trials, and in each of the neutral-EV quadrants on
25 % of the trials. These contingencies yielded EVs of 4.375,
0.875, and 2.625 for high-EV, low-EV, and neutral-EV quad-
rants, respectively, which are closely matched to Experiment
1A. When not identical, we erred on the side of more extreme
values for low- and high-EV quadrants in the spatial reward
experiment, to ensure as strong or stronger of a manipulation
than spatial probability, which we expected to be robust from
previous research (see Fig. 1a).

Procedure Participants initiated each trial by clicking on a
small white square (.51° × .51°), which appeared near the
screen center (jittered by .77°). After the click and a 500-ms
delay, the search display appeared. Participants were
instructed to press the left or right arrow for clockwise or
counterclockwise targets, respectively. Upon response, the
search array was removed, and the point value earned was
displayed, along with the auditory feedback. Next, the cumu-
lative total points were displayed at the screen center for
200 ms (see Fig. 1b).

Participants completed 12 practice trials before advancing to
the main task, which consisted of eight blocks of 120 trials each.

Generation task After the main trials, participants were
told about the reward manipulation and asked whether
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Experiment 1A. Magnitude
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Fig. 1 a. Target frequencies, reward magnitudes, and associated EVs
used in Experiment 1A (left) and Experiment 1B (right). Which quadrant
was assigned as high-EV, low-EV, and neutral-EV quadrants were

counterbalanced across participants. b. Sample trial events (see the
Method section for additional details). (Color figure online)
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they noticed any regularity. Next, they completed a 24-
trial generation task (similar to Chun & Jiang, 2003), as
follows. In Experiment 1A, participants were shown a
search array and required to click on the target, which
revealed two point values, 1 and 20. Participants had to
then choose which of these they felt to best match the
reward typically earned at that location. In Experiment
1B, participants were shown a search array of 16 Ls,
and they had to click on one L that they felt most likely
would contain a target. No feedback was provided.

Results

Experiment 1A (magnitude)

Accuracy Accuracy in high-EV, low-EV, and neutral-EV
quadrants was 99.1 %, 99.0 %, 99.0 %, respectively. An anal-
ysis of variance (ANOVA), including quadrant type (high-EV,
low-EV, and neutral-EV) and blocks (1–8) as within-subject
factors, showed neither significant main effects nor the two-
way interaction, all Fs ≤ 1.0.

RT Correct responses were analyzed after removing trials
with RTs slower than 3 standard deviation above the mean,
separately for each quadrant type; 1.7 % of trials were re-
moved and remaining mean RTs are plotted in Fig. 2a. A
Quadrant Type × Block ANOVA revealed a main effect of
block, as RT became faster as the experiment progressed,
F(7, 77) = 9.19, p < .001, ηp

2 = .46. However, there was

neither a main effect of quadrant type nor a two-way interac-
tion, Fs < 1.

Generation task Although 6 of 12 participants reported
noticing the regularity, the overall group did not reliably
vary in their selection of 20 points versus 1 point across
the high-EV, neutral-EV, and low-EV quadrants, F(2, 22)
= 2.28, p > .1.

Experiment 1B (frequency)

Accuracy Accuracy in high-EV, low-EV, and neutral-EV
quadrants was 99.5 %, 99.8 %, and 99.4 %, respectively. A
Quadrant Type × Block ANOVA showed neither main effects
nor an interaction, ps > .05.

RT In Fig. 2b, 1.7 % of trials were trimmed and remaining
mean RTs are plotted in. As in Experiment 1A, the Quadrant
Type Block ANOVA again showed a significant main effect
of block, F(7, 77) = 5.94, p < .001, ηp

2 = .35. It also now
showed a significant main effect of quadrant type, F(2, 22) =
25.46, p < .001, ηp

2 =.70, reflecting faster RTs to targets in
more frequent quadrants. Additionally, the two-way interac-
tion was significant, F(14, 154) = 3.19, p < .001, ηp

2 = .23, as
the quadrant learning effect increased over time. These results
replicate previous studies (Geng & Behrmann, 2005; Jiang
et al., 2013).

Generation task Nine of 13 participants reported noticing
regularity. However, the overall group did not reliably vary
in their selection of one L that they felt most likely would
contain a target across the high-EV, neutral-EV, and low-EV
quadrants, F(2, 22) = 2.23, p > .1

Experiment 1A versus Experiment 1B

To directly compare RT across experiments, we conducted an
Experiment (2 levels, between-subject) × Quadrant Type (3
levels, within-subject) × Block (8 levels, within-subject)
ANOVA.Main effects of block and quadrant were significant,
F(2, 44) = 15.41, p < .001, ηp

2 = .41; F(7, 154) = 14.56, p <
.001, ηp

2 = .40, but that of experiment was not, F < 1.
Critically, the Experiment × Quadrant Type interaction was
significant, F(2, 44) = 16.94, p < .001, ηp

2 = .44, showing that
the robust frequency effect of Experiment 1B was significant-
ly greater than the negligible magnitude effect of Experiment
1A. Moreover, the three-way interaction was significant,
F(14, 308) = 1.78, p < .05, ηp

2 = .08, as spatial attention
became more biased toward the higher value quadrants over
time in Experiment 1B but did not change in Experiment 1A.

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8
Block (1 block = 120 trials)

Neutral-EV quadrant
High-EV quadrant
Low-EV quadrant

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8

Re
sp

on
se

 �
m

e 
(m

s)
Re

sp
on

se
 �

m
e 

(m
s)

Block (1 block = 120 trials)

Neutral-EV quadrant
High-EV quadrant
Low-EV quadrant

a

b

Fig. 2 Results from Experiment 1A and 1B (panels A and B,
respectively), showing RT as a function of quadrant type, across blocks.
Error bars show ±1 SE of the mean
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Experiment 2

Compared to the robust frequency learning expressed in
Experiment 1B, we saw little evidence for magnitude learning
in Experiment 1A. One possibility is that our visual search
task is broadly insensitive not just to spatial reward magnitude
learning but to many forms of magnitude learning. As men-
tioned in the introduction, several researchers have reported
robust prioritization of features that are associated with greater
monetary reward (e.g., Anderson, et al., 2011; Kiss et al.,
2009; Navalpakkam et al., 2010). In Experiment 2, we test
whether the visual search task used in Experiment 1 produces
learning of feature magnitude. Instead of manipulating EV
quadrants, we used high-, low-, and neutral-EV colors. The
EVof each color was determined by the average points earned
per target in each color. If the visual search task in Experiment
1 only favors frequency learning of any kind, not magnitude
learning, then we will fail to find any RT facilitation in high-
EV color in Experiment 2. If the negligible magnitude learn-
ing was specific to the biasing of spatial attention, we should
observe significant feature magnitude learning.

Method

Participants Twelve individuals participated in Experiment 2
(eight females; mean age = 20 years).

Materials, stimuli, design, and procedure Methods were
identical to those in Experiment 1A, except the following
changes. All of the items in each quadrant were now
assigned a unique color–red ([RGB]; [255 0 0]), green
([0 255 0]), blue ([0 0 255]), yellow ([255 255 0]).
While all items in each quadrant had the same color,
the colors changed randomly from trial to trial, such that
color information was not associated with location infor-
mation. The number 20 or 1 was displayed in white for
correct responses, or in black for errors. The reward
values were now assigned across different colors instead
of quadrants. Specifically, targets in one color were
deemed high-EV, earning 20 points on 90 % of trials
and 1 point on 10 % of trials. Targets in another color
were deemed low-EV, earning 1 point on 90 % of trials
and 20 points on 10 % of trials. The remaining two
colors were neutral-EV, earning 1 and 20 points equally
often. These contingencies yielded the same EVs as
Experiment 1A. The specific color–EV assignments were
randomized across participants, and we held color fre-
quency, target frequency, and reward magnitude constant
across four quadrants. Participants completed 12 practice
trials before advancing to the main task, which consisted
of six blocks of 160 trials each.

Generation task The generation task was modified from
Experiment 1A. Here, participants were told about the color
reward manipulation and asked whether they noticed any reg-
ularity. Next, they completed a 32-trial generation task, in
which they clicked on the target and had to choose which of
the two point values best matched the reward typically earned
for that color.

Results

Accuracy Accuracy in high-EV, low-EV, and neutral-EV
colors was 99.4 %, 99.4 %, 99.5 %, respectively. A Color
Type × Block (1–6) did not show any significant main effects
or the two-way interaction, all ps > .3.

RT In Fig. 3, 1.8 % of trials were trimmed. Mean RTs for the
three color types across blocks are plotted in Fig. 3. A Color
Type × Block ANOVA revealed a significant main effect of
block, as RT became faster as the experiment progressed, F(5,
55) = 12.68, p < .001, ηp

2 = .54, but there was no two-way
interaction, F(10, 110) = 1.26, p > .2. It is important that we
found a significant main effect of a color type, F(2, 22) = 5.59,
p = .01, ηp

2 = .34, confirming that feature reward learning
influenced target search.

Generation taskEight of 12 participants reported noticing the
regularity. Additionally, color choices for the whole group
significantly varied across EV-types (high, neutral, and low),
F(2, 22) = 12.22, p < .001, ηp

2 = .53, yielding evidence for
explicit knowledge of the color–reward relationship.
However, further analysis revealed no correlation between
generation task accuracy (i.e., how accurately they chose 20
pts for the high-EV color target and 1 pt for the low-EV color
target) and magnitude of learning from the main experiment
(i.e., RT for low-EV target color minus RT for high-EV target
colors), r = -.06. Therefore, although explicit knowledge was
present, it did not seem predictive of the presence of feature–
reward learning.
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Experiment 3

Experiment 2 demonstrates that visual search is sensitive to at
least some form of magnitude learning, although not spatial
reward magnitude. This brings us back to our initial question
following Experiment 1. Why is learning and/or expression of
spatial magnitude information so much weaker than for fre-
quency information? One likely possibility is that exploiting
frequency information confers a clearer behavioral benefit
than does exploiting magnitude information. Specifically, by
shifting attention first to locations that contain targets more
frequently, mean RTs become faster. However, in the magni-
tude manipulation, targets appear equally often at each loca-
tion, so magnitude information cannot be used by participants
to predict target locations and complete the search faster.
Thus, the incentive to use magnitude information is arguably
weaker than for frequency information.

Note that participants are not motivated only to act on
information that will speed search. Classic findings from
the animal literature clearly underscore this point. In one
such study (Goldstein & Spence, 1963), researchers alter-
nately placed rats at the starting point in one of two 60-
inch alleys on each trial. The opposite end of the alleys
contained a food reward, which had consistently greater
magnitude in one alley compared to the other. Results
showed the rats ran faster down the alley associated with
the higher magnitude reward (see also Davenport, 1962;
Spear, 1964). Even though the rats could not choose the
alley on each trial and could not use their behavior to
exert any control over the outcome of the trial, they dem-
onstrated greater motivation to navigate to the location
with the greater expected value. The finding is not direct-
ly analogous to the current study, but it suggests that
participants in the magnitude manipulation should be mo-
tivated to first check the high-EV quadrant, even though it
does not affect the trial’s outcome.

This speculation aside, we ran Experiment 3 to increase
participants’ incentive to prioritize the high-EV location
in the magnitude task. Jiang et al. (2015) previously ad-
dressed this issue by only rewarding responses on trials
whose RTs were faster than the participants’ median RTs.
The logic goes that participants only have enough time to
search part of the display while the reward is still avail-
able. Thus, all things being equal, they would earn more
by beginning their search at the highest magnitude quad-
rant. Despite this manipulation, Jiang et al. still failed to
observe magnitude learning. However, one limitation to
their approach is that less frequent rewards could have
reduced the possibility of learning.

Here, we modified our Experiment 1A (magnitude) as
follows. We provided unlimited search time for the entire
first half of the experiment, allowing greater potential
learning of the reward contingencies; in the second half,

we manipulated exposure duration, which reduced accu-
racy and thus incentivized a spatial bias toward the high-
EV quadrant. If participants express learning of the re-
ward contingencies, they should show a behavioral bias
toward the high-EV quadrant and/or away from the low-
EV quadrant in the limited search displays.

Method

Participants Twelve individuals (seven female; mean age
22.2 years) were included.

Materials, stimuli, and procedure Phase 1, consisting of
four blocks (120 trials each), was identical to Experiment
1A. Phase 2 also consisted of four blocks (120 trials each),
but the displays were now limited; exposures of 0.5 s, 1.25 s,
and 2 s were each presented equally often and in random
order. Twelve practice trials preceded Phase 1; before Phase
2, participants were instructed about the limited exposures and
shown three sample trials before proceeding.

Results

Phase 1 (unlimited exposure)

Accuracy Accuracy across quadrant types and blocks is
shown in Fig. 4a. A Quadrant Type × Block (1–4) ANOVA
yielded neither main effects nor an interaction, ps > .2.
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Fig. 4 Accuracy (a) and RT (b) results from Experiment 3, Phase 1.
Error bars indicate ±1 SE of the mean
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RT Trimming removed 1.7 % of trials in this phase. Figure 4b
plots mean RT in this phase. The Quadrant Type × Block (1–
4) ANOVA revealed a significant main effect of block, F(3,
33) = 17.11, p < .001, ηp

2 = .61, reflecting faster RTs over
time. Neither the main effect of quadrant type nor interaction
was significant, Fs < 1.

Phase 2 (limited exposure)

Accuracy Accuracy by quadrant type and block is plotted
separately for each exposure duration in Fig. 5a. A Quadrant
Type × Block (5–8) × duration ANOVA yielded only a main
effect of duration, F(2, 22) = 58.54, p < .001, ηp

2 = .84, and a
significant interaction between duration and block, F(6, 66) =
2.80, p < .05, ηp

2 = .20. Further analyses showed that the
performance increased as the experiment progressed in the
.5 s duration condition compared with both the 2-s duration,
F(3, 33) = 3.29, p < .5, ηp

2 = .23, and the 1.25-s duration
conditions, F(3, 33) = 4.06, p < .5, ηp

2 = .27. It is important
to note, however, that quadrant type showed neither a main
effect nor interaction with other factors, ps > .1.

RT Trimming removed 0.2 % of trials.1 Mean RTs are shown
in Fig. 5b. The Quadrant Type × Block (5–8) × Duration
ANOVA revealed only a significant main effect of duration,
F(2, 22) = 265.38, p < .001, ηp

2 = .96. No other main effects or
interactions were significant, ps > .2.

Generation task Similar to Experiment 1A, although six par-
ticipants reported a regularity, the overall group did not reli-
ably vary in their selection of 20 points versus 1 point across
the high-EV, neutral-EV, and low-EV quadrants, F < 1.

Experiment 4A and 4B

Experiment 3 provides clear evidence that spatial magnitude
information is not prioritized, even when using such prioriti-
zation would increase overall earnings. In Experiment 4A and

1 Here, we reported the RT data from only correct trials. Since the overall
accuracy scores were much lower compared with those of Experiment 1
and Experiment 2, we further analyzed RTs from the complete data set.
Regardless, we did not find any differences between the two analyses.
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Fig. 5 Accuracy (a) and RT (b) results from Experiment 3, Phase 2, plotted separately by exposure duration. Error bars show ±1 SE of the mean
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4B, we attempt to further demonstrate that the negligible spa-
tial magnitude learning is specific to visual search. Here, we
used a visual choice task in which observers did not search for
a target but instead were asked to click any one of the items on
each trial to reveal a reward. The stimulus displays were vir-
tually identical to previous experiments, except all stimuli
were now Ls, and the participants were asked to click on just
one of these items, at which point they received either a low or
high reward. Also, like the previous magnitude experiments,
we manipulated the reward value to be higher in some display
locations than others. If participants are generally insensitive
to the spatial distribution of value in the displays, then they
will fail to demonstrate a bias toward the high-EV locations.
However, if participants are only insensitive to the spatial
magnitude during a search task, then we should find robust
learning during visual choice.

For completeness, we directly compare spatial magnitude
learning in visual search (Experiment 4A) to that of visual
choice (Experiment 4B). The value contingencies were similar
to the previous experiments, except we simplified the displays
to include one high-EVand three low-EV quadrants. Also, to
keep the two experiments comparable to one another, we
modified the visual search task to consist of a click response
on the target T (instead of a forced choice discrimination on
the target orientation). Note that we only accepted a click
response when the mouse hovered over the target; thus we
did not measure response errors in this task.

Method

Participants Twelve individuals participated in Experiment
4A (nine females; mean age = 23.3 years), and 12 participated
in Experiment 4B (10 females; mean age = 22.9 years).

Materials, stimuli, and procedure Both experiments
consisted of 24 blocks, and each block consisted of 30 trials.

Experiment 4A (visual search) All aspects were identical
with Experiment 1A except the following changes: The search
display had only two types of quadrants, one high-EV
quadrant and three low-EV quadrants. In Blocks 1–12, targets
in the high-EV quadrant earned 20 points on 75% of trials and
1 point on 25 % of trials (quadrant EV = 3.894); targets in the
low-EV quadrant earned 1 point on 75 % of trials and 20
points on 25 % of trials (quadrant EVs = 1.438). In the second
half of experiment (Blocks 13–24), targets in all quadrants
earned 20 points on 50 % of trials and 1 point on 50 % of
trials (all quadrant EVs = 2.635). Last, participants clicked on
the target instead of pressing a key.

Experiment 4B (visual choice) All aspects were identical
with Experiment 4A, except for the following changes:
There were 16 Ls in each display and no Ts. Participants were

instructed to click one L to receive a reward of either 1 or 20
points. We emphasized that participants should try to maxi-
mize their earnings. For the first half of experiment (Blocks 1–
12), the high-EV quadrant contained three Ls that when
clicked were rewarded with 20 points and one L that when
clicked was rewarded with 1 point. These values were
matched to those of Experiment 4A. In the second half of
experiment (Blocks 13–24), all quadrants had two 20-point
Ls and two 1-point Ls.

Generation task The generation task for Experiment 4 was
identical with that for Experiment 1A, except that in
Experiment 4B, participants clicked a circled L instead of T.

Results

Experiment 4A (visual search)

Analysis focused on RT, which was measured as the time to
click on the target. Note that, unlike Experiments 1 through 3,
we do not present accuracy results here; recall that click re-
sponses were only accepted when the mouse hovered over the
target, so errors were not possible. RT trimming removed
1.7 % of trials. Mean RTs across quadrant types and blocks
are shown in Fig. 6a. A Quadrant Type × Block ANOVA
revealed one main effect of block, F(23, 253) = 3.59, p <
.001, ηp

2 = .25, meaning the overall search RT became faster
as the experiment progressed. However, replicating the previ-
ous experiments, there was no RT difference between the two
quadrant types, F(1, 11) = 2.15, p > .1. Quadrant type and
block did not interact, F(23, 253) = 1.18, p > .2.

Generation task Although five of 12 participants reported
noticing the regularity, the overall group did not reliably vary
in their selection of 20 points versus 1 point across the high-
EVand low-EV quadrants, F < 1.

Experiment 4B (visual choice)

Choice proportion across quadrant types and blocks is shown
in Fig. 6b. First, participants chose an L in the high-EV quad-
rant significantly more frequently than in each of the low-EV
quadrants (52.9 % vs. 15.7 % of trials, respectively; chance =
25 % per quadrant), t(11) = 3.80, p < .005. Additionally, the
difference between high-EV and low-EV quadrant choices
varied as a function of block, F(23, 253) = 2.55, p < .001,
ηp

2 = .19, reflecting that the bias toward the high-EV quadrant
grew over roughly the first 10 blocks.

Generation taskNine of 12 participants reported noticing the
regularity. However, the overall group still did not reliably
vary in their selection of 20 points versus 1 point across the
high-EV and low-EV quadrants, F(1, 11) = 1.87, p > .1.
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Experiment 4A vs. Experiment 4B

To compare results from Experiments 4A and 4B, we convert-
ed the respective dependent measures of interest (RT and
choice frequency) to arbitrary but comparable learning effi-
ciency units for each block (see Fig. 7). Specifically, in visual
search (Experiment 4A), we subtracted the mean RT in high-
EV quadrant from that in low-EV quadrants, and then divided
by the sum of the two mean RTs from high-EV quadrant and
low-EV quadrant (i.e., low-EV quadrant’s RT – high-EV
quadrant’s RT) / (low-EV quadrant’s RT + high-EV quadrant’s
RT)). For visual choice (Experiment 4B), we subtracted the
mean choice frequency in the low-EV quadrants from that in
the high-EV quadrant and then divided the result by the sum
of the two types of choice frequencies (i.e., high-EV quad-
rant’s frequency – low-EV quadrant’s frequency) / (high-EV
quadrant’s frequency + low-EV quadrant’s frequency)).

After computing the learning efficiency unit measures, we
conducted an Experiment (between-subject) × Block (within-
subject) ANOVA. We found a significant main effect of ex-
periment, F(1, 22) = 14.69, p = .001, ηp

2 = .40, but there was
no effect of block, F(23, 506) = 1.40, p > .1. Moreover, we

found a significant interaction between experiment and block,
F(23, 506) = 1.76, p < .05, ηp

2 = .074, reflecting the increasing
learning in visual choice over time while visual search
remained flat.

General discussion

The present results clearly show that people do not treat all
sources of spatial value information equally. Specifically, in
Experiment 1, when we carefully equated frequency and mag-
nitude manipulations, the exploitation of the former was quite
robust, but results for the latter were much weaker—even
negligible. We also showed, in Experiment 2, that the lack
of spatial magnitude learning in visual search did not general-
ize to feature magnitude learning, as we found significant
prioritization of high-EV colors. Even when we implemented
limited-exposure displays to incentivize the use of magnitude
information in Experiment 3, we still failed to find spatial
biasing. Experiment 4 further dissociated the failure of mag-
nitude learning in visual search with robust learning in a
choice task.
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We feel these results fit parsimoniously with the larger
literature on spatial learning and attention. Although there have
beenmany demonstrations of frequency learning or probability
cueing (Geng & Behrmann, 2002, 2005; Jiang et al., 2013;
Miller 1988; Won & Jiang, 2015), only a few reports of spatial
reward magnitude learning have emerged. Camara, Manohar,
and Husein (2013) and Hickey, Chelazzi, and Theeuwes
(2014) reported that spatial reward on one trial influenced
attentional allocation on subsequent trials, although such
effects were on a short timescale and did not reflect long-
term spatial biasing. Both Shomstein and Johnson (2013) and
Lee and Shomstein (2013) used an object-based cueing proce-
dure, modified from Egly, Driver, and Rafal (1994), in which
invalidly cued targets could appear at equidistant locations
either within the cued object or in an uncued object. When
invalid same-object locations were rewarded more than invalid
different-object locations, spatial attention was biased to the
same object; when this contingency was reversed, the spatial
attention effects also reversed, demonstrating that reward
magnitude determined attentional allocation. This effect was
not one of absolute space but rather was defined with respect to
the cued object location and thus may reveal properties of
allocation in object-centered coordinates; future work should
more closely compare effects of reward within object-centered
versus purely space-based coordinates.

Of greatest direct relevance is the study by Chelazzi et al.
(2014). Their task included a training procedure requiring a dif-
ficult visual discrimination on a target appearing in one of eight
possible locations (with the remaining locations populated with
distractors). Targets at each location were paired with an 80 %,
50 %, or 20 % high-reward schedule. After training, participants
searched the same eight locations, now for one or two letter
targets on each trial among a variety of non-alphanumeric
distractors (e.g., #, %), for very brief exposures (70 ms).
Performancewaswell below ceiling. In the two-target condition,
the researchers found significantly greater accuracy for targets at
the high-rewarded locations and significantly worse accuracy for
those at the low-rewarded locations. Similar effects were not
seen in the single-target trials, which the researchers interpreted
to be due to lower competitive demands on spatial attention.

The Chelazzi et al. (2014) results demonstrate that spa-
tial reward magnitude can be learned, although perhaps
only via a sophisticated and highly demanding procedure.
This is contrasted with the failure to find such learning
with a larger scale, higher accuracy visual search task
used by us and Jiang et al. (2015). Most important for
the present purposes, the Chelazzi study did not compare
the reward magnitude manipulation to a frequency manip-
ulation. We do not intend for our present results to rule
out the possible existence of magnitude learning; rather,
we demonstrate that spatial magnitude learning is compar-
atively weaker than frequency learning, feature magnitude
learning, and visual choice learning.

Given that we matched expected value across multiple ma-
nipulations, such that they were equally informative, why
would participants not prioritize all information types equally?
Although we cannot definitively answer this question, we do
offer some speculation. First, a number of neurophysiological
and imaging studies have implicated distinct neural substrates
in the processing of magnitude versus frequency information
during behavioral choice. For instance, subcortical structures
including nucleus accumbens have been linked to the former
and cortical prefrontal structures have been linked to the latter
(Knutson, Taylor, Kaufman, Peterson, & Glover, 2005; see
also Smith et al., 2009; Yacubian et al., 2007). Perhaps the
mechanisms mediating learning and/or expression of learning
in visual search interface in distinct ways with the unique
substrates representing magnitude and frequency information.
Second, as we mentioned in the introduction to Experiment 3,
the exploitation of frequency information always produces a
clear behavioral advantage, whereas exploiting magnitude in-
formation need not (especially when accuracy is at ceiling).
We devised an experiment to artificially introduce time pres-
sure to incentivize the use of magnitude information, but it is
possible that the visual system did not evolve under such
circumstances. That is, in the real world, exploitation of mag-
nitude information might not usually improve behavioral out-
comes; given this possibility, our visual search mechanisms
may have developed without a significant evolutionary pres-
sure to exploit spatial magnitude information. Thus, while
such a pressure can be contrived in the laboratory, the visual
system could be relatively insensitive to it.

Of course, any broad distinction between how magni-
tude and frequency information are used during search
does not explain the successful learning observed in the
color-based manipulation of Experiment 2. It could be that
specific object properties (e.g., shape, color) acquire value
in a way that spatial locations do not. This could make
sense from an ecological standpoint: Objects inherently
maintain their value over time, whereas spatial locations
could be more variable (e.g., berries found in a new loca-
tion are just as rewarding as the berries previously harvest-
ed from a now-exhausted location).

One further question that cannot be addressed by our cur-
rent data is whether our participants either failed to
(incidentally) learn the magnitude contingencies during visual
search or express their learning. We aim to address this impor-
tant question in future research.

In conclusion, we offer the provocative finding that despite
its great complexity and sophistication, the visual system does
not equally exploit all potential sources of spatial value infor-
mation. While we compared only two such types of informa-
tion, further types of potential spatial prioritization remain
open for future investigation. This broader research venture
will contribute vital insights into the intersection between re-
ward learning and spatial attention.
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