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Abstract Research on visual working memory has focused
on characterizing the nature of capacity limits as Bslots^ or
Bresources^ based almost exclusively on adults’ performance
with little consideration for developmental change. Here we
argue that understanding how visual working memory de-
velops can shed new light onto the nature of representations.
We present an alternative model, the Dynamic Field Theory
(DFT), which can capture effects that have been previously
attributed either to Bslot^ or Bresource^ explanations. The
DFT includes a specific developmental mechanism to account
for improvements in both resolution and capacity of visual
working memory throughout childhood. Here we show how
development in the DFT can account for different capacity
estimates across feature types (i.e., color and shape). The cur-
rent paper tests this account by comparing children’s (3, 5, and
7 years of age) performance across different feature types.

Results showed that capacity for colors increased faster over
development than capacity for shapes. A second experiment
confirmed this difference across feature types within subjects,
but also showed that the difference can be attenuated by test-
ing memory for less familiar colors. Model simulations dem-
onstrate how developmental changes in connectivity within
the model—purportedly arising through experience—can
capture differences across feature types.

Keywords Visual workingmemory . Capacity . Neural
networkmodel . Development . Change detection

A well-known characteristic of visual working memory
(VWM) is its limited capacity (estimated to be three to five
simple objects; Cowan, 2001), but the nature of this limitation
has been a source of considerable debate. The focus of this
debate has been on whether slot-like, fixed-resolution repre-
sentations (e.g., Zhang & Luck, 2008), or the allocation of a
limited resource pool with decreasing resolution per item as
the number of items increases (e.g., Bays & Husain, 2008),
provides a more complete account of performance in labora-
tory tasks. Although dozens of studies have been published
and some empirical support has been found for each approach,
as well as for some hybrid approaches (e.g., Alvarez &
Cavanagh, 2004; Xu & Chun, 2006) , the debate has not yet
been resolved.

In this paper, we argue that an important dimension in this
debate that has been largely ignored is the nature of develop-
mental change. Specifically, we propose that understanding
how capacity increases over development will shed light onto
the nature of the underlying VWM representations. Empirical
studies have demonstrated improvements in working memory
with age, but few theories have proposed specific mechanisms
that underlie developmental increases in capacity (see
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Simmering & Perone, 2013, for review). The source of devel-
opmental changes in VWM has important implications not
only for understanding how VWM functions in adults, but
also for potential insight into atypical populations who show
deficits in VWM (e.g., with schizophrenia and attention-defi-
cit/hyperactivity disorder (Karatekin & Asarnow, 1998), or
following preterm birth (Luciana, Lindeke, Georgieff, Mills,
& Nelson, 1999)). Furthermore, studies on working memory
training suggest that earlier interventions may be more bene-
ficial (Wass, Scerif, & Johnson, 2012), but that we need a
better understanding of how working memory functions and
develops to create effective interventions (e.g., Shipstead,
Hicks, & Engle, 2012).

In the sections that follow, we first review how VWM
develops and the theories that have been put forth to explain
both capacity and development. Next, we present the Dynam-
ic Field Theory (DFT) as an alternative model to the dominant
slots and resources perspectives (Johnson & Simmering, in
press; Johnson, Simmering, & Buss, 2014). The DFT incor-
porates a specific developmental mechanism that can account
for developmental improvements in both capacity (Perone,
Simmering, & Spencer, 2011; Simmering, 2008, 2015) and
resolution (Simmering & Patterson, 2012) of color memory.
Here we test this model further by considering how memory
differs across feature types and potential sources of these
differences.

Development of VWM

The primary task used to assess capacity in children is the
change detection task (e.g., Cowan et al., 2005; Riggs,
McTaggart, Simpson, & Freeman, 2006; Riggs, Simpson, &
Potts, 2011; Simmering, 2012). In this task, a small number of
simple items are shown briefly (e.g., 500 ms–2 s) in a memory
array, followed by a short delay (e.g., 1 s). Then, a test array is
presented in which either all of the items match the memory
array or one item has changed; children are instructed to re-
spond same or different accordingly. Capacity is estimated
from children’s responses across trial types (e.g., with the
formula proposed by Pashler, 1988; or modified by Cowan,
2001). Together these studies have demonstrated a gradual
increase in VWM capacity between 3 and 12 years of age.

Most studies employing the change detection task with
children have either implicitly or explicitly endorsed a slot-
like explanation for capacity, with results indicating an in-
crease in the number of slots over development (e.g., Cowan,
Morey, Chen, Gilchrist, & Saults, 2008). According to Bslots^
explanations of VWM capacity, most errors in performance
arise when an item is not stored in memory because the num-
ber of items to be remembered exceeds the number of avail-
able memory slots. As a potential neural instantiation of slots,
Raffone and Wolters (2001; see also Vogel, Woodman, &

Luck, 2001) proposed that objects are represented through
simultaneous firing of neurons in Bcell assemblies^ that cor-
respond to the various features (e.g., color, orientation, loca-
tion) of a given object. To represent multiple objects, cells
must fire in synchrony with other cells representing the same
object, but not with cells representing other objects. Thus, as
the number of objects increases, the temporal segregation of
the assemblies associated with each object becomes more dif-
ficult, resulting in mis-synchronizations and errors.

What remains unclear within a slots view, however, is what
causes a new slot to develop. Riggs et al. (2011) suggested
changes in neural synchrony as a possible source of develop-
mental increases in capacity. They described two possible
ways that accidental mis-synchronization could decrease over
development: (1) the neural assemblies coding for each object
may become better synchronized, thus increasing the differ-
entiation between items; or (2) connections between cell as-
semblies may be selectively reduced, thereby decreasing the
potential for mis-synchronization across objects. By this ac-
count, capacity should be the same across objects with differ-
ent feature types. Studies with children have almost exclusive-
ly tested memory for colored squares (e.g., Cowan et al.,
2005; Riggs et al., 2006; Simmering, 2012), although one
study used white shapes (Simmering, 2015, see also 2008)
and another compared performance on orientation versus both
orientation and color when presenting colored oriented bars
(Riggs et al., 2011). These studies did not include statistical
comparison between color and shape or orientation, so it is
unknown whether capacity is comparable across feature types
during childhood.

Another type of paradigm has been used to assess the
resolution or precision of VWM over development. Bur-
nett Heyes and colleagues tested 7- to 13-year-olds boys’
memory for oriented bars (Burnett Heyes, Zokaei, van der
Staaij, Bays, & Husain, 2012). In this task, children were
shown one or three oriented bars on each trial, and were
asked to reproduce the orientation of one bar after a short
delay. Results showed that precision was higher when
remembering one versus three bars, and precision im-
proved over development, with more improvement on
three-bar trials. Using a resource-based explanation, the
authors argued that VWM is not limited in capacity, but
rather impairments in performance arise through limita-
tions in resolution. From this perspective, VWM is a con-
tinuous resource that can be flexibly allocated across dif-
ferent numbers of items held in memory. As the number
of items increases, the resolution of each item decreases,
which explains the increase in errors as set size increases.
Burnett Heyes et al. suggested that the resolution of mem-
ory resources improves over development, and that such
an increase in resolution might result from Bsharpening^
of representations within neural populations that sub-serve
VWM tasks. However, the manner in which changes in

Atten Percept Psychophys (2015) 77:1170–1188 1171



neural populations would result in resolution changes is
not specified.

Simmering and Patterson (2012) developed a color dis-
crimination task, similar to a single-item change detection
task, that tested children’s ability to detect very small changes
in color after a short memory delay. Their results demonstrat-
ed that discrimination thresholds (i.e., the difference in color
necessary to reliably elicit Bdifferent^ judgments) decreased
between 4 and 6 years and again to adulthood, indicating a
developmental increase in the resolution of memory for a sin-
gle color. Rather than subscribing to a resource-based expla-
nation, however, they proposed that the change in resolution
arises through the same mechanism that can account for in-
creases in capacity. Their account of VWM capacity and de-
velopment, the Dynamic Field Theory (DFT; Johnson & Sim-
mering, in press; see Johnson et al., 2014, for specific con-
trasts with slot and resource perspectives), is a process-based
neural network model in which visual information (i.e., color)
is represented within continuous dynamic neural fields (see
Edin et al., 2009; Wei, Wang, &Wang, 2012, for similar types
of representations).

In the DFT, combining two excitatory neural fields with a
shared inhibitory neural field produces a three-layer architec-
ture in which an excitatory contrast field processes visual in-
formation in the scene and an excitatory working memory
field maintains visual information in the absence of input.
These representations are realized as localized Bpeaks^ of ac-
tivation within the excitatory fields; peaks are maintained
through local excitatory connections that keep activation
above threshold (zero) and lateral inhibitory projections that
prevent activation from spreading throughout the field. Neural
interactions between the contrast and inhibitory fields are
tuned such that peaks in the contrast field are input-driven,
that is, when input is removed, activation relaxes back to its
resting level. In the working memory field, by contrast, excit-
atory and inhibitory interactions are much stronger, allowing
for self-sustaining peaks that are maintained robustly after
input is removed.

Figure 1 shows how the DFT performs the change detec-
tion task with parameters tuned to capture adults’ performance
(see Table 1 for parameters and Appendix for model equa-
tions). When three items are presented to the model, they form
self-sustaining peaks in the working memory field (Fig. 1A).
The shared inhibitory layer projects to the corresponding color
values in the contrast field, which produces inhibitory troughs
at these locations when input is removed (i.e., during the de-
lay; Fig. 1B).When the test array is presented, if no items have
changed, the familiar colors project into these inhibited re-
gions of the contrast field (see Fig. 1C). This serves as the
comparison process in the DFT—if a new color is presented,
this input projects into un-inhibited regions of the contrast
field to build input-driven peaks (see circle in Fig. 1D). To
generate the same/different response required in change

detection, a simple decision system is linked to the three-
layer network such that activation in the contrast field drives
a different response and activation in the working memory
field drives a same response. The decision nodes compete in
a winner-take-all fashion to generate a discrete response—
when activation of one node surpasses zero—on each trial.
In the sample simulations in Fig. 1, the three familiar items
produce a correct same response (see dotted line in Fig. 1E),
whereas the new item produces a correct different response
(see solid line in Fig. 1F).

Johnson, Simmering, and Buss (2014) conducted quan-
titative simulations demonstrating how this model can
capture adults’ performance in the change detection task,
and contrasted the model with slots and resource perspec-
tives. The DFT aligns with some characteristics of slots
(i.e., discrete, all-or-none encoding of items) and re-
sources (i.e., variable resolution of items in memory
across set sizes), but moves beyond these theories in ac-
counting for the processes of comparison and decision
generation necessary to perform the change detection task.
Capacity in the DFT is limited by the balance between
excitation and inhibition in the working memory field:
as more items are added, the excitation from the peaks
in the working memory field projects to the shared inhib-
itory layer, which then projects back into the working
memory field. At some point, no additional peaks can be
sustained within the working memory field due to the
strength of inhibition.

Simmering (2008) showed how the model could ac-
count for developmental increases in VWM capacity
through a strengthening of interactions both within and
between the layers of the model and the decision nodes
(see Simmering & Schutte, in press, for further discus-
sion). Figure 2 shows sample simulations with parame-
ters tuned to capture 5-year-olds’ performance (i.e., be-
havioral data from Simmering, 2012; see also Simmer-
ing, 2015). Compared to Fig. 1, it is apparent that both
excitation and inhibition are weaker in the Bchild^ model
than in the Badult^ model. The model’s performance is
still correct the majority of the time, but the likelihood of
errors is higher, capturing children’s more error-prone
performance. Simmering (2008, 2015) found that errors
in the child model arose through multiple sources: failure
to encode all of the items (especially at higher set sizes),
loss of an item during the delay, a weak signal to the
decision nodes, and/or noisy competition in the decision
system. The simulation in Fig. 2D illustrates how the
signal to the decision nodes is weaker; although the
model produced a correct Bdifferent^ response on this
trial, the input-driven peak in the contrast field was quite
weak. Across many trials, this low level of activation
(relative to the adult parameters; cf. Fig. 1D) leads to
more errors.
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Simmering (2015) simulated 3-, 4-, and 5-year-olds’ and
adults’ performance by changing 18 parameters (out of 51
total parameters; cf. Tables 1 and 2) to be weaker earlier in
development. These simulations provided the first mechanis-
tic explanation for capacity increases during early childhood,
showing how these changes in connectivity led to not only
increases in the number of items (peaks) that could be held in
working memory, but also better accuracy in the comparison
and decision processes (see Simmering & Schutte, in press,
for further discussion). This account also led to the predictions
tested by Simmering and Patterson (2012), that the precision
of memory should improve in parallel to increases in capacity
due to the same underlying developmental mechanism. Thus,
the DFT accounts for improvements in both resolution and
capacity through the same developmental mechanism:
strengthening connectivity.

One question raised by the developmental change im-
plemented in the DFT is what drives changes in the
strength of connections in the model. Perone and
Spencer (2013a) showed that a Hebbian learning mecha-
nism in the DFT could produce the types of changes
previously implemented Bby hand^ (i.e., by the modeler
specifying parameter values separately for different age
groups; see Simmering & Schutte, in press, for further
discussion). In particular, they demonstrated that simulat-
ing extended experience with a variety of stimuli led to a
distribution of learning that supported later visual pro-
cessing of similar stimuli. These simulations suggest that
differential experience should lead to differential rates of
development.

Here we extend these findings from distributed expe-
rience along a single dimension (i.e., color) to

Fig. 1 Time slices through the three layers of the model, run with Badult^
parameters, at critical points in two trials: (A) encoding, at the end of
memory array presentation; (B) maintenance, at the end of delay;
comparison at the time just before a response is generated during
presentation of the test array on (C) no-change and (D) change trials;

and activation of the decision nodes (dotted = same, solid = different)
on the (E) no-change and (F) change trials. Arrows indicate progression
through the trials. Dashed black lines in each panel indicated the activa-
tion threshold (i.e., 0). CF = contrast field, WM = working memory field
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comparisons across different dimensions (e.g., shape and
color). Such differential development could explain an
effect that has been previously demonstrated but not yet
explained: adults show VWM capacity differences de-
pending on feature types (e.g., higher for colors than
shapes; Wheeler & Treisman, 2002, Experiment 4). We
hypothesize that more common features are processed
(perceived and remembered) more frequently than less
common features, leading to slightly accelerated devel-
opment and therefore higher capacity. This explanation
is similar to knowledge accounts in verbal working
memory research in which children’s experience with
words allows them to remember more (see Miller,
2013, for review). Studies of VWM development have
not explicitly addressed whether and how performance
differs across single feature types. However, Simmering
(2008, see also 2015) tested separate groups of partici-
pants in change detection tasks using colored squares or

white shapes across experiments. Although these exper-
iments were not compared statistically, reported means
suggested slightly higher capacity for colors than for
shapes in both children (3- 4-, and 5-year-olds) and
adults.

Testing the DFT account of development across features

To test whether the model can quantitatively capture
performance across feature types through more or less
developed memory, we began with parameters tuned to
capture 5-year-olds’ performance on colors (Simmering,
2015; see Table 2). Next, we adjusted a small number
of parameters (three out of seven strength parameters
that varied over development; see General discussion
for details on the choice of parameters to modify) to
be weaker in the fields to represent shape relative to

Fig. 2 Time slices through the three layers of the model, run with Bchild^ (5-year-old) parameters, at critical points in two trials; panels and axes are as in
Fig. 1
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color1; the parameters for the formation of long-term
memory and the decision system were held constant
across feature types (see Appendix for full details). We
tuned these three parameters to fit 5-year-olds’ perfor-
mance on shapes (Simmering, 2008, 2015). Behavioral
estimates of capacity were 2.87 for color and 2.28 for
shape; model simulations produced estimates of 2.88 for
color and 2.67 for shapes (see Table 3 for correct re-
jection and hit rates across set sizes, along with mean
absolute error to evaluate the overall fit). As this com-
parison shows, we fit 5-year-olds’ performance across
feature types by modifying the parameters to be less
developed for shape than color. Thus, the DFT can ac-
count for differences in performance across feature types
through developmental differences in memory for the
features.

We then tested an extension of this finding by taking
the parameters tuned to 3- and 7-year-olds’ performance
on colors (i.e., behavioral data from Simmering, 2012; see
Table 2 for parameter values and Table 4 for evaluation of
fits) and modified them proportionally to the 5-year-old
parameters. Specifically, the three parameters we modified
to fit shape performance were the strength of input, the
strength of self-excitation in working memory, and the
strength of inhibition projected to working memory; the
values for the shape parameters were approximately 97 %
the strength of the corresponding color parameters, re-
spectively. To predict 3- and 7-year-olds’ performance
on shapes, then, we scaled these three parameters to be
0.97 for each Bage^ to simulate memory for shapes. Using
the scaled 3-year-olds parameters, we found capacity es-
timates of 1.84 for color and 1.72 for shape; with the 7-
year-old scaled parameters, estimates were 3.95 and 3.30,
respectively. As these simulations show, the model pro-
duced an advantage of color over shape for each age
group (differences of 0.12 for 3-year-olds, 0.21 for 5-
year-olds, and 0.65 for 7-year-olds) with the difference
between features increasing with age.

How does this account compare to other theories of VWM
capacity and development? This is a difficult question to an-
swer with certainty because few papers have addressed wheth-
er and why performance differs by feature type. We found no
developmental papers that compared capacity across single
feature types; rather, a few papers have addressed a related

debate, focusing on why adults’ capacity appears lower for
complex objects (e.g., Chinese characters, irregular polygons)
than for simple objects (e.g., colored squares, letters). These
results have been interpreted as evidence that VWM is limited
by information load, specifically, that more complex items
require more information to be encoded (Alvarez &
Cavanagh, 2004). However, complexity was confounded with
inter-item similarity in these studies, and the differences in
performance can be eliminated when changes are sufficiently
large, suggesting that capacity did truly not differ between
object types (Awh, Barton, & Vogel, 2007). Wheeler and
Treisman (2002) argued for parallel memory stores for color
versus shape, eachwith its own limited (slot-like) capacity, but
did not specify what led to greater capacity for one feature
over the other. Bays, Wu, and Husain (2011) presented evi-
dence for independence between memory for the color versus
orientation of stimuli, leading them to conclude that each fea-
ture was represented by a separate pool of resources. Whether
there should be differences in resolution of items along these
dimensions, however, was not specified. As such, explana-
tions within the literature have accommodated for possible
differences across feature types without explicitly hypothesiz-
ing the source of such differences.

In the DFT, the specific account of developmental in-
creases in capacity can be extended to the prediction that dif-
ferences across feature types could arise through experience
over development. By contrast, slot and resource accounts
provide no specific hypotheses to account for why perfor-
mance would differ across feature types and how this differ-
ence could emerge over development. We tested the DFT
account with two experiments. In Experiment 1 we tested
multiple age groups in a change detection task with shapes
as stimuli. We compared capacity for shapes to color capacity
(from Simmering, 2012) to test for the developmental emer-
gence of a difference across features. As predicted, we found
that capacity was higher for colors than shapes, especially in
older children. As a further test of developmental emergence,
we designed Experiment 2a to compare feature types within
participants, replicating greater capacity for colors than
shapes. In Experiment 2b, we modified the color stimuli to
be less familiar; consistent with the experience account of
feature differences, this showed lower capacity than canonical
colors.

Experiment 1

For our first experiment, we used a change detection task to
test memory for white shapes in 3-, 5-, and 7-year-old chil-
dren. Previous results using these age groups showed in-
creases in capacity for color between 3 and 5 and between 5
and 7 years (Simmering, 2012), suggesting that these age
groups should provide a good range of comparison.

1 Although Perone and Spencer (2013a) used autonomous developmental
change to show the effect of experience on visual processing, it would be
impractical to generate fits in such a way for the current studies. Perone
and Spencer were simulating infants’ experience on the order of months,
whereas we would be simulating experience over multiple years. Our
primary simulation computer took approximately 1.5 hours to simulate
20 Bparticipants^ in the change detection task; simulating the amount of
experience accumulated over many years is unattainable with our current
computational power.
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Furthermore, by testing the same age groups as Simmering
(2012), we can compare results across studies for differences
between feature types.

Method

Participants Forty-nine children participated in this experi-
ment: 15 were 3-year-olds (M age =3.70 years, SD = 2.72
months, eight girls and seven boys), 18 were 5-year-olds (M
age = 5.25 years, SD = 3.99 months, nine girls and nine boys),
and 16 were 7-year-olds (M age = 7.50 years, SD = 2.96
months, eight girls and eight boys). An additional 13 children
participated but were excluded for the following reasons: six
did not follow task instructions (three 3-year-olds, three 7-
year-olds) and seven had insufficient data due to ending their
participation early (four 3-year-olds, one 5-year-old) or equip-
ment failure (two 7-year-olds). Parents of all participants re-
ported normal or corrected-to-normal visual acuity and no
family history of colorblindness. Participants were recruited
through a database of families interested in research participa-
tion compiled by a university affiliated research center and
received a small gift following participation.

Apparatus Stimuli were modeled after the eight white shapes
fromWheeler and Treisman (2002), and are shown in Fig. 3A.
Items were selected randomly without replacement for the
memory and for the new item needed for the test array on
change trials.

The task was explained to children as a card-matching
game using flashcards (3 in × 3 in. that showed set sizes
one, two, and three (see Simmering, 2012, for details of de-
velopment of the Bcard^ version of the task for young chil-
dren). For most participants (n = 32), the computerized trials
were completed on a 15.4-in widescreen Dell Latitude E6500
laptop computer, with stimulus presentation controlled by
Matlab 10.2 using the Psychophysics Toolbox extension (ver-
sion 3; Kleiner, Brainard, & Pelli, 2007). For the remaining
participants (n = 14), these trials were completed on an 18-in
CRT display connected to a Macintosh G4 computer, with
stimulus presentation controlled by Matlab 5.2 (Mathworks,
Inc., http://www.mathworks.com) using the Psychophysics
Toolbox extensions (version 2; Brainard, 1997; Pelli, 1997).
In both cases, lighting in the roomwas dimmed to aid viewing
of the screen, and stimulus presentation was adjusted to
appear approximately the same size on both screens.

Children were seated in a child-sized desk chair, at a viewing
distance of approximately 2 f. from the computer screen.2 The
background on the computer monitor was black, and the stimuli

were enclosed within gray rectangular Bcard^ frames (5.75 in
tall × 4.75 in wide; approximately 13.5° × 11.2° visual angle).
The gray frame was centered vertically on the screen on every
trial; each block began with the frame centered horizontally on
the left half of the screen, and alternating sides over trials, as
shown in Fig. 4. Within the frame, stimuli (1 in or ~2.4° square
bitmaps) could appear at any of five equally-spaced positions in
a circle (3 in or ~7° diameter) around the center of the frame. For
set sizes two, three, and four, the stimuli appeared in neighbor-
ing positions; all five positions were filled for set size five. For
each set size, the positions were chosen randomly for the first
trial, but remained constant across the trials within that set size
(note that trials were blocked by set size, as described below).

Procedure An experimenter described the task to children as a
matching game in which the child needed to look for cards
that match. For training, the experimenter demonstrated the
task using flashcards showing one, two, or three items. The
first card in each set was shown for approximately 2 s, and the
child was instructed to BLook at the picture and remember
what it shows^; the terminology Bpicture^ was used to build
on children’s experience playing commercially available
picture-matching card games, and to emphasize the need to
compare arrays separated in time, rather than comparing mul-
tiple objects within a single array. The first card was then
removed and, after a brief delay, the second card for the trial
was shown in the same location. The experimenter then asked
the child if the two cards matched. After the child responded,
the experimenter placed both cards side-by-side and praised or
corrected the child as needed, explicitly pointing out the
changed item to ensure the child understood the proper com-
parison. The flashcard trials were presented in ascending order
of set sizes one, two, and three, with the order of change and
no-change trials counter-balanced across set sizes. During
training, the experimenter emphasized that all items in the
display must match to be considered same. Most 3-year-olds
did not complete set sizes greater than three (cf. Simmering,
2012), so higher set sizes were not presented on the flashcards.
For 5- and 7-year-olds, flashcards for set sizes four and five
were presented immediately before the test block, rather than
during training, for these set sizes.

Once the child understood the task, the experimenter began
the computerized version. Note that many studies using the
change detection task with adults include articulatory suppres-
sion (e.g., repeating a three-digit number) to prevent verbal
recoding of the stimuli (e.g., Vogel et al., 2001). Developmen-
tal studies of visuospatial working memory have shown that
children do not typically recode visual information verbally
(see Pickering, 2001, for review); furthermore, studies that
have included articulatory suppression with children have
shown no effects for the age groups used here (e.g., Hitch,
Woodin, & Baker, 1989; Miles, Morgan, Milne, & Morris,
1996). As such, we chose not to require articulatory

2 Children typically move their heads and bodies much more than adults
while participating in the task, which precludes the calculation of precise
visual angels for the stimulus presentations. We have provided approxi-
mate calculations, but these may have varied across child participants
depending on movement.
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suppression in our task. The first block consisted of practice
trials, with the memory array presented for 2 s, a delay of 900
ms, and the test array presented until a response was entered.
Children verbally responded Bsame^/^different,^ Byes^/^no,^
or Bmatch^/^no match^ (terms that are more intuitive for 3-
year-olds), and the experimenter entered the response on a
keyboard. When the response was entered, a chime played if
it was correct, to help children stay motivated. Each trial was
initiated with a key press by the experimenter when the child
appeared ready, to allow for the participants to control the
pacing of the task as needed. If children seemed fatigued, they
were offered a break between set size blocks; 3-year-olds were
also offered small prizes (e.g., bubbles, stickers, Play-Doh)
between trial blocks to maintain their motivation.

The practice block included eight trials in random order:
four trials in set size one and four trials in set size two; for all
blocks, the computer program randomly chose whether each
trial was change or no-change, which resulted in roughly
equal but slightly different numbers of each trial type across
blocks and participants. Following the practice block, children
began the test trials, which differed from the practice trials in
that a shorter presentation time (500 ms) was used for the
memory array for 5- and 7-year-olds; the longer memory array
(2 s) was used for younger children to ensure they had time to
orient and attend to the display, as younger children tend to
spend more time off task between trials (Simmering, 2012).3

The test blocks each included 12 trials at a single set size, and
were ordered the same for all children: set size two, one, three,
four, five. Simmering (2008) found that this order maximized
young children’s attention to all of the items in the higher set
sizes as well as their likelihood to complete test blocks at least
up to set size three.Whenever possible, we included children’s

data from completed trial blocks if the child chose to end early
(see Results section for details). The total duration of the task
was approximately 20–30 min.

Results and discussion

Participants’ responses were classified as correct rejec-
tions (correct no-change trials), hits (correct change tri-
als), misses (incorrect change trials), and false alarms (in-
correct no-change trials). Figure 5 shows the distribution
of these response types separately for each age group,
with response distributions from Simmering (2012) for
comparison. Note that correct rejections and false alarms
sum to 1.0 (no-change trials) and hits and misses sum to
1.0 (change trials). As this figure shows, correct rejection
and hits (i.e., correct responses) were most common, es-
pecially at low set sizes; as set size increased, errors in-
creased, especially misses. Across age groups, this decline
in performance occurred at smaller set sizes for younger
children, and higher set sizes for older children. Note that
all age groups showed more of a decrease in hits than
correct rejections, similar to adults’ pattern of perfor-
mance (cf. Vogel et al., 2001); this suggests that children
are approaching the task as adults do, not responding ran-
domly, despite their overall worse performance (Simmer-
ing, 2012). Comparing feature types, performance appears
superior for colors versus shapes.

One significant challenge in comparing performance
across this range of development is that younger children
were typically unable to complete blocks at set sizes
higher than three; thus, comparing performance across
set sizes and age groups is truncated to only low set sizes,
where performance is near ceiling for older age groups.
Although this type of comparison does reveal some dif-
ferences across age groups, it does not encompass the full
pattern of performance for older children. One solution to
this problem is to compute a measure that is based on

3 Due to experimenter errors, the wrong stimulus presentation duration
was used for one 3-year-old and 14 of the 5-year-olds; previous studies
have suggested that stimulus duration does not significantly influence
capacity (Cowan, AuBuchon, Gilchrist, Ricker, & Saults, 2011; Vogel,
Woodman, & Luck, 2001), so we do not expect this to affect our results.

Fig. 3 Stimuli used in the current paper: (A) white shapes were used for
Experiment 1 and the shape conditions of Experiments 2a and 2b; (B)
colored squares for Experiment 2a (also in Simmering, 2012); (C)

unfamiliar colors for Experiment 2b. Note that the differences between
colors may appear smaller in print versions than on the computer screen
used in the task
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performance across set sizes but yields a single value for
each participant. This can be achieved by computing a
capacity estimate K for all completed set sizes, then
selecting each participant’s maximum K across set sizes
(Kmax) as an index of their capacity (described further
below). Simmering (2012) showed that the Kmax estimate
for each participant does not necessarily come from the
highest set size that participant completed. Furthermore,
when analyzing performance across set sizes for each age
group separately, Simmering demonstrated that significant
decreases in percentage correct corresponded roughly to
mean Kmax estimates for that age group (i.e., both 3- and
5-year-olds’ performance declined significantly between
set sizes two and three, and their mean Kmax estimates
were 1.90 and 2.90 items, respectively; 7-year-olds’ per-
formance declined significantly between set sizes three
and four, with a Kmax estimate of 3.91 items). Thus, com-
paring the mean Kmax estimates across age groups can
avoid limitations arising from young children’s comple-
tion of fewer set sizes than older children.

We computed capacity (K) for each participant using
Pashler’s (1988) formula, K = SS * (H – FA) / (1 – FA), based
on the hit (H) and false alarm (FA) rates for each set size (SS).
Because K can equal, at most, the set size for each block, we
then selected each participant’s maximum estimate across set
sizes (cf. Olsson & Poom, 2005; Simmering, 2012), to derive
Kmax for each participant. Mean Kmax estimates for each age
group and condition are shown in Fig. 6A. As this figure
shows, Kmax was lower for the current experiment using
shapes compared to the color condition from Simmering
(2012) for older children. We analyzed these data for

comparison with Simmering’s (2012) color results in a two
way ANOVA with Feature (shape, color) and Age Group (3
years, 5 years, 7 years) as between-participants factors. This
analysis revealed a significant main effect of Age Group, F2,

85 = 41.75, p < .001, ηp
2 = .44. Tukey follow-up HSD tests (p

< .05) showed that Kmax differed significantly between all
three age groups.4 This analysis also revealed a significant
main effect of Feature, F1, 85 = 17.58, p < .001, ηp

2 = .09, with
overall higher capacity for colors (M = 2.91) than shapes (M =
2.31). The interaction showed a trend toward significance, F2,

85 = 1.81, p = .170, with the gap between feature types in-
creasing over development. Planned comparisons (two-tailed
independent samples t-tests) across feature types within each
age group showed no difference for the 3-year-olds (t27 = 1.47,
p = .153), but significantly higher capacity for colors than
shapes for both 5-year-olds (t30 = 2.12, p = .042, d = .76)
and 7-year-olds (t28 = 3.46, p = .002, d = 1.25).

Figure 6B shows the capacity estimates resulting from
the DFT simulations described above. As this figure
shows, the pattern from the model was similar to the
pattern obtained in with the behavioral data (recall that
the shape performance for 3- and 7-year-olds was a pre-
diction generated from scaled parameters, not fit to be-
havioral data). Our findings of higher capacity for colors
than shapes in older children is consistent with the
models performance and similar to adults’ performance

4 To ensure that this effect wasn’t driven solely by Simmering’s (2012)
similar finding across age groups, we also tested for an effect of age group
in the shape condition alone; this analysis revealed the same pattern, F2, 46

= 17.27, p < .001, ηp
2 = .43, with all age groups differing significantly

from each other (Tukey HSD p < .05).

Fig. 4 Examples of stimulus presentation in a no-change trial (left) and a change trial (right) from Experiment 1. Note that stimuli are not drawn
precisely to scale
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in the change detection task (e.g., Wheeler & Treisman,
2002). These results provide initial support for our hy-
pothesis that the difference in performance across feature
types arises through experience over development. One
limitation of the current study, however, is that we com-
pared feature types across different groups of children;
Wheeler and Treisman, by contrast, compared feature
types within participants. Our next experiment was de-
signed to test whether this difference across features
would replicate within a single group of participants
(2a), and whether the specific values along a feature
dimension matter (2b).

Experiment 2

To test whether the difference in capacity estimates for colors
versus shapes in Experiment 1 was robust, we conducted a
within-participant comparison of these features in Experiment
2a. The fact that children are only able to complete a relatively
small number of trials within a testing session introduced
some practical challenges to collecting data. Because 7-year-
olds were the only age group to reliably complete all five set
sizes tested in Experiment 1, we chose to test only this age
group in the current experiment. Then, for Experiment 2b, we
tested the DFT account of development arising through expe-
rience by using less-familiar colors on the color trials. If the
superior performance on color versus shape is driven by rela-
tivelymore developed feature representation and development

arises through specific experiences along features dimensions,
then less-familiar colors should be lower in capacity than fa-
miliar colors and more comparable to capacity for shapes.

Experiment 2a method

Participants Twenty 7-year-olds (M age = 7.38 years, SD
= 3.42 months, 8 girls and 12 boys) participated in this
experiment. Two additional children participated but were
excluded from analyses, one due to equipment failure, and
one due to a cognitive impairment that made completing
the task too difficult.

Apparatus The stimuli and apparatus were identical to those
described in Experiment 1 (see Fig. 3A for shapes, 3B for
colors).

Procedure The procedure was identical to that described
in Experiment 1 with two exceptions. First, children were
informed that they would be completing two memory
games, one with colors and one with shapes. The order
of features was counter-balanced across participants, and
all trials for one feature were completed before beginning
the trials for the other feature. Second, we did not include
test trials for set sizes one and two. Instead, children com-
pleted the practice block (with set sizes one and two, as in
Experiment 1), then completed test trials for set size three,
four, and five, in that order. Because the Kmax estimates

Fig. 5 Proportions of response types across set sizes, separated by age groups (columns) and experiments (rows) for Experiment 1, with Simmering
(2012) for comparison. Corr rej = correct rejections; SS = set size; NC = no-change trials; CH = change trials

Atten Percept Psychophys (2015) 77:1170–1188 1179



derived for 7-year-olds in Experiment 1 and Simmering
(2012) all came from set sizes three or higher, we did not
need to include test trials at the smaller set sizes. Reduc-
ing the number of set sizes tested also kept the total du-
ration of the session within reason for child participants,
under 30 min.

Experiment 2a results and discussion

Participants’ responses were again classified as correct rejec-
tions, hits, misses, and false alarms, separately for each set size
and feature type. Figure 7 shows the distribution of these
response types; recall that correct rejections and false alarms
sum to 1.0 (no-change trials) and hits and misses sum to 1.0
(change trials). As this figure shows, correct rejection and hits
(i.e., correct responses) were most common, especially at low-
er set sizes; as set size increased, errors increased, especially
misses. Furthermore, errors were more prevalent on shape
versus color trials.

As in Experiment 1, we computed a Kmax estimate for
each participant, separately for each feature; mean Kmax

estimates were 3.54 (SD = 0.90) for color and 2.88 (SD =
0.65) for shape. A two-tailed paired-sample t-test on Kmax

estimates revealed that color capacity was significantly
higher than shape capacity, t19 = 2.56, p = .019, d =
0.58, replicating the comparison between Experiment 1
and Simmering (2012).

Across Experiments 1 and 2a, results showed that chil-
dren’s capacity estimates were higher for colors than shapes.
As explained in the introduction, the DFT could capture these
results through memory for shapes that is relatively less ma-
ture than memory for colors. A further implication of this
developmental change is that the advantage for color arises
through more experience with colors than with shapes. As an
initial test of this possibility, in Experiment 2b we compared
children’s memory for less-familiar colors to their memory for
shapes.

Experiment 2b method

Participants Twenty 7-year-olds (M age = 7.58 years, SD =
6.36 months, 10 girls and 10 boys) participated in this exper-
iment. Two additional children participated but were excluded
from analyses due to incomplete data.

Apparatus The apparatus was identical to that described in
Experiments 1 and 2a, as were the shape stimuli (see
Fig. 2A); for color stimuli, unfamiliar colors were selected
by modifying the RBG values to intermediate values along
one dimension (see Fig. 3C for unfamiliar colors, and Appen-
dix for RGB values).

Procedure The procedure was identical to that described in
Experiment 2a.

Experiment 2b results and discussion

Participants’ responses were again classified as correct rejec-
tions, hits, misses, and false alarms, separately for each set size
and feature type. Figure 7 shows the distribution of these
response types; recall that correct rejections and false alarms
sum to 1.0 (no-change trials) and hits and misses sum to 1.0
(change trials). As this figure shows, correct rejection and hits
(i.e., correct responses) were most common, especially at low-
er set sizes; as set size increased, errors increased, especially
misses. Furthermore, errors were more comparable across
shape and color trials, relative to Experiment 2a.

As in Experiments 1 and 2a, we computed a Kmax estimate
for each participant, separately for each feature; mean Kmax

estimates were 2.89 (SD = 1.04) for unfamiliar colors and 2.76
(SD = 0.83) for shapes. A two-tailed paired-sample t-test on
Kmax estimates revealed no difference (t19 = 0.49, p = .630), as
predicted. We next compared capacity for unfamiliar colors
(from the current experiment) to capacity for familiar colors
(from Experiments 2a) and found that capacity was signifi-
cantly lower for unfamiliar colors, t38 = 2.09, p = .043, d =

Fig. 6 (A) Mean capacity estimates across age groups and feature types
for Experiment 1 (shape) with results from Simmering (2012) for com-
parison (color). (B) Mean capacity estimates derived from simulations of
the DFT for parameters tuned to be weaker for shape than color. Error
bars show 95 % confidence intervals
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0.66. Thus, as predicted, capacity for unfamiliar colors was
similar to capacity for shapes, and both were lower than ca-
pacity for the canonical colors tested in change detection. Al-
though these results are consistent with our predictions, more
controlled experiments will be needed to test this account
more rigorously (discussed further below).

General discussion

The goal of these experiments was to test how VWM differs
across feature types over development. According to the DFT,
capacity increases through the strengthening of neural connec-
tivity underlying representation of visual features (Perone
et al., 2011; Simmering, 2008; Simmering & Patterson,
2012; Simmering & Schutte, in press). If this change in con-
nectivity arises through experience (cf. Perone & Spencer,
2013a), then features that are more common or familiar should
improve more quickly over development. Experiment 1
showed that older children had higher capacity for colors than
shapes. In Experiment 2a, we replicated this finding within a
single group of 7-year-olds and in Experiment 2b showed that
it was specific to common colors; capacity for unfamiliar

colors was lower than capacity for familiar colors and compa-
rable to capacity for shapes. Taken together, these results sup-
port the DFT account of developmental changes in capacity
limits. Below we compare this account to other theories of
VWM and working memory more generally, then discuss
the theoretical motivation for how development is implement-
ed in the DFT, as well as additional consequences in the mod-
el. We conclude by discussing limitations of the model and the
long-term goals of this research program.

Before considering these theoretical implications of our
findings, it is important to note potential alternative explana-
tions for these effects. First, the stimuli we chose to use as less-
familiar colors were not precisely matched to the standard
colors in terms of discriminability; it is possible that our
changes in the RGB values resulted in colors that were more
similar to one another, which drove our effect. This is not
necessarily inconsistent with the DFT account: Simmering
and Patterson (2012) showed developmental improvements
in discrimination thresholds for colors, which purportedly
arise through the samemechanism described here. This would
suggest that less-familiar colors could also be more difficult to
discriminate, even with comparable sensory changes. Sim-
mering and Patterson avoided the potential confound of

Fig. 7 Proportions of response types across set sizes and feature types for Experiment 2. Corr rej = correct rejections; SS = set size; NC = no-change
trials; CH = change trials
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different sensory properties across colors by comparing the
same colors between age groups; we cannot be sure there were
equivalent sensory differences among the colors within our
two stimulus sets.

Another possible explanation for our findings is that all
of the standard colors were easy to name, whereas some
of the shapes and less-familiar colors were not (see
Fig. 3), and that performance was better for stimuli that
were easier to name. However, prior research suggests
this is unlikely, as children 7 years and younger do not
spontaneously verbally recode visual stimuli (Pickering,
2001). Furthermore, with set sizes of at least three items
and only 500 ms to encode, as in Experiment 2, it is
doubtful that children would have had sufficient time to
benefit from naming the colors in the displays of familiar
colors (due to generally slower naming in children; cf.
Case, Kurland, & Goldberg, 1982). Given these potential
alternative explanations, further studies will be needed to
definitively support the role of experience to the exclusion
of other potential explanations. Nonetheless, these results
provide preliminary support for the DFT account of de-
velopmental change in VWM through experience.

Comparisons to other theories of working memory

Could slot or resource theories also account for our findings?
As reviewed above, most slot models do not specify the man-
ner by which the number of slots increases, providing no
opportunity for comparison. One account has suggested that
slots arise through synchronously firing neural assemblies
(Vogel et al., 2001), and developmental increases in the num-
ber of slots could arise through improvements in synchroni-
zation (Riggs et al., 2011). However, the role of experience
versus maturation in these purported changes in synchroniza-
tion has not been explored, especially with regard to how
neural synchrony could support VWM (Uhlhaas, Roux,
Rodriguez, Rotarska-Jagiela, & Singer, 2010). It is possible
that the consequences of increased neural synchrony could be
simulated as stronger connections within the DFT, suggesting
potential convergence between these proposed mechanisms.
Further computational and empirical work will be needed to
test this possibility.

From a resource perspective, Bays et al. (2011) showed
independence of errors along different feature dimensions
(color and orientation) of the same objects. Although they
did not explicitly compare resolution across feature types,
their proposal that the features are represented by independent
pools of resources suggests their theory could account for
capacity differences across feature types. Regarding develop-
mental change, Burnett Heyes et al. (2012) argued that devel-
opmental improvements in resolution could result from
Bsharpening^ of representations within neural populations,
which is consistent with the developmental mechanism in

the DFT. However, Burnett Heyes et al. did not specify the
source of this developmental change (e.g., through specific
experience versus general maturation) so it is unclear whether
this account would predict our results from Experiment 2b.

Beyond slot and resource accounts of VWM development,
we consider a few more general theories of working memory
development in comparison to the DFT. Many of these theo-
ries are tied closely to the tasks they were developed to ex-
plain, such as complex tasks that require alternating between
processing and storage across trials. For example, the counting
span task includes a series of displays with different numbers
of dots; the participant’s task is to count the dots in each
display and remember the number of dots across displays to
report at the end (e.g., Towse & Hitch, 1995). Theories of
tasks like these attribute most developmental change to im-
provements in processes specific to these tasks, including re-
hearsal, task-switching, and processing speed (e.g., Barrouillet
& Camos, 2007; Case, 1995; Towse & Hitch, 1995). It is
unclear how such theories could be adapted to explain devel-
opmental improvements in simpler tasks, such as the change
detection task used here, which minimizes demands on more
complex processes (see Simmering & Perone, 2013, for
discussion).

As noted above, the DFTaccount of developmental change
through experience is similar to knowledge accounts of
growth in verbal working memory capacity. For example,
Case et al. (1982) showed that developmental differences in
recall could be eliminated by providing more familiar stimuli
to children and unfamiliar stimuli to adults (but see Cowan,
Ricker, Clark, Hinrichs, & Glass, 2014, for evidence that
knowledge cannot fully explain development in visual recog-
nition of letters versus unfamiliar characters). Chi (1978) also
showed that 8- to 10-year-old chess experts outperformed
adult chess novices when stimuli were comprised of meaning-
ful chess configurations, but performed worse on more typical
stimuli (i.e., digit span). Although these results are similar to
one another, the theoretical explanations differ. Chi’s results
have been attributed to experts Bchunking^ chess pieces into
meaningful units based on their experience (Chi, 1978). Case
et al. (1982) quantified the effect of knowledge by equating
the amount of time it took children to repeat familiar words
with the time it took adults to repeat unfamiliar (nonsense)
words. Case et al. viewed repetition time as reflecting
Boperating efficiency ,̂ which improves over development
through experience. In this way, Case et al.’s account is similar
to the strengthening of connectivity in the DFT: the more a
given stimulus is experienced, the more efficiently it is proc-
essed. In addition to increases in capacity and resolution,
stronger connections in the DFT lead to faster build-time for
peaks (Simmering, 2015), which could be analogous to the
operating efficiency described by Case et al. This comparison
highlights an important difference between the DFTand other
theories of working memory and development: by
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implementing tasks within a process-based model, we can test
multiple consequences of a single developmental mechanism
and synthesize many findings within a single theoretical
framework.

Development in the DFT

In this section we first describe more specific details of
the choices for how to implement development in the
model, then discuss additional consequences of these
changes. To simulate developmental change from 3 to 7
years in the DFT, we varied the strength of three param-
eters: the stimulus input, the strength of excitatory con-
nections within the working memory field, and the
strength of inhibitory connections from the inhibitory lay-
er to the working memory field. These latter two param-
eters jointly comprise the interaction function within the
working memory field, with stronger connections produc-
ing more robust working memory representations (see
Simmering, 2015; Simmering & Schutte, in press, for fur-
ther discussion). The change in input strength would cor-
respond to stronger projections from earlier visual areas.
These types of developmental changes have been shown
previously to capture improvements in infant visual mem-
ory (Perone et al., 2011; Perone & Spencer, 2013b, 2014)
and spatial cognition during early childhood (see
Simmering & Schutte, in press, for review) using related
DFT architectures.

One question that arises from the implementation of
development in a dynamic neural field model is whether
these results can be connected to changes in the brain
during early childhood. Although the DFT modeling
framework was built from neural principles (see
Schneegans, Lins, & Schoner, in press, for review), these
recent expansions into visuospatial cognition are not di-
rectly linked to specific neural structures. However, there
are potential parallels between the types of development
implemented in the model and neural development such
as changes in myelination, synaptic density, synchrony,
and/or long-term potentiation. The strengthening of con-
nections within the DFT could be capturing the conse-
quences of one or more of these underlying neural chang-
es. Regardless of the specific neural change that underlies
developmental improvements in VWM, a computational
model like the DFT can provide a useful tool in under-
standing how behavioral changes relate to these types of
neural changes.

Lastly, we consider additional consequences arising from
these developmental changes in the DFT. Simmering (2015)
explored a range of changes in VWM functioning by simulat-
ing children’s performance in two VWM tasks, the change
detection task and an infant preferential looking paradigm
designed to estimate capacity (Ross-Sheehy, Oakes, & Luck,

2003). By fitting performance in both tasks over development,
model simulations illustrated eight consequences of strength-
ening connectivity in VWM: (1) stronger representations; (2)
faster encoding; (3) more resistance to interference and (4)
decay; (5) increased capacity and (6) resolution; (7) better
correspondence between memory and behavior across tasks;
and (8) reduced effects of task context onmemory. Simmering
referred to these collectively as developmental increases in
Breal-time stability,^ that is, improved robustness with which
the VWM system can be used in service of different tasks over
development. She argued that previous theories of working
memory development that have proposed some of these
sources in isolation, or even opposition to each other, could
be synthesized into a single, general mechanism for develop-
mental change.

Outlook

There remain a number of challenges in applying the DFT to
VWM performance and development. One notable limitation,
discussed further by Simmering (2015), is that the current mod-
el architecture represents only a single feature dimension, not
the locations of these features in space, or the binding of fea-
tures together. Evidence suggests that infants achieve the ability
to bind colors to locations within the first year (e.g., Oakes,
Ross-Sheehy, & Luck, 2006), but relatively little is known
about how feature binding changes during early childhood.
Within the DFT framework, an expanded architecture has been
developed that could bind features together via their shared
spatial locations. In particular, Schneegans, Spencer, and
Schöner (in press) proposed that parallel one-dimensional rep-
resentations of color, shape, and location could be linked
through two-dimensional (e.g., color-space) fields. They dem-
onstrated that this architecture could not only detect changes to
new features (similar to change detectionmodel presented here)
but also changes in the bindings of features between objects (by
virtue of the new feature-location binding). Their simulations
thus far have only been used to demonstrate how such binding
could occur, but the expanded architecture has not been tested
quantitatively to see if it could produce the patterns of results
shown in behavioral tasks.

The broader goal of this line of research is to develop
a more comprehensive theory of VWM, encompassing
not only limitations in capacity and resolution, but also
the source of developmental improvements in each of
these and how they relate to other developmental chang-
es (Simmering, 2015). The behavioral and computational
results presented here provide support for the DFT as an
alternative to slot and resource explanations of VWM
capacity, and initial evidence for the role of experience
in capacity increases. A complete understanding of
VWM requires moving beyond a focus on representation
to consider the processes that transform representations
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into behavioral output, and explaining how these abilities
develop into the adult form that has been the primary
emphasis in previous research.
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Appendix

Model parameters and equations

This section describes the equations that govern activation in
the five fields of the unified model used in the present report.
The three-layer model described by Johnson et al. (2014) con-
sists of an excitatory field, u(x;t), which receives afferent sen-
sory input, S(x;t); a shared inhibitory field, v(x;t); and second
excitatory field,w(x;t) that receives excitatory input, primarily
from the first excitatory field but also a weak copy of the
sensory input. These excitatory fields were connected to re-
sponse nodes d and s, indicating different and same responses
in the change detection task; activation to these nodes
was controlled by a gate node, g, following Simmering
(2008, 2015)

Contrast field Activation in the contrast field, CF(u), is cap-
tured by:

τuu̇ x; tð Þ ¼ −u x; tð Þ þ hu þ uStim x; tð Þ þ
Z

cuu x−x0ð ÞΛuu u x0 ; tð Þð Þdx0

−
Z

cuv x−x0ð ÞΛuv v x0 ; tð Þð Þdx0 ; t þ
Z

cuH x; x0ð ÞHu x; tð Þdx0
þ audΛud rd tð Þð Þ þ cud*rdð Þ½ � þ noise:

Table 1 Parameter values fitting adults’ performance

Field/nodes τ Resting level Self-excitation Excitatory
projection(s)

Inhibitory
projection(s)

Input Noise

CF(u) τu = 80 hu= -6.75a cuu = 2 cuH = 0.2b cuv = 1.85 custim= 30c qu = 0.04b

τqh = 50b σuu = 3 σuH = 6.4b σuv = 26 σustim = 3 σq = 1b

cud = 1d kuv = 0.05d qh = 6b

cuf = 1d

Inhib(v) τv = 10 hv = -12a cvu = 2

σvu = 10

cvw = 1.95

σvw = 5

WM(w) τw = 80 hw = -4.5a cww = 3.15 cwu = 1.6 cwv = 0.325

σww = 3 σwu = 5 σwv = 42

cwd = 1d kwv = 0.08d

Hebb. (H) τHbuild = 3000b

τHdecay = 100,000b

Resp. (R) τR = 80 cRR = 1. 85 cRg = 4.25 cR- = 14 qR = 0.065

Diff. (d) hd = -5 cdu = 1.4

Same (s) hs = -4.75 csw = 0.275

Gate (g) τg = 80 hg = -4.92 cgg = 4.8 cgw = 0.03 cgstim = 0.03 qg = 0.025

cgT = 18

Note. Following mathematical convention, parameter subscripts indicate the field receiving the projection followed by the field/node sending the
projection (i.e., cwu indicates the strength of a projection into w/working memory from u/contrast field). Parameters shown in the Response (Resp.)
row were identical for the Same and Different (Diff.) nodes; any parameters that differed between these nodes are shown in the following rows
a The resting levels of these three fields also included colored noise; the equation for these resting levels contains two parameters, qh and τqh
b These parameters were identical across fields, and are reported only once in the table for simplicity
c Input also projected weakly into w/working memory (strength scaled by 0.2)
d These projections were applied uniformly across the fields, thus there are no corresponding σ values
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where u̇ x; tð Þ is the rate of change of the activation level
for each node across the spatial dimension, x, as a func-
tion of time, t. The constant τu determines the time
scale of the dynamics (Erlhagen & Schöner, 2002).
The first factor that contributes to the rate of change
of activation in CF(u) is the current activation in the
field, -u(x,t), at each site x. This component is negative
so that activation changes in the direction of the resting
level hu. The resting level included colored noise, which
was determined by the equation τh (t)=−h(t)+qh∗noise,
in which the current resting state is increased or de-
creased by a random amount (qh* noise) at each time
step. This is termed colored noise because the value at
each time step is partially determined by the value at
the previous time step; this contrasts with white noise,
which is independent across time steps.

Inputs to the model take the form of a Gaussian distri-
bution, uStim x; tð Þ ¼ cexp − x−xcenterð Þ½ 2

2σ2�χ tð Þ, with the po-
sitions of colors centered at xcenter, input widths of σ, and
strengths c. These inputs are turned on and off through
time as items appear and then disappear in the display.
This time interval is specified by the pulse function χ(t).
Activation in CF(u) is also influenced by the local
excitation-lateral inhibition interaction profile, defined by
self-excitatory projections, ∫cuu(x−x ′)Λuu(u(x ′,t))dx′, and in-
hibitory projections from Inhib(v), ∫cuv(x−x ′)Λuv(v(x ′,t))dx′.
These interactions are specified by the convolution of a
Gaussian kernel with a sigmoidal threshold function. In
particular, the Gaussian kernel was defined as c x−x0ð Þ ¼ c
exp − x−x0ð Þ½ 2

2σ2� −k, where the σ determines the neighbor-
ing nodes across which interactions propagate, c deter-
mines the strength, and k sets the resting level. Note that
k was set to 0 for all excitatory convolutions. Only nodes
with above-threshold activation (i.e., above 0) participate
in interactions, as determined by a sigmoidal function,
Λ uð Þ ¼ 1

1þexp −βu½ �, where β is the slope of the sigmoid,
that is, the degree to which nodes close to threshold
(i.e., 0) contribute to the activation dynamics. Lower slope
values permit graded activation near threshold to influence
performance, while higher slope values ensure that only
above-threshold activation contributes to the activation dy-
namics. At extreme slope values, the sigmoid function
approaches a step function. For all simulations presented
here, β = 0.5.

Activation in CF(u) is influenced by input from the corre-
sponding Hebbian field HCF(uH), as defined by ∫cuH(x,x
′)Hu(x,t)dx′ (see below for uH equation). This input is deter-
mined by the convolution of a Gaussian projection, cuH(x,x ′),
which determines the neighborhood of nodes across which
Hebbian traces have an influence, and the strength of the trace
within the Hebbian field,Hu(x,t). Next, a global input to CF(u)
is projected from the different response node (rd) when the
activation of one of these nodes is above zero.

Lastly, activation within the field is influenced by the ad-
dition of a stochastic component consisting of spatially corre-
lated noise, noise=q∫dx′gnoise(x−x ′)ξ(x ′,t). Noise was added
to the simulations by convolving a noise field composed of
independent noise sources with a Gaussian kernel specified

by: gnoise x−x0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2σnoise

p exp − x−x0ð Þ½ 2

2σnoise2�, where σnoise is

the spatial spread of the noise kernel (set to 10 in all simula-
tions). For discussion of the differences between spatially cor-
related noise and Gaussian white noise, see Schutte, Spencer,
& Schöner (2003).

Inhibitory field The second field of the model, Inhib(v), is
specified by the following equation:

τ vv̇ x; tð Þ ¼ −v x; tð Þ þ hv þ
Z

cvu x−x0ð ÞΛvu u x0 ; tð Þð Þdx0

þ
Z

cvw x−x0ð ÞΛvw w x0 ; tð Þð Þdx0 þ noise:

As before, v̇ x; tð Þ specifies the rate of change of activation
across the population of feature-selective nodes, x, as a
function of time, t; the constant τ sets the time scale (note
that the time scale for inhibition is faster than for the
excitatory fields, i.e., τv < τu); v(x, t) captures the current
activation of the field; and hv sets the resting level of
nodes in the field. As with CF(u), colored noise was
added to the resting level. Inhib(v) receives activation
from two projections: one from CF(u), ∫cvu(x−x ′)Λvu(u(x
′, t))dx ′; and one from WM(w), ∫cvw(x−x ′)Λvw(w(x′, t))dx ′.

As described above, these projections are defined by the
convolution of a Gaussian kernel with a sigmoidal threshold
function. Finally, this field also receives spatially-correlated
noise, as described above. This noise is independent from
the noise sources in the other fields of the model.

Working memory field The third field of the model, WM(w),
is governed by the following equation:

τ ẇ x; tð Þ ¼ −w x; tð Þ þ hw þ wStim x; tð Þ þ
Z

cww x−x0ð ÞΛww w x0 ; tð Þð Þdx0

−
Z

cwv x−x0ð ÞΛwv v x0 ; tð Þð Þdx0 þ
Z

cwu x−x0ð ÞΛwu u x0 ; tð Þð Þdx0

þ
Z

cwH x; x0ð ÞHw x; tð Þdx0 þ awsΛws rs tð Þð Þ þ cws*rsð Þ½ � þ noise:

As in the previous equations, (x,t) is the rate of change of
activation across the population of spatially tuned nodes, x, as
a function of time, t; the constant τ sets the time scale; w(x,t)
captures the current activation of the field; and hw sets the
resting level. As with CF(u), colored noise was added to the
resting level. This field also receives direct target inputs,
wStim(x,t), although the strength of this input is weaker
(strength scaled by 0.2) than the direct input to CF(u). As with
CF(u), this input turns on and off over time to correspond to
the task structure.
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Table 4 Model fits of 3- and 7-year-olds’ performance on color change
detection

Behavioral data Simulations

CR rate H rate CR rate H rate

3y SS1 .88 (.19) .88 (.14) .94 (.08) .83 (.14)

3y SS2 .85 (.18) .83 (.16) .88 (.12) .72 (.15)

3y SS3 .77 (.27) .64 (.27) .75 (.18) .63 (.23)

7y SS1 .99 (.03) .99 (.03) .97 (.07) .99 (.04)

7y SS2 1.00 (.03) .98 (.08) .97 (.07) .93 (.11)

7y SS3 .90 (.17) .92 (.12) .95 (.08) .85 (.16)

7y SS4 .91 (.12) .77 (.19) .84 (.17) .74 (.19)

7y SS5 .88 (.21) .69 (.23) .67 (.19) .82 (.17)

Note. The behavioral means for 3-year-olds (3y) included the 14 children
from Simmering (2012); means for 7-year-old (7y) included the 28 chil-
dren from the standard and Bcard^ versions reported by Simmering
(2012). Each set of simulations included 20 runs of the model (equivalent
to 20 participants). Standard deviations (across participants for behavioral
data, across runs for simulations) are shown in parentheses. Mean abso-
lute error between the behavioral data and simulations was .05 for 3-year-
olds and .07 for 7-year-olds. CR = correct rejections, H = hits

Table 3 Model fits of 5-year-olds’ performance on color and shape
conditions in change detection

Behavioral data Simulations

CR rate H rate CR rate H rate

Color SS1 .92 (.11) .96 (.09) .95 (.11) .93 (.10)

Color SS2 .93 (.11) .89 (.16) .94 (.08) .91 (.09)

Color SS3 .89 (.14) .74 (.22) .89 (.12) .76 (.19)

Color SS4 .88 (.15) .62 (.24) .88 (.14) .60 (.16)

Color SS5 .79 (.24) .54 (.25) .60 (.23) .48 (.16)

Shape SS1 .93 (.09) .99 (.04) .92 (.10) .95 (.10)

Shape SS2 .90 (.11) .86 (.14) .99 (.04) .84 (.14)

Shape SS3 .87 (.18) .55 (.19) .86 (.14) .78 (.18)

Shape SS4 .83 (.17) .52 (.23) .83 (.14) .65 (.17)

Shape SS5 .88 (.16) .35 (.18) .70 (.18) .41 (.18)

Note. The behavioral means from the color condition included the 28
children from the standard and Bcard^ versions reported by Simmering
(2012); the shape condition included the 14 children reported in Simmer-
ing (2008, 2015) Experiment 3. Each set of simulations included 20 runs
of the model (equivalent to 20 participants). Standard deviations (across
participants for behavioral data, across runs for simulations) are shown in
parentheses. Mean absolute error between the behavioral data and simula-
tions was .05 for color and .08 for shape. CR = correct rejections, H = hits

Table 2 Parameter values fitting children’s performance for colors

Field/node τ Resting level Self excitation Excitatory
projection(s)

Inhibitory
projection(s)

Input Noise

CF(u) cuu3 = 1.7 cuv = 0.6475 custim3= 9.0a qu = 0.05b

cuu5 = 1.7 kuv3 = 0.0375 custim5= 10.65a

cuu7 = 1.82 kuv5 = 0.0375 custim7= 14.1a

kuv7 = 0.045 σustim = 4.5

WM(w) cww3= 1.2285 cwv3= 0.17225

cww5= 1.6695 cwv5= 0.2015

cww7= 2.583 cwv7= 0.21125

kwv3 = 0.06

kwv5 = 0.06

kwv7 = 0.072

Hebb. (H) τHbuild3 = 750b

τHbuild5 = 2250b

τHbuild7 = 3000b

τHdecay = 150,000b

Resp. (R) cRR = 1. 3875 cR- = 10.5 qR = 0.0813

Diff. (d) cdu3 = 0.75

cdu5 = 1.246

cdu7 = 1.4

Same (s) hs = -4.5 csw = 0.01815

Gate (g) cgw = 0.05

Note. Only parameter values that differ from those fitting adults’ performance (reported in Table 1) are shown here for simplicity. These parameters were
tuned to fit behavioral data reported by Simmering (2012). Underlined parameter values were tuned to fit 5-year-olds’ performance on shapes, then
modified by the same proportion (strength scaled by 0.97) to predict 3- and 7-year-olds’ capacity for shapes
a Input also projected weakly into w/working memory (strength scaled by 0.2)
b These parameters were identical across fields, and are reported only once in the table for simplicity
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WM(w) also receives self-excitation, ∫cww(x− x
′)Λww(w(x ′, t))dx ′, lateral inhibition from Inhib(v), ∫cwv(x
−x ′)Λwv(v(x ′, t))dx ′, excitatory input from CF(u), ∫cwu(x−
x ′)Λwu(u(x ′, t))dx ′, and excitatory input from the corre-
sponding Hebbian field HWM(wH). Next, a global input
to WM(w) is projected from the same response node
(rs) when the activation of this node is above zero.
Finally, this field also receives spatially-correlated
noise, as described above. Again, this noise is indepen-
dent from the noise sources in the other fields of the
model.

Hebbian fields Activation in the Hebbian fields, HCF(uH) and
HWM(wH), was governed by the states of the associated excit-
atory field (for simplicity, only the HPF(uH) equation is shown,
as the HWM(wH) equation is analogous):

τ ltm u̇ltm x; tð Þ ¼ u̇ltmbuild x; tð Þ þu̇ltmdecay x; tð Þ

The rate of change of activation,u̇ltm x; tð Þ, for each node in the
Hebbian field across the spatial dimension, x, as a function of
time, t, is specified by two components: the build-up of acti-
vation, u̇ltmbuild , and the decay of activation, u̇ltmdecay. These
components were specified as follows:

τ ltmbuildu̇ltmbuild x; tð Þ ¼ ultm x; tð Þ þ Λ uð x; tð Þ½ �⋅θ u x; tð Þð Þ;
τ ltmdecayu̇ltmdecay x; tð Þ ¼ ultm x; tð Þ ⋅ 1−θ u x; tð Þð Þ½ � :

The shunting function θ (θ = 1 if u(x,t) > 0 and θ = 0
otherwise) determines where the activation is built up
and maintained in uH. The build-up rate is relatively fast
while the decay rate is much slower; this allows previous
memory to be maintained over longer periods. Separating
the build-up and decay mechanisms approximates accu-
mulation and depression of synaptic change (Deco &
Rolls, 2005).

Details of unfamiliar color stimuli for Experiment 2b

To create eight color stimuli for Experiment 2b that were of
similar discriminability to the canonical colors used in Experi-
ment 2a and most studies in the field (e.g., Simmering, 2012),
we took the list of RGB values (shown in Table 5) and
changed one of the dimensions by values of approximately
127 or 51. This changed the value along that dimension to
roughly half or one-third of its previous value.
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