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Abstract In this paper, we explore the rules followed by
the auditory system in grouping temporal patterns. Imagine
the following cyclical pattern (which we call an “audi-
tory necklace”—AN for short—because those patterns are
best visualized as beads arranged on a circle) consisting of
notes (1s) and rests (0s): . . .1110011011100110 . . . . It
is perceived either as repeating 11100110 or as repeating
11011100. We devised a method to explore the temporal
segmentation of ANs. In two experiments, while an AN was
played, a circular array of icons appeared on the screen. At
the time of each event (i.e., note or rest), one icon was high-
lighted; the highlight moved cyclically around the circular
array. The participants were asked to click on the icon that
corresponded to the note they perceived as the starting point,
or clasp, of the AN. The best account of the segmentation of
our ANs is based on Garner’s (1974) run and gap principles.
An important feature of our probabilistic model is the way in
which it combines the effects of run length and gap length:
additively. This result is an auditory analogue of Kubovy
and van den Berg’s (2008) discovery of the additivity of
the effects of two visual grouping principles (proximity and
similarity) conjointly applied to the same stimulus.
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Introduction

The temporal parsing of auditory patterns is a form of
temporal grouping. The twin problems of temporal group-
ing and meter are the main puzzles of auditory temporal
organization (Drake, 1998; Lerdahl & Jackendoff, 1983).

The perception of meter involves the extraction of the
pulse of a rhythmic sequence (Cooper &Meyer, 1960)—the
rate at which we tap our foot to the sound of music (Drake,
1998). Once the listener hears the pulse of a sequence, its
pattern of strongly and weakly accented beats causes a hier-
archical structure to be perceived (Essens, 1986). Meter
is an emergent property of rhythmic organization, just as
symmetry is an emergent property of visual organization
(Handel, 1998).

Grouping refers to the segmentation of a sequence of
sounds into units on the basis of its duration, pitch, inten-
sity, or timbre (Bregman, 1990; Handel, 1989). Whereas the
perception of meter is a learned top-down process (Drake
et al. 2000; Jones, 1976; Large & Jones, 1999), grouping
is a bottom-up process (Handel, 1998): sensitivity to rhyth-
mic grouping is immediate (Hébert & Cuddy, 2002) and
it is seen in infants as young as 3 months old (Demany
et al. 1977).

Research on auditory grouping falls into three classes:
(a) The perception of accents: how the perceived accent
pattern of two- or three-note rhythms is affected by the loud-
ness and duration of its notes (Povel & Okkerman, 1981;
Woodrow, 1911); (b) Auditory scene analysis: how listen-
ers separate parallel temporal patterns into their component
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streams (Bregman, 1990); and (c) Parsing: how listeners
determine the starting point of cyclical rhythmic patterns
(Garner, 1974; Preusser et al. 1970; Royer & Garner, 1966;
1970).

In this study we have two goals. First, we undertake to
quantify the principles that govern the parsing of ambiguous
cyclical rhythm patterns. Secondarily, we wish to compare
these principles to principles of visual grouping, because
our understanding of perceptual organization is by and large
based on studies of visual stimuli (Kubovy et al. 1998;
Kubovy & van den Berg, 2008; Peterson & Gibson, 1994;
Peterson & Lampignano, 2003).

Using ambiguous dot lattices as a tool, Kubovy
and his colleagues (Kubovy et al. 1998; Kubovy &
Wagemans, 1995) found that visual grouping by proximity
was lawful and proposed a probabilistic model to account
for this regularity. Furthermore, Kubovy and van den Berg
(2008) investigated how the strengths of two grouping prin-
ciples combined to determine visual grouping. They found
that the effects of grouping by proximity and grouping by
similarity were additive. Thus, when two visual grouping
principles are conjointly applied to a visual stimulus, “the
whole is equal to the sum of its parts.”

In the following sections, we describe our stimuli (audi-
tory necklaces) and present several models that could pre-
dict their grouping structure. We then describe two studies
in which we confront these models with empirical data.

Auditory necklaces

We call the auditory patterns in our studies auditory neck-
laces (a concept borrowed from combinatorics; Ruskey
2011) because they are best visualized as beads arranged on
a circle. Figure 1 shows two common representations of a
binary auditory necklace (AN) of length 8, where a red bead
stands for a note, and a grey bead stands for a rest. This
AN can also be represented as a single string of binary dig-
its, where 1 stands for a note, and 0 stands for a rest; i.e.,
11100110.

rungap

run

gap

Fig. 1 Two common representations of the same AN: 11100110.
Time proceeds in a clockwise direction within each necklace. In each
representation, we have made the note perceived as the starting point
(i.e., the clasp) larger

Following Garner’s terminology, in our ANs a block is a
sequence of consecutive identical events (be they notes or
rests). When a block consists of notes, it is a run; when it
consists of rests it is a gap. For example, Fig. 1 depicts a
four-block AN with two runs (111 and 11) and two gaps
(00 and 0).

The question raised by Garner and pursued here is the
following: If an AN is played cyclically so that it has no
perceptible initial note, which note do listeners choose as
the beginning of the pattern? In our parlance, can we pre-
dict which note will be perceived as the clasp of the AN? In
theory listeners could conceivably perceive any note as the
clasp, but as we explain later, the clasp is most likely to be
the first note of a run.

The ANs we use in this study are ambiguous. In Fig. 1,
we illustrate the two ways the AN 11100110 is typically
heard: in each panel the clasp is indicated by a larger bead.
For example, if one perceives this AN as if it were the pattern
11100110 repeating itself, then we say that underlined 1
is its clasp.

The AN we have considered so far have both runs and
gaps. When an AN has gaps, we say that it is sparse
(Fig. 2a). In this work we will also study dense ANs. Con-
sider two complementary ANs whose runs fit into the gaps
of the other, and whose notes differ in some respect (pitch or
loudness, for example). For example, N = 11100110 and
M = 00022002 are complementary. When they are com-
bined, we get a dense AN (Fig. 2b): 11122112, which has
no rests and hence no gaps.

Approaches to the perceptual organization of
auditory necklaces

We now compare four approaches to the prediction of the
clasp of an AN. We believe that only after we have a
quantitative model of this form of grouping, can we under-
take a search for a mechanism. The Appendix provides
details on the computation of the metrics involved in each
approach.

Run and gap principles

In their seminal work, Garner and his colleagues (Garner,
1974; Preusser et al. 1970; Royer & Garner, 1966; 1970)
proposed two principles for the segmentation of sparse ANs:
(a) the run principle, according to which the clasp is per-
ceived as the first note of the longest run, and (b) the
gap principle, according to which the clasp is perceived
as the first note following the longest gap. For example,
the run principle predicts that 11100110 will be heard as
11100110 whereas the gap principle predicts that it will
be heard as 11011100.
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Fig. 2 Two types of auditory
necklace. Red and blue beads
represent different notes, and
grey discs represent rests

A sparse auditory necklace: 11100110 con-
sists of two runs, two gaps, and has two po-
tential clasps.

A dense auditory necklace: 11122112 consists
of four runs and has four potential clasps.
(b)(a)

clasp?clasp?

They also discussed the organization of dense ANs. The
organization of 11122112 depends on (a) the selection
of 11100110 or 00022002 as the figure, while relegat-
ing the other to the background, and (b) the run and gap
principles operating on each of the complementary sparse
ANs.

Garner and colleagues conjectured that if the two prin-
ciples are in agreement, the clasp is stable and emerges
readily, but if they disagree, the clasp is ambiguous and
takes longer to emerge. To test this hypothesis, they asked
participants to report the perceived organization of ANs by
pressing a key in synchrony with the pattern or notating
the pattern. Although these procedures recorded the partic-
ipants’ impressions faithfully, they were inefficient: each
trial took too long. The amount of data collected was thus
too small to allow quantitative modeling, though descriptive
findings did support their predictions.

E measure

MacGregor (1985) made the first attempt to quantify the
likely location of the clasp using a transformation of the run
and gap principles based on block sizes and their relative
positions within the pattern. Block size is measured as the
number of elements in each block (i.e., run or gap). Rela-
tive position (i.e., the “enclosure”) of each block is defined
as the number of blocks from that block to the closest end
block. He proposed the measure (E) given by the sum of the
cross products of block size (ri) and the enclosure of each
block (ei) (E = ∑

ri · ei).
MacGregor (1985) predicted that the organization with

the lowest E value would be perceived most often because
it is the least complex pattern organization. Indeed, using
a variety of patterns from previous studies, he found an
inverse relationship between the E-value and frequency of
selection.

Local surprise

Boker and Kubovy (1998) developed a measure called local
surprise based on information theory, and they used it to

predict the segmentation of sparse ANs. The local surprise
value is a measure of the predictability of a event at the
current position within a given pattern. For example, in
1110000, the first note is less predictable than the sec-
ond because the event that precedes the first note is a rest
whereas the second note is preceded by another note. The
third note is more predictable than the second because it
is preceded by two notes whereas the second is only pre-
ceded by one. Boker & Kubovy conjectured that the less
predictable a note, the more likely it is to be perceived as the
clasp (which is in line with research on subjective accents,
e.g., Cooper and Meyer 1960).

In their experiments, they asked participants to strike a
key on a synthesizer keyboard at the moment they heard the
clasp. This allowed them to collect voluminous data. They
modeled their data using local surprise as well as the gap
and run principles. The local surprise measure provided a
better model fit than the run and the gap principles.

Although a productive means of data collection, this
method has two drawbacks: (a) Participants had trouble syn-
chronizing their responses with the tones; their responses
often preceded or followed the note. To analyze the data,
Boker & Kubovy had to decide which note a response aimed
for, introducing noise into the data and complicating the
analysis. (b) The task confounds the contributions of motor
control and perception.

Predictive power

van der Vaart (2009) improved the original Boker and
Kubovy algorithm by adding a new measure, predictive
power, to predict the segmentation of ANs. Whereas local
surprise only considers backward information, the informa-
tion before a point in an AN, predictive power considers
forward information, the information after a point. For
example, in 1110000, the second note has larger predictive
power than the third because the event that follows the sec-
ond note is also a note, whereas the third note is followed by
a rest. The first note has even larger predictive power than
the second note because it is followed by two notes whereas
the second is only followed by one.
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Preliminary results from a study using methods similar
to Boker and Kubovy (1998) suggest that integrating local
surprise ratings and predictive power ratings may result in a
better-fitting model than local surprise alone.

Our studies

We devised a new method that (a) allows participants eas-
ily and quickly to report the clasp, thus allowing us to
obtain enough data to build quantitative models; (b) does not
require participants to synchronize their taps with the clasp
so that the data reflects perception alone.

At the beginning of each trial, a circular array of n icons
(where n = the length of the AN) appeared on the screen
(Fig. 3). The computer randomly assigned icons to positions
around the circle, and randomly associated the top icon with
one of the events (a note or a rest) of the AN. While the
AN was played (over headphones), a square highlighted the
corresponding icon and moved clockwise as each note or
rest played. The participants were instructed to click at any
time on the icon corresponding to the note they perceived as
the clasp.

We created 49 ambiguous ANs and asked two ques-
tions: (a) Which of the approaches described above best
accounts for the temporal organization in these patterns?
and (b) When two temporal grouping principles are con-
jointly applied to a stimulus, is their conjoint effect equal
to the sum of their separate effects? In Study 1, we
explored the segmentation of four-block sparse ANs and
in Study 2 we explored the segmentation of four-block
dense ANs.

Fig. 3 Screen shot of the display for a ten-event AN. At the moment
depicted, the cross is the highlighted note/rest

Study 1: Sparse Auditory Necklaces

Method

Participants Ten students from the University of Virginia
volunteered. All reported normal or corrected-to-normal
vision and normal hearing. We excluded one of them
because of a misunderstanding of the instructions.

Stimuli In this experiment, we used four-block sparse ANs.
Each AN contained two runs (A and B) and two gaps (A and
B). Gap A precedes run A and gap B precedes run B. We
generated 49 sparse ANs by crossing seven run ratios (the
ratio between the lengths of run A and run B: {1 : 3, 1 : 2, 2 :
3, 1 : 1, 3 : 2, 2 : 1, 3 : 1}) with seven gap ratios (the length
ratio between gap A and gap B: {1 : 3, 1 : 2, 2 : 3, 1 :
1, 3 : 2, 2 : 1, 3 : 1}).

Table 1 lists these ANs. Only 25 of the 49 ANs are unique
(e.g., 10001110 and 11101000 are rotations of the same
pattern), but we treated them as different ANs because we
assigned run A, run B, gap A and gap B differently for
each pattern (e.g., 1 is run A and 111 is run B in the first
example, whereas 111 is run A and 1 is run B in the sec-
ond). This allowed us to fully cross the seven levels of Run
ratio and the seven levels of Gap ratio.

The notes were 440-Hz pure tones lasting 50 ms
(including 5 ms linear fade-in and 5 ms linear fade-out).
The stimulus-onset asynchrony (SOA) between successive
events was 200 ms. To eliminate the bias of selecting the
first heard note as the clasp, each pattern was played very
fast (SOA = 60 ms) at first and decelerated to a steady SOA
= 200 ms after 20 events (Fig. 4). The first played event was
randomly selected for each trial.

For visual stimuli, we used ten icons with different
shapes (Fig. 3). On each trial, the program randomly
selected n icons (corresponding to the length of the auditory
necklace) and randomly arranged them on the circumfer-
ence of a circle. The size of each icon was 55×55 pixels and
the radius of the circle was 150 pixels.

Design Each participant completed 25 blocks of trials.
Each block contained the 49 ANs in random order. It took
about 5 hours to complete the experiment. The participants
were allowed to divide the experiment into as many sessions
as they wished. They were required to complete a block
before pausing the experiment: after each block they could
choose to continue to the next block, or to quit and later pick
up where they left off.

Procedure At the beginning of each trial, the screen
showed the circular array of icons (Fig. 3). Through head-
phones, the participants heard the ANs with the first 20
events decelerating. While the pattern was playing, a square
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Table 1 Stimuli in experiment 1

Run Ratio

Gap Ratio 1/3 1/2 2/3 1/1 3/2 2/1 3/1

1/3 10001110 1000110 110001110 11000110 111000110 1100010 11100010

1/2 1001110 100110 11001110 1100110 11100110 110010 1110010

2/3 100011100 10001100 1100011100 110001100 1110001100 11000100 111000100

1/1 10011100 1001100 110011100 11001100 111001100 1100100 11100100

3/2 100111000 10011000 1100111000 110011000 1110011000 11001000 111001000

2/1 1011100 101100 11011100 1101100 11101100 110100 1110100

3/1 10111000 1011000 110111000 11011000 111011000 1101000 11101000

highlighted the icon corresponding to the currently play-
ing note/rest in a clockwise direction. The participants were
asked to click on the icon corresponding to the tone they
heard as the beginning of the pattern. If they clicked on an
icon corresponding to a rest (as opposed to a note), the pro-
gram asked them to choose again because we assumed that a
clasp cannot coincide with a rest. They could click theREST
button in the center of the display anytime to take a break.

Results and discussion

Responses to the first note of a run The median propor-
tion of error responses (i.e., choosing icons corresponding
to rests) for the nine participants was 1.1 % (ranging from
0.1 % to 7.9 %). Among the remaining responses, the
median proportion of responses to the first note of a run was
99.8 % (ranging from 90.7 % to 100 %).

Figure 5 shows the frequency of responses to the first
note of a run (labeled A and B) compared to other responses
for one auditory necklace pattern: 1110001100. The errors
and the responses not to the first note of a run were either
to the note before or after the first note of a run, and may be
due to momentary lapses of attention.

Interpersonal concordance To test the extent to which
our participants’ choices of clasp were in agreement with
one another, we used the R (R Development Core Team,
2013) package irr (Gamer et al. 2010) to compute the

Fig. 4 Decelerating into 11011100

Kendall coefficient of concordance W (where 0 ≤ W ≤ 1),
corrected for ties, across participants and within stimuli.
We found high agreement among our participants’ clasp
selections: Wt = 0.78 (p ≈ 0).

Statistical model selection We excluded all trials in which
participants did not choose the first note of a run. We
could thus classify participants’ responses using a binomial
response variable (clasp selection was either at the start of
run A or run B). This allowed us to model our data using
mixed-effects logistic regression. All of our generalized lin-
ear mixed-effects models (GLMMs) were computed using
the package lme4 (Bates et al. 2014).

GLMMs, which use maximum-likelihood estimation,
have many advantages over traditional repeated-measures
analysis of variance, which use ordinary least-squares. In
addition to providing estimates of fixed effects, they allow
us to predict subject-by-subject variations in model param-
eters (called random effects). Furthermore, GLMMs do not
rest on many of the assumptions required by traditional anal-
yses, such as quasi-F tests, by-subjects analyses, combined
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Table 2 Study 1: Model comparison of the five models

K �AICc weight R2
marg. R2

cond.

Run/gap ratio (additive) 9 0.00 0.71 0.465 0.678

Run/gap ratio (non-additive) 10 1.78 0.29 0.465 0.678

Predictive power 9 103.27 0.00 0.470 0.677

Local surprise 5 1513.55 0.00 0.435 0.546

McGregor E 5 1907.66 0.00 0.444 0.484

by-subjects and by-items analyses, and random regression
(Baayen et al. 2008).

For each of our five GLMMs (run/gap additive, run/gap
non-additive, local surprise, predictive power, MacGregor
E), we treated the predictors derived from the approaches
described above (see Appendix for formulas) as fixed
effects and the subject-by-subject variation of the intercept
and subject-by-subject variation of the slope of the pre-
dictors as random effects. To compare the five candidate
models, we used a method of model comparison based on
the Akaike’s Information Criterion (AIC), which offers a
principled balance between goodness-of-fit and parsimony
(Burnham et al. 2011; Bozdogan 1987, for introductory pre-
sentations). Because the probability of overfitting can be
substantial when using AIC (Claeskens & Hjort, 2008), we
used AICc—which penalizes extra parameters more heav-
ily than does AIC—as recommended by Anderson and
Burnham (2002).

Whereas AICc is an appropriate method for model com-
parison and selection, it tells us nothing about the absolute
model fit of a model. To give us an idea of this fit, we
computed two types of R2 for GLMMs using the MuMIn
package (Bartoń, 2014). The first, called the marginal R2

(R2
marg.), estimates the proportion of variance accounted for

by the fixed effects only, whereas the second, called the con-
ditional R2 (R2

cond.), estimates the proportion of variance
accounted for by the fixed and random effects taken together
(Johnson, 2014; Nakagawa & Schielzeth, 2013).

Best-fitting model Table 2 compares the five models. The
best two models are the two versions of the run and gap
approach, in which the two predictors are the ratio of the gap
lengths and the ratio of the run lengths. The first of these
does not include an interaction between the predictors; the
second does. The marginal R2 (which is identical for the top
two models) shows a good deal of variance explained by the
fixed effects (R2

marg. = 0.465). When adding in the variance
of the random effects, an additional ≈ 20% of variance is
explained (R2

cond. = 0.678).
The first two models are competitive: a �AICc of 1.78

implies an evidence ratio (or Bayes factor, see Anderson
2008, Section 4.4) of 2.44, which Jeffreys (1961, p. 432)
considers “barely worth mentioning.” There is, however,

no question that the evidence in favor of the first model
is immeasurably stronger than the evidence in favor of the
third, fourth, and fifth models. An AICc difference of 103
implies an evidence ratio on the order of 1022, which is far
beyond what Jeffreys considers “decisive.”

When multiple models are competitive, we are faced with
model uncertainty. The consensus in the statistical litera-
ture is that the best way to deal with such a situation is to
construct a compromise model by a process called model
averaging (Anderson, 2008; Claeskens and Hjort, 2008;
Ginestet, 2009; Grueber et al. 2011; Richards et al. 2011;
Symonds & Moussalli, 2011).

Table 3 shows the coefficients of the averaged model,
their standard error, and a 95 % CI1. Because the interaction
coefficient is almost zero (i.e., −0.03) and the confidence
interval straddles zero (95 % CI: −0.15, 0.09), we are
inclined to favor additive effects of the run and gap prin-
ciples. Furthermore, with the same scale, the gap principle
is more important than the run principle (i.e., participants
use the gap principle more often than the run principle in
making their clasp selection).

Figure 6 shows the predictions of the averaged model.
In this figure, in addition to the data points and their confi-
dence intervals, we plot the predictions of an additive model.
Two features of this plot require some clarification.

First, the proportions are plotted on an unevenly spaced
y-axis. This is because these are binomial data fit using
logistic regression. There are two ways to plot the predic-
tions of a logistic regression. One, which we did not use
here, is to plot the predicted proportions on a linear y-axis,
which produces seven sigmoid (i.e., S-shaped) functions,
one for each level of gap ratio. We chose to plot the pro-
portions on a log-odds scale (resulting in unevenly spaced
proportions on the y-axis), which produces seven linear
functions.

Second, we plot lines that represent the predictions of an
additive model. We did this because it effectively shows that
for the most part, the data deviate from the additive model
only when the run ratio and gap ratio are 1/3 or 3/1.

1If the confidence interval for an estimated parameter does not straddle
zero, this estimate may be considered significant at α < 0.05.
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Table 3 Study 1: Coefficient estimates, standard error, and the lower and upper limits of 95 % of the model (in log-odds) resulting from the
averaging of the two competitive models in Fig. 2

Estimate SE Lower Upper

(Intercept) 0.01 0.03 −0.05 0.07

Run ratio 0.76 0.46 −0.14 1.66

Gap ratio 2.89 0.50 1.92 3.87

Run ratio*Gap ratio −0.03 0.06 −0.15 0.09

Figure 6 shows that as the run ratio and gap ratio increase,
the growth of the probability of choosing run A as the clasp
approximates a linear function.

Conclusions

First, the data show that participants organized the notes in
each run as a perceptual unit and almost always perceived
the first note of a run as the clasp, which replicates Preusser
et al. (1970) and Royer and Garner (1966; 1970).

Second, although the MacGregor (1985), Boker and
Kubovy (1998), and van der Vaart (2009) predictors are
mathematically and conceptually more sophisticated, they
did not fit the data nearly as well as the Garner models.
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Fig. 6 Study 1: Predictions of the model averaged using the addi-
tive and non-additive run and gap models. The individual data points
accompanied by 95 % confidence intervals were produced assuming
that run ratio and gap ratio are categorical predictors in a
7×7 crossed design. The fitted lines represent the averaged model,
assuming that the run ratio and gap ratio are continuous pre-
dictors. Note that because we averaged a model with and without the
interaction, in some cases the fitted lines do not precisely match the
data points

There are several possible reasons for the poor showing of
these sophisticated models:

(a) The E measure takes both run and gap principles into
account, but it combines them by summing them with
equal weight, which results in a loss of information.
This is relevant because the gap principle was found to
be more important than the run principle in the current
study.

(b) The predictive power algorithm also takes both runs
and gaps into consideration, which may be why it fares
better than the local surprise model that only considers
gaps. Nonetheless, both are but transformations of run
and gap lengths. The complexity of these transforma-
tions and their sophisticated rationale appears not to
produce better fits than the simple measures of relative
run and gap lengths.

(c) The local surprise model was designed to deal with
data involving perception and motor skills. The loca-
tion of the clasp was only one of the three response
variables they used. The other two were the tempo-
ral accuracy of the tap and its strength (which may
reflect the participant’s confidence). The latter two do
not involve perception.

(d) Boker and Kubovy (1998) sampled a number of eight-
event ANs without considering number of blocks,
whereas we used only ANs with four blocks to make
the stimuli bistable. Therefore, many ANs they used
were more complex than ours. The complexity of the
stimuli may favor their information theory model. This
remains an open question.

Third, the run length ratio and gap length ratio were
found to additively predict the auditory organization. This is
in line with what Kubovy and van den Berg (2008) found in
the visual domain.

Study 2: Dense auditory necklaces

Method

Participants We paid 14 students from the University of
Virginia $8 an hour for their participation. They all reported
normal or corrected-to-normal vision and normal hearing.
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Table 4 Study 2: Model comparison of the five models including responses to LOW clasps

K �AICc weight R2
marg. R2

cond.

Run/gap ratio (additive) 9 0.00 0.73 0.569 0.745

Run/gap ratio (non-additive) 10 2.00 0.27 0.569 0.745

Predictive power 9 58.94 0.00 0.575 0.758

Local surprise 5 492.94 0.00 0.581 0.727

McGregor E 5 4764.14 0.00 0.354 0.412

Stimuli We created four-block dense ANs by filling the
rests of the sparse ANs used in Study 1 with notes of another
pitch. For example, the AN 11100110 in Study 1 became
11122112 in Study 2. Therefore, in the current experi-
ment, each AN contains two runAs and two runBs, which we
called runA1, runA2, runB1, and runB2. We treat the run1
length ratio (runA1/runB1) as we treated runs in Study 1
and the run2 length ratio (runA2/runB2) as we treated gaps
in study 1. The run1 length ratio and run2 length ratio again
each have seven levels (1:3, 1:2, 2:3, 1:1, 3:2, 2:1, 3:1).
Again, only 25 of the 49 ANs were unique (e.g., 12221112
and 11121222 are the same), but we treated them as dif-
ferent ANs since they have different runA1, runA2, runB1,
and runB2.

The notes corresponding to 1s were 440-Hz piano MIDI
tones (which we called LOWs) and the notes correspond-
ing to 2s were 880-Hz piano MIDI tones (which we called
HIGHs). The visual stimuli and all other aspects of the
auditory stimuli were the same as Study 1.

Design and procedure The design and procedure were
identical to Study 1 except that the dense ANs contain no
rests and therefore participants could choose any note as the
potential clasp (i.e., there were no incorrect responses due
to the selection of a rest).

Results and discussion

Responses to the first note of a run Three participants
chose the first note of a run on fewer than 70 % of the trials.
They were excluded from further analysis. The remaining
11 participants chose the first note of a run on more than
80% of the trials. The median proportion of those responses

was 98.1 % (ranging from 83.8 to 99.8 %). As in Study 1,
we disregarded trials on which participants did not choose
the first note of a run.

Model comparison for responses to LOWs All partici-
pants chose LOWs (1s) more than HIGHs (2s) as the clasp,
with eight of the 11 participants predominantly choosing
LOW clasps (> 80%).

Therefore, we fit the five GLMMs (used in Study 1) by
including only responses to LOWs as the clasp. We did this
by treating the run1 length ratio as we treated runs in study
1 and the run2 length ratio as we treated gaps in study 1.

Table 4 compares the five models in terms of AICc. The
two run and gap models are again the best and are com-
petitive models. The additive run and gap model is superior
to the non-additive Garner model with a �AICc of 2.00,
which implies an evidence ratio of 2.72 (making it a small
victory for the additive model). However, the AICc dif-
ferences between the two run and gap models and other
three models show that they are decisively better than other
models.

Because the two run/gap ratio models were competitive,
we again used the process of model averaging. Table 5
shows the coefficient estimates of the averaged model, their
standard error, and a 95 % confidence interval. Both the
model comparison results and the confidence interval of the
interaction term (95%CI: –0.16, 0.16) again lead us to favor
additive effects of the run and gap principles. Furthermore,
with the same scale, the gap principle (here run2) was again
more important than the run (here run1) principle.

Figure 7 shows the predictions of the averaged model. As
the run (i.e., run1) ratio and gap (i.e., run2) ratio increase,
the probability of choosing runA1 as the clasp increases

Table 5 Study 2: Coefficient estimates, standard error, and the lower and upper limits of 95 % of the model (in log-odds) resulting from the
averaging of the two competitive models in Fig. 4

Estimate SE Lower Upper

(Intercept) 0.01 0.03 −0.05 0.08

Run (run1) ratio 0.18 0.26 −0.33 0.69

Gap (run2) ratio −3.72 0.49 −4.69 −2.75

Run ratio*Gap ratio 0.00 0.08 −0.16 0.16
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Fig. 7 Study 2: Predictions of the model averaged using the addi-
tive and non-additive run and gap models. The individual data points
accompanied by 95 % confidence intervals were produced assum-
ing that Run1 ratio (i.e., runA1/runB1) and Run2 ratio (i.e.,
runA2/runB2) are categorical predictors in a 7×7 crossed design. The
fitted lines represent the averaged model, assuming that Run1 ratio
and Run2 ratio are continuous predictors

more or less linearly. Additionally, the plotted lines repre-
sent the predictions of an additive model; these parallel lines
show that again for the most part, the data deviate from
the additive model only when the run2 ratio is 1/3 or 3/1.
Finally, the regression lines here are flatter than in Study 1.
Because gap principle was found to be the stronger predictor
of clasp selection in Study 1, the flatness here may be due
to the fact that gaps are replaced with run2s in dense ANs.

Statistical models for responses to HIGHs Because most
people chose LOW clasps rather than HIGH clasps, none
of the five models converged on a solution using the
same fixed-effect and random-effect predictors as the pre-
vious two analyses. Therefore, it remains an open question
whether the pattern of responses would be the same for
HIGH as for LOW clasps.

Conclusions

Perceiving the clasp in dense ANs is a two-step process.
First, listeners must do a task akin to the figure-ground
problem in selecting which notes (LOWs versus HIGHs)
will be treated as the figure, while relegating the other set
to the background. We found that the majority of partici-
pants chose LOWs (1s) more than HIGHs (2s) as the figure.
Second, once the figure-ground comparison is complete,
participants must choose the clasp based on the run and gap

principles: now run1s are treated as runs in a sparse AN and
run2s are treated as gaps.

Using this interpretation, the results for dense ANs (with
LOW clasps) replicate the results for sparse ANs in all
respects. (a) Participants overwhelmingly perceived the first
note of a run as the clasp (Preusser et al. 1970; Royer &
Garner, 1966; 1970). (b) The two run and gap models fared
much better than the MacGregor (1985), Boker and Kubovy
(1998), or van der Vaart (2009) models. (c) People use the
gap (i.e., run2) principle as a grouping cue more often than
they use the run principle. (d) The ratio of run lengths and
the ratio of gap lengths additively predicted the auditory
organization (a result analogous to Kubovy and van den
Berg 2008).

General discussion

We have established three facts:

1. The perceptual grouping of simple, cyclical auditory
rhythm patterns can be predicted from two complemen-
tary (and not necessarily synergistic) principles, first
proposed by Garner and his colleagues. According to
the gap principle, a cyclically played pattern of sounds
appears to start after the longest gap in the sounds.
According to the run principle, such a pattern appears
to start at the beginning of the longest run of sounds.

2. Of these two principles, the gap principle is much
stronger than the run principle.

3. To a first approximation, when the two principles imply
different parsings of the pattern, they additively affect
the probabilities of the two parsings. Thus the gener-
alization to audition of Kubovy and van den Berg’s
2008 finding that the conjoined effects of grouping by
proximity and grouping by similarity are additive is
promising. However, a larger replication is advisable to
remove remaining doubts regarding additivity of the run
and gap principles.

The generality of our findings is limited in several
regards. First, choice of rhythmic grouping may have
been affected by our choice of tempo (SOA = 200 ms).
Tempo is known to affect discrimination accuracy (Han-
del, 1992) and the perception of constancy (Handel, 1993)
in rhythm patterns. Other work in our lab has also shown
that performance of the same rhythm pattern shows sys-
tematic differences across tempi (Barton, Getz, & Kubovy,
under review). It therefore remains an open question how
aspects of our stimulus presentation (i.e., tempo, but also
frequency and timbre) may change the results.

Second, although our models in Figs. 6 and 7 show an
additive relationship whereby increasing the run ratio and
gap ratio additively increase the likelihood of choosing run
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A as the clasp, we have not determined the limits (i.e., the
ceiling and the floor) of the model. It remains an open ques-
tion at what point the run ratio and gap ratio become so large
that they make selection of the clasp unambiguous. It also
remains an open question whether more complex ANs will
be predicted best by the simple run and gap models or alter-
natively whether more complex ANs are better explained
by more complex models (as found by Boker and Kubovy
1998).

Finally, we should keep in mind that additivity is not
inevitable. Temporal grouping and spatial grouping are
intertwined in a manner inconsistent with a linear mecha-
nism that could produce additivity (Gepshtein & Kubovy,
2000). Similarly, in a spatial grouping task curvature, den-
sity, and proximity were non-additive (Strother & Kubovy,
2012). Kubovy and Yu (2012) conjectured that additive con-
joint effects are found when the conjoined grouping princi-
ples do not give rise to a new emergent property. This points
to the conclusion that our listeners did indeed separate tem-
poral organization into component aspects of grouping and
metric structures. Because meter can be thought of as an
emergent property of rhythmic grouping (Handel, 1998), it
is an open question whether imposing a stronger metric grid
onto the rhythms used here would result in non-additivity of
the grouping principles.
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Appendix: Quantification of the approaches

In our experiments, we manipulated the lengths of runs and
gaps. Let rA and rB be lengths of run A and run B, and gA

and gB be lengths of gap A and gap B.
For each potential clasp, we first computed the overall

strength of the each principle (i.e., run principle, gap prin-
ciple, E, local surprise, and predictive power). Then we
computed the relative strength between the two competing
clasps for each principle by taking either the ratio or the dif-
ference depending on the attributes of the quantification. We
used these relative strengths (and their interactions, if any)
as predictors in our probabilistic models.

Run and gap ratios For the two clasps, rA and rB rep-
resent the strength of the run principle and gA and gB

represent the strength of the gap principle. We calculated the
log-ratio between them (run ratio and gap ratio)
as a measure of relative strength. The run ratio and

gap ratio served as predictors in the additive run/gap
model. The run ratio, gap ratio, and their interac-
tion (run ratio×gap ratio) served as predictors in
the non-additive run/gap model.

Run ratio = log
rA

rB
(1)

Gap ratio = log
gA

gB

(2)

MacGregor E We calculated the E measures for the two
potential clasps (EA and EB ). We calculated the difference
between them (�E) as a measure of relative strength. �E

was entered as the predictor in the E model.

EA = rA × 1 + gB × 2 + rB × 2 + gA × 1 (3)

EB = rB × 1 + gA × 2 + rA × 2 + gB × 1 (4)

�E = EA − EB (5)

Local surprise We calculated the local surprise measures
for the two potential clasps. We calculated the ratio between
the two local surprise values (RLs) as a measure of relative
strength, which served as a predictor in the local surprise
model.

LA1 = log2
1

gA+1

gA log2
gA

gA+1

(6)

LB1 = log2
1

gB+1

gB log2
gB

gB+1

(7)

RLs = LA1

LB1
(8)

Predictive power We computed the predictive power mea-
sures for the two potential clasps. We calculated the ratio
between the two predictive power values (RPs) as a mea-
sure of relative strength. RPs and RLs were both entered as
additive predictors in the predictive power model.

PA1 = rA ∗ log2
rA

rA+1

log2
1

rA+1

(9)

PB1 = rB ∗ log2
rB

rB+1

log2
1

rB+1

(10)

RPs = PA1

PB1
(11)
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Example pattern Using the pattern 1110001100 (see
Fig. 5) as an example, the lengths of the runs are 3 and 2, so
rA = 3 and rB = 2. The lengths of the gaps are 3 and 2, and
because gap A precedes run A and gap B precedes run B,
gA = 2 and gB = 3. Therefore:

Run ratio = log
rA

rB
= log

3

2
= 0.176 (12)

Gap ratio = log
gA

gB

= log
2

3
= −0.176 (13)

�E = EA − EB = (3 × 1 + 3 × 2 + 2 × 2 + 2 × 1)

−(2 × 1 + 2 × 2 + 3 × 2 + 3 × 1) = 0 (14)

RLs = LA1

LB1
=

log2
1

2+1

2∗log2 2
2+1

log2
1

3+1

3∗log2 3
3+1

= 1.355

1.606
= 0.844 (15)

RPs = PA1

PB1
=

3 ∗ log2
3

3+1

log2
1

3+1

2 ∗ log2
2

2+1

log2
1

2+1

= 0.623

0.738
= 0.844 (16)
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