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Abstract We investigated the decision process underlying
the detection of targets at multiple locations. In three experi-
ments using the same observers, target location probability
and attentional instructions were manipulated. A redundant-
target detection task was conducted in which participants were
required to detect a dot presented at one of two locations.
When the dot appeared at the two locations with equal fre-
quency (Experiment 1), those participants who were found to
have limited to unlimited capacity were shown to adopt a
parallel, self-terminating strategy. By contrast, those partici-
pants who had supercapacity were shown to process redun-
dant targets in a coactive manner. When targets were present-
ed with unequal probability, two participants adopted a paral-
lel, self-terminating strategy regardless of whether they were
informed the target location probability (Experiment 3) or not
(Experiment 2). For the remaining two participants, the strat-
egy changed from parallel, self-terminating to serial, self-
terminating as a result of the probability instructions. In
Experiments 2 and 3, all the participants were of unlimited
to limited capacity. Taken together, these results suggest that
target location probability differently affects the selection of a
decision strategy and highlight the role of controlled attention
in selecting a decision strategy.
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Introduction

The visual environment consists of an overwhelming number
of objects and events. The human capacity for selectively
attending to a subset of this information enables us to guide
action and decision making efficiently in this environment.
Traditionally, visual attention is thought to be guided by two
types of attentional cues (Chun, Golomb, & Turk-Browne,
2011; Corbetta & Shulman, 2002; Jonides, 1981; Pashler,
Johnston, & Ruthruff, 2001; Posner, 1980; Yantis, 2000): (1)
endogenous, top-down attentional cues, which arise from
knowledge and experience, such as task goals and instructions
(Hopfinger, Buonocore, & Mangun, 2000; E. K. Miller &
Cohen, 2001), and (2) exogenous, bottom-up cues, which re-
flect perceptual salience and uniqueness of external stimuli,
such as abrupt onsets (Yantis & Jonides, 1984) and singletons
(Theeuwes, 1992). Both types of attentional cues play an im-
portant role in directing spatial attention to a cued location,
which can boost target processing when the target appears at
the cued location.

In addition to exogenous and endogenous cues, people are
sensitive to the spatial and temporal probabilities that govern
target location and presence (Geng & Behrmann, 2002, 2005;
Jones & Kaschak, 2012; Walthew & Gilchrist, 2006). The
target location probability denotes a target appearing at one
location more often than at other locations and is regarded as
an attentional cue that directs spatial attention in a way that
cannot be explained within the typical endogenous/exogenous
framework (Geng & Behrmann, 2002, 2005; Zhao, Al-
Aidroos, & Turk-Browne, 2013). The target location proba-
bility effect is defined as faster detection of targets at high
probability locations compared with targets at low probability
locations. This effect has been consistently demonstrated in a
variety of tasks (Baker, Olson, & Behrmann, 2004; Chun &
Jiang, 1998; Fiser & Aslin, 2001; Geng & Behrmann, 2002;
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Hoffmann & Kunde, 1999; Hughes & Zimba, 1985; Jones &
Kaschak, 2012; Kinchla, 1977; Kingstone & Klein, 1991;
Lambert & Hockey, 1986; J. Miller, 1988; Posner, Snyder,
& Davidson, 1980; Reder, Weber, Shang, & Vanyukov,
2003; Saffran, 2002; Shaw & Shaw, 1977; Shomstein &
Yantis, 2004; Summerfield, Lepsien, Gitelman, Mesulam, &
Nobre, 2006; Walthew & Gilchrist, 2006; Yantis & Egeth,
1999). For example, Geng and Behrmann (2005) asked par-
ticipants to search for a target and make a response based on
its identity. Results showed that eye movements proceeded to
high-probability locations over low-probability locations, and
identification of a target at the high-probability locations was
more accurate than identification at the low-probability loca-
tions, suggesting facilitated target detection through the devel-
opment of a target-location association. Using a contextual
cuing paradigm, Chun and Jiang (1998) also reported facili-
tated target detection through past experience of spatial regu-
larities. Participants were faster to search for a target when the
target appeared within consistent locations and the spatial con-
figuration repeated across blocks than when the target ap-
peared at the novel spatial configuration. Although the effect
of learned spatial regularities has been widely investigated in
the literature of visual search with a focus on how the spatial
probability affects attention and target processing, the specific
details of the information processing system underlying these
effects is less well explored. We examined the time course of
processing when the target location probability is systemati-
cally manipulated in the detection of redundant targets.

Detection of redundant targets

Detection has a prominent history in the study of mental pro-
cessing particularly when attention is evenly distributed across
space. Questions of interest include: (1) the minimal amount
of stimulation necessary to support reliable detection accuracy
(i.e., detection thresholds, Blackwell, 1953); (2) the interac-
tion between stimulation and response bias particularly when
target presentation is uncertain (i.e., as explained by signal
detection theory, Green & Swets, 1966; Peterson, Birdsall,
& Fox, 1954); (3) the latency of simple detection phenomena
focusing on the aspects of stimulation and response that ex-
plain the observed variability in response times (Luce, 1986).
This last approach has provided insight into the mechanisms
underlying detection. For instance, several authors (Burbeck
& Luce, 1982; Luce, 1986; Smith, 1995) have utilized a psy-
chophysically inspired model which combines sustained and
transient signal detectors (i.e., that are sensitive to signals
which are stable over time and signals that are sensitive to
onsets and offsets, respectively) to explain observed detection
hazard functions for suprathreshold stimuli. These hazard
functions rise to a peak and then decay (consistent with the
detection of transient signals) to a non-zero asymptote (con-
sistent with the detection of sustained signals). Such a model

is supported by a wide variety of psychophysical (see Smith,
1995 for a review) and physiological data (Cleland, Dubin, &
Levick, 1971; Livingstone &Hubel, 1988). The implication is
that both transient and sustained mechanisms race in response
to stimulation; however, different manipulations such as high
temporal and low spatial frequency or low temporal and high
spatial frequency (Robson, 1966; Watson & Nachmias, 1977)
might elicit contributions from solely the transient or sustained
detectors, respectively.

Consider the role these detectors would play in the detec-
tion of redundant targets presented in different spatial loca-
tions. Rather than having one detector for each location, both
mechanisms would pool activity across locations to drive the
detection decision. This suggests that the decision process
follows what has been termed a coactive processing architec-
ture (Fific, Little, & Nosofsky, 2010; Miller, 1982; Townsend
& Nozawa, 1995; Townsend &Wenger, 2004). Stated plainly,
the idea underlying coactive detection of redundant targets is
that there is a single source of evidence, created by pooling
information across locations, driving the detection decision,
even if this evidence in each location is initially processed by
parallel sustained and transient detection mechanisms (Smith,
1995).

The assumption that redundant-target detection decisions
proceed coactively is not supported by data showing that de-
tection decisions have limited capacity. For instance,
Townsend and Nozawa (1995) measured response times from
individual observers tasked with detecting dichoptically pre-
sented single or double suprathreshold luminance targets.
Using a measure of capacity based on the ratio of integrated
hazard functions from redundant and single targets (i.e., the
capacity coefficient, see below), capacity was consistently
found to be much more limited than would be expected under
an unlimited-capacity independent parallel race model in their
Experiment 1. Note that this parallel baseline model is one in
which the processing channels are organized by location and
not by the pooled sustained or transient energy. Under these
conditions, a coactive model is expected to predict better than
baseline performance (i.e., supercapacity; Townsend &
Nozawa, 1995; Houpt & Townsend, 2012). Intriguingly, how-
ever, in Townsend and Nozawa’s (1995) Experiment 2,
supercapacity was observed. A key difference between the
two experiments was that in the first experiment, the proba-
bility of a single, double, or no target was equal, but in the
second experiment, target-absent trials were presented on half
of the experimental trials. Hughes and Townsend (1998)
found further evidence of limited-capacity processing when
the target-absent trials have a low probability of occurrence.
Consequently, to formulate inferences about the role of atten-
tion in detection, it is necessary to ensure that an unbiased
measure of processing is available for comparison. By
adopting Townsend and Nozawa’s (1995) nonparametric
methodological tools (i.e., Systems Factorial Technology,
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SFT), we seek to characterize several key properties of the
information processing system.

Information processing and the role of attention
in redundant target detection

The information processing system is generally thought to be
comprised of successive stages of encoding, decision making,
and response. Each can be characterized by four important
properties: (1) processing architecture (parallel vs. serial vs.
coactive), which denotes the order of multiple-signal process-
ing; (2) stopping rule (self-terminating vs. exhaustive), which
denotes the amount of information required for decision mak-
ing; (3) processing capacity (limited-capacity vs. unlimited-
capacity vs. supercapacity), which denotes the variation of
processing efficiency as workload increases; and (4) indepen-
dence, which refers to the nature of facilitation and interfer-
ence between processing channels (Townsend, Fific, &
Neufeld, 2007; Townsend & Nozawa, 1995; Townsend &
Wenger, 2004). Hence, as described above, while encoding
of stimulus information might involve a parallel race between
sustained and transient detector channels, the information
from these channels concerning targets in multiple locations
might be pooled into a single coactive decision process
(Smith, 1995). On the other hand, under some conditions the
decision process may also proceed in parallel or in serial (i.e.,
across locations).

Previous studies have shown that the perceptual decision
process is flexible and can be affected by multiple factors,
such as task instructions (Donkin, Little, & Houpt, 2013),
relative saliency of external stimuli (Yang, 2011; Yang, Hsu,
Huang, & Yeh, 2011), relative change probability (Yang,
Chang, & Wu, 2013), and attentional focusing (Eidels,
Townsend, & Algom, 2010; Yang, Little, & Hsu, 2014). For
example, in Yang et al. (2014), an exogenous cue was used to
cue the target location, which had 100 % (informative cue) or
50 % (uninformative cue) validity. A positive response was
made when participants detected any dot (OR-rule condition).
Results showed that the validity of an exogenous cue affected
the processing architecture and processing capacity. When a
cue was 50 % valid (Experiment 1), all of the participants
adopted a parallel self-terminating processing strategy. That
is, processing for both the cued and uncued locations was
conducted in parallel and simultaneously and terminated as
soon as either target reached the decision criterion. In addition,
processing capacity ranged from unlimited to moderately lim-
ited capacity. By contrast, when a cue was 100 % valid
(Experiment 2), all the participants switched to a serial self-
terminating processing strategy. That is, participants first proc-
essed the cued location, and if the information was sufficient
for decision making, a positive response was made (i.e., a
target is detected). Otherwise, processing switched to the
uncued location. Generally, capacity became much more

limited in the informative-cue condition than in the
uninformative-cue condition. These findings are intriguing
because varying the cue validity can result in a shift from
parallel to serial processing, supporting the flexibility of a
decision mechanism.

We hypothesize that target location probability may affect
the perceptual decision process by biasing visual attention.
This bias is likely to alter the quality of information accumu-
lation or the temporal order that information from each stim-
ulus location enters the decision process (Sewell & Smith,
2012). The implication is that a shift in processing from par-
allel to serial may be observed if the participants are able to
flexibly adjust their attention to first process the information at
the high-probability location. In addition, processing capacity
may become more limited as the participants focus on pro-
cessing signals at high-probability locations than low-
probability locations, such that additional information from
low-probability locations slows down the processing for
high-probability locations. It is also possible that the target
location probability manipulation may not affect all of the
participants in the same way. There might be individual dif-
ferences in how well one observer could utilize target location
probability for effective strategy selection.

Our goal of the present study was to examine the effect of
target location probability on the perceptual decision process
while detecting multiple targets in a display. In three experi-
ments, participants were required to detect a target dot at two
pre-specified locations. The same participants participated in
each experiment so that we can track the change in strategy
across each of the experimental manipulations. In Experiment
1, the target appeared at the two locations with equal frequen-
cy (equal-probability condition). In Experiments 2 and 3, the
target appeared at one location more often than at another
location (unequal-probability condition). Participants were
not instructed about the probability manipulation until
Experiment 3 (via explicit instructions). Experimental design
and data analysis followed SFT to allow for strong inferences
about the characteristics of information processing.

We hypothesized that the perceptual decision process is
sensitive to target location probability. By contrasting the re-
sults of Experiment 1 to Experiments 2 and 3, we directly
examine sensitivity to target location probability focusing on
processing architecture and processing capacity. When target
location probability is equal across locations (Experiment 1),
the system should not favor any location, leading to a parallel
processing strategy. In contrast, when target location probabil-
ity is unequal across locations (Experiments 2 and 3), partic-
ipants may set a higher priority to process the high-probability
location first, leading to a serial processing strategy. In terms
of processing capacity, we expected that biased attention can
boost the processing for the high-probability location.
Processing additional signals at the low-probability location
may demand additional cognitive resources, thus revealing a
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limited-capacity system. Second, comparing the results of
Experiments 2 and 3 enabled us to examine whether the strat-
egy selection involves explicit awareness. We expected to
observe individual differences in selecting a decision strategy
because of the variation among the participants’ processing
capacity that may constrain the controlled attention in the
utilization of the decision strategy.

Experiment 1

In Experiment 1, we examined how participants detect redun-
dant targets when the targets appeared at two locations with
equal presentation frequency (hereafter, termed the equal-
probability condition). Based on previous studies (Townsend
& Eidels, 2011; Townsend & Nozawa, 1995), the processing
characteristics of a detection task in which no attentional cue is
given to the presence or absence of a target is typically iden-
tified as a parallel, self-terminating processing with limited
capacity. Therefore, in this experiment, we expected that the
participants would adopt a parallel, self-terminating process-
ing strategy with limited capacity to process signals at multi-
ple locations.

Method

Participants Four participants (CHY, CHC, TYC, and HLM)
from National Cheng Kung University participated in
Experiment 1. One of the authors (TYC) was a participant.
Ages ranged from 19 to 21 years; all had normal or corrected-
to-normal vision. Each participant completed five sessions,
which lasted approximately 40 minutes for each session.
The participants signed a written informed consent prior to
the experiment and received NTD 120 per hour after they
completed the experiment.

Apparatus The experiment was conducted in a dimly lit
room. A personal computer with a 2.40 G-Hz Intel Pentium
IV processor controlled the stimulus display and recorded
manual responses via a mouse button press. The display res-
olution was 1024 × 768 pixels. The visual stimuli were pre-
sented on a 19-inch CRT monitor with a refresh rate of 85 Hz.
The experiment was run with E-prime 1.1 (Schneider,
Eschman, & Zuccolotto, 2002). The viewing distance was
60 cm. A chin-rest was used to prevent head movements.

Design and stimuli The participants were instructed to detect
a target. The target was a light dot with a diameter of 0.2°, and
the target dot appeared at two locations (left and right, the
distance between the two locations was 16°). Following SFT
(Townsend &Nozawa, 1995), we adopted the double factorial
design. Specifically, we created four types of test trials, includ-
ing (1) redundant-target condition: both locations contained a

light dot; (2) left-only condition: only the left location
contained a light dot; (3) right-only condition: only the right
location contained a light dot; (4) target-absent condition: nei-
ther location contained a light dot. Conditions (2) and (3) were
termed as the single-target conditions. In addition, we manip-
ulated the brightness of the light dot. The luminance of the dot
in the high-brightness condition was 0.3 cd/m2 and the lumi-
nance of the dot in the low-brightness condition was 0.038 cd/
m2. Therefore, there were four types of redundant-target trials:
(1) HH: both left and right dots were of high brightness; (2)
HL: the left dot was of high brightness and the right dot was of
low brightness; (3) LH: the left dot was of low brightness and
the right dot was of high brightness; (4) LL: both left and right
dots were of low brightness. There were four single-target
trials: (1) HX: only the left location contained a dot of high
brightness; (2) LX: only the left location contained a dot of
low brightness; (3) XH: only the right location contained a dot
of high brightness; (4) XL: only the right location contained a
dot of low brightness. See Fig. 1 for an illustration.

Each participant completed five sessions, which contained
10 blocks for each session. On each block, there were a total of
80 trials, with equal frequency of the four test conditions,
including the redundant-target condition, left-only condition,
right-only condition, and target-absent condition. Table 1 pre-
sents the trial frequency for each condition within a block.
Under this arrangement, the target location probability was
equal across locations, such that information from two loca-
tions was equally salient and important for target detection.
Moreover, a potential anticipation for redundant-target trials
can be eliminated because only one-fourth of the trials
contained dots at both locations (Fiedler, Schröter, & Ulrich,
2011;Mordkoff &Yantis, 1991; Townsend&Nozawa, 1995).

Procedure Each trial began with a fixation cross presented at
the center of the screen for 350 ms (see Fig. 2 for an

Fig. 1 Illustration of all possible test trials. Note that BH^ and BL^
denotes high- and low-brightness. BX^ denotes the absence of the target
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illustration of the experimental procedure), accompanying a
500-Hz pure tone. The test display was presented after a
foreperiod randomly chosen from 50 ms to 850 ms.
Participants were required to click the left mouse button if
they detected any dots; otherwise, they had to click the right
mouse button. The test display would disappear after a re-
sponse is made or until 2000 ms. The inter-trial interval
(ITI) was 1000 ms. Both accuracy and reaction time were
emphasized. When an error is made, a feedback display
shown BWrong!^ is shown to remind the participant.

Data analysis SFT was utilized to infer the processing char-
acteristics of the decision mechanism. We adopted a nonpara-
metric bootstrapping method (Van Zandt, 2000) and utilized
statistics from the sft R package (Houpt, Blaha, McIntire,
Havig, & Townsend, 2014) to analyze the reaction time data
and make inferences. All analyses were conducted separately
for each individual.

We first tested the selective-influence assumption, a critical
assumption of SFT (Dzhafarov, 1999; Kujala & Dzhafarov,

2008; Townsend & Thomas, 1994). In the current experimen-
tal setting, the selective-influence assumption holds when the
brightness manipulation on a location only influences the in-
formation processing speed of that location. Two methods
were used to verify this assumption at the level of mean reac-
tion time. First, using the data of the single-target conditions, t
tests were conducted on the mean reaction times between the
high-brightness condition and the low-brightness condition
for each location. If the selective-influence assumption holds,
we would observe significant differences between the HX and
LX conditions and between the XH and XL conditions.
Second, a 2 (high/low brightness of the left dot) × 2 (high/
low brightness of the right dot) analysis of variance (ANOVA)
was conducted on the mean reaction times of the redundant-
target conditions. We would expect to observe significant
main effects of the two factors. To test this assumption at the
reaction time distribution level, we compared the reaction time
distributions of the four redundant-target conditions. First, we
examined whether the survivor functions gradually shifted
from the HH to the LL condition. Next, we conducted two
levels of Kolmogorov-Sminov (K-S) tests to compare the dis-
tributions of the four redundant-target conditions. The order-
ing of the reaction time distributions were examined by using
eight two-sample K-S tests (i.e., HH > HL, HH > LH, HL >
LL, LH > LL, HH < HL, HH < LH, HL < LL, and LH < LL).
If the selective-influence assumption holds, we would expect
that the former four tests are significant, and the latter four
tests are not significant. See Houpt et al. (2014) for more
details. In addition, we tested the reaction time distributions
at the factor level. We would expect to find a significant dif-
ference between the marginal distributions in the left, high-
brightness condition (HH and HL) and the left, low-brightness
condition (LH and LL) to support the effective brightness
manipulation on the left dot, as well as a significant difference
between the marginal distributions in the right, high-
brightness condition (HH and LH) and the right, low-

Table 1 Trial frequencies (per block) in each experiment

Right

H L X

Experiment 1

Left H 5 5 10

L 5 5 10

X 10 10 20

Experiments 2 and 3

Left H 6 6 20

L 6 6 20

X 4 4 24

Fig. 2 Illustration of the trial procedure
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brightness condition (HL and LL) to support the effective
brightness manipulation on the right dot.

After the selective-influence assumption was verified,
mean interaction contrast (MIC) and survivor interaction con-
trast (SIC) were computed to infer the processing architecture
and stopping rule. MIC can be expressed as

MIC ¼ RT H ;Hð Þ − RT H ;Lð Þ − RT L;Hð Þ þ RT L;Lð Þ; ð1Þ

where RT indicates the mean reaction time of the redundant-
target conditions. The subscripts denote the brightness level of
the left and right dot, with BH^ indicating a high-brightness
dot and BL^ indicating a low-brightness dot. Testing MIC
allows researchers to infer the additivity of the two factors
(Sternberg, 1969; Townsend & Nozawa, 1995): a zero MIC
indicates that two factors are additive and that processing ar-
chitecture is serial. A positiveMIC reflects that two factors are
over-additive, which is observed when one adopts parallel
self-terminating processing, or coactive processing. A nega-
tive MIC indicates that two factors are subadditive and that
parallel exhaustive processing is adopted.

Three methods were utilized to confirm the value of
MIC. First, a 2 (high/low brightness of the left dot) × 2
(high/low brightness of the right dot) ANOVA was con-
ducted. A significant interaction effect would indicate that
MIC is not 0 and that the two factors are nonadditive.
Second, a nonparametric adjusted rank transform test
(Houpt et al., 2014) was conducted to test for the interac-
tion between the two factors. Similar to the ANOVA, a
significant interaction indicates that MIC is not equal to
zero. Third, the 95 % confidence interval (CI) for MIC
was simulated based on a nonparametric bootstrapping
method (Van Zandt, 2000). If the 95 % CI for MIC does
not include 0, we would infer that MIC is not equal to 0.

SIC can be expressed, analogous to MIC as:

SIC ¼ S H ;Hð Þ tð Þ − S H ;Lð Þ tð Þ − S L;Hð Þ tð Þ þ S L;Lð Þ tð Þ; ð2Þ

where S(t) is the survivor function of the redundant-target
conditions, and the subscripts denote the brightness level of
the left and right dots, respectively. SIC allows researchers to
distinguish between different stopping rules that cannot be
inferred from MIC alone. Table 2 shows the five possible
processing models and their corresponding MIC and SIC pre-
dictions. To confirm whether SIC values equal to 0 for all
times t, we constructed the 95 % CI for SIC via a nonpara-
metric bootstrapping method (Van Zandt, 2000). If the 95 %
CI for SIC does not include 0 for all times t, we would infer
that SIC is not equal to 0. In addition, we used the sft R
package (Houpt et al., 2014) to separately assess the
positive-going deviations from SIC = 0 and the negative-
going deviations from SIC = 0. Two one-sided K-S tests were

conducted; one test tests whether the largest positive value of
the SIC (D+) is significantly different from zero, and the other
test tests whether the largest negative value of the SIC (D–) is
significantly different from zero.

To infer the processing capacity, the capacity coefficient
(Eidels, Houpt, Altieri, Pei, & Townsend, 2011; Townsend
& Eidels, 2011; Townsend &Nozawa, 1995) and two inequal-
ities, the race-model inequality (or Miller inequality; J. Miller,
1982) and the Grice inequality (Grice, Canham, & Boroughs,
1984; Grice, Canham, & Gwynne, 1984), were tested. The
capacity coefficient is defined as

C tð Þ ¼ logS1;2 tð Þ
log S1 tð Þ⋅S2 tð Þ½ � ; ð3Þ

where S1,2, S1(t), and S2(t) are survivor functions of the
redundant-target condition and the two single-target condi-
tions, respectively. The ranges of values of C(t) and their im-
plications are as follows: if C(t) equals 1 for all times t, pro-
cessing capacity is unlimited; ifC(t) exceeds 1 for some time t,
processing capacity is supercapacity; otherwise, processing
capacity is limited. Townsend and Nozawa (1995) concluded
that there is systematic relationship between capacity coeffi-
cient, race-model inequality, and Grice inequality. To compare
the values of different capacity assays (capacity coefficient,
race-model inequality, and Grice inequality), the two inequal-
ities can be transformed onto a unified capacity space
(Townsend & Eidels, 2011). Transformed onto the workload
capacity space, the race-model inequality is expressed as:

C tð Þ≤ log S1 tð Þ þ S2 tð Þ−1½ �
log S1 tð Þ⋅S2 tð Þ½ � ; ð4Þ

and the Grice inequality is expressed as:

C tð Þ≥ log min S1 tð Þ; S2 tð Þ½ �f g
log S1 tð Þ⋅S2 tð Þ½ � ð5Þ

Table 2 Five possible processing models and their MIC and SIC
predictions

Model MIC SIC

Serial, self-terminating 0 0

Serial, exhaustive 0 − → +

Parallel, self-terminating >0 > 0

Parallel, exhaustive < 0 < 0

Coactive > 0 − → +

−→ + implies that the SIC function transitions from a negative value to a
positive values across values of t
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The race-model inequality and the Grice inequality form an
upper bound and a lower bound on unlimited-capacity parallel
processing, respectively. IfC(t) exceeds the race-model bound
at some time t, then the processing capacity can be considered
as demonstrating very large supercapacity; if C(t) exceeds the
Grice bound, then the processing capacity is extremely limit-
ed. In order to provide a statistical basis for the inference of
processing capacity, we first constructed the 95 % CI for C(t).
If the 95 % CI exceeds the race-model bound at some time t,
then we concluded the processing capacity is supercapacity; if
the 95 % CI for C(t) exceeds the Grice bound at some time t,
then we concluded the processing capacity is extremely lim-
ited. In addition, the raw capacity scores can be transformed to
the statistic Cz (Houpt & Townsend, 2012), which provides a
summary measure of the entire capacity function, aggregated
over time. Values are distributed as a standard normal distri-
bution such that we can apply z test to Cz. A value of 0 indi-
cates unlimited capacity, a negative value indicates limited
capacity, and a positive value indicates supercapacity.

Results

All of the participants had high accuracy. Across all the
conditions, the mean accuracy was 0.98 with a standard
deviation of 0.01. Correct reaction times ranging from
100 ms to 800 ms were extracted for further analysis.
This range was chosen because simple reaction times are
generally not faster than 100 ms and 800 ms exceeds five
times the standard deviation from mean reaction time.
Table 3 shows the mean reaction times of the redundant-
target conditions and MIC for each participant.

Tests for the selective-influence assumptionResults showed
that the differences in mean reaction times between the HX
and LX conditions and the XH and XL conditions were all
statistically significant for each participant (ps < 0.001).
Results from the two-way ANOVA also showed significant
main effects of the brightness manipulation at both locations
for each participant (ps < 0.001). These results suggested that

the selective-influence assumption was verified at the mean
reaction time level.

Next, we tested the selective-influence assumption at the
reaction time distribution level. First, we observed the order-
ing of four survivor functions of the redundant-target condi-
tions (Fig. 3). For all the participants, the survivor functions
shifted from the HH to the LL condition, while HL and LH
conditions were in between the two conditions. Second, we
conducted eight two-sample K-S tests, including HH > HL,
HH > LH, HL > LL, LH > LL, HH <HL, HH < LH, HL < LL,
and LH < LL. Results showed that, for most participants
(CHC, TYC, and HLM), the former four tests were significant
(ps < 0.01), and the latter four tests were not significant (ps >
0.6). For participant CHY, the test for HH > LH did not reach
the significance level (p > 0.12) as expected; however, these
insignificant results did not violate the selective-influence as-
sumption. Third, we conducted the K-S tests to compare the
marginal distributions of the four redundant-target conditions.
Results showed significant differences between the marginal
distributions between the left, high brightness condition and
left, low-brightness condition and between the right, high
brightness condition and right, low-brightness condition (ps
< 0.001), indicating that the brightness manipulation was ef-
fective at the factor level. The selective-influence assumption
held at the reaction time distribution level; the four distribu-
tions were ordered appropriately.

Processing architecture and stopping rule Because the
selective-influence assumption was verified, the reaction
times for the redundant-target trials were analyzed to infer
the processing architecture and stopping rule. First, all of the
participants had a positive MIC (Table 3). Results of the two-
way ANOVA on mean reaction times showed that, for each
participant, the interaction between two factors was statistical-
ly significant (ps < 0.001). Second, results from the adjusted
rank transform test also confirmed a significant interaction be-
tween two factors for all the participants (ps < 0.001). Third,
results from the nonparametric bootstrapping confirmed the
results; the 95 % CI for MIC did not include 0 (Fig. 4).

We then tested SIC. For participants CHY and CHC,
whose SICs were most consistent with parallel self-termi-
nation, the bootstrapped 95 % CI for SIC was positive for
all times t (Fig. 5). In line with the findings, results of
testing the largest positive and negative values of SIC
showed that D+ was significantly different from 0 (ps <
0.001) and D– was not significantly different from 0 (ps >
0.86). By contrast, for participants TYC and HLM, whose
SICs were most consistent with coactivity, the 95 % CI
for SIC was less than 0 at early time points but then
became positive for the slower reaction times (Fig. 4),
showing a negative to positive (− → +) S-shaped SIC.
The results of testing the largest positive and negative
values of SIC only showed that D+ was significantly

Table 3 Mean reaction times (ms) of the redundant-target conditions
and MIC for each participant in Experiment 1

Participants Redundant-target conditions MIC

HH HL LH LL

CHY 306 328 315 363 26

CHC 276 290 297 348 37

TYC 216 230 228 281 39

HLM 296 304 303 361 50

BH^ and BL^ denotes high- and low-brightness
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different from 0 (ps < 0.001) but D− was not significantly
different from 0 (ps > 0.43). D− is conservative in its
rejection of the null hypothesis; for instance, Houpt and
Townsend (2011) did not always find a significant D− test
even when the data were simulated from a coactive
model.

Combining the results fromMIC and SIC (refer to Table 2),
the inferences for processing architecture and stopping rule
differed across participants. We inferred that participants
CHY and CHC adopted parallel processing and followed a
self-terminating stopping rule as they had a positive MIC
and a positive SIC for all times t. We inferred that participants
TYC and HLM adopted coactive processing as they had a
positive MIC and a negative-to-positive S-shaped SIC.

Processing capacity The estimated C(t) and the bootstrapped
95 % CI for C(t) along with race-model bound and Grice
bound are shown in Fig. 6. Results showed that, for partici-
pants CHY and CHC, the 95 % CI for C(t) included 1 at the
faster reaction times and less than 1 at the slower reaction
times, suggesting that they processed information with unlim-
ited to limited capacity. Their Czs were significantly less than
0 (ps < 0.001), supporting that they performed with limited
capacity. By contrast, for participants TYC and HLM, the
95 % CI for C(t) was greater than 1 at some time t, and their

Czs were significantly greater than 0 (ps < 0.01), suggesting a
system of supercapacity. These results are consistent with the
inferences of parallel self-terminating processing for CHYand
CHC but coactivation for TYC and HLM.

Discussion

In Experiment 1, both locations had equal probability of con-
taining the target dot. The results showed that for participants
CHY and CHC, MIC was larger than 0 and SIC values were
positive for all times t, C(t) was less than or equal to 1, indi-
cating they adopted a parallel, self-terminating strategy with
unlimited to limited capacity to process redundant signals at
multiple locations. On the other hand, results showed that
participants TYC and HLM had a positive MIC and a
negative-to-positive S-shape SIC, and their C(t) exceeded 1
at some faster time points, suggesting that they adopted coac-
tive processing with supercapacity to detect the redundant
targets. In general, all the participants processed information
from multiple locations in parallel during the information ac-
cumulation stage, and the processing capacity ranged from
limited capacity to supercapacity.

The present results were partially consistent with the pre-
vious findings that the processing for target detection where
no attentional cue is directed to the presence or absence of a

Fig. 3 Plots for the survivor functions of the four redundant-target conditions in Experiment 1
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target is parallel, self-terminating with limited capacity
(Townsend & Eidels, 2011; Townsend & Nozawa, 1995).
However, two participants in the present experiment adopted
different processing strategies (i.e., coactive processing with
supercapacity). This difference in processing is reminiscent of
Townsend and Nozawa’s (1995) results using a similar task in
which they also found both limited-capacity, parallel process-
ing and supercapacity, coactive processing. Having
established how each individual processes the locations when
targets appear with equal probability, we next examined
changes to this processing in the subsequent experiments.
That is, this initial experiment acts an individual baseline with
which to compare the performance when the target location
probability is unequal across locations.

Experiment 2

In Experiment 2, we examined the redundant-target process-
ing when a target appears at one location more often than
another (hereafter, termed the unequal-probability condition)
without any explicit instructions that the target location prob-
ability of each location is unequal. We hypothesized that if the
decision process is sensitive to the target location probability,

the processing capacity should be more limited, relative to
observed capacity in Experiment 1, because redundant infor-
mation at the low-probability location may slow down the
processing for the high-probability location. This also may
be reflected in the decision strategy in, for instance, a shift
from parallel or coactive processing (i.e., in the first experi-
ment) to serial or parallel processing, respectively, mirroring
the change in capacity.

Method

Participants All of the participants who had participated in
Experiment 1 also participated in Experiment 2. Each partic-
ipant completed five sessions and each session lasted for about
40 minutes. The participants signed a written informed con-
sent before the experiment and received NTD 120 per hour
after they completed the experiment.

Design, stimuli, and procedure The design, stimuli, and pro-
cedure were similar to those in Experiment 1, except for the
trial frequencies. Table 1 shows the trial frequencies adopted
in Experiment 2. A target dot appeared at the left location five
times more frequent than at the right location in the single-
target conditions, resulting in unequal target location

Fig. 4 Results of the simulated MIC and the 95 % CI for MIC for each participant in Experiment 1
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probability of the two locations. Throughout the experiment, a
block consisted of 96 trials and 10 blocks comprised a session.

Results

Accuracy was high in Experiment 2. Across all conditions, the
mean accuracy was 0.98 with a standard deviation of 0.02. We
used the same criterion as in Experiment 1 to extract data for
further analysis. Table 4 presents the mean reaction times of
the redundant-target conditions and MIC for each participant.

Tests for the selective-influence assumption As in
Experiment 1, we first tested the selective-influence assump-
tion. Results of t tests on the mean single-target reaction times
showed statistically significant differences in mean reaction
times between the HX and LX conditions, as well as in mean
reaction times between the XH and XL conditions (ps <
0.001), suggesting the brightness manipulation in the single-
target trials is effective. The same conclusion was drawn from
the results of the two-way ANOVA. There were significant
main effects of the brightness manipulation at both locations
(ps < 0.001). Altogether, these results confirmed that the
selective-influence assumption was satisfied at the mean reac-
tion time level.

We then tested the selective-influence assumption at the
reaction time distribution level. For all of the participants,

the survivor functions of the four redundant-target conditions
were plotted individually (Fig. 7). From visual inspection, we
observed an ordinal shift from the HH, HL, LH conditions to
LL condition; the four distributions were ordered. Second,
results from the eight two-sample K-S tests showed that, for
most participants, the former four tests (HH > HL, HH > LH,
HL > LL, and LH > LL) were significant (ps < 0.01), and the
latter four tests (HH < HL, HH < LH, HL < LL, and LH < LL)
were not significant (ps > 0.9). Only for participant CHYand
HLM, the test for HH > LH did not reach the significance
level (ps > 0.07). Third, we tested the marginal distributions
of the redundant-target conditions. Results showed significant
differences between the marginal distributions between the
left, high brightness condition and left, low-brightness condi-
tion and between the right, high brightness condition and
right, low-brightness condition (ps < 0.001), suggesting the
brightness manipulation was also effective at factor level. The
selective-influence assumption was verified at the reaction
time distribution level.

Processing architecture and stopping rule MIC and SIC
were analyzed to make inferences regarding the processing
architecture and stopping rule. For all the participants, the
observed MIC was greater than 0 (Table 4). Results of the
two-way ANOVA showed that the interaction between the
two factors was statistically significant for each participant

Fig. 5 Results of the SIC (thick solid lines) for each participant in Experiment 1. Dotted lines above and below the SIC represent the 95 % CI for SIC

1612 Atten Percept Psychophys (2016) 78:1603–1624



(ps < 0.001). The significance of interaction for all the partic-
ipants was confirmed by the adjusted rank transform test (ps <
0.001). Results from the nonparametric bootstrapping also
showed that the 95 % CI for MIC did not include 0 for all
the participants (Fig. 8). We therefore concluded that all the
participants had a positive MIC. Moreover, the 95 % CI for
SIC was positive for all times t (Fig. 9). Results of testing the
largest positive and negative values of SIC confirmed that for
all the participants D+ was significantly different from 0 (ps <
0.001) and D– was not significantly different from 0 (ps >
0.48). Combining MIC and SIC, we inferred that all the par-
ticipants adopted parallel processing and followed a self-
terminating stopping rule (Table 2).

Processing capacity Figure 10 shows the estimated C(t) and
the bootstrapped 95 % CI for C(t), along with race-model
bound and Grice bound. Results showed that for all the par-
ticipants, the 95 % CI for C(t) included 1 at the faster reaction
times but was less than 1 at the slower reaction times, suggest-
ing that they processed information with a system of unlimited
to limited capacity. Results of the test ofCz showed that all the
participants had a negative Cz (ps < 0.001), except that par-
ticipant TYC had a Cz, which was not significantly different

from 0 (p = 0.17), supporting that the participants processed
redundant information with unlimited to limited capacity.

Discussion

In Experiment 2, the target appeared at the left location
five times as frequent as at the right location, such that the
target location probability across locations was unequal.
Results showed that for all the participants, MIC was pos-
itive and SIC was greater than 0 for all times t, indicating
that all the participants adopted parallel processing and

Fig. 6 Results of the C(t) (thick solid lines), race-model bound (dashed lines), and Grice bound (dash-dot lines) for each participant in Experiment 1.
Thin solid lines above and below the C(t) represent the 95 % CI for C(t)

Table 4 Mean reaction times (ms) of the redundant-target conditions
and MIC of each participant in Experiment 2

Participants Redundant-target conditions MIC

HH HL LH LL

CHY 307 310 327 390 60

CHC 275 293 306 353 29

TYC 213 222 234 287 44

HLM 274 282 298 335 29

BH^ and BL^ denotes high- and low-brightness
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followed a self-terminating stopping rule to process re-
dundant signals. C(t) for each participant was less than
or equal to 1, suggesting a system of unlimited to limited
capacity. Regardless of the unequal target location proba-
bility across locations, processing for redundant informa-
tion across multiple locations remained parallel during the
stage of information accumulation. Interestingly, two par-
ticipants (TYC and HLM) changed their processing strat-
egies, compared with Experiment 1, from coactive pro-
cessing to parallel processing, with the processing capac-
ity shifting from supercapacity to unlimited-to-limited ca-
pacity. These changes suggested that the manipulation of
the target location probability resulted in a change to pro-
cessing architecture and capacity consistent with the the-
oretical link between coactivity and supercapacity and in-
dependent parallel processing and unlimited capacity (see
Townsend & Nozawa, 1995).

After the participants completed Experiment 2, we asked
them to report their processing strategies. All the participants
reported that they adopted the same strategy as they used in
Experiment 1. In addition, none of the participants reported
noticing that the target location probability varied across the
experiments. These reports suggested that the strategy change
(coactive to parallel processing) from Experiment 1 to
Experiment 2 was not subjectively perceived.

Experiment 3

In Experiment 2, none of the participants were aware of the
unequal target location probability across locations. In addi-
tion, despite the decrease in some of the participants’ process-
ing capacity, we did not observe a substantive change from
parallel to serial processing as expected from prior experi-
ments manipulating exogenous cues (Yang, Little & Hsu,
2014). We speculated that explicit awareness of the target
location probability may play an important role in selecting
a decision strategy. Therefore, in Experiment 3, we informed
the participants that a left dot would appear more often than a
right dot, and asked them to pay more attention to the left
location. We expected that the participants would explicitly
select a decision strategy to process the high-probability loca-
tion first, leading to a serial processing strategy. This would
also result in a system of much more limited capacity because
processing for the low-probability location may slow down
the processing for the high-probability location.

Method

Participants All the participants who had participated in
Experiments 1 and 2 participated in Experiment 3. Each par-
ticipant completed five sessions. Each session lasted for about

Fig. 7 Plots for the survivor functions of the four redundant-target conditions in Experiment 2
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40 minutes. The participants signed a written informed con-
sent prior to the experiment and received NTD 120 per hour
after they completed the experiment.

Design, stimuli, and procedure The design, stimuli, and pro-
cedure were identical to those used in Experiment 2. The
critical difference between Experiments 2 and 3 was that the
participants were informed that the target would appear at the
left location more often than at the right location, and they
were required to pay more attention to the left location.

Results

All the participants had high accuracy in detecting dots in
Experiment 3. Across all conditions, the mean accuracy was
0.97 with a standard deviation of 0.03. We used the same
criterion as in Experiment 1 to extract data for further analysis.
Table 5 presents the participants’ mean reaction times of the
redundant-target conditions and MIC individually.

Tests for the selective-influence assumptionWe first exam-
ined the selective-influence assumption at the mean reaction
time level. From the results of t tests, we found that mean
reaction times between the HX and LX conditions and be-
tween the XH and XL conditions were significantly different

(ps < 0.001). Results of the two-way ANOVA on mean reac-
tion time showed significant main effects of the two factors
(ps < 0.05), indicating that brightness manipulations at both
locations were effective. Altogether, these results confirmed
that the selective-influence assumption was satisfied at the
mean reaction time level.

We then tested the selective-influence assumption at the
reaction time distribution level. Figure 11 shows the plots of
survivor functions in the four redundant-target conditions for
all of the participants. From visual inspection, we observed an
ordinal shift from the HH, HL, LH conditions to LL condition;
the four distributions were ordered. Second, results from the
eight two-sample K-S tests showed that, for all the partici-
pants, the former four tests were significant (ps < 0.01) except
for HH>HL, and the latter four tests were not significant (ps >
0.06). Third, we tested the marginal distributions of the
redundant-target conditions. Results showed significant dif-
ferences between the marginal distributions between the left,
high brightness condition and left, low-brightness condition
and between the right, high brightness condition and right,
low-brightness condition (ps < 0.05), suggesting the bright-
ness manipulation was also effective at factor level. The four
reaction time distributions of the redundant-target trials were
ordered. These results suggest that selective-influence as-
sumption was verified at the reaction time distribution level.

Fig. 8 Results of the simulated MIC and the 95 % CI for MIC for each participant in Experiment 2
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Processing architecture and stopping rule First, individual
differences in MIC were observed. Although all the partici-
pants had a positive MIC (Table 5), results of the two-way
ANOVA on mean reaction times showed that the interaction
effects between the two factors differed across participants.
Specifically, the interaction was significant for participants
TYC and HLM (ps < 0.01), whereas for participants CHY
and CHC, the interaction was not significant (ps > 0.05).
The same results were observed by the adjusted rank trans-
form test, showing that the interaction effect was significant
for participants TYC and HLM (ps < 0.001), but not signifi-
cant for participants CHY and CHC (ps > 0.05). Moreover,
results of nonparametric bootstrapping (Fig. 12) showed that
the 95 % CI for MIC included 0 for participants CHY and
CHC, but did not include 0 for participants TYC and HLM.
Based on these findings, the results converged to suggest that
participants CHY and CHC had a zero MIC, and that partici-
pants TYC and HLM had a positive MIC.

Individual differences in SIC were also observed. From the
results of nonparametric bootstrapping (Fig. 13), we found
that the 95 % CI for SIC included 0 for all times t for partic-
ipants CHY and CHC, whereas the 95 % CI for SIC was
positive for participants TYC and HLM. Results of testing
the largest positive and negative values of SIC confirmed the
observations. For participants CHYand CHC, neither D+ nor
D– was found to be significantly different from 0 (ps > 0.1);

by contrast, for participants TYC and HLM, D+ was signifi-
cantly different from 0 (ps < 0.05) and D–was not significant-
ly different from 0 (ps > 0.8). Combining the results of MIC
and SIC (refer to Table 2), we inferred that participants TYC
and HLM adopted parallel processing and followed a self-
terminating stopping rule, and that participants CHY and
CHC changed their decision strategy and processed redundant
signals with a serial, self-terminating strategy.

Processing capacity Figure 14 shows the estimated C(t) and
the bootstrapped 95 % CI for C(t), along with the race-model
bound and Grice bound. Results showed that, for all the par-
ticipants, the estimated C(t) was approximately equal to the
Grice bound, and the bootstrapped 95 % CI for C(t) included
the Grice bound for all times t. These results suggested that all
the participants processed information with a system of limit-
ed capacity. Results of the test of Cz showed that all the par-
ticipants had a negative Cz (ps < 0.05), except that participant
CHC had a Cz, which was not significantly different from 0 (p
= 0.13), supporting that the participants processed redundant
information with unlimited to limited capacity.

Discussion

In Experiment 3, participants were informed that the target
location probability was unequal across locations. Results

Fig. 9 Results of the SIC (thick solid lines) for each participant in Experiment 2. Dotted lines above and below the SIC represent the 95 % CI for SIC
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showed that for participants TYC and HLM, MIC was greater
than 0 and SIC values were positive for all times t, indicating
that they adopted parallel processing and follow a self-
terminating stopping rule as they adopted in Experiment 2.
On the other hand, for participants CHY and CHC, MIC was
equal to 0 and SIC values were equal to 0 for all times t,
indicating that they altered their decision strategies from par-
allel, self-terminating processing to serial, self-terminating
processing. For three of the participants (TYC, HLM, and
CHY), the processing capacity was limited, and for participant
CHC, the processing capacity was unlimited to limited. After
the participants completed all the experimental sessions, they
were required to report their processing strategies. Self-reports
showed that they found that the left location contained higher
target location probability and they tended to attend to the
high-probability location in order to quickly detect the target.

Interestingly, individual differences in the processing
strategy were observed: two participants adopted serial
processing and two participants continued to adopt paral-
lel processing. We speculated that the individual differ-
ences may be related to the processing capacity in pro-
cessing redundant information when the target probability
was equal. The participants who altered their processing
strategies had a system of more limited capacity whereas

those participants who persisted with parallel processing
had a system of supercapacity. These results implied that
processing capacity is linked to processing strategy in a
theoretically consistent manner with changes in attention.

General Discussion

In the present study, three experiments were conducted to
investigate information processing in target detection with a
focus on the effect of target location probability. A redundant-
target detection task was used with manipulations of the target

Fig. 10 Results of the C(t) (thick solid lines), race-model bound (dashed lines), and Grice bound (dash-dot lines) for each participant in Experiment 2.
Thin solid lines above and below the C(t) represent the 95 % CI for C(t)

Table 5 Mean reaction times (ms) of the redundant-target conditions
and MIC of each participant in Experiment 3

Participants Redundant-target conditions MIC

HH HL LH LL

CHY 304 307 355 374 16

CHC 252 248 286 298 16

TYC 225 224 270 284 15

HLM 290 295 323 362 34

BH^ and BL^ denotes high- and low-brightness
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location probability and probability instruction. SFT was uti-
lized to design the experiments, analyze data, and diagnose the
characteristics of the decision processes. Table 6 shows a sum-
mary table of the inferred processing architecture and process-
ing capacity for all the participants in each experiment.

In summary, target location probability affected the pro-
cessing architecture and the processing capacity, but not the
decisional stopping rule. The influence of the target location
probability on the processing architecture may be related to
individual differences in the processing capacity.When targets
were equally distributed across two locations in Experiment 1,
two participants adopted coactive processing with
supercapacity, and the other two participants adopted a paral-
lel, self-terminating strategy with unlimited to limited capac-
ity. When the participants did not notice that the targets were
unequally distributed in Experiment 2, all the participants
adopted a parallel, self-terminating strategy with unlimited
to limited capacity. When the participants were informed that
the target location probability was unequal in Experiment 3,
two participants who were of supercapacity in Experiment 1
adopted a parallel, self-terminating strategy while the others
who had unlimited- to limited-capacity system adopted a se-
rial, self-terminating strategy, and the processing capacity was
unlimited to limited.

The results were in line with previous research: people are
sensitive to target location probability in visual search, and

target location probability serves as an attentional cue which
biases spatial attention toward a location where the target most
likely appears (Geng & Behrmann, 2002, 2005; Jones &
Kaschak, 2012; Walthew & Gilchrist, 2006), which in turn
affects the decision process in detecting the redundant targets.
These results supported the previous findings that selective
attention affects the decision processes in two ways (Donkin
et al., 2013; Eidels et al., 2010; Yang, 2011; Yang et al., 2013;
Yang et al., 2011; Yang et al., 2014): (1) The processing order
for multiple signals varied from parallel to serial when the
participants were explicitly aware that the targets were un-
equally distributed across space. Specifically, parallel process-
ing was adopted during the information accumulation stage
when targets were equally distributed and when participants
did not notice the unequal target location probability. Serial
processing for the participants of a more limited-capacity sys-
tem was adopted when participants noticed the unequal target
location probability. (2) The processing capacity was more
limited when targets were unequally distributed than when
they were equally distributed especially with explicit aware-
ness of the unequal distributions of targets. This is because the
unequal distributions of targets made the participants allocate
more attention to the high-probability location. The process-
ing for the low-probability location may thereby interfere the
processing for the high-probability location, leading to less
efficient processing.

Fig. 11 Plots for the survivor functions of the four redundant-target conditions in Experiment 3
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Decision processes in detecting redundant targets

The present results hold implications for existing theories of
multiple signal processing. For example, feature integration
theory (Treisman &Gelade, 1980) would predict that process-
ing should be parallel throughout all of the present experi-
ments because searching for dots across multiple locations is
regarded as a feature search. Thus, feature integration theory
cannot easily explain why participants shifted from a parallel
processing strategy to a serial processing strategy after they
were informed of the unequal target location probability.

Signal detection theory (Green & Swets, 1966) is another
typical account of how participants detect multiple signals.
According to signal detection theory, signals are processed
simultaneously and in parallel, and multiple signals are
summed together into a single accumulator (Ashby, 2000).
When the accumulated information exceeds a decision crite-
rion, a positive response would be made. Thus, it is assumed
that participants would adopt coactive processing for multiple-
signal processing. However, from the current results, only two
participants in Experiment 1 adopted coactive processing; the
signal detection account also fails to explain the current
findings.

Previous studies that have used SFT found that participants
adopted parallel, self-terminating processing with limited

capacity to detect the redundant dots (Townsend & Eidels,
2011; Townsend & Nozawa, 1995; Yu et al., 2014). This pro-
cessing strategy is assumed in an independent race model (see
Van Zandt, 2002 for a review); multiple signals are processed
in parallel, and they compete for the decision. A decision
follows a Bwinner-takes-all^ rule; that is, when either signal
is enough for decision making, a positive response is made. In
contrast to the prediction from feature integration theory, lim-
ited-capacity, parallel processing suggests a limited pool of
resources such that processing efficiencies on the individual
channels suffer when the system simultaneously work on
more than one object (Townsend & Ashby, 1983) or that there
are inhibitory interactions across multiple channels during the
stage of information accumulation (Eidels et al., 2011). Our
current findings of individual variation in processing architec-
ture and processing capacity suggest that there is flexibility in
the degree of these interactions.

Based on the present findings, we considered that the re-
sults were best explained by the attentional window
hypothesis (Belopolsky, Zwaan, Theeuwes, & Kramer, 2007;
Theeuwes, 1994, 2004), which has been discussed in the Yang
et al. (2014) to relate attention to the decision making process.
Yang et al. (2014) manipulated the validity of the exogenous
cue in a redundant-target detection task. Results showed that
when the cue did not provide any information regarding the

Fig. 12 Results of the simulated MIC and the 95 % CI for MIC for each participant in Experiment 3
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target location, participants may make their attentional win-
dow to be wide enough to cover all the target locations, lead-
ing to parallel processing for both locations. By contrast, when
the cue can perfectly predict the target location, participants
would narrow their attentional window to the cued location
and follow the cue to detect the target, leading to a serial
processing strategy. These results emphasize the flexibility
of a decision mechanism and highlighted that attentional fo-
cusing affects the decision process. To extend this hypothesis
to explain the current findings, we considered that target loca-
tion probability affects the allocation of attention, which in
turn affects the attentional focusing. When the target was
equally distributed across spatial locations (Experiment 1) or
when a participant did not notice the unequal target location
probability (Experiment 2), the participant would widen their
attentional window to encompass all the possible target loca-
tions in order not to miss any target. Thus, the large and dif-
fuse attentional window resulted in simultaneous processing
for all the possible locations, forming a parallel processing
strategy. On the contrary, when the target was distributed un-
equally across locations and the participant was explicitly
aware (Experiment 3), the attentional window was narrowed
to process the location that most likely contains the target first.

In addition to pointing out the flexibility of the decision
mechanism, the present study also demonstrates the role of
subjective control in strategy selection. When the participants

did not know the manipulation of target location probability in
Experiments 1 and 2, parallel processing was used to accumu-
late information from multiple locations. When the partici-
pants were informed about the unequal target location proba-
bility and were instructed to pay attention to the high-
probability location, two participants switched their process-
ing strategies from parallel processing to serial processing.
Furthermore, all of the participants’ processing capacity be-
came much more limited in comparison to Experiments 1 and
2, suggesting the role of subjective control over spatial atten-
tion. Although it is likely that target probabilities are acquired
without attention via statistical learning (Chun & Jiang, 1998;
Jiang & Song, 2005; Jones & Kaschak, 2012; Turk-Browne,
Jungé, & Scholl, 2005), some participants may acquire these
probabilities better than others, which may have led to chang-
es in the processing capacity that we observed from
Experiment 1 to Experiment 2. The change from coactive to
parallel processing might reflect changes in more automatic
processing whereas the change from parallel to serial process-
ing might reflect the use of a more controlled attentional strat-
egy (Shiffrin & Schneider, 1977). These controlled strategies
implicate serial processing as an explanation for the role of
selective attention in more cognitive tasks such as categoriza-
tion (Blunden, Wang, Griffiths, & Little, 2015; Fific et al.,
2010; Lamberts, 2000; Little, Nosofsky, & Denton, 2011;
Little, Nosofsky, Donkin, & Denton, 2013).

Fig. 13 Results of the SIC (thick solid lines) for each participant in Experiment 3. Dotted lines above and below the SIC represent the 95 % CI for SIC
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Processing capacity may constrain strategy flexibility

It is worthwhile to note that the individual differences in strat-
egy selection revealed in this study suggest that the processing
capacity of a system may constrain its process architecture.
Participants whose processing architecture changed from par-
allel to serial (i.e., from Experiment 2 to 3) were those had a
system of unlimited to limited capacity in Experiment 1,

whereas participants who did not changed their processing
architecture were those whose system was supercapacity in
Experiment 1. These findings go beyond the theoretical sug-
gestions that some multiple-signal processing strategies are
related to a system’s processing capacity. For example, a co-
active system usually has supercapacity, whereas the process-
ing capacity of a standard serial system is limited (Colonius
and Townsend, 1997; Eidels et al., 2011; Townsend, 1972,

Fig. 14 Results of the C(t) (thick solid lines), race-model bound (dashed lines), and Grice bound (dash-dot lines) for each participant in Experiment 3.
Thin solid lines above and below the C(t) represent the 95 % CI for C(t)

Table 6 Summary of the processing architecture and processing capacity of all participants in Experiments 1-3

Participants

CHY CHC TYC HLM

Experiment 1

Processing architecture Parallel, self-terminating Parallel, self-terminating Coactive Coactive

Processing capacity Unlimited-to-limited Unlimited-to-limited Supercapacity Supercapacity

Experiment 2

Processing architecture Parallel, self-terminating Parallel, self-terminating Parallel, self-terminating Parallel, self-terminating

Processing capacity Unlimited-to-limited Unlimited-to-limited Unlimited-to-limited Unlimited-to-limited

Experiment 3

Processing architecture Serial, self-terminating Serial, self-terminating Parallel, self-terminating Parallel, self-terminating

Processing capacity Limited Unlimited-to-limited Limited Limited
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1974; Townsend & Eidels, 2011; Townsend &Nozawa, 1997;
Wenger & Gibson, 2004; Wenger & Townsend, 2001).

Implications for endogenous and exogenous cues

Evidence suggests that probability cuing modulates visual be-
havior in a way that involves both exogenous and endogenous
factors (Geng & Behrmann, 2002, 2005; Zhao et al., 2013).
Comparing the present study with Yang et al. (2014), it seems
that exogenous cues and spatial probability cues influence the
processing architecture when subjective attentional control
controls the strategy selection. In Yang et al.'s (2014) study,
the participants were informed about the cue validity of
predicting target location. Therefore, as the cue validity
changed from uninformative to informative about target loca-
tion, processing order shifted from parallel processing to serial
processing. Nevertheless, in the current study, the participants
changed their processing architecture from parallel to serial
only when they were explicitly aware of the unequal proba-
bility information.

Furthermore, spatial probability cues and exogenous cues
have similar influences on the processing capacity. In Yang et
al.’s (2014) study, the participants’ processing systems be-
came much more limited when the cue validity varied from
uninformative to informative. Similarly, in the present study,
target location probability also led to a processing system of
less capacity. Apart from the individual differences in process-
ing capacity that were observed in the present study, we found
that processing capacity becamemore limited with an unequal
target location probability (Experiment 1 to Experiment 2) and
even more limited when they had extensive information about
the probability manipulation (Experiment 3). However, in
comparison of the overall processing capacity that we reported
in this study and Yang et al.’s (2014) study, we found a differ-
ence in processing capacity when these attentional cues were
not informative (i.e., Experiment 1 of the present study vs. the
uninformative-cue condition of Yang et al., 2014).
Supercapacity was observed in Experiment 1 of the present
study; yet unlimited to moderately limited capacity was ob-
served in the uninformative-cue condition of Yang et al.’s
(2014) study. It might be that an exogenous cue can modulate
the attentional resources over the space in a bottom-up fashion
even though it does not mandatorily result in serial processing.
Because the participants were unable to extract any regularity
in the target-presence patterns, they tended to equate their
visual attention across the space and thereby maintain a sys-
tem of higher processing capacity. Taken together, these re-
sults led us to hypothesize exogenous cues and spatial proba-
bility cues may operate in a common way. However, further
efforts are needed to understand how probability cuing effect
can be related to the traditional dichotomy between exogenous
and endogenous attention in decision making.

Conclusions

This study suggests that target location probability influences
the process architecture and the processing capacity of the
decision processes and that this influence is modulated by
controlled attention as well as individual differences in the
capacity of a decision system. Moreover, the present study
demonstrates that the decision mechanism is flexible in terms
of how learned probability information biases the spatial
attention.
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