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Abstract Visual short-term memory (VSTM) is thought to
help bridge across changes in visual input, and yet many
studies of VSTM employ static displays. Here we investigate
how VSTM copes with sequential input. In particular, we
characterize the temporal dynamics of several different com-
ponents of VSTM performance, including: storage probabili-
ty, precision, variability in precision, guessing, and swapping.
We used a variant of the continuous-report VSTM task devel-
oped for static displays, quantifying the contribution of each
component with statistical likelihood estimation, as a function
of serial position and set size. In Experiments 1 and 2, storage
probability did not vary by serial position for small set sizes,
but showed a small primacy effect and a robust recency effect
for larger set sizes; precision did not vary by serial position or
set size. In Experiment 3, the recency effect was shown to
reflect an increased likelihood of swapping out items from
earlier serial positions and swapping in later items, rather than
an increased rate of guessing for earlier items. Indeed, a model
that incorporated responding to non-targets provided a better
fit to these data than alternative models that did not allow for
swapping or that tried to account for variable precision. These
findings suggest that VSTM is updated in a first-in-first-out
manner, and they bring VSTM research into closer alignment
with classical working memory research that focuses on se-
quential behavior and interference effects.
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Introduction

Visual input is constantly in flux, with frequent changes
occurring due to eye movements, locomotion and object mo-
tion. Visual short-term memory (VSTM)—a subset of the
working memory (WM) system that maintains visual infor-
mation for a few seconds with relatively low executive de-
mands—has often been proposed to help bridge across such
changes. For example, VSTM plays a key role in integrating
information across saccadic eye movements (Irwin, 1991),
possibly by aligning subsequent snapshots of visual informa-
tion (Henderson & Hollingworth, 1999). However, despite its
oft-cited role in dynamic visual processing, few studies have
examined how VSTM deals with input that is intrinsically
dynamic (cf. Kumar & Jiang, 2005; Woodman, Vogel, &
Luck, 2012; Xu & Chun, 2006).

Recent years have seen great advances in scientific knowl-
edge about VSTM. The hallmark property of VSTM is that its
storage capacity is exceedingly limited, as evidenced by a
marked drop in performance when people are asked to re-
member more than 3–4 items (Cowan, 2001; Luck & Vogel,
1997). Some researchers have argued that this capacity limit
reflects a fixed number of items that the system can maintain
(Awh, Barton, & Vogel, 2007; Cowan, 2001; Fukuda, Awh, &
Vogel, 2010; Luck & Vogel, 1997; Zhang & Luck, 2008),
whereas others argue that it reflects a limited resource that
can be distributed flexibly among any number of items
(Alvarez & Cavanagh, 2004; Bays, Catalao, & Husain,
2009; Bays & Husain, 2008, 2009; Fougnie, Suchow, &
Alvarez, 2012; Frick, 1988; van den Berg, Shin, Chou,
George, & Ma, 2012).

This research provided important findings and behavioral
paradigms, but, for the most part, focused on static memory
arrays in which all items are presented simultaneously.
Because of the dynamic nature of visual information, it is
important to examine how VSTM deals with such input.
How does the system deploy its limited capacity in a dynamic
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environment? In what way is a sequence of incoming infor-
mation processed and maintained over time?

Similar questions have long been entertained in research on
the more canonical form of WM—a system dependent on
prefrontal cortex that maintains and manipulates information
in the service of goal-directed behavior (Baddeley, 2003). For
example, when asking participants to maintain a list of se-
quentially presented words, recall is better for early and late
items (primacy and recency effects, respectively) than items in
the middle of the list (Baddeley & Hitch, 1993; Murdock,
1962). Importantly, these two effects have been interpreted to
reflect two different storage systems: the primacy effect stems
from storage in and retrieval from long-termmemory, whereas
the recency effect relies on active maintenance of items in
WM (Glanzer & Cunitz, 1966). Another key factor that influ-
ences memory for sequential information is proactive inter-
ference. In WM tasks, proactive interference is found when
memory representations of earlier items interfere with the
storage or retrieval of items later in a sequence (Underwood,
1969). The degree to which people are subject to proactive
interference contributes to individual differences in WM ca-
pacity (Kane & Engle, 2000; Lustig, May, & Hasher, 2001)
and fluid intelligence (Bunting, 2006; Burgess, Gray,
Conway, & Braver, 2011; Gray, Chabris, & Braver, 2003).

With these findings about WM in mind, we turn to the
question of how VSTM deals with sequential information.
Specifically, we were interested in the extent to which
VSTM shows similar temporal dynamics to WM. Does reten-
tion of input in VSTM exhibit primacy and recency biases? Is
the system subject to interference effects?

The answers to these questions are not obvious. On the one
hand, VSTM and WM are often treated as distinct constructs,
based on psychometric and neuroimaging evidence.
Psychometric studies show that VSTM and WM load on
separate factors and differentially predict general cognitive
abilities, such as fluid intelligence (Burgess et al., 2011;
Shipstead, Redick, Hicks, & Engle, 2012). Neuroimaging
studies suggest VSTM and WM may recruit distinct neural
substrates: VSTM and its capacity limits have been associated
primarily with occipital and parietal cortices (Harrison &
Tong, 2009; Serences, Ester, Vogel, & Awh, 2009; Todd &
Marois, 2004; Xu & Chun, 2006), whereas WM capacity and
proactive interference are typically associated with prefrontal
cortex (Braver et al., 1997; Courtney, Ungerleider, Keil, &
Haxby, 1997; D'Esposito, Postle, Jonides, & Smith, 1999;
Kane & Engle, 2002; Postle, Brush, & Nick, 2004).
Furthermore, the two memory systems are markedly different
in the tasks used to study their effects. For example, the
retention interval of VSTM is on the order of a few seconds
(Zhang & Luck, 2009), whereas maintenance in WM tasks
can last up to a minute or more (Conway et al., 2005;
Daneman & Carpenter, 1980). This difference in experimental
approach may be hinting at a functional dissociation between

the systems: the flexible and volatile nature of VSTM may be
useful to support binding between rapid successions of visual
input, whereas WM may be more robust in order to sustain
long-term goal-directed behavior. Moreover, it is unclear
whether recency or interference effects commonly seen in
WM tasks with longer retention intervals, would manifest
over the shorter intervals typically used in VSTM tasks.

On the other hand, despite these differences, both systems
share a general ability to maintain limited information over
relatively short intervals. In addition, recent work has
highlighted a correlation between VSTM capacity and perfor-
mance on a fluid intelligence test, commonly thought to tap
into workingmemory capacity (Fukuda, Vogel, Mayr, &Awh,
2010). Adding to this potential correspondence, neurons in
areas of prefrontal cortex that are typically associated with
WM also reflect capacity limitations in VSTM (Buschman,
Siegel, Roy, & Miller, 2011).

Broadly speaking, there have already been several studies
of serial visual memory (Hay, Smyth, Hitch, & Horton, 2007;
Johnson & Miles, 2009; Phillips & Christie, 1977; Smyth,
Hay, Hitch, & Horton, 2005; Smyth & Scholey, 1996). These
studies have revealed hints of primacy and recency effects
when entire spatial sequences are reproduced from visual
memory (Hay et al., 2007; Smyth et al., 2005; Smyth &
Scholey, 1996). However, it remains unclear whether these
effects are intrinsic to the way in which items are stored in
VSTM or whether they only arise during the retrieval of full
sequences. Furthermore, all of these studies employed cate-
gorical (correct/incorrect) accuracy scores when measuring
VSTM (cf. Gorgoraptis, Catalao, Bays, & Husain, 2011).
Over the last decade, modeling techniques have been devel-
oped to describe several components of VSTM in a more
sophisticated manner, allowing the probability that an individ-
ual item has been stored, along with the precision of this
representation, to be estimated quantitatively. The current
study uses this general approach, incorporating three of the
most prominent statistical models from the literature, to shed
new light on the nature and dynamics of sequential VSTM.

In summary, less is known about how VSTM copes with
dynamic input than static input, and the WM literature and
recent developments in VSTM research provide a useful
framework for addressing these issues.

Experiment 1

Our first step in investigating the temporal dynamics of
VSTMwas to adapt a continuous-report VSTM task in which
participants view an array of colored squares and recall the
color of a probed item on a color wheel (Wilken &Ma, 2004).
Using statistical likelihood estimation techniques, response
deviations in this task allow for measurement of both the
probability of storage and the precision of the stored
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representation (Zhang & Luck, 2008). Specifically, the distri-
bution of response deviations can be modeled as a mixture of
two different trial types. On trials when the target color is not
stored in memory, the observer responds randomly, resulting
in a uniform distribution over color space; one minus the
height of this distribution thus reflects the probability of items
being stored. On trials when the target is stored, the response
will be centered on the original color, giving rise to a normal
distribution; the width of this distribution reflects the precision
with which the items are stored. We adapted this paradigm to
present items sequentially, so that we could assess the tempo-
ral dynamics of storage probability and precision (Fig. 1).

This model has most prominently been used by proponents
of the view that VSTM consists of a discrete number of slots
to maintain a fixed number of items, since it assumes that
items are either stored or completely forgotten. As mentioned
before, other theorists have argued that VSTM’s limited

capacity is set by a continuous, flexible resource (see
Experiment 3), and new, related, computational models have
been developed to distinguish between these two possibilities.
In this paper, we will fit all of these models to the sequential
VSTM task.

Methods

Participants

Twenty-two adults (aged 22–34 years, 15 females) participat-
ed for monetary compensation. Some participants completed
two of the three conditions in the experiment, and others
completed just one condition (resulting in ten participants
per condition). Set size was manipulated between rather than
within participants, due to the need to estimate VSTM param-
eters that every serial position (unlike the standard spatial
VSTM task, where separate parameters are not estimated for
each spatial position). The participants provided informed
consent, following a protocol approved by the Princeton
University Institutional Review Board. All participants report-
ed normal color vision and normal or corrected-to-normal
visual acuity.

Materials

Stimuli were generated with the Psychophysics Toolbox for
Matlab (Brainard, 1997; Pelli, 1997) and presented on a 17-
inch CRT monitor (refresh rate 100 Hz) in a dimly lit room.
Participants sat approximately 60 cm from the computer mon-
itor. The color configuration of the monitor was calibrated with
an X-Rite i1Display 2 colorimeter (X-Rite, Grand Rapids, MI).

The experiment comprised the sequential presentation of
colored squares, each subtending 2 × 2° of visual angle. The
squares were presented in a randomly selected subset of eight
equally spaced locations on an invisible circle (4.5° radius).
Next, a color wheel and outlined squares at the location of each
item in the sample array were presented. One outline, thicker
than the others, indicated the item to be recalled. The wheel
consisted of 180 colors that were evenly distributed along a
color circle in the L*a*b color space of the 1976 Commision
Internationale de l’Eclairage (centered at L = 70, a = 20, b =
38). Colors in the arrays were also selected from this set, with a
minimum distance of 24° in color space between selected
values. To eliminate response biases and minimize contribu-
tions from spatial memory, both the color wheel and the stim-
ulus circle were randomly oriented on each trial.

Procedure

Before modifying the standard static version of the
continuous-report task (Wilken & Ma, 2004; Zhang & Luck,
2008), we first successfully replicated the findings from that

50 ms 50 ms 50 ms blank test

A

Difference from original color value (°)

Pr
ob

ab
ili

ty
 o

f 
re

po
rt

B In memory

Not in 
memory

Mixture1 - 
t

s.d.

P

Fig. 1 a Visual short-term memory (VSTM) color recall task.
Participants maintained fixation and were instructed to remember all
colors in the array of squares (set size = three, four, or five) displayed
on screen. After a short blank interval, participants were instructed to
recall, by clicking on a color wheel, the color of the square at the location
indicated by the thicker outline. b Two-component mixture model of
response deviation (adapted from Zhang & Luck, 2008), showing the
probability of reporting each deviation from the true color value. Two
different sets of trials contributed to the probability function: when the
probed target item was maintained, the response was normally
distributed around the original value (blue line); when the target
item was not maintained, the response was randomly drawn from a
uniform distribution (red line). The aggregation of all trials produces a
mixture of these two distributions (black line), with parameters: Pt prob-
ability that target items were stored in memory, s.d. precision with which
stored items were represented
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task in a separate group of 11 participants. In our modified
version, each square in the sample array was presented for
50 ms in a random order. This stimulus presentation time was
chosen so as to make the presentation time per item as close as
possible to the original design by Zhang and Luck (2008),
while not rendering the stimulus time too short to be visible.
Using a short stimulus duration time likely increased the
average s.d. score and guessing rate (Bays, Gorgoraptis,
Wee, Marshall, & Husain, 2011), but as will become clear
through this paper, we still obtained numerous reliable mem-
ory results across set sizes and serial positions, holding these
sensory/encoding constraints constant.

For each trial, the duration of the blank interval
between the offset of the last item and the onset of
the color wheel was chosen so that exactly 1000 ms
passed between the onset of the to-be-probed item and
the onset of the color wheel. This way, any differences
in storage probability or precision estimates across serial
position could not simply reflect differences in retention
time (as described by Zhang & Luck, 2009). We probed each
serial position in the sequence with equal frequency. After the
onset of the test display, participants were instructed to click
on the color wheel to indicate the color that had appeared in
the probed location.

The set size of the array was manipulated across partici-
pants to be three, four, or five (ten participants each).
Depending on the set size, the experiment took 1–1.5 h to
complete and was composed of ten blocks of 45, 60, or 50
trials (for set sizes three, four, or five, respectively). This
resulted in 150 total trials per serial position for set sizes three
and four, and 100 total trials per position for set size five
(reduced to avoid lengthening the experiment beyond 1.5 h).
Participants were offered a break after every block.

Analysis

We used a quantitative model to estimate the proportion of
trials on which the target color was stored and the precision of
stored representations (Zhang & Luck, 2008), but now sepa-
rately for each serial target position. To minimize practice
effects, we excluded the first block of trials from analysis.
Maximum likelihood estimation was used to fit the distribu-
tion of response deviations with a mixture of a von Mises
distribution (the circular analogue of a standard Gaussian) and
a uniform distribution. This model was fitted to the data with
parameters s.d., the width of the von Mises distribution (in-
versely proportional to mnemonic precision), and Pt, the pro-
portion of responses accounted for by this distribution (the
proportion of responses in which the target was recalled). The
model also includes a uniform component to describe the
remaining share of responses (1–Pt), corresponding to those
trials in which subjects failed to recall the target color and
made a random guess over the color space. The mathematical

specification of the probability density function of this model
is as follows:

p bx
� �

¼ Ptϕ bx−x; s:d:
� �

þ 1−Ptð Þ 1

360

where x is the original target color (in degrees),bx is the reported
color value, Pt is the proportion of responses on which the target
color was successfully recalled, and ϕ denotes the von Mises
distribution with standard deviation s.d. and mean 0.

We used maximum-likelihood estimation, implemented with
Matlab’s fmincon function, to fit this model for each serial
position in the stimulus arrays, and in each set size condition,
separately. The value of parameter Pt was constrained with an
upper bound of 1 and a lower bound of 0. The value of parameter
s.d. was constrained with an upper bound of 180 degrees and a
lower bound of 1 degree. To avoid local optima in the estimation
solution, we ran 500 iterations for each model with randomly
selected starting positions for each parameter. The final estima-
tions of s.d. and Pt were extracted from the iteration with
maximal log-likelihood (Myung, 2003).

Results

Model-free descriptive statistics

The raw distributions of error are shown in Fig. 2 and the raw
circular SDs of error can be found in Table 1.

Storage probability

Figure 3a shows howPt estimates varied as a function of the serial
position in which the target appeared in the sequence, separately
for each set size condition. Collapsing over target serial position
revealed a reliablemain effect of set size onPt,F(2, 27) = 24.30,P
< 0.001, η2 = 0.64, and significant linear contrast as a function of
set size, P < 0.001.

There was clear evidence of a recency effect for larger set
sizes—a benefit for the later serial positions. Three repeated-
measures ANOVAs with the within-subject factor “target serial
position” and Pt as the dependent measure indicated a significant
effect of target serial position on storage probability for set sizes
four, F(3, 27) = 10.50, P < 0.001, η2 = 0.54, and five, F(4, 36) =
5.80, P < 0.01, η2 = 0.39, but not for set size three, F(2, 18) =
3.04, P = 0.07, η2 = 0.25. More specifically, for set sizes four and
five, the linear trend of serial position was significant, F(1, 9) =
16.43, P < 0.01, η2 = 0.65, and F(1, 9) = 13.69, P < 0.01, η2 =
0.60, respectively. This indicates that later items were recalled
with higher probability than earlier items. The linear trend was
not significant for set size three, F < 1, suggesting that all items
were stored with equal probability.

To test for differences in these linear trends between set size
conditions, we conducted a linear regression for each
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participant predicting Pt as a function of serial position. The
slopes of these regressions were used as the dependent variable
in a one-way ANOVAwith “set size condition” as a between-
subjects factor. There was a significant main effect of set size,
F(1, 27) = 29.81, P < 0.001, η2 = 0.53. Post-hoc Bonferroni-
corrected t-tests revealed that this reflected a smaller slope in set
size three vs four, t(18) = 2.83, P < 0.05, Cohen’s d = 1.79, and
three vs five, t(18) = 4.22, P < 0.01, d = 1.84. There was no
difference between set sizes four and five, t(18) = 1.39, P =
0.53, d = 0.52.

There was also a hint of a primacy effect—a benefit for the
first serial position. The most obvious primacy effect would be
if the first position had a higher Pt than the second position, but
this was found inconsistently: set size three, t(9) = 1.94,
P = 0.08, d = 0.61; set size four, t(9) = 2.30, P < 0.05, d =
0.73; set size five, t(9) = 1.52, P = 0.16, d = 0.48. However,
under the assumption that the recency effect also applies to the
first position, it may drive Pt for the first position in the opposite
direction, thereby obscuring the primacy effect. To address this,
we ran new linear regression analyses to predict Pt as a function

of serial position for all but the first item in the sequence. The
resulting slope and intercepts were then used to predictPt for the
first item, as if the curves were indeed linear (open data points in
Fig. 3a), with the restriction that these extrapolated scores could
not be negative. These predicted values provide a baseline for
testing the primacy effect, having accounted for the mitigating
influence of the recency effect. Storage probability for the first
item was reliably higher than this baseline for both set size four,
t(9) = 3.17, P < 0.05, d = 1.00, and five, t(9) = 2.43, P < 0.05,
d = 0.77, but not for set size three, t(9) = 2.07,P = 0.07, d= 0.65.
For comparison, estimates for Pt of the second position, as
predicted using the same approach of a linear regression based
on subsequent items (not possible for set size three), did not
differ from the observed Pt for set size four or five, Ps > 0.41.

Memory precision

Figure 3b depicts estimates of precision, s.d., over the target
serial positions and for each set size. Collapsing over target
serial position did not reveal a main effect of set size on s.d.,
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Table 1 Average raw circular SDs (in degrees) in Experiment 1

Set size Serial position Linear contrast

–5 –4 –3 –2 –1 F(1, 9) P

3 – – 35.7 (0.8)a 39.1 (0.9) 36.3 (0.7) 0.3 0.539

4 – 62.7 (1.4) 66.6 (1.3) 60.6 (0.7) 41.8 (2.1) 17.5 < 0.01

5 73.6 (1.0) 75.7 (1.1) 71.0 (1.9) 62.7 (2.9) 48.4 (3.3) 49.6 < 0.001

a The error terms, in parentheses, reflect the within-subjects SEM
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across-subject standard error of the mean (SEM)



F(2, 27) = 1.34, P = 0.28, η2 = 0.09. In repeated-measures
ANOVAs for each set size, there was not a main effect of
target serial position on s.d., Ps > 0.16. As a result, these data
were not analyzed further.

Discussion

Our results revealed dissociations in the sequential dynamics of
VSTM across set sizes but also between memory parameters.
Consistent with the previous literature (Zhang & Luck, 2008),
we found no straightforward effect of set size or serial position
on precision estimates. The measure of storage probability,
however, was strongly affected by serial position. For larger set
sizes, items that were presented later in the array were recalled
with higher probability than those presented earlier (a recency
effect), whereas all colors in a sequence of three items were
equally likely to be stored. Interestingly, the set size at which the
storage curve started showing a recency effect, about four items,
corresponds well to previously established capacity limits of
VSTM (Luck & Vogel, 1997). As considered in more detail in
the General Discussion, this suggests that VSTM is updated in a
first-in-first-out (FIFO) fashion: when capacity is not exceeded,
all items are stored with equal probability, but with larger mem-
ory arrays, the items stored earlier are given less priority.

An important exception to this rule is the first item, which
seems to receive some form of a primacy benefit at the larger set
sizes. At first glance, this benefit may seem inconsistent with the
FIFO principle. However, evidence for FIFO is obtained by
comparing performance across larger vs smaller set sizes.
Specifically, the probability of storing the first item in a trial is
a function of howmany other items follow in sequence (compare
serial position –3 for set size 3, to –4 for set size 4, to –5 for set
size 5). The primacy effect, on the other hand, is observedwithin
the storage probability curve for a given set size.We interpret the
overall response profile as reflecting the operation of two ormore
processes that independently contribute recency and primacy

effects. A similar perspective is widely accepted in the broader
memory literature. For example, in immediate free recall, recency
effects occur because of persisting item activation and because
the temporal context at retrieval more closely matches that of
later items, and primacy effects occur because there is more time
for rehearsal and consolidation of earlier items and because of a
lack of proactive interference during their encoding.

Experiment 2

Although Experiment 1 provided one of the first systematic
investigations of the sequential dynamics of VSTM using the
continuous-report task, it involved a design decision that may
have played an important role in the results. Specifically, the
length of the blank interval between the final item and test
display depended on the serial position of the target. This design
was used to equate the total maintenance time for the probed
item across serial positions (1000 ms). However, it is possible
that participants exploited these differences, such as to know
that if the blank interval was long enough, that the earlier items
were not going to be probed. In other words, participants might
have cleverly cleared their memory during the blank interval,
leading to storage probability curves with “strategic” recency
effects. The alternative—using a fixed blank interval—results in
the maintenance time varying across serial positions. Here we
attempt to replicate the results of Experiment 1 for the middle
set size using this design, in order to demonstrate that this
decision was not consequential.

Methods

Participants

Ten adults (aged 21–34 years, 7 females) participated for
monetary compensation.
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Fig. 3 a, b Results from Experiment 1. a Pt estimates over target serial
position (–1 = latest in the array) for the different set size conditions.
While storage probability did not reliably differ over the positions for set
size three, a positive linear relationship was found for set sizes four and
five. The open points and dashed lines represent the extrapolation of the
linear trend observed for all but the first item in the array. Comparison of
this projected value with the observed value suggested that there was a

primacy effect at the higher set sizes. b Precision estimates over target
serial position for the different set size conditions. These measures did not
reliably vary over the serial positions for any set size. Mean estimates for
each set size are depicted in the bar graph on the right. Error bars indicate
within-subject SEM, except for the bar graph, which depicts across-
subject SEM for each set size condition. * P < 0.05, *** P < 0.001
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Materials, procedure, and analysis

The design was nearly identical to that of Experiment 1.
All sample arrays contained four squares. The only
modification was that the blank interval between the
offset of the final item and the onset of the color wheel
was always 1000 ms, regardless of the serial position of
the probed item. The same maximum-likelihood estimation
technique from Experiment 1 was used to find parameter fits
for s.d. and Pt for each serial position and each participant
separately.

Results and discussion

Two repeated-measures ANOVAs with the within-subject fac-
tor “target serial position” indicated that there was a significant
effect of serial position on storage probability, F(3, 27) = 7.29,
P < 0.001, η2 = 0.45, but again not on precision, F(3, 27) =
1.71, P = 0.19, η2 = 0.16. Storage probability showed a recency
effect, as demonstrated by a significant linear trend over target
positions, F(1, 9) = 8.50, P < 0.05, η2 = 0.49. There was also a
primacy effect in terms of storage probability for the first item
with respect to what was predicted by a purely linear trend
computed from the other serial positions, t(9) = 2.36, P < 0.05,
d = 0.74. Thus, we replicated the key results of Experiment 1
despite using a fixed blank interval for all serial positions. This
casts doubt on an alternative explanation of the recency effect in
that experiment, whereby participants detected the length of the
blank interval and used it strategically to manage memory
resources.

Experiment 3

The two-component mixture model (Zhang & Luck, 2008),
with which the data from Experiments 1–2 were analyzed,
makes the explicit assumption that the distribution of response
deviations reflects two types of trials: those in which the target
is stored and recalled with a certain amount of noise (contrib-
uting the circular Gaussian component) and those in which the
target is not stored and the participant guesses randomly over
the color space (resulting in the uniform component).
However, response deviations in a continuous-report VSTM
task sometimes reflect errors in stimulus location (Bays et al.,
2009). Specifically, on some trials, participants “swap” the
color-location associations and recall one of the non-target
colors. To capture these trials, a three-component model was
developed that additionally included Gaussians centered on
non-target colors (Fig. 4).

Here, we use this approach to examine not only which
items in a sequence are remembered and with what precision,
but also to characterize interference between items in VSTM.
In the case of proactive interference, non-target responses

should happen more frequently when the target appears later
in the sequence. Alternatively, in the case of retroactive inter-
ference, one would predict that when targets appear early in
the sequence, non-target responses are more likely. Indeed,
these two forms of interference might be related to the ob-
served primacy and recency effects in Experiments 1–2,
respectively.

The sequential nature of our task allows us to go one step
further in the analysis of interference effects. Not only can we
model at which target serial positions swapping is likely to
occur, but we can also investigate which non-target items in
the sequence are most likely to be “swapped in”. One natural
prediction, based on our previous results of robust recency
effects, would be that later items are most likely to be swapped
in, as a form of retroactive interference.

Here, we examine such swapping in a replication of
the boundary set size conditions (three and five) from
Experiment 1. It has been argued in the literature that a
minimum distance in feature space between items of the
same array (as was used in Experiments 1 and 2) is
problematic for modeling non-target responding, as the
feature values are not assigned independently (Fougnie,
Asplund, & Marois, 2010). Thus, in Experiment 3, we
assign all color values randomly.1

Methods

Participants

Twenty-eight adults (aged 18–23 years, 7 females) par-
ticipated for monetary compensation or course credit.

Materials and procedure

The design was nearly identical to that of Experiment 1. One
group of participants (n = 14) always saw sample arrays with
three items, whereas the other group (n = 14) saw sample
arrays with five items. The colors in these arrays were selected
from the color set described in Experiment 1. Crucially, there
was no minimal distance in color space between the colors in
the arrays—they were chosen randomly from a uniform
distribution.

Analysis

We used a three-component model to estimate the proportion
of trials on which the target color was reported, the proportion

1 We thank Paul Bays for noting that this concern may not apply in
principle to maximum likelihood estimation. Indeed, we obtained nearly
identical results when the three-component model was applied to
Experiment 1 (see Supplemental Material).
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of trials on which a non-target color was reported, and the
precision of these reports (Bays et al., 2009). However, to
fully exploit the sequential nature of our task, we allowed the
weights of these non-target components to vary as a function
of the serial position of the non-target color:

p bx
� �

¼ Ptϕ bx−x; s:d:
� �

þ Pnt

X
i¼1

m

wiϕ bx−x*i ; s:d:
� �

þ 1−Pnt−Ptð Þ 1

360

where Pnt is the proportion of responses to non-target
colors, {x1

∗,x2
∗,…,xm

∗} are the color values of the m non-
target items (in serial order), and {w1,w2,…,wm} are the
relative proportions of each of the non-target Gaussian
components (in serial order) with ∑wi=1. The value of
the parameters Pt, Pnt, and their sum were constrained
with an upper bound of 1 and a lower bound of 0.
Similarly, the values of parameters wi and their sum
were constrained with an upper bound of 1 and a lower
bound of 0. The value of parameter s.d. was constrained
with an upper bound of 180 degrees and a lower bound
of 1 degree.

As in the previous experiments, we used maximum-
likelihood estimation to fit this model for each serial
position in the stimulus arrays, and each participant
separately. To avoid local optima in the estimation so-
lution, we ran 500 iterations for each model with ran-
domly selected starting values for each parameter. The
final estimations of s.d., Pt, Pnt, and wis were extracted
from the iterations with maximal log-likelihood.

Results

Model-free decriptive statistics

The raw distributions of error are shown in Fig. 5 and the raw
circular SDs of error can be found in Table 2.

Target storage probability

The temporal dynamics of Pt as estimated by the three-
component model were comparable to the two-component
model (Fig. 6a). Collapsing over target serial position,
Pt was reliably higher for set size three vs five, t(26) = 5.94,
P < 0.001, d = 2.25. Storage probability varied over serial
positions for set size five, F(4, 52) = 16.88, P < 0.001, η2 =
0.57, but not for set size three, F < 1. Storage probability
showed a recency effect, as evidenced by a significant linear
contrast over serial positions for set size five, F(1, 13) = 22.97,
P < 0.001, η2 = 0.64, but not set size three, F(1, 13) = 1.12,
P = 0.31, η2 = 0.08. The slopes of these linear fits were reliably
higher for set size five vs three, t(26) = 3.01, P < 0.01,
d = 1.14. We also replicated the primacy effect for set size
five. The storage probability of the first item was greater than
for the second item, t(13) = 2.12, P = 0.05, d = 0.57, and again
reliably larger than predicted by a linear response profile over
the other serial positions (with a minimum predicted value of
0), t(13) = 4.72, P < 0.001, d = 1.26. For set size three, there
was no primacy effect, even compared to the projected linear
trend, t < 1.

For comparison with Experiment 1, we ran two repeated-
measures ANOVAs with the within-subject factor “target
serial position”, the experiment as a between-subject factor,
and Pt as the dependent variable for both set sizes. The
resulting non-significant interaction terms, Ps > 0.60, suggest
that the color selection method did not reliably affect target
storage probability.

Precision

Collapsing over target serial position did not reveal a
main effect of set size on s.d., t(26) = 1.57, P = 0.13, d = 0.59.
Consistent with our earlier findings, precision again did not
reliably vary over serial positions for set size three, F(2, 26) =
2.39, P = 0.11, η2 = 0.16, or for set size five, F(4, 52) = 1.70,
P = 0.17, η2 = 0.12 (Fig. 6b).

Guessing

In the two-component model used for Experiments 1 and 2,
the rate of guessing is one minus the storage probability (Pg =
1 – Pt). In the three-component model, however, there is one
term for storage probability, but also a term for the rate of non-
target responding, and thus the guessing rate reflects one
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Fig. 4 Three-component mixture model of response deviation (adapted
fromBays et al., 2009). The model is largely similar to the one depicted in
Fig. 1b, but performance on the task is now also explained by responses to
non-target colors with additional Gaussians of precision s.d. The model
has parameters for the proportions of target responses, Pt, and non-target
responses, Pnt
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minus both terms (Pg = 1 – Pt – Pnt). Participants showed a
considerable amount of guessing for both set size three,
M = 0.21, SD = 0.17, and set size five, M = 0.24, SD = 0.12
(Fig. 6c). However, this measure did not vary over serial target
positions for either set size, Ps > 0.53, nor was it different
between set sizes, t < 1.

Non-target responding

Collapsing over target serial position, the proportion of non-
target responses, Pnt (reflecting both the probability of storage
of non-targets and the tendency to respond with the color of
the non-target items), was reliably higher for set size five vs
three, t(26) = 9.69, P < 0.001, d = 3.66. There was a main
effect of target serial position for set size five, F(4, 52) = 6.12,
P < 0.001, η2 = 0.32, but not for set size three, F < 1. Linear
contrasts revealed that non-target responses became less likely
when later items were probed for set size five, F(1, 13) = 4.55,
P < 0.01, η2 = 0.53, but not set size three, F < 1. The slopes of
these linear fits were reliably higher for set size five vs three,
t(26) = 3.08, P < 0.01, d = 1.39.

It is possible that the proportion of non-target responding
was higher for earlier targets because these items were not as
likely to have been stored in VSTM (see Figs. 3a and 6a). If
true, the slopes of the Pt and Pnt curves should be negatively
related: the less likely you are to store earlier items, the more
likely you should be to respond with a non-target color. We

tested this hypothesis by correlating the recency regression
slopes for Pt (excluding the first serial position) and Pnt across
participants for each set size. Because of our small sample size
for correlational analyses, we calculated robust correlations
using the skipped-correlation method of Pernet, Wilcox, and
Rousselet (2012). This method weighs down or removes
outliers (which can be particularly influential in small-
sample correlations) and accounts for them in significance
testing. Consistent with our prediction (Fig. 7), the slopes of
Pt and Pntwere negatively correlated for set size five (Pearson
r = –0.55, CI = [–0.81, –0.21]; Spearman r = –0.55, CI =
[–0.85, –0.04]), but not for set size three (Pearson r = 0.38,
CI = [–0.15, 0.79]; Spearman r = 0.38, CI = [–0.26, 0.82]).

To formally test the difference between these relationships,
we conducted a regression analysis with the dependent vari-
able being the slope of the Pnt curve, and the Pt slope, set size,
and their interaction as the predictors. Importantly, the inter-
action term was significant, t(24) = 2.27, P < 0.05, suggesting
that the strength of the relationship between the Pnt and the Pt
slopes was different between the two set size conditions.

So far, the analyses have revealed that responses to non-
targets contributed to VSTM performance, that the rate of this
swapping followed an interesting trajectory over serial posi-
tions, and that these sequential dynamics were related to the
rate at which people stored target items. However, our exper-
imental design allowed us to go one step further and investi-
gate which items in the sequence were most likely to be
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Table 2 Average raw circular SDs (in degrees) in Experiment 3

Set size Serial position Linear contrast

–5 –4 –3 –2 –1 F(1, 9) P

3 – – 46.5 (1.3) 45.6 (1.1) 44.3 (1.1) 1.42 0.25

5 69.4 (2.0) 70.5 (1.3) 68.1 (1.3) 61.7 (0.8) 55.8 (2.2) 25.4 < 0.001

a The error terms, in parentheses, reflect the within-subjects SEM

Atten Percept Psychophys (2014) 76:1885–1901 1893

Fig. 5 Raw distributions of response error for each serial position in the set size a three and b five conditions of Experiment 3. Error bars indicate
across-subject SEM



swapped in. Recall that, for each model fitted to a particular
target serial position and set size, we estimated the relative
share, or weight (wi), of each non-target serial position to the
non-target response Gaussians.

To analyze how these weights varied as a function of the
non-target serial position, we computed for each participant

the average of the weights at a given non-target serial position
over all of the models (for different target serial positions) at
that set size (Fig. 8). For set size five, there was a main effect
of non-target serial position on the average weight, F(4, 52) =
3.00, P < 0.05, η2 = 0.53, but this was not the case for set size
three, F < 1. The effect for set size five was characterized by a
significant linear contrast, F(1, 13) = 5.43, P < 0.05, η2 = 0.30,
but not for set size three, F < 1; however, there was no
difference in slope between set sizes, t < 1. Thus, items
appearing later in larger arrays were more likely to be
swapped in than earlier items; whether this occurs for smaller
arrays, at all or to the same extent as for larger arrays, is
unclear because of the null effects.

Finally, we tested whether the non-target serial position
effect for set size five was driven by non-target weights from
just a subset of models (i.e., for one or more particular target
serial positions). A repeated-measures ANOVA with the
within-subject factors “target serial position model” and
“non-target serial position”, and “non-target serial position
weights” as the dependent measure revealed no interaction,
F < 1. This suggests that the likelihood of swapping in later
items may not have depended upon which item was probed.

Discussion

The results of Experiment 3 confirmed our earlier findings,
now using a three-component model. As before, storage prob-
ability was uniform over serial positions at the smaller set size,
but showed primacy and recency effects at the larger set size.
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We again found no effect of set size or target serial position on
mnemonic precision.

Most importantly, this new model allowed us to examine
the sequential dynamics of non-target responding. Erroneous
recall of non-target items was more likely when the probed
item appeared earlier in the sequence. Together with the
recency effect in target storage probability, one interpretation
of this result is that swapping occurred when the target item
was not in VSTM. Consistent with this view, over serial
positions, the strength of the recency effect was inversely
correlated with the amount of non-target responding.
Moreover, when swapping occurred, items in later serial po-
sitions were more likely to be erroneously recalled than those
in earlier positions.

Variable precision model

The FIFO updating profile we observed in the previous ex-
periments is likely a consequence of the limited capacity of
VSTM. However, it is largely unclear what form this capacity
limit takes and how it interacts with sequential input on a
mechanistic level. One possibility, derived from the work of
Zhang and Luck (2008), is that the system can maintain three
discrete items and discards earlier items when new items come
in. An alternative view, however, is that VSTM does not
consist of a discrete number of fixed-resolution slots, but
rather consists of a continuous resource that can be flexibly
distributed across an unlimited number of items. In fact, the
three-component model described in Experiment 3 is an

adaptation of the model described by Bays and colleagues
(2009), which was formulated to support this theory. In our
task, this model would predict that the system devotes more of
the resource to recent items, reallocating this resource from
earlier items for larger set sizes.

More recently, a new class of resource models of perfor-
mance in the continuous-report task has emerged (Fougnie
et al., 2012; van den Berg et al., 2012). Similar to the work by
Bays and colleagues (2009), these models also assume that the
capacity of VSTM can be flexibly distributed across items in
the display, but, additionally, that this capacity is variable
within an individual. In other words, the amount of VSTM
“resource” varies from trial to trial, and this means that any
computational model should not only include a parameter for
the mean precision, but also describe the variance in precision
across items in the display.

The results described so far seem at odds with these
continuous-resource models, since both serial position and
set size have primarily showed an effect on the Pt and Pnt

parameters, and not on s.d.—our measure of mnemonic pre-
cision. However, it is possible that we did not find effects of
precision because the previous models did not account for
variability in precision. In fact, it has been argued that the
variable precision model fits distributions of recall errors
better than the standard models (Suchow, Brady, Fougnie, &
Alvarez, 2013; van den Berg et al., 2012). We therefore fit the
data from Experiment 3 with these models.

Fougnie and colleagues (2012) showed that when error is
normally distributed around the true color value, and precision
follows a gamma distribution, the resulting function is de-
scribed by a Student’s t-distribution, so that the mixture model
is as follows,

p bx
� �

¼ Ptψ bx − x; s:d:
���

; v
� �

þ 1−Ptð Þ 1

360

where ψ is the wrapped generalized Student’s t-distribu-

tion, s:d: is the average precision, and v is the SD of the
precision. We used the maximum-likelihood estimation pro-
cedure in Memtoolbox (Suchow et al., 2013) to fit response
deviations with this model for each serial position and each
participant in Experiment 3.

Results

Target storage probability

The temporal dynamics of Pt estimates in the variable preci-
sion model followed the same pattern as the two- and three-
component models (Fig. 9a). Average Pt was reliably higher
for set size three vs five, t(26) = 5.58, P < 0.001, d = 2.11.
Storage probability varied over serial positions for set size
five, F(4, 52) = 4.58, P < 0.01, η2 = 0.26, but not for set size

Fig. 8 Average weights of non-target responding for each non-target
serial position, for set size three and five. In essence, these plots show
the non-target serial positions from which items were reported instead of
the target (irrespective of target serial position). Dashed lines indicate the
expected average weight if distributed uniformly over the (set size – 1)
non-target serial positions. We found a significant linear trend over serial
positions for set size five, but not for set size three. Error bars indicate
within-subject SEM
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three, F < 1. Storage probability showed a recency effect, as
evidenced by a significant linear contrast over serial positions
for set size five, F(1, 13) = 8.98, P < 0.05, η2 = 0.41, but not
set size three, F < 1, and a comparison of slopes from linear
regressions revealed that this effect was reliably stronger for
set size five vs three, t(26) = 2.36, P < 0.05, d = 0.89.
However, we did not replicate the reliability of the primacy
effect for set size five with the variable precision model. The
storage probability of the first item was not reliably greater
than for the second item, t(13) = 1.21, P = 0.25, d = 0.33, or
than for the prediction extrapolated from a linear response
profile over the other serial positions, t(13) = 1.89, P = 0.08,
d = 0.50. For set size three, we found no primacy effect, ts < 1.

Precision

The overall difference in s:d: between set size three and five
did not reach significance, t(26) = 1.90, P = 0.07, d = 0.71.
Average precision reliably varied over serial positions for set
size three, F(2, 18) = 4.37, P < 0.05, η2 = 0.25, but not for set
size five, F(4, 52) = 1.39, P = 0.25, η2 = 0.10. Post-hoc
contrasts revealed a significant quadratic trend, F(1, 13) =
7.05, P < 0.05, η2 = 0.35, but not a linear trend for set size
three, F(1, 13) = 1.78, P = 0.21, η2 = 0.12 (Fig. 9b).

The overall difference in the variability in precision, v,
between set size conditions did not reach significance,
t(26) = 1.79, P = 0.09, d = 0.68. Variability in precision also
did not show a significant effect over serial positions for either
set size three, F(2, 18) = 1.02, P = 0.38, η2 = 0.07, or set size
five, F(4, 52) = 1.23, p = 0.31, η2 = 0.09 (Fig. 9c).

Model comparison

All of the models that we have used provided some insight
into the temporal dynamics of VSTM. However, beyond
describing the data in different ways, we were also interested
in determining which of these models provided the best de-
scription. Thus, using the data from Experiment 3, we com-
pared the goodness-of-fit of the two-component model (as
used in Experiments 1–2) to both the three-component model
with serial non-target responding weights and the variable
precision model. We computed the AICc, a measure of
goodness-of-fit with a penalty for each additional parameter,
separately for each model, participant, and serial posi-
tion. In all cases, average AICc was smallest for the three-
component model with serial position non-target responding
weights (Fig. 10).

When we looked at the individual participants separately
(collapsed over target serial position), we found that the three-
component model and the variable precision model were both
the most likely for 7 of 14 participants in the set size three
condition. For set size five, however, the three-component
model was most likely for 12 of 14 participants, whereas the

variable precision model was most likely for 2 participants.
Overall, these results suggest that the three-component model
fit the data better than the classic two-component model and
the variable precision model.

Discussion

We analyzed the data from Experiment 3 with a variable
precision model (Fougnie et al., 2012) and again saw that
storage probability was uniform over serial positions at the
smaller set size, but showed a hint of a primacy effect and a
robust recency effect at the larger set size. Importantly, we
observed this pattern of results even after modeling
precision in a more sophisticated fashion, providing stronger
evidence that the capacity of sequential VSTM primarily
affects storage probability.

Even though we found that average precision varied
in a quadratic fashion over serial position for the small-
er set size, this effect is hard to interpret as we would
have expected to find parallel results for the larger set
size. Furthermore, the lack of a serial position effect on
the variability in precision makes it difficult to draw
strong conclusions about how precision was affected in
our task.

General discussion

Even though VSTM is often proposed as a glue that bridges
across disruptions in visual input, much of our understanding
of VSTM has come from static displays. The goal of these
experiments was to characterize how different components of
VSTM operate over more dynamic, sequential input. In
Experiment 1, for larger set sizes, we demonstrated a higher
probability of storage for items in later serial positions. In
Experiment 2, this recency effect was shown to not depend
on the exact length of the retention interval. Finally, in
Experiment 3, we found a greater likelihood of swapping
out items in earlier serial positions and swapping in items
from later serial positions. Our results largely replicated when
we fit a variable precision model, with target serial position
impacting target storage probability and not precision or var-
iability in precision. As a boundary condition, there was little
effect of serial position when the set size was small and likely
within capacity.

Recency effects

This collection of findings suggests that VSTM is updated in a
FIFO fashion. When the number of items is below capacity,
the system stores all items with equal probability. However,
when the size of the memory array exceeds capacity, the
contents of VSTM are drastically affected and a robust
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recency effect emerges. Specifically, earlier items are
discarded in favor of more recent items, resulting in less
accurate subsequent memory. These inaccurate reports about
earlier items do not seem to reflect random guessing, but
rather erroneous recall of later items. The rate of non-target
responding in this task might also explain the seemingly

puzzling finding that even though the recency effect manifests
at set sizes larger than three (at the established 3–4 item limit
in VSTM), a multiplication of the average storage probabili-
ties with set size suggest an item capacity of approximately
two. That is, this parameter may not directly capture the limit
of VSTM due to retroactive interference at test.
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Fig. 9 a–cResults from fitting the variable precision model to the data of
Experiment 3. a The probability of storing targets, Pt, showed a recency
effect for set size five. b Mean precision estimates, s:d:, showed a
significant quadratic trend over the target serial positions for set size
three, but not set size five. c The variability of precision, v, did not reliably

vary over target serial position. Mean estimates for each set size are
depicted in the bar graph on the right. Error bars indicate within-
subject SEM, except for the bar graph, which depicts across-subject
SEM for each set size condition
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with non-target serial position weights, separately for each serial position in the set size a three and b five conditions of Experiment 3



Why is it adaptive to have such a strong recency effect in
VSTM? One obvious possibility is that the most recent infor-
mation is most relevant in bridging seamlessly across changes
in visual input (Henderson & Hollingworth, 1999; Irwin,
1991). However, a bias towards more recent information
may not always be appropriate, especially if forgetting can
occur within 200 ms. Indeed, it remains to be seen whether the
FIFO nature of storage reflects a hard-wired consequence of
how VSTM operates, or whether it can adapt more flexibly to
changing demands. Indeed, perception and attention are high-
ly sensitive to regularities in the environment (Chalk, Seitz, &
Series, 2010; Zhao, Al-Aidroos, & Turk-Browne, 2013). In
the case of VSTM, performance can be affected by spatial and
relational structure (Brady & Alvarez, 2011; Brady, Konkle,
& Alvarez, 2009; Umemoto, Scolari, Vogel, & Awh, 2010). If
temporal structure was imposed on a sequential VSTM task,
such as by probing certain serial positions more frequently
than others, this might affect the baseline recency bias we
observed in the absence of such structure.

Nature of capacity limits

We interpret the FIFO response profile as reflecting the ca-
pacity limit of sequential VSTM. However, as mentioned
earlier, the form of this capacity limit remains hotly debated
(Bays & Husain, 2008; van den Berg et al., 2012; Zhang &
Luck, 2008). Our goal in this study was not to adjudicate
between these accounts. However, to acknowledge these
standing uncertainties, we fit our data with the three most
influential models in the field. In doing so, we found a con-
sistent effect of serial position and set size on storage proba-
bility, and less consistent evidence for such effects on pre-
cision. These findings are at odds with some of the
most recent claims in the field about spatial VSTM
(Fougnie et al., 2012; van den Berg et al., 2012),
whereby capacity is thought to consist of a continuous
resource that can be flexibly allocated to all items in a scene.
In our study, this account predicts that precision would be
gradually allocated away from the earliest items in order to
store the more recent items, but we did not find positive
evidence for this.

However, we hesitate to interpret the compatibility of our
results and these claims too strongly at this stage, given that
existing models were developed for a different task. As al-
ways, these models are only as good as the assumptions on
which they are based, and various parameters may need to be
tuned to incorporate sequential input. It remains fully possible
in our minds that the FIFO effect is caused by a limited,
continuous, flexible resource, which is simply not captured
properly by these models. If so, our results provide empirical
constraints for the development of new, more generalized
models, by requiring an updating mechanism that resembles
the FIFO pattern we observe here, deployed uniformly at

small set sizes but preferentially allocated to newer items at
larger set sizes.

Relation to prior work

A recent study with a similar sequential recall task by
Gorgoraptis and colleagues (2011) found increased precision
for later items for all set sizes larger than one using the three-
component model (but without serial non-target weights).
They also reported recency effects in storage probability
and decreasing rates of non-target responding for the
latest items, but Gorgoraptis and colleagues (2011) ob-
served these effects even for small set sizes (1–3). That
is, our results were more selective than theirs, having found
dissociations between storage probability and precision, and
between small and large set sizes. There are several differ-
ences between the studies that could in principle account for
these discrepancies.

First, the items used by Gorgoraptis and colleagues (2011)
were oriented lines, in contrast to the colored squares we used.
This stimulus difference may have led to differences in capac-
ity and/or perceptual interference during the sequence (e.g.,
apparent rotation of the lines over time).

Second, their stimuli were presented for 500 ms each, in
contrast to the 50-ms duration we employed. As mentioned
earlier, we chose this duration as a compromise to stay as close
as possible to Zhang and Luck (2008). It is important to note
that the duration in Gorgoraptis and colleagues (2011) intro-
duced substantially different maintenance requirements for
each of the different serial positions (up to 6 s longer than in
our design), since they did not alter the length of the retention
interval depending on the set size. These different mainte-
nance requirements may have impacted the response profile,
reflecting both sequential storage dynamics and decay of the
VSTM representations over time.

Third, Gorgoraptis and colleagues (2011) fit their models to
data that was pooled across nine participants (25 trials per
participant, serial position, and set size), whereas we fit the
model separately for each participant (100–150 trials per serial
position and set size). This controlled more appropriately for
individual differences and used ~7–10 times more data per set
size and serial position.

Fourth, arguably the most important difference is the way
in which trials with different set sizes were presented. In our
experiments, set size was manipulated between groups of
participants, whereas they presented all serial positions of all
set sizes in an interleaved manner. This introduces uncertainty
in the expected set size on each trial with a bias towards larger
set sizes (specifically, the expected set size was 3 2/3).
Participants might have strategically and proactively
weighed down items early in the sequence, giving rise to
temporal performance curves that reflect both this strategic
adjustment and the actual capacity limits of VSTM. This
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potentially explains why Gorgoraptis and colleagues (2011)
found recency effects on Pt even at very small set sizes (2–3).

Isolating and evaluating the importance of each of these
factors to our results requires an extensive series of experi-
ments that is beyond the scope of the current paper.
Nevertheless, this is an important opportunity for future re-
search, since it is conceivable that some aspects of our
results are only revealed under the present stimulus condi-
tions. For example, it would be useful to know how the results
of this task are affected by varying stimulus durations or
directly comparing within- and between-subject manipula-
tions of set size.

Primacy effects

A priori, we could have found a pattern of results consistent
with a first-in-last-out mechanism, where the earlier items
would be prioritized over the later items. Although we saw little
evidence for an overall trend of this sort, we did observe a bonus
for the first serial position. This is consistent with a small
primacy effect, which seems to accompany the more robust
recency effect that dominates at all other serial positions.

Interestingly, the WM literature also often obtains a mix-
ture of primacy and recency effects (Baddeley & Hitch, 1993;
Murdock, 1962). These two types of effects may depend on
separate systems in WM (Glanzer & Cunitz, 1966): primacy
may be driven by a long-term component, which is biased
toward earlier items because more time can be devoted to their
representations; recency may be driven by a short-term
component, which is biased toward later items because
its representations are more fleeting. Although an ap-
pealing account for WM, it is unclear how this might apply to
VSTM tasks. Remember that items were on screen for only
50 ms each, and that all colors were presented within
250 ms (often shorter). It is difficult to imagine a differential
contribution of long-term storage to items separated by such
short intervals.

An alternative explanation for the primacy effect in our task
is that the item in the first serial position was unique in not
being preceded by any other item. This could lead to a benefit
for perceptual reasons, such as that the first item was not
forward-masked. There are also potential attentional reasons,
such as that later items may have suffered from a central
bottleneck during the encoding and consolidation of the first
item into VSTM, something akin to the attentional blink
(Chun & Potter, 1995; Raymond, Shapiro, & Arnell, 1992).

Conclusions and future directions

These investigations were motivated by a desire to start bring-
ing VSTM research into closer alignment with classical WM
research. In particular, we sought to apply cutting-edge tools
from the study of VSTM to behavioral paradigms that more

closely match the focus of WM research on sequential behav-
ior. In doing so, we revealed robust and striking temporal
dynamics over a very rapid timescale. These dynamics may
also be at play, but harder to characterize, during more con-
ventional static VSTM tasks, and they may provide a basis for
further characterizing the neural substrates of VSTM. For
example, electroencephalography could be used to study
how event-related potentials that index the number of items
in VSTM (e.g., contra-lateral delay activity, Vogel &
Machizawa, 2004) evolve over time for longer sequences of
single items (see also Ikkai, McCollough, & Vogel, 2010;
Vogel, McCollough, & Machizawa, 2005). Furthermore, in-
dividual differences in the temporal dynamics, such as the
slope of the recency effect, may provide new leverage for
understanding the relationship between VSTM and intelli-
gence (Fukuda, Vogel, et al., 2010; Shipstead et al., 2012),
especially if these dynamics overlap with measures of WM
typically linked to higher-level cognition.
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