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Abstract Performance in working memory (WM) tasks de-
pends on the capacity for storing objects and on the allocation
of attention to these objects. Here, we explored how capacity
models need to be augmented to account for the benefit of
focusing attention on the target of recall. Participants encoded
six colored disks (Experiment 1) or a set of one to eight
colored disks (Experiment 2) and were cued to recall the color
of a target on a color wheel. In the no-delay condition, the
recall-cue was presented after a 1,000-ms retention interval,
and participants could report the retrieved color immediately.
In the delay condition, the recall-cue was presented at the
same time as in the no-delay condition, but the opportunity
to report the color was delayed. During this delay, participants
could focus attention exclusively on the target. Responses
deviated less from the target’s color in the delay than in the
no-delay condition. Mixture modeling assigned this benefit to
a reduction in guessing (Experiments 1 and 2) and transposi-
tion errors (Experiment 2). We tested several computational
models implementing flexible or discrete capacity allocation,
aiming to explain both the effect of set size, reflecting the
limited capacity of WM, and the effect of delay, reflecting the
role of attention to WM representations. Both models fit the
data better when a spatially graded source of transposition
error is added to its assumptions. The benefits of focusing
attention could be explained by allocating to this object a
higher proportion of the capacity to represent color.
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Our ability to hold in mind information about our visual envi-
ronment is constrained by the capacity of a system known as
visual workingmemory (WM). VisualWMenables us to form a
representation of our surroundings, to maintain it after the visual
input has disappeared, and to manipulate in mind representa-
tions of previously seen objects. This is the reason why consid-
erable research has been devoted to understand how represen-
tations are encoded, maintained, and retrieved from visual WM.

Research on visual WM has shown, on the one hand, that
people can retain only a handful of the information presented
on a visual display. These studies have put forward that both
the quantity and quality of the representations that are stored
in WM are limited (e.g., Bays & Husain, 2008; Zhang &
Luck, 2008). On the other hand, studies examining the inter-
play of attention and WM have shown that performance is
improved when attention is focused on a subset of the infor-
mation held in WM (e.g., Griffin & Nobre, 2003; Landman,
Spekreijse, & Lamme, 2003). These two lines of research
have highlighted complementary aspects of WM: its capacity
limitations and the flexibility with which its limited capacity
can be allocated.

The main aim of the present article is to put the findings of
these two fields in relation to each other. To achieve this goal,
we combined the experimental paradigms of both fields to
empirically examine how focused attention affects the quan-
tity and the quality of the representations held in visual WM.
Despite the ample literature showing that focused attention
improves WM, it is still unclear whether focused attention
impacts the quantity, the quality, or both of these mnemonic
parameters. Next, we used computational modeling to instan-
tiate versions of two popular models ofWM capacity—name-
ly, the flexible-resourcemodel and the discrete-capacitymod-
el. Our goal was to explore how these models could be
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expanded to accommodate the effect of focusing attention on
some of WM's contents.

The structure of the present article is the following. First,
we briefly introduce the two mainstream models of capacity
limits in visual WM and summarize some of the findings that
have fueled the debate over what is the source of capacity
limits in WM. Next, we present the main findings of studies
concerned with the role of attention to WM contents. We then
present two experiments testing how focused attention im-
proves performance in WM tasks. Finally, we present our
modeling approach to WM capacity and to the role of focused
attention to WM contents.

Capacity limits on quantity and quality of representations
in visual WM

The question of what limits the capacity of visual WM has
been a matter of a vivid debate in the literature. According to
the flexible-resource model, WM capacity consists of a con-
tinuous resource divided among the objects to be represented:
the larger the number of objects, the lower the quality
(precision) of each object representation in memory (Bays,
Catalao, & Husain, 2009; Bays & Husain, 2008; Wilken &
Ma, 2004). Consequently, the flexible-resource model pre-
dicts a trade-off between the quantity and quality of represen-
tations in WM.

Alternatively, one can think of WM capacity as a limited
number of discrete units or slots. Within a slot, an object is
represented with good, although not perfect, quality (Cowan,
2001; Luck & Vogel, 1997; Vogel, Woodman, & Luck, 2001;
Zhang & Luck, 2008, 2009, 2011). According to this discrete-
capacitymodel, one cannot trade-off quantitywith quality: Either
an object receives a whole slot, thereby being represented with
good precision, or no information is stored about it at all. There
is, however, some room for flexibility: According to one imple-
mentation of the discrete-capacity model (the slot+averaging
model proposed by Zhang & Luck, 2008), multiple slots can
be assigned to a single object to achieve higher precision for that
object. By averaging across slots, the noise associated with a
representation is reduced, and quality improves.

To test the predictions ofWM capacity models, researchers
have developed tasks to assess not only the number, but also
the precision of WM representations. One of these tasks is the
continuous recall task (Prinzmetal, Amiri, Allen, & Edwards,
1998;Wilken &Ma, 2004). In a prototypical task, participants
are asked to retain the feature values of an array of objects
(e.g., the colors of solid disks; the orientations of tilted bars).
At the end of a brief interval, the participant is prompted to
reproduce the relevant feature of a target object in a continu-
ous feature space (e.g., select the color of the target in a color
wheel; reproduce the target’s orientation using a dial). The
dependent measure in this task is the deviation between the

reported feature value and the target's true feature value. A set
of mixture models has been proposed to analyze the distribu-
tion of response deviations (cf. Bays et al., 2009; Zhang &
Luck, 2008). These models allow the extraction of several
memory parameters, such as (1) the precision with which the
target is recalled, given that it is recalled, and (2) failures in
recalling the target object’s feature (in which case, the partic-
ipant either guesses or wrongly reports another object from the
memory array).

By using these mixture models, it has been established that
the estimated precision of representations decreases as the
number of objects in the memory set increases, producing the
so-called set size effect (Anderson & Awh, 2012; Anderson,
Vogel, & Awh, 2011; Bays et al., 2009; Bays, Gorgoraptis,
Wee, Marshall, & Husain, 2011; Bays & Husain, 2008;
Fougnie, Asplund, & Marois, 2010; Fougnie, Suchow, &
Alvarez, 2012; Gorgoraptis, Catalao, Bays, & Husain, 2011;
Zhang & Luck, 2008, 2009). However, there is still dispute
over whether precision can decrease infinitely as the number of
objects increases, as implied by the flexible-resource model; or
whether precision plateaus when the set size reaches the max-
imum number of objects that can be maintained in WM, as
predicted by the discrete-capacity model. Some studies have
failed to find a plateau in mnemonic resolution (Bays et al.,
2009; Bays, Gorgoraptis, et al., 2011; Bays & Husain, 2008;
Gorgoraptis et al., 2011), whereas others have reported that
precision does not decrease any further after the memory set
size exceeds the individual's estimated capacity limit
(Anderson & Awh, 2012; Anderson et al., 2011; Gorgoraptis
et al., 2011, Experiment 3; Zhang & Luck, 2008).

To date, adjudicating between flexible-resource and
discrete-capacity models has proven to be a difficult enter-
prise, mainly because the behavioral predictions of these
models considerably overlap. Inmost cases, mixture modeling
has been applied to the data, and the pattern of findings has
been interpreted on the basis of the predictions of either
flexible-resource or discrete-capacity models. The mixture
models, however, make no assumptions regarding the effects
of memory set size on performance. As a consequence, they
are neutral regarding the nature of capacity limitations. Later,
we will present models that implement flexible-resource and
discrete-capacity assumptions and that, therefore, could be
potentially used to inform the debate of capacity limits in
WM. Our goal, however, was mainly to probe how these
models could potentially explain the benefit of focusing at-
tention on some WM contents.

Attention to objects in WM

Performance in WM tasks depends not only on the capacity
for encoding and maintaining a set of objects, as implied by
capacity models, but also on the allocation of attention to

Atten Percept Psychophys (2014) 76:2080–2102 2081



objects within the memory set. Any successful model of WM
capacity should also explain how people efficiently use their
capacity by selectively attending to the objects inWM that are
likely to be most relevant.

We define attention as the prioritization of information
matching the individual’s task goals (Nobre & Stokes,
2011). This prioritization can occur for perceptually present
stimuli, sometimes referred to as external attention, or for a set
of mental representations, referred to as internal attention
(Chun, Golomb, & Turk-Browne, 2011) or as the focus of
attention in WM (Cowan, 2011; Oberauer & Hein, 2012). In
the present article, we will mainly focus on the effects of
attention to information that is already maintained in WM
and, therefore, is regarded as prioritized by internal attention.

In WM tasks, internal attention can be directed to a WM
object by presenting a cue during the retention interval
(known as a retro-cue). The effect of retro-cues is well
established in change detection tasks (Astle, Summerfield,
Griffin, & Nobre, 2012; Berryhill, Richmond, Shay, & Olson,
2012; Griffin & Nobre, 2003; Kuo, Stokes, & Nobre, 2012;
Landman et al., 2003; Lepsien, Griffin, Devlin, & Nobre,
2005; Lepsien, Thornton, & Nobre, 2011; Matsukura,
Cosman, Ropper, Vatterott, & Vecera, 2014; Matsukura &
Hollingworth, 2011; Matsukura, Luck, & Vecera, 2007;
Maxcey-Richard & Hollingworth, 2013; Nobre, Griffin, &
Rao, 2008; Rerko & Oberauer, 2013; Rerko, Souza, &
Oberauer, 2014a; Schmidt, Vogel, Woodman, & Luck, 2002;
Souza, Rerko, & Oberauer, 2014; Tanoue & Berryhill, 2012;
Williams & Woodman, 2012). In these tasks, participants are
asked to decide whether a probe stimulus is the same or
changed, as compared with the object presented in the same
location in the memory array. When an objects is retro-cued
before being probed, responses are faster and more accurate,
as compared with baseline trials without cues (or with
noninformative cues) or as compared with responses to probes
presented in one of the noncued locations (Griffin & Nobre,
2003). This finding is known as the retro-cue benefit. How-
ever, because supra-threshold changes are often used in
change detection tasks, it is not possible to determine what
kind of memory error is reduced by cuing.

By combining the retro-cue paradigm with precision tasks,
one can assess which source of memory errors is reduced by
attention—that is, whether focusing attention on the target of
recall improves its probability of being recalled, its precision,
or both. This information can advance the explanations of the
retro-cue benefit, and it can help to establish a link between
capacity limitations and control mechanisms that determine
how capacity is allocated to retrieve relevant information from
WM.

To the best of our knowledge, only three studies have used
retro-cues on tasks assessing the quality of WM
representations. In the study by Pertzov, Bays, Joseph, and
Husain (2013), participants were shown tilted bars and, at the

end of a variable retention interval, were asked to adjust the
orientation of a probe-bar to match the orientation of the target
in the memory display. Pertzov et al. compared performance
on baseline (no-cue) trials with performance on retro-cue trials
on which a retro-cue indicated one of the memory objects as
likely to be tested. As compared with the baseline trials,
deviations between the reported orientation and the target
orientation were smaller when the tested object was the
retro-cued one but larger when the tested object was one of
the noncued ones. Furthermore, deviations in reporting the
target orientation increased over the retention interval, with
the exception of the retro-cued object, which was reported
with low error after all retention interval durations. These
findings were interpreted as evidence that focusing attention
on a memory object protects it from degradation over time.
However, in this study, mixture modeling was not applied to
the distributions of errors, and therefore it is difficult to esti-
mate whether the retro-cue benefit was due to an effect on
precision, on the probability of having the object in memory,
or both.

In the study by Murray, Nobre, Clark, Cravo, and Stokes
(2013), participants discriminated whether a probe-arrow was
rotated clockwise or counterclockwise, as compared with the
orientation of a memory object. The precision of the memory
representation was assessed by varying the degree of change
between the probe and the target orientation: Larger changes
can be discriminated even with a coarse memory representa-
tion, whereas smaller changes require fine resolution. Retro-
cuing an object significantly increased the estimated probabil-
ity of having that object in memory but did not affect the
precision with which it was remembered. This retro-cue ben-
efit was obtained even in comparison with baseline trials
whose retention interval was matched to the time between
memory encoding and presentation of the cue on retro-cue
trials. This result rules out protection from degradation over
time as the cause of the retro-cue benefit, suggesting instead
that the retro-cue can be used to access a representation that
would be otherwise unavailable when the test display is
shown at the same point in time. However, because a probe
with a random orientation was displayed in the location of the
memory object, it is possible that the retro-cue benefit arose
because attention protected the cued object from interference
from the probe (Makovski & Jiang, 2007; Makovski,
Sussman, & Jiang, 2008). If this were the case, the retro-cue
benefit would not be observed in tasks not using a probe,
including the cued-recall paradigm typically used to assess the
quantity and quality of representations in WM.

Williams, Hong, Kang, Carlisle, and Woodman (2013)
used a cued-recall task: Participants encoded the color of
one or two disks and, after a brief delay, selected the color
of a target from a color wheel. On half of the two-object trials,
a retro-cue (an arrow) was shown in the middle of the reten-
tion interval. The cue pointed to one of the locations of a
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memory object, thereby indicating that this object was not
going to be tested and could be forgotten. Recall improved on
retro-cue trials, as compared with no-cue trials. Unlike the
study ofMurray et al. (2013), however, both the probability of
correctly recalling the target and the precision with which it
was reported improved on retro-cue trials.

To sum up, these studies show that retro-cues improve
performance in tasks assessing the quality of memory repre-
sentations in a continuous feature space. The results, however,
are mixed regarding whether retro-cues improve only the
probability of recall (Murray et al., 2013) or both the proba-
bility of having the prioritized object in memory and its
precision (Williams et al., 2013). There are several methodo-
logical differences between these studies that could possibly
explain their discrepant findings: the set size examined (four
and eight objects in Murray et al., 2013, vs. two objects in
Williams et al., 2013), the information conveyed by the retro-
cue (a cue that pointed to the object to be retained vs. a cue that
pointed to the object to be forgotten), and also regarding how
the retention interval on retro-cue and no-cue trials was
matched (ruling out protection from time-based degradation
vs. not ruling out the contribution of this variable).

The present study

Here, we further explored the effects of directing attention to
an object held in WM using a continuous cued-recall task. In
our experiments, an array of colored disks was presented to be
memorized over a brief retention interval. At the end of this
interval, a recall cue identified one memory object as the
target, and participants had to recall its color using a color
wheel. To assess the benefit of focusing attention in this task,
we created two conditions that differed in how long partici-
pants could use the recall cue before reporting the color of the
target. In the no-delay condition, participants could immedi-
ately report the color of the target after presentation of the
recall cue. This condition is similar to what is usually done in
experiments testing the capacity of visual WM (cf. Zhang &
Luck, 2008). We considered this condition to be equivalent to
a simultaneous-cue condition in the traditional recognition or
change detection paradigm—that is, a condition in which a
cue is shown together with the probe stimulus and participants
can immediately compare the probe with the object in mem-
ory and report whether they match or mismatch. The presen-
tation of a simultaneous cue (or simu-cue for short) does not
enhance performance, as compared with a no-cue condition,
in recognition tests, and retro-cue benefits have been observed
when retro-cue trials are compared with both baselines (cf.
Makovski et al., 2008). In the delay condition, the recall cue is
displayed at the same point in time as in the no-delay condi-
tion, but the opportunity to report the target color is delayed by
a full second. We assume that during this delay, the only thing

participants can do is to focus attention on the target of recall.
This is equivalent to what a retro-cue affords in the traditional
cuing paradigm: Participants cannot respond after a retro-cue;
they can only focus attention on the cued object.

The choice of this design has two advantages that help to
constrain explanations of the retro-cue benefit. First, we equat-
ed the time for which representations could undergo degrada-
tion (by decay or some other process) across our no-delay and
delay conditions. If anything, our focused attention condition
(aka delay condition) has a longer overall retention interval,
thereby ruling out protection from time-based degradation as
an explanation of our focusing benefit. Second, by presenting
a recall cue in both conditions, we avoided the interference
that could be produced by presenting a probe stimulus in the
location of the memory object. Consequently, in our design,
the focusing benefit cannot be explained as protection from
probe interference. Ruling out these explanations is an impor-
tant first step to consider what the focusing benefit reveals
about the structure of WM. If performance in the cued-recall
paradigm reflects something about an individual's capacity,
what changes when attention is focused on one object?

We conducted two experiments. In Experiment 1, the
memory array contained six objects, and trials were equally
split into no-delay and delay conditions. In Experiment 2, in
addition to manipulating delay, we varied the number of
objects participants had to memorize (one to eight objects).
The manipulation of set size allows the examination of how
focused attention impacts performance when WM is taxed at
different levels. We applied two kinds of models to our data.
First, to assess which source of error is affected by focusing
attention on the target representation during the delay, we
fitted a three-parameter mixture model (Bays et al., 2009) to
the data of both experiments. This model estimates (1) the
precision with which the target color is retrieved, given that it
is available; (2) the probability that the participant confuses
memory objects with each other and, therefore, reports one of
the nontarget objects (making a transposition error); and (3)
the probability that no object was available to be retrieved and
the participant guessed.

To foreshadow our results, the delay condition reduced the
mean deviation in reporting the target color, relative to the no-
delay condition. Themixture modeling assigned this benefit to
a reduced probability of memory failures (reduction in guess-
ing in Experiments 1 and 2 and, to a lesser extent, in transpo-
sition errors in Experiment 2), but not in the precision with
which the target was recalled.

In a second step, we tested two families of computational
models ofWMcapacity: flexible-resourcemodels (Bays et al.,
2009), on the one hand, and fixed-capacity or slot models, on
the other hand, the latter building on the slot+averaging model
(Zhang & Luck, 2008). Because none of the published models
of WM capacity provides a mechanism for adequately
explaining the focusing benefit we observed, we explored a
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set of plausible models in each family to find out how such a
benefit could arise. The main goal of this modeling work is to
determine which features are necessary for a flexible-resource
model or for a discrete-capacity model to explain both the
effect of memory set size, reflecting the limited capacity of
WM, and the effect of delaying recall after a retro-cue,
reflecting the role of attention to representations in WM.

General method

Participants

Sixteen students (11 women; mean age = 23.8 years) at the
University of Zurich participated in a 1-h session in Experi-
ment 1, and 22 students (15 women; mean age = 23.7 years)
participated in two 1-h sessions in Experiment 2. There was
no overlap between the two samples. Participation was com-
pensated with course credit or 15 Swiss francs per session.
One participant completed only one experimental session in
Experiment 2, due to experimenter error, and was excluded
from subsequent analyses. Participants read and signed an
informed consent form prior to the study and were debriefed
regarding the purpose of the experiment at the end.

Materials and procedure

The experimental task was programmed in MATLAB using
the Psychophysics Toolbox extension (Brainard, 1997; Pelli,
1997). Participants were tested in individual booths where
they sat approximately 50 cm from the computer screen
(viewing distance was unconstrained).

The task required the memorization of a set of colored
disks for a subsequent memory recall test. In Experiment
1, six disks were presented in the memory display, where-
as in Experiment 2, memory set size was varied from one
to eight. The disks (radius of 1.1 cm) appeared evenly
spaced around an imaginary circle (radius of 5.5 cm)
centered in the middle of the screen. In Experiment 1,
the memoranda were presented evenly at fixed positions
(starting with an angle of 60º). In Experiment 2, the exact
positions of the disks varied on a trial-by-trial basis: The
position (angle) of the first object was selected at random,
and the positions of the other objects were distributed at
even angular distances from this point. The edge-to-edge
distance between two objects varied between 9 cm (set
size 2) and 2.1 cm (set size 8).

Each disk color in a memory array was sampled from a
color wheel consisting of 360 values evenly distributed on the
hue dimension in the cylindrical HSL (hue, saturation, and
lightness) color model, with the values for saturation fixed to 1
and lightness to .5. Color values were selected randomly, with
the constraint that all objects’ colors on a given trial were at a

minimum distance of 20° on the color wheel from each
other. At the end of the trial, participants were cued to
recall the color of a single object, selected at random. The
target of recall was indicated by presenting a white
outlined circle at the target’s location in the memory array.
Participants had to report the color of the target object by
clicking on a point on the color wheel. The color wheel
was rotated randomly on each trial. The instructions em-
phasized accuracy but not speed.

Across two experimental conditions, we varied the time
between presentation of the prompt to recall an object and the
presentation of the color wheel (opportunity to recall): 0 ms
(no-delay condition) or 1,000 ms (delay condition). Figure 1
illustrates the flow of events on these trials. Each trial started
with the presentation of a white fixation cross against a gray
background. In the no-delay condition, we presented the color
wheel together with the fixation cross, and the color wheel
remained on-screen throughtout the trial. After 500 ms, the
memory array was displayed for 1,000 ms. The offset of the
memory array was followed by a 1,000-ms retention interval,
after which the cue to recall (circle outline) was displayed in
both conditions. In the no-delay condition, the color wheel
was already available when the cue to recall was shown1; in
the delay condition, the color wheel was presented only after
an additional 1,000-ms delay had elapsed. In both conditions,
the recall cue remained on the screen until participants clicked
on a color on the color wheel. No performance feedback was
provided. After response, a blank intertrial interval of
1,000 ms followed. To prevent articulatory rehearsal, partici-
pants were asked to repeat the sequence der–die–das through-
out the trial (articulatory suppression).

In Experiment 1, participants completed a total of 500 trials
in one 1-h session. Trials were equally split into the two delay
conditions (i.e., 250 trials per conditon). In Experiment 2,
participants completed a total of 992 trials across two 1-h
sessions. In this experiment, the delay (no-delay or delay)
and set size (one to eight objects) variables were orthogonally
manipulated, producing a total of 16 conditions (62 trials per
condition). Trials in all conditions were randomly intermixed.
Trials in each session were divided among 10 blocks, and
between blocks, short breaks were allowed. Participants were
reminded to continue with the articulatory suppression task at
the beginning of each block. At the beginning of each session,
participants completed an additional set of 10 (Experiment 1)
or 16 (Experiment 2) practice trials that were discarded from
subsequent analyses.

1 We did not present the color wheel simultaneously with the recall cue to
avoid possible visual competition between the two events. We also have
conducted experiments in our lab in which the color wheel was shown at
the moment of test in the no-delay condition or was displayed during
encoding and retention in both the no-delay and delay conditions, and in
both cases, delay benefits were obtained.
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Data analysis

We performed two set of analyses. First, we computed re-
sponse deviations on each trial by calculating the angular
distance in color space between the color reported by the
participant and the target object’s true color. Deviations could
fall between 0° (perfect recall) and ±180° (color opposite to
the correct color). We then used the absolute deviation to
compute the mean deviation in each experimental condition.
This measure provides a raw indication of performance dif-
ferences across experimental conditions.

In a second step, we fitted the three-parameter mixture
model to the distributions of response deviations in each
condition. The mixture model served as a measurement model
to decompose the distributions into several sources of memory
errors.

Mixture modeling

If the target object is in memory, the distribution of responses
should be centered on the target’s color (0º), with the frequen-
cy of responses falling off with increasing distance between
the target's color and a response on the color dimension. The
standard deviation (SD) of this distribution reflects the preci-
sion of the target object in memory: the larger the SD, the
lower the precision. We will refer to SD and precision as
interchangeable terms hereafter. If the target is not retrieved,
there are two possible alternatives: (1) Participants can guess
at random, thereby selecting any color from the color wheel
with equal probability; or (2) participants can erroneously
report the color of another object from the memory array,

thereby making a transposition error, in which case the distri-
bution of errors will be centered on the color of a nontarget
object. The three-parameter model2 estimates these three mne-
monic parameters (namely, SD, guessing, and transpositions)
from the distributions of response deviations. The distribution
of responses centered on the color of the target object (and on
the color of nontargets) is described by a normal distribution
for circular data, the so-called von Mises distribution, and
guessing is modeled as a uniform distribution (see Bays
et al., 2009). The probability of retrieving the target color
was defined as 1 − (Guessing + Transpositions). The mean
of the von Mises distribution was set to 0 under the assump-
tion that there was no response bias, which is the usual finding
in the literature (e.g., Anderson &Awh, 2012; Anderson et al.,
2011; Bays et al., 2009; Fougnie et al., 2010; Zhang & Luck,
2008, 2011). Maximum-likelihood estimation procedures
were used to fit the mixture model (using the simplex algo-
rithm in MATLAB). The estimation procedure was repeated a
minimum of five times with different initial parameters.

2 We also fitted a two-parameter model to the data of both experiments,
which estimates only precision and guessing rate. However, the fit of the
three-parameter mixture model was better, as indexed by the Bayesian
information criterion (BIC). The BIC = −2 * ln(Lmax) + k ln(n), in which
Lmax refers to the likelihood of the best-fitting model given the data; k
refers to the number of free parameters; and n refers to the number of
trials. The difference in the BIC between the two models was of 199
points (Experiment 1) and of 251 points (Experiment 2). We used this
difference to compute the Bayes factor for the comparison between two
models (Raftery, 1995). The Bayes factor equals exp(ΔBIC/2), which
was equal to 1.7 × 1043 (Experiment 1) and 3.82 × 1054 (Experiment 2),
showing that our data are overwhelmingly more likely under the three-
parameter model than under the two-parameter model.

Fig. 1 Sequence of events in the no-delay and delay conditions, showing
memory arrays with set sizes 6 and 8, respectively. At the beginning of a
trial, a fixation cross was shown for 500 ms, after which a memory array
consisting of six colored disks (Experiment 1) or one to eight colored
disks (Experiment 2) was presented for 1,000 ms. Participants were
instructed to remember the colors of the disks and their locations. The
offset of the memory array was followed by a 1,000-ms retention interval,
at the end of which one object from the memory array was cued (white

circle outline) as the target of recall. Participants had to indicate the color
of the target object by clicking on a color wheel. In the no-delay condi-
tion, the color wheel was available throughout the trial, and participants
could respond immediately to the recall cue; in the delay condition, the
color wheel was shown 1,000 ms after the the presentation of the recall
cue, delaying the opportunity to select the retrieved color. During this
delay, participants could focus their attention exclusively on retrieving the
target color
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Results

Experiment 1

On average, the reported target color deviated less from the
true target color in the delay condition (M = 38.3, SD = 11.1)
than in the no-delay condition (M = 48.7, SD = 11.0), t(15) =
5.42, p < .001. To examine which mnemonic parameter is
improved by focusing attention in the target during the reten-
tion interval, we fitted a series of mixture models to the data.
First, we fitted the traditional three-parameter mixture model
in which SD, guessing rate, and transposition rate were esti-
mated separately and independently for each delay condition.
Next, we fitted a series of reduced models in which some
parameters were fixed to be equal across delay conditions.
Table 1 presents the estimated parameters from the fitted
models and model fit.

As is shown in Table 1, when the traditional mixture model
was applied to the data, the average estimated SD and trans-
position rate were similar and nonsignificantly different across
delay conditions [precision, t(15) = −0.645, p = .529; trans-
position, t(15) = 0.909, p = .378]. The difference between the
conditions was limited to the guessing rate, which was signif-
icantly lower in the delay condition, t(15) = 2.735, p = .015.
To examine whether this difference was related to possible
trade-offs between the estimation of the parameters in the
mixture model (Suchow, Brady, Fougnie, & Alvarez, 2013),
we fitted several mixture models in which we constrained
some of the parameters to be equal across delay conditions,
whereas we let the other parameters vary freely while fitting
the mixture model to both conditions simultaneously. These

models are shown in Table 1 as versions 1–6. Parameters that
were fixed to equal values across conditions are printed in
bold. We ranked the model versions in relation to their fit, as
compared with the traditional model. Fixing the precision and
transposition rate to be equal across conditions substantially
improved the fit, leading to the best fitting model (i.e., version
6). In contrast, forcing the model to assign the differences
between delay conditions to the precision parameter substan-
tially impaired the fit, leading to the worst model (i.e., version
4). Moreover, in all model versions in which the guessing rate
was fixed to be equal between delay conditions, model fit was
worsened, as compared with models without this constraint.
These results strengthen our conclusion that focused attention
increases the probability of retrieving the target object, but not
the precision with which it is reported.

Experiment 2

In Experiment 2, in addition to varying the delay before
reporting the target color, we also varied set size from one to
eight. To test the effect of both delay and set size on recall
performance, we used repeated measures analyses of variance
(ANOVAs). For these analyses, whenever the sphericity as-
sumption was violated, corrected Greenhouse–Geisser de-
grees of freedom (recognizable by noninteger values) were
reported. The results of the ANOVAs are shown in Table 2.
Furthermore, we followed up on the significant main effects of
set size and set size × delay interactions by running repeated
contrast tests, which compare each variable level with the
following one. The results of these analyses are presented in
Table 3.

Table 1 Parameters and fit obtained from fitting mixture models to the data of Experiment 1

Parameter Mixture models

Condition Traditional Version 1 Version 2 Version 3 Version 4 Version 5 Version 6

SD

No-delay 18.07 18.79 19.25 18.19 20.66 18.87 18.88

Delay 18.83 18.79 18.58 19.02 17.66 18.87 18.88

Guessing

No-delay 0.30 0.29 0.22 0.31 0.22 0.22 0.30

Delay 0.17 0.17 0.22 0.16 0.22 0.22 0.16

Transpositions

No-delay 0.18 0.18 0.23 0.17 0.17 0.23 0.17

Delay 0.16 0.16 0.12 0.17 0.17 0.12 0.17

BIC 85,435 85,433 85,459 85,424 85,632 85,444 85,419

Ranking 3 5 2 6 4 1

Note. SD: standard deviation. This is the precision parameter in the mixture model. Parameters printed in bold were constrained to be equal across the no-
delay and delay conditions. BIC: Bayesian information criterion. BIC = −2 ln (Lmax) + k ln (n); in which Lmax refers to the likelihood of the best-fitting
model given the data; k refers to the number of free parameters; and n refers to the number of trials. The BIC is a measure of model fit. Lower values
reflect better fit and indicate that the data are more probable under this model. Model versions were ranked in relation to their fit, as compared with the fit
of the traditional three-paramenter mixture model in which all parameters were free to vary between the experimental conditions
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Figure 2a shows the mean absolute angular deviation be-
tween the response selected by the participant and the target’s
true color in each set size and delay condition. Deviations
increased as set size increased, as indicated by the significant
effect of set size in the ANOVA (Table 2), and this effect was
significant between each set size and the next (Table 3).
Furthermore, the main effect of delay condition was signifi-
cant, showing that focusing attention on the target object
reduced the deviation in reporting its color. The interaction
of set size and delay was also significant. Repeated contrast
tests indicated that the interaction was significant up to set size
4. This analysis shows that the magnitude of the improvement
produced by the delay increased from set sizes 1 to 4 and
remained stable thereafter.

In the following, we describe the results of the three-
parameter model. Figure 2b shows the average recall error
predicted by this model using the best-fitting parameters. On
average, the predictions of the model closely resemble the data
(shown in gray for comparison). Panels c–e present the esti-
mated model parameters (SD, guessing, and transpositions),
and panel f shows a capacity estimate, known as K.

Figure 2c shows the SD in each set size and delay condi-
tion. The ANOVA results in Table 2 confirm the visual im-
pression that set size, but not delay, significantly affected SD.
Repeated contrast tests (Table 3) showed that SD significantly
increased until set size 5; the increase in SD from set sizes 6 to
8 was not significant. In sum, the precision of representations
in memory declined with the number of objects to be retained

up to set size 5, but it was not modulated by our delay
manipulation, replicating the results of Experiment 1.

Figure 2d shows the probability of guessing estimated from
the three-parameter mixture model. As is confirmed by the
ANOVA results in Table 2, guessing rate increased over set
size and was significantly reduced in the delay condition, as
compared with the no-delay condition. Set size and delay did
not interact. We also conducted repeated contrast tests to
follow up on the main effect of set size (see Table 3), which
revealed a significant increase on guessing only until set size
4.

Figure 2e shows the probability of making a transposition
error. For this measure, we excluded set size 1 from the
analysis (because a nontarget recall could not occur at this
set size). As is shown in Table 2, transposition errors increased
over set size and were reduced in the delay condition. Repeat-
ed contrast tests (Table 3) indicated that transpositions in-
creased up to set size 6, after which the values were not
statistically different. The set size × delay interaction was
not significant.

The probability of reporting the target object can be derived
from the estimated parameters by computing target recall = 1
− (guessing + transpositions). We used this measure to calcu-
late the number of objects participants can access from mem-
ory. This measure, computed as target recall × set size, is often
referred to as an estimate of capacity, called K, in the context
of discrete-capacity models (Anderson et al., 2011; Cowan,
2001; Zhang & Luck, 2008). The K estimates produced by

Table 2 Results of the repeated measures ANOVAwith the variables set size and delay condition for Experiment 2

Measure Variables df1 df2 F p ηp
2

Mean deviation Set size 2.5 50.3 250.994 < .001 .926

Delay 1 20 64.783 < .001 .764

Set size × delay 4.3 87.2 11.770 < .001 .370

Standard deviation Set size 3.5 64.1 22.862 < .001 .533

Delay 1 20 1.039 .320 .049

Set size × delay 2.9 59.3 1.848 .149 .085

Guessing Set size 3.5 69.9 14.073 < .001 .413

Delay 1 20 13.623 .001 .405

Set size × delay 2.9 57.7 1.169 .329 .055

Transpositions Set size 3.3 66.5 28.196 < .001 .585

Delay 1 20 7.251 .014 .266

Set size × delay 2.5 49.8 .462 .675 .023

K Set size 2.3 46.5 67.276 < .001 .771

Delay 1 20 39.459 < .001 .664

Set size × delay 2.93 58.5 7.006 < .001 .259

K (after plateau) Set size 2 40 .140 .869 .007

Delay 1 20 23.115 < .001 .536

Set size × delay 2 40 1.921 .160 .088

Note. K = capacity, computed as the probability of recalling the target multiplied by set size
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this calculation are presented in Fig. 2f, and the ANOVA
results are presented in Table 2. When considering all condi-
tions, the ANOVA yielded significant effects of set size and

delay condition and a significant interaction between these
variables. This result is not surprising given that K increased
from set sizes 1–5 (see repeated contrast tests in Table 3),
consistent with the fact that for set sizes below capacity, the
formula underestimates the true capacity of the person. For
larger set sizes, the estimated K plateaued at a constant value,
as would be expected from a discrete-capacity theory. We
reran the ANOVA entering only set sizes 6–8, values for
which the K estimate was approximately flat. This analysis
yielded only a main effect of delay condition (see Table 2),
showing that increasing the time to use the recall cue increased
K by roughly 1 unit (no-delay, K = 3.06; delay, K = 3.94).

Discussion of experiments 1 and 2

In Experiments 1 and 2, we assessed the benefits of focusing
attention on one of the objects currently held in WM. Our
main empirical goal was to examine whether attention im-
proves performance in tasks assessing both the quantity and
quality of WM representations. We manipulated focused at-
tention in a cued recall task by delaying the opportunity to
recall the cued object’s feature: During the delay, participants
could focus attention exclusively on the target color but not
compare or select it from the color wheel. The recall error in
this delay condition was smaller than in a no-delay condition.
In addition to the delay, we also manipulated set size in
Experiment 2. Increasing set size impaired performance: The
deviation in reporting the color of the target was a function of
the number of objects in the memory set. Focusing attention
during the delay, however, reduced the error in reporting the
target as soon as more than one representation was being held
in WM (i.e., from set size 2 on).

These results show that focused attention does improve
performance in cued-recall tasks. But which memory param-
eter is improved by attention? To answer this question, we
submitted our data to mixture modeling to estimate target
precision, guessing rate, and transposition errors. This model-
ing showed that the probability of recalling the target object
increased in the delay condition, as compared with the no-
delay condition, at the expense of random guessing (Experi-
ments 1 and 2) and, to a lesser extent, of transposition errors
(Experiment 2). The precision in reporting the target's color,
however, was unaffected by our delay manipulation. These
findings converge with the results of Murray et al. (2013) and
with other experiments conducted in our own lab (Rerko,
Souza, & Oberauer, 2014b) but are in contrast with the results
of Williams et al. (2013). As was mentioned in the introduc-
tion, there are several methodological differences between the
present study and the one by Williams et al. that could possi-
bly explain this discrepant result. At present, it is unclear
which of these methodological differences could explain the
discrepant results between our study (and the one by Murray

Table 3 Repeated contrast tests following up on the main effect of set
size and the set size × delay interaction found in the ANOVA for
Experiment 2

Measure Levels F(1, 20) p ηp
2

Mean deviation Set size 1 vs. 2 25.888 < .001 .564

Set size 2 vs. 3 30.580 < .001 .605

Set size 3 vs. 4 114.357 < .001 .851

Set size 4 vs. 5 29.644 < .001 .597

Set size 5 vs. 6 61.833 < .001 .756

Set size 6 vs. 7 32.750 < .001 .621

Set size 7 vs. 8 31.928 < .001 .615

Set size 1 vs. 2 × delay 39.693 < .001 .665

Set size 2 vs. 3 × delay 11.190 .003 .359

Set size 3 vs. 4 × delay 4.514 .046 .184

Set size 4 vs. 5 × delay 0.005 .946 .000

Set size 5 vs. 6 × delay 0.976 .360 .042

Set size 6 vs. 7 × delay 3.913 .062 .164

Set size 7 vs. 8 × delay 0.014 .906 .001

Standard deviation Set size 1 vs. 2 18.126 < .001 .475

Set size 2 vs. 3 5.805 .026 .22

Set size 3 vs. 4 5.904 .025 .228

Set size 4 vs. 5 8.015 .010 .286

Set size 5 vs. 6 0.945 .343 .045

Set size 6 vs. 7 0.106 .748 .005

Set size 7 vs. 8 0.429 .520 .021

Guessing Set size 1 vs. 2 2.349 .141 .105

Set size 2 vs. 3 19.600 < .001 .495

Set size 3 vs. 4 5.273 .033 .209

Set size 4 vs. 5 0.401 .534 .020

Set size 5 vs. 6 2.692 .116 .119

Set size 6 vs. 7 0.376 .546 .018

Set size 7 vs. 8 0.431 .519 .021

Transpositions Set size 2 vs. 3 15.413 .001 .435

Set size 3 vs. 4 24.513 < .001 .551

Set size 4 vs. 5 1.429 .246 .067

Set size 5 vs. 6 5.491 .030 .215

Set size 6 vs. 7 1.526 .231 .071

Set size 7 vs. 8 1.130 .301 .053

K Set size 1 vs. 2 2,973.629 < .001 .993

Set size 2 vs. 3 365.537 < .001 .948

Set size 3 vs. 4 41.705 < .001 .676

Set size 4 vs. 5 44.584 < .001 .690

Set size 5 vs. 6 0.308 .585 .015

Set size 6 vs. 7 0.143 .709 .007

Set size 7 vs. 8 0.227 .639 .011

Note. K = capacity, computed as the probability of recalling the target
multiplied by set size

2088 Atten Percept Psychophys (2014) 76:2080–2102



et al., 2013) and the study of Williams et al. However, so far,
there are more studies pointing to selective effects on guessing
rate than studies showing an effect of focused attention on
precision.

One concern that might arise with our task relates to
differences in the presentation of the color wheel across con-
ditions: in the no-delay condition, the color wheel was
displayed at the very beginning of the trial (together with the
fixation cross), whereas in the delay condition, the color wheel

was shown at the very end. This means that the color wheel
was on-screen when the memory objects were displayed on
no-delay trials, but not on delay trials. Could the presence of
the color wheel during encoding and maintenance explain the
difference in performance between the no-delay and delay
conditions? We think this is very unlikely. First, we were not
the first to display the memory objects together with the color
wheel. In Experiment 4b of Zhang and Luck (2011), the color
wheel was on-screen when the memory objects were shown,

Fig. 2 a Deviation in reporting the color of the target object. b Predicted
deviation by the three-parameter mixture model. The deviation from the
data is presented in gray for comparison. Panels c to e show the estimated
parameters from the mixture model, c Standard deviation (SD): the larger
the SD, the less precise the representation of the reported object. d

Probability of guessing a random color. e Probability of a transposition
error—that is, reporting one of the nontarget colors from the memory
array. f Capacity, K. Error bars represent within-subjects 95 % confidence
intervals (Cousineau, 2005)
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and the estimated capacity in this experiment was not different
from that in the other experiments in that series (Experiments
1, 2, and 3). Second, in other experiments in our lab, we have
either (1) presented the color wheel together with the recall
cue on both delay and no-delay trials or (2) displayed the color
wheel throughout the trial in both delay and no-delay condi-
tions (Rerko et al., 2014b). In both cases, performance was
better in the delay than in the no-delay condition, replicating
the findings reported in the present experiments. Therefore,
we are confident that the performance differences between the
delay and no-delay conditions do reflect the benefit of focus-
ing attention in the cued representation during the delay.

Our results have implications for explanations of the retro-
cue benefit. First, unlike in Pertzov et al. (2013) and Williams
et al. (2013), our focusing benefits cannot be explained by
protection from time-based forgetting: In our delay condition,
the interval between memory array offset and test was longer
than in the no-delay condition. If time-based forgetting was
the explanation of this benefit, performance should have been
better in the no-delay than in delay condition (see alsoMurray
et al., 2013, for a similar control of time-based degradation).
Therefore, our results are inconsistent with an explanation of
the retro-cue benefit as protection from degradation (cf.
Matsukura et al., 2007).

Second, unlike in Murray et al. (2013), we did not show a
probe stimulus to be compared with a target object in memory,
thereby ruling out an explanation of the retro-cue benefit in
terms of protection from interference from a probe stimulus
presented at the same location as the memory object (cf.
Makovski et al., 2008).

Our results are consistent with other explanations of the
retro-cue benefit that have been proposed in the literature. One
such explanation is that by focusing attention on the target,
noncued objects are removed from WM, thereby freeing
capacity (e.g., Souza et al., 2014; Williams et al., 2013).
Another hypothesis is that the binding between an object
and its retrieval cue (namely, its position in the memory array)
is strengthened by focused attention without changing the
status of the noncued objects in memory. This is the bind-
ing-strengthening hypothesis (e.g., Rerko & Oberauer, 2013).
Yet a third possibility is that by focusing attention on the retro-
cued object, a labile representation of the memory object can
be stabilized and, therefore, survive the retrieval process or the
comparison with the test display. Unlike the more specific
probe interference hypothesis (Makovski & Jiang, 2007;
Makovski et al., 2008), this hypothesis states that memory
representations are susceptible to interference from the test
situation itself (Landman et al., 2003; Sligte, Scholte, &
Lamme, 2008).

All of these hypotheses are not necessarily inconsistent
with the structure of visual WM put forward by the two
mainstream capacity models. At the same time, capacity
models do not offer a ready explanation for the delay effect.

In the next section, we will examine how a focusing benefit
could emerge when one considers the assumptions of flexible-
resource and discrete-capacity models. To attain this aim, we
implemented several computational models of capacity limits
in WM in which we explored the role of focused attention.

Computational models of WM capacity

We will describe two families of models, one implementing
the assumptions of a resource model and the other
implementing the notion of discrete capacity, building on the
slot+averaging model by Zhang and Luck (2008). Our goal
was to create models that, akin to the three-parameter mixture
model, separate the distribution of response deviations in
terms of the precision of reporting the target, guessing rate,
and transposition rate but, unlike the pure mixture model,
explain the effects of memory set size on performance on
the basis of the theoretical assumptions of continuous and
discrete capacity.

We fitted each of these models to the data of Experiment 2.
We used a similar fitting routine as described for the mixture
model, and we examined the fit and the plausibility of the
parameter estimates from the model. The main purpose of this
work is to examine the mechanisms these models could con-
ceivably incorporate to account for the focusing benefit.

Flexible resource model

Bays and Husain (2008) have proposed a simple resource
model that relates the distribution of the resource over N
objects to the precision of these representations in memory.
This function follows a power law of the form, precision = Rα,
where R is the resource share of an object and α is a free
parameter. In this context, Bays and colleagues (Bays et al.,
2009; Bays & Husain, 2008) defined precision as the variabil-
ity in the observed response distribution. Because this vari-
ability is not separated into different components, as in the
mixture model, this rudimentary model cannot explain how
the flexible allocation of resources translates into the proba-
bility of reporting the target, the probability of a transposition
error, and the SD (which we refer to here as precision) in
reporting the target color.

To be able to derive predictions of a flexible resource
model to the level of detail achieved in the mixture model,
we implemented several computational versions of a re-
source model. We attempted to be faithful to what we
consider to be the core assumptions of this model (Bays
et al., 2009; Bays & Husain, 2008): (1) A constant amount
of a WM resource is distributed flexibly among the objects
to be represented; (2) the precision of an object is a func-
tion of its share of the resource; and (3) attention modulates
the resource distribution.
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In implementing the assumptions listed above, we were
confronted with two major challenges. First, we had to specify
how the resource distribution translates into the probability of
recalling the target, the probability of recalling a nontarget,
and the precision of recall by defining resource performance
functions for these three performance measures. Second, we
had to specify the number of separate resources determining
performance in our WM task. The resource model discussed
by Bays and Husain (2008) assumes a single resource deter-
mining the precision with which the to-be-recalled feature is
represented. Accurate recall, however, also depends on re-
trieving the target object, and as we have seen in the results
of the mixture model in Experiments 1 and 2, people occa-
sionally commit a transposition error, or they fail to recall any
object at all. In verbal WM, transposition errors tend to be
confusions of objects with close neighbors in the memory list:
The probability of recalling a nontarget decreases monotoni-
cally as the ordinal distance between the position of a nontar-
get and the position of the target in the memory list increases.
Some of us have recently shown that the same is true for
transposition errors in visualWM: The probability of recalling
a given nontarget declines monotonically with increasing
spatial distance of the nontarget from the target location in
the array (Rerko, Oberauer, & Lin, 2014). This fact raises the
possibility that transposition errors arise from limits in the
precision of representing the spatial positions of memory
objects. This idea has also been featured in the resource
literature. For example, Bays et al. (2009) suggested that
memory for the relevant feature and memory for the location
of an object in the memory array might both be imprecise and
draw on separate resources. Therefore, we considered model
versions with one resource determining the precision of the to-
be-recalled feature (here, color); and versions with two re-
sources, one for the relevant color feature and one determining
the precision of the object’s spatial location.

Table 4 summarizes the structure of the resourcemodels we
implemented. First, we implemented a model version (version
1) in which, at encoding, a single resource is evenly distrib-
uted between the N objects in the memory set, so that the
resource share of each object (Ri) equals 1/N. At the moment
of cuing, however, the resource is flexibly redistributed: An
extra share of the resource is given to the target of recall and
taken away from the nontargets.3 This extra share, which we
refer to here as resource boost, is a proportion (set by the free

parameter B) of the total resource share assigned to all non-
targets (Equation 2; Table 4).

The share of resource of each object determines its proba-
bility of being selected for recall. We assumed that the object
with the highest resource amount at the moment of recall is
selected for retrieval. This winner-takes-all selection process
is noisy; that is, the resource share assigned to each object
fluctuates randomly. The probability of each object having the
highest amount of the resource under conditions of noise is
expressed by the Boltzmann equation (Equation 5; Table 4). In
this equation, the probability of recalling an object over all
other objects in memory is a function of the object's share of
resource and a free temperature parameter (φ) that captures the
random fluctuation of resource amounts assigned to objects.
We also assumed that if none of the memory object’s resource
share exceeds a threshold (free parameter τ), then no object is
retrieved, and the person guesses at random. The probability
of guessing equals the probability that τ is larger than the
resource amount of any of the objects. We can therefore
simply include τ in the equation as if it were the resource
amount of an additional object (for a similar use of the
Boltzmann equation in the context of an interference model,
see Oberauer & Kliegl, 2006).

The object selected for retrieval4 (target or nontarget) is
reported with a certain precision, which is also a function of
that object’s share of the resource. We chose the sample-size
function (Palmer, 1990; Equation 6; Table 4) to relate the
share of resource to the precision of each object in memory.
The rationale of the sample-size function is to assume a
limited number of neurons available for coding for an object’s
attribute such as color; these neurons are the limited resource
that has to be shared among all objects in WM. The represen-
tation of that attribute by each neuron is noisy. The SD in
representing the object’s attribute jointly by all neurons in a
sample will be inversely proportional to the square-root of the
number n of neurons coding it. Because the total number of
neurons can be considered as a constant resource, we can
replace n by the proportional share of that resource, Ri,
assigned to each object i. Therefore, the SD is proportional
to the square-root of 1/Ri. Finally, the SD at set size 1 (i.e.,

3 One might question our choice to boost the target in both the no-delay
and delay conditions. Our reasoning was that this resource boost allows
the target representation to be selected over the competitors in memory.
This selection boost might be needed in both conditions and simply be
more effective in the delay condition, in which attention is focused on the
target for a longer period before retrieval. We also tested whether remov-
ing this boost in the no-delay condition improves the model fit; however,
fit was substantially reduced for all resource models under consideration.

4 The full model's probabilities are described as follows:

p θð Þ ¼ Pθϕ θ−θ; σθð Þ þ
X

i¼1

m

Pθ�i ϕ θ−θ�i ; σθ�i
� �þ Pτ

1

360

in whichbθ stands for the reported feature and θ and θi
* stand for the target

and each of the nontarget's features, respectively. P is the probability of
selecting each option—namely, target, nontarget (ranging from 1 to m
number of nontargets), and guessing (represented by τ)—andφ stands for
the von Mises, with its mean centered on the indicated object’s color, and
standard deviation σ of the target and non-target features in memory.
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when the entire resource is assigned to a single object) was
used as the scaling parameter.

In order to capture differences between delay conditions,
we assumed that with more time, more of the resource is
reallocated to the target and away from the nontargets (which
lose in precision). This is reflected in separate boost parame-
ters for the no-delay and the delay conditions.

In sum, as is shown in Table 4, version 1 has five free
parameters: two color boosts (BNo-Delay and BDelay); the tem-
perature (φ) parameter that modulates the distinctiveness of
objects in memory; a threshold to retrieve objects, which
determines the probability of guessing (τ); and precision at
set size 1 (σMin), which serves as a scaling parameter in the
sample-size function.

Table 4 also shows another set of models (versions 2 and
3), in which each object is represented with a share of two
resources: one for its color and one for its spatial position. This
allowed us to model variations in positional distinctiveness
between objects on the basis of spatial proximity. We assumed
that for both color and position, resources are evenly

distributed during encoding but, again, are reallocated at the
moment of cuing, such that the target of recall receives boosts
of both resources, expressed by two free parameters (color
boost, cB; position boost, pB; Equations 2 and 8 in Table 4).
As for version 1, we defined precision of color (and also of
position) as a function of the resource share (following the
sample-size function; Equations 6 and 9; see Table 4).

The probability of retrieving each object was modeled as
follows. Because objects were arranged on a virtual circle in
the memory array (and their position varied on a trial-by-trial
basis), we assumed that precision of spatial position (akin to
color precision) reflects the SD of a von Mises probability
distribution centered on the object’s true location (Li ). The
von Mises density of object i at the spatial location of the cue
and the target, LT, expresses the likelihood5 that object i has
been in LT in the memory display as a function of the distance

5 The von Mises density can be interpreted as the probability that a given
object was in each of an infinite number of locations, p(Lx|i).

Table 4 Structure of the resource models implemented

Model Implementation in the Computational Model

Assumptions Mechanism Parameters and Equations

One Resource (version 1)

Color resource divided over N objects Each object receives an equal resource share during
encoding

1ð Þ R1:N ¼ 1
N

Focused attention is used to prioritize the target
of recall

At retrieval, target receives a resource boost (an extra share
of resources defined by parameter B) which is shifted
away from the nontargets.

Delay conditions differ in the size of the resource boost

2ð Þ Extra ¼ 1− 1
N

� �
B

3ð Þ RTarget ¼ 1
N þ Extra

4ð Þ RNontargets ¼ 1
N −

Extra
N−1

Probability (P) of selecting the target over the
nontargets is set by its resource share and
noise in the system (φ)

Boltzmann equation;
τ = threshold to recall an object; otherwise, participant
guesses

5ð Þ Pi ¼ exp Riφð Þ
∑n

j¼1exp Rjφ
� �þ exp τφð Þ

Precision (σ) in reporting the target is defined
by the resource share of this object

Sample size function;
Precision (σMin) in set size 1 is the scaling parameter

6ð Þ σi ¼ σMinffiffiffi
Ri

p

Two Resources (versions 2 and 3)

Color resource divided over N objects Each object receives an equal share of the color resource 1ð Þ cR1:N ¼ 1
N

Position resource divided over N objects Each object receives an equal share of the position resource 7ð Þ pR1:N ¼ 1
N

Focused attention is used to prioritize the target
of recall

Resource boosts (cB and pB)

Version 2: Color boost Delay conditions differ in the size of the color boost (cB) 2ð Þ cExtra ¼ 1− 1
N

� �
cB

Version 3: Position boost Delay conditions differ in the size of the position boost (pB) 8ð Þ pExtra ¼ 1− 1
N

� �
pB

Precision in reporting the target color is set by
the color resource share of this object

Sample-size function;
Recall precision (SD, σMin) in set size 1 is the scaling
parameter

6ð Þ σi ¼ σMinffiffiffiffiffi
cRi

p

Precision in selecting the position of the target
is set by the position resource share of this
object

Sample-size function;
Recall precision (SD, ωMin) in set size 1 is the scaling
parameter

9ð Þ ωi ¼ ωMinffiffiffiffiffi
pRi

p

Probability (pR) of selecting the target over the
nontargets is a function of its position
resource

von Mises of each item at the target location with precision
ω;

The likelihood of each object being at the target location is
its probability of being recalled

(10) p(i|LT)=ϕ(Li−LT,ωi)

11ð Þ pRi ¼ p Li LTjð Þ
∑N

j¼1p Lj LTj� �

Note. Free parameters are printed in bold
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between the true location of object i (Li) and the target location
(LT).

We evaluate the likelihood, p(i|LT), of each object i being in
the target location (Equation 10, Table 4). We defined the
probability of an object being selected for retrieval as its
likelihood of being in location LT over the sum of likelihoods
of all objects being in that location (Equation 11). Finally, the
color of the object selected for retrieval was reported with the
SD determined by its share of color resource as for version 1.

We considered two options to capture the benefits of fo-
cusing attention during the delay condition. In version 2,
during the delay, an additional share of color resource is
shifted away from the nontargets to the target of recall. In
version 3, an additional share of position resource is shifted
away from the nontargets to the target. In versions 2 and 3, we
constrained the boost in the delay condition to be larger than
the boost in the no-delay condition to maximize the chance of
the model parameters converging on meaningful values.

In sum, models version 2 and 3 have five free parameters:
color boost (which in the case of version 2 is separated into
cBNo-Delay and cBDelay); position boost (which in the case of
version 3 is separated into pBNo-Delay and pBDelay); color
precision at set size 1 (σMin); and position precision at set size
1 (ωMin).

Model results and comparison

Table 5 shows the best-fitting parameters of each resource
model version and the model fit. Figure 3 presents the average
predicted performance for each set size and delay condition
obtained with the best-fitting parameters and estimates for
precision, guessing rate, and transposition errors derived from
these parameters. In Table 5, we highlighted the variable in
which the focusing benefit is assumed to arise below the
version’s number. The parameter allowed to vary between
delay conditions in each version showed the assumed differ-
ence in the expected direction (higher values for the delay than
for the no-delay condition). For version 1, guessing probabil-
ity was estimated to be close to zero for most participants
because the retrieval threshold τ was estimated to be close to
zero.

Figure 3a shows the mean deviation in reporting the target
color predicted by each model’s version and the data of
Experiment 2 for comparison (in gray). All model versions
predicted an increase in deviation as set size increased. For
version 1, the models' predictions captured well the perfor-
mance difference between the no-delay and delay conditions
but considerably overestimated the true response deviations
obtained in Experiment 2 in small set sizes and
underestimated it for larger set sizes. For versions 2 and 3,
the predicted deviation was close to the data in the no-delay
condition; however, the focusing benefits predicted were quite

small (version 2; focusing effect on the color boost) or absent
(version 3; focusing effect on the position boost).

Figure 3b shows the estimated color precision. For all
model versions, SD increased over set size, showing that the
model correctly predicts a reduction in precision as more
objects are retained in memory. Delay condition, by contrast,
had a modest effect on SD in version 1, a large effect in
version 2, and no effect in version 3. A difference in precision
between the no-delay and delay conditions is expected to arise
in versions 1 and 2 because, in these models, we allowed the
color resource boost to vary between delay conditions. In
version 3, however, differences between delay conditions
were constrained to other parameters not impacting color
precision. The magnitude of the color precision difference
was nevertheless small in version 1, probably because the
model estimated small boost values for both conditions (see
Table 5). For versions 2 and 3, one can also examine the
estimated position precision (shown in Fig. 3c). Position SD
also increased over set size, but this effect was reduced in the
delay condition in version 3 because different position boosts
were allowed between delay conditions.

Figure 3d presents the rate of transposition errors. In all
models, transpositions increased over set size. In version 1,
transpositions were lower in the delay condition than in the
no-delay condition. Given that the guessing rate was negligi-
ble across all set sizes in this model (data not shown), the
differences in transposition errors between conditions directly
reflect the difference in the probability of recalling the target
object. In versions 2 and 3, however, delay conditions did not
differ in transposition errors, and this is the reason why hardly
any performance differences were predicted between delay
conditions in these models.

Regarding model fit (BIC; see Table 5), version 2 had a
better fit than version 1. The difference between these models
was 1'124, which in terms of Bayes-factor represents 1.4 ×
10244. This result provides overwhelming support for the
models with two resources over a single-resource model.
When we compare the models with two resources with each
other, allowing the focusing benefit to arise in the color boost
(version 2) produced a better fit than allowing it to arise in the
position boost (version 3),ΔBIC = 160; Bayes-factor = 5.5 ×
1034. This results shows that in the case of representing the
objects with two resources, the color boosting should be
strongly favored as a mechanism of focused attention, in
comparison with position boosting.

In sum, our flexible-resource models relate the distribution
of a limited commodity (a single resource or two resources) to
the probability of retrieving objects from WM and the preci-
sion with which they are recalled. Our modeling showed that
the assumption of two independent resource performance
functions determining precision and probability of recall (ver-
sion 1) could capture the qualitative differences between delay
conditions in terms of mean deviation, and the delay effect
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was mostly in the estimates of probability of recall of the target
over the nontargets. This model, however, had a lower fit than
the models assuming two resources (versions 2 and 3). This
second class of models assumed a direct relation between the
distribution of resources and the probability of selecting a given
color feature (belonging either to the target or a nontarget).
These models better captured the observed average deviation in
reporting the target color, especially in the no-delay condition.
Nevertheless, predicted performance differences between the
two delay conditions hardly emerged. A hint of a benefit was
observed when we allowed the conditions to differ in the color
boost. However, the model attributed the delay benefit to
differences in the precision, contrary to what was found in the
mixture model. Differences in the probability of recall did not
emerge in versions 2 and 3. This is understandable for version
2, in which the delay affected only the distribution of the color
resource, but it requires some explanation for version 3, in
which delay was assumed to affect the distribution of the spatial
position resource. The reason why this did not translate into a
sizable delay effect on the probability of retrieving the target is
that increasing the precision of the position of one object
implies reducing the precision of all other objects: Therefore,
increases in precision of the target position increase the likeli-
hood that the target was in that location but also increase the
likelihood that the nontargets were at the position of the target
because their location information becomes less precise, there-
by abolishing any benefit that could be obtained from boosting
the representation of the target location.

Discrete-capacity model

The assumptions of the discrete-capacity account are formal-
ized in a computational model known as the slot+averaging

(SA) model (Zhang & Luck, 2008). According to this model,
each individual has a limited number K of slots available to
represent objects in WM. Each slot represents the object’s
feature with a fixed precision, expressed as the SD σSlot. An
object represented in a slot is recalled with probability, p = 1,
and an object not in a slot is recalled with p = 0. If an object is
probed that is not available in a slot, the person has to guess.
Therefore, the probability (p) of having the probed object in
memory is set by the individual’s number of slots (K) and the
N of objects to be stored. When the number of objects is lower
than the number of slots, multiple slots can be assigned to a
single object. This leads to an advantage, because the preci-
sion in reporting an object’s feature depends on the n of slots
(n ranging from 1 to K) assigned to represent that object’s
feature: σtarget = σSlot/sqrt(n).

6

The traditional implementation of the SA model does not
account for transposition errors. Recently, it has been shown
that the simple addition of a free parameter to account for the
probability of nontarget recalls to the SA model improves its
fit, as compared with a version without this parameter (van
den Berg, Awh, & Ma, 2014). In this modeling, there was no
theoretical explanation of why transposition errors occur. In
contrast, in our modeling approach, we explored how trans-
position errors could arise in a more theoretically driven
fashion. As for the resource model, our main goal was to
explore how the beneficial effects of focused attention could
emerge when the theoretical assumptions of fixed capacity are
considered.

Table 6 presents the structure of the SA models we imple-
mented. First, it presents a version in which we added to the

6 This rule is the same as the sample size function assumed in the resource
models we implemented. The only difference is regarding the granularity
in the distribution of the samples over objects (Zhang & Luck, 2008).

Table 5 Means and standard deviations (presented in parentheses) of the estimated parameters andmodel fit (BIC) in each version of the resourcemodel

Free Parameters Resource Models

One Resource Two Resources

Version 1 Version 2 Version 3
Color Boost Color Boost Position Boost

Color precision σMin 11.13 (2.15) 13.16 (3.15) 13.07 (3.22)

Position precision ωMin 19.93 (6.45) 20.65 (6.77)

Color boost cBNo-Delay 0.12 (0.08) 0.39 (0.31) 0.58 (0.33)

cBDelay 0.15 (0.11) 0.73 (0.33)

Position boost pBNo-Delay 0.54 (0.23) 0.46 (0.28)

pBDelay 0.54 (0.22)

Guessing threshold τ 0.02 (0.04)

Temperature φ 30.74 (25.81)

BIC 206'303 205'179 205'339

Note. BIC: Bayesian information criterion, BIC = −2 ln (Lmax) + k ln (n), in which Lmax refers to the likelihood of the best-fitting model given the data, k
refers to the number of free parameters, and n refers to the number of trials. Lower BIC values indicate better fit
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Fig. 3 Estimated variables from the resource models. Each column
displays one model version. In version 1, a single resource is shared
between objects, and the target receives an extra boost that varies between
delay conditions. In versions 2 and 3, each object is represented with two
resources: one for its color and one for its position. The target receives
extra boosts of each resource. Delay conditions are allowed to differ only

in the color boost provided to the target in version 2 or in the position
boost in version 3. a Predicted mean error in reporting the target color
obtained with the best-fitting parameters of each model. Data from
Experiment 2 are shown for comparison (in gray). b Estimated color
precision. c Estimated position precision. d Estimated probability of
transposition errors
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SA model a mechanism similar to that implemented in the
resource model to account for the focusing benefit: Namely, at
retrieval, the target is prioritized by allocating more of WM's
capacity to it. The difference between the implementation in
the resource model and the one in the discrete-capacity model
is regarding the granularity with which capacity is shifted to
the target: In the SA model, the target receives an additional
slot (which is moved from another object to the target),
whereas in the resource model, it receives a continuously
varying extra share of the resource. As is shown in Equations
2 and 3 (Table 6), we implemented this shifting by assuming
that if the target has initially n slots (from 0 to K−1), it will
receive an additional slot with a probability set by the free

parameter S. Shifting an extra slot to the target means that
either (1) the target will be represented with more precision
(for any n > 0), or (2) in case n = 0, the target that was not in
WM will be brought to WM. Akin to the resource model,
we assumed that prioritization of the target happens
both in the no-delay and the delay conditions, but it
might become more effective with more time, resulting
in a larger parameter S.

In sum, version 1 has four free parameters: K slots to
represent objects, the precision (σSlot) with which each slot
represents the object's color, and the probabilities of success in
shifting a slot to the target in the no-delay and delay conditions
(SNo-Delay and SDelay).

Table 6 Implementation of the fixed capacity models

Model Implementation in the Computational Model

Assumptions Mechanism Equation

One Discrete Capacity (version 1)

Fixed capacity to store objects in the memory array There are K slots to represent N objects in the memory
array

1ð Þ Slot proportion ¼ K
N

Focused attention is used to prioritize the target of recall During retrieval, target receives an extra slot with
probability of success set by S;

Delay conditions differ in the value of S

for all possible n of slots
assigned to that object:

(2) Pn+1=Pn×S
(3) Pn=Pn×(1−S)

Probability of retrieving the target is the probability that it has
at least one slot; otherwise, participant guesses

Target = 1 – guessing; guessing is set by the probability
that an object has 0 slots

If K < N,
Guessing = P0

4ð Þ P0 ¼ 1− K
N

� �� 1−Sð Þ
Precision in reporting the target's color is set by the n of slots
assigned to it

Sample size function;
The minimum object precision is the slot precision
(σSlot)

5ð Þ σi ¼ σSlotffiffiffiffiffiffiffiffiffi
nSlotsi

p

Two Discrete Capacities (versions 2 and 3)

Capacity to store colors is set by the number of color slots There are cK slots to represent N colors in the memory
array

1ð Þ cSlot proportion ¼ cK
N

Capacity to store positions is set by the number of position
slots

There are pK slots to represent N positions in the
memory array

6ð Þ pSlot proportion ¼ pK
N

Focused attention is used to prioritize the target of recall
Version 2: color shifting
Version 3: position shifting

At retrieval, target receives an extra slot with
probability of success set by cS (for color slots) and
pS (for position slots);

Delay conditions differ in cS
Delay conditions differ in pS

for all possible n of slots
assigned to that object:

(2) Pn+1=Pn×S
(3) Pn=Pn×(1−S)
For color slots S = cS;
For position slots, S = pS

Probability of selecting the target depends on:

(1) probability that the probed location is in memory pSlot proportion

(2) precision with which the target position was stored and
its relative probability of being at the probed location
relative to the nontargets

Position slot precision (ωSlot);
von Mises of each object at the target location
represents its likelihood of being retrieved

7ð Þ ωi ¼ ωSlotffiffiffiffiffiffiffiffiffi
nSlotsi

p
(8) p(i|LT)=ϕ(Li−LT,ωi)

9ð Þ pRi ¼ p Li LTjð Þ
∑N

j¼1p Lj LTj� �

(3) probability that the target has at least one color slot Guessing is set by the probability that an object has 0
color slots

If K < n,
Guessing = P0

(4) P0=P0×(1−cS)
Precision in reporting the target's color is set by the n of slots
assigned to it

Sample size function;
Color slot precision (σSlot)

5ð Þ σi ¼ σSlotffiffiffiffiffiffiffiffiffi
nSlotsi

p

Note. Free parameters are printed in bold.
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Next, we explored how this model could be extended to
include the possibility of transposition errors. Following the
suggestion of Rerko, Oberauer, and Lin (2014), we assumed
that not only the representation of an object's color is stored
with limited precision, but also the object’s location in space.
Table 6 shows two models (versions 2 and 3) in which
capacity to represent the object's color and position was lim-
ited by two free K parameters: one for color (cK) and one for
position (pK).7 Within each slot, color and position were
stored with a fixed precision (color, σSlot; position, ωSlot).
These assumptions are parallel to the ones added to the
resource model with two independent resources to repre-
sent an object’s color and position (i.e., resource model
versions 2 and 3).

At retrieval, the target is prioritized by shifting to it
an extra color and an extra position slot (see Equations
2 and 3, Table 6); these slots are removed from one of
the nontargets. The probabilities of success in shifting a
color slot (cS) and of shifting a position slot (pS) were
estimated independently. Again similar to the resource
model, we tested two alternatives to account for the
focusing benefit: The delay conditions differed either
in the probability of shifting color slots (version 2) or
in the probability of shifting position slots (version 3).

In versions 2 and 3, recall proceeded in three steps. First,
we determined the probability that the probed position was in
memory on the basis of the proportion of position slots
assigned to each object. Second, because the position infor-
mation stored in each slot is imprecise (and dependent on the n
slots representing it; see Equation 7 in Table 6), we weighted
the probability of having the target object position in a slot by
the probability that the position of this object would be con-
fused with the position of other objects held in memory. As in
the resource model, we took the von Mises density of object i
at the probed location (Equation 8 in Table 6) as its subjective
likelihood of being at the target location. Its probability of
being retrieved was computed as its likelihood of being at the
target location over the sum of the likelihoods of all objects
represented in position slots being at that location (Equation 9;
Table 6). Finally, the color of the object selected for retrieval
(target or nontarget) was reported with the precision set by the
number of color slots assigned to it.

In sum, model versions 2 and 3 have seven free parameters:
the number of color slots (cK) and position slots (pK) available
to represent objects, the color (σSlot) and position (ωSlot)
precision of each type of slot, the probability of shifting a
color slot to the target of retrieval (cS; which, in version 2, was
further split into cSNo-Delay and cSDelay), and the probability of

shifting a position slot to the target (pS; which, in version 3,
was further split into pSNo-Delay and pSDelay).

Model results and comparison

Table 7 shows the values of the best-fitting parameters and the
fit of each SA model. In Table 7, we indicated the param-
eter in which the focusing benefit was allowed to arise
below each version’s number. Figure 4 presents the
average predicted performance for each set size and
delay condition obtained with the best-fitting parameters
of SA models and estimates for precision, guessing rate,
and transposition rate.

As can be seen in Table 7, when delay conditions were
allowed to differ in the probability of success in shifting a
color slot (cS; versions 1 and 2), cS was higher in the delay
condition than in the no-delay condition; similarly, when
delay conditions were allowed to differ in the probability of
shifting position slots (pS; version 3), pS was higher in the
delay than in the no-delay condition. Moreover, in the models
assuming two capacities, pK was estimated to be much higher
than cK; however, positions were stored with less precision
than color.

Figure 4a presents the mean deviation in reporting the
target color predicted in each model version. In all versions,
the predicted mean deviation increased over set size, closely
resembling the data of Experiment 2. Versions 1 and 2 also
predicted a focusing benefit: Smaller deviations were predict-
ed for the delay than for the no-delay condition. These models
differ, however, in how well they predicted performance in
Experiment 2. In version 1, the mean deviation was
overestimated between set sizes 2–5 and underestimated in
set sizes 7 and 8. Version 2, on the other hand, predicted
deviations that closely resemble the data. Finally, version 3
was not able to predict any differences between delay condi-
tions, despite the fact that higher probabilities of shifting a
position slot were obtained for the delay than for the no-delay
condition (see Table 7).

Figure 4b shows the precision-by-set-size function estimat-
ed for the color feature. The difference in the probabilities of
shifting a color slot between delay conditions (versions 1 and
2) was reflected in a small reduction in SD for the delay
condition, as compared with the no-delay condition. For ver-
sions 2 and 3, we also estimated the precision of the spatial
position (shown in Fig. 4c), which, in turn, affected the
probability of transposition errors (Fig. 4d). As is shown in
Fig. 4c, position SD increased more sharply over set size than
did color SD, probably because the estimated capacity for pK
was larger than that for cK for most participants. The differ-
ence in the probabilities of shifting position slots between
delay conditions (version 3) yielded lower position SDs in
the delay condition, as compared with the no-delay condition.
As is shown in Fig. 4d, transposition errors also increased over

7 We also tested a version in which capacity for holding the color and the
location of an object was constrained by the same K. This model,
however, had a worse fit than the model not assuming transposition
errors.
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set size but were similar across delay conditions for version 2
and only slightly smaller in the delay condition in version 3.
Finally, Fig. 4e shows the probability of guessing. Guessing
increased over set size and was reduced in the delay condition,
as compared with the no-delay condition, in versions 1 and 2,
but not in version 3.

Regarding model fit, the models assuming two indepen-
dent capacities to store color and position (versions 2 and 3)
had a much better fit than the model assuming a single
capacity (version 1): ΔBIC = 1151.7, Bayes-factor = 1.2 ×
10250 for the comparison of versions 1 and 2; and ΔBIC =
861.7, Bayes-factor = 1.3 × 10187 for the comparison of
versions 1 and 3. When one compares versions 2 and 3,
allowing delay conditions to differ in the probability of
shifting color slots yielded a better fit than did allowing them
to differ in the probability of shifting position slots: ΔBIC =
290, Bayes factor = 9.46 × 1062.

In sum, we explored how the SA model could be expanded
to predict transposition errors and the focusing benefit. Sim-
ilarly to the resource models, we implemented a spatially
graded source of transposition errors that depended on a
separate capacity for storing the position of memory objects.
The inclusion of this source of errors overwhelmingly im-
proved the fit of the model to the data of Experiment 2, as
compared with the model without this assumption. Regarding
the focusing benefit, we also included an equivalent mecha-
nism to the one explored in the resource models: prioritization
of the target by shifting to it an extra share of WM’s capacity.
In the case of the SA model, this share was a fixed quanta or
slot. Our results showed that an increase in the probability of
shifting a color slot to the target in the delay condition can
make the model predict a delay benefit (see version 1). The
focusing benefit, however, only quantitatively resembled the

one observed in Experiment 2 when we also allowed the
model to store the positions with limited precision, such that
transposition errors could also occur (version 2). Similar to
what we observed for the resource model, boosting the target
by allocating more of the capacity to store positions (version
3) did not lead to the prediction of a focusing benefit, and the
reason is the same as in the resource model: Boosting the
target increases its positional precision but decreases the pre-
cision of the nontargets; these effects go on opposite direc-
tions, thereby cancelling each other.

General discussion

In the present study, we showed that focusing attention on
one of the objects currently held in WM improves the
probability of retrieving this object, but not the precision
with which its feature was recalled, suggesting indepen-
dence between these measures. We also implemented sev-
eral computational versions of the flexible-resource and the
discrete-capacity models. The main goal of the this model-
ing work was to explore plausible mechanisms giving rise
to the dissociation between recall probability and recall
precision and to explore how these mechanisms are affect-
ed by focused attention.

Modeling recall probability and precision

First of all, in order to dissociate precision and recall proba-
bility in the resource model, we had to specify how the
resource share of each object affects its probability of being
recalled and the precision with which it is recalled. We took
two approaches to deal with this problem: Either we used two

Table 7 Means and standard deviations (in parentheses) of the estimated parameters, and model fit (BIC) in each version of the slot+averaging model

Parameters Slot+Averaging Model

One Capacity Two Capacities

Version 1 Version 2 Version 3
Shifting Color Slots Shifting Color Slots Shifting Position Slots

Color K cK 2.12 (0.72) 2.08 (1.97) 2.00 (1.81)

Position K pK 5.43 (1.27) 5.23 (1.39)

Color precision σslot 16.45 (3.19) 16.31 (4.38) 16.52 (4.05)

Position precision ωslot 31.09 (13.64) 32.15 (12.50)

Shifting color slots cSNo-Delay 0.18 (0.16) 0.56 (0.20) 0.77 (0.12)

cSDelay 0.42 (0.17) 0.86 (0.12) 0.77 (0.12)

Shifting position slots pSNo-Delay 0.75 (0.38) 0.47 (0.40)

pSDelay 0.75 (0.38) 0.86 (0.34)

BIC 205'473 204'321 204'611

Note. BIC: Bayesian information criterion, BIC = −2 ln (Lmax) + k ln (n), in which Lmax refers to the likelihood of the best-fitting model given the data, k
refers to the number of free parameters, and n refers to the number of trials. Lower BIC values indicate better fit
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Fig. 4 Estimated variables from the slot+averaging models. Each col-
umn displays one model version. In version 1, only capacity to maintain
colors in memory is limited. In versions 2 and 3, storage of the color and
the position of objects are limited by different capacities (i.e., separate
slots for colors and positions). In all models, the target of recall is
prioritized by shifting to it an extra slot. In versions 1 and 2, delay
conditions are allowed to differ in the probability of shifting color slots;

in version 3, delay conditions differ in the probability of shifting position
slots. a Mean error in reporting the target color predicted with the best-
fitting parameters of each model. Data from Experiment 2 are presented
for comparison (in gray). b Estimated color precision. c Estimated posi-
tion precision. d Estimated probability of transposition errors. e Estimated
probability of guessing
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resource performance functions, or we had the model repre-
sent position and color with separate and independent re-
sources. In the latter case, the probability of recalling an object
is a function of the precision with which an object is remem-
bered to be in the probed location.

In contrast to the resource model, the dissociation
between recall probability and precision is already part
of the structure of the SA model: On the one hand, the
probability of an object being assigned at least one slot
is the probability that it will be recalled; the precision
of recall, on the other hand, depends on the slot preci-
sion and the n of slots representing that object. How-
ever, this model could not predict transposition errors.
To include this feature, we also assumed that color and
position are represented separately, and akin to the
resource model, we let the probability of confusing
memory objects depend on the precision with which
an object is remembered to be in the probed location.

Our modeling showed that in order to better reproduce
the data from Experiment 2, both the flexible-resource
and the discrete-capacity models had to incorporate as-
sumptions regarding the precision in storing the color
and the precision in storing the position of an object
(two resource versions or two discrete capacity versions).
This result echoes recent reports providing evidence for
three characteristics of visual WM. First, when multiple
features of a single WM object have to be reported, the
errors in reporting each feature are uncorrelated (Bays,
Wu, & Husain, 2011; Fougnie & Alvarez, 2011). Second,
a large proportion of errors in visual WM tasks comprise
nontarget recalls (Bays et al., 2009; Bays, Gorgoraptis,
et al., 2011; Fougnie et al., 2010; Gorgoraptis et al.,
2011), and the inclusion of transposition errors improves
model fit no matter the nature of capacity limitations
considered (van den Berg et al., 2014). Third, nontarget
recalls tend to be confusions with objects spatially close
to the target (Emrich & Ferber, 2012; Rerko, Oberauer,
& Lin, 2014). Our results corroborate these findings and
offer a way of incorporating them into extant models by
showing that the storage of position information can be
modeled in the same manner as the storage of the color
feature of an object.

Modeling the focusing benefit

Our second goal was to explore ways in which a resource
model or a slot model could explain the focusing benefit.
These models can predict the beneficial effect of a delay
between cue and test by assuming that relevant information
(namely, the target of recall) is prioritized and that this process
becomes more efficient over time. In both flexible-resource
and discrete-capacity models, this was reflected in a larger or
more probable reassignment of WM’s limited capacity to the

target in the delay condition, as compared with the no-delay
condition: In the case of the flexible-resource models, the
target received a varying continuous extra share of resources,
whereas in the discrete capacity model, the extra share was
fixed to one slot, but the probability of receiving this slot
increased over time.

We explored which type of target boosting would
give rise to our focusing benefits: extra shares of ca-
pacity to maintain colors or positions. The answer
seems to lie in a greater prioritization of the color
feature. Shifting more of the color resource, or an addi-
tional color slot, to the target improved performance.
Whereas version 2 of the resource model underestimated
the difference between delay conditions, the SA model
version 2 reproduced the delay benefit in Experiment 2,
not just qualitatively, but also quantitatively.

Theoretical implications

The aim of our modeling work was to explore what
mechanisms need to be added to flexible-resource
models or to discrete-slot models to enable them to
account for the detailed pattern of data from our exper-
iments. In doing so, we did our best to incorporate
theoretical ideas raised by proponents of these models,
such as the notion of a separate resource for spatial
precision (Bays et al., 2009) and the notion of shifting
resources to a focused object (Bays et al., 2011). This
endeavor was reasonably successful, but are the mecha-
nisms needed to achieve this success theoretically plau-
sible? There are reasons to question that they are, and
these reasons point to fundamental limitations of both
flexible-resource and discrete-slot models.

Both kinds of models explain the delay benefit by
assuming that part of the limited capacity is shifted to
the cued object during the retention interval. In the
flexible-resource model, this is a continuously varying
share of the resource, and in the discrete-slot model,
this is a single slot. In the slot model, this could mean
that an object that has not been represented in a slot
before is now represented in a slot. According to the
original SA model, an object not represented in a slot is
forgotten for good. We need to wonder how an object
not represented in WM before the cue can be represent-
ed after the cue. Where does the information about that
object come from, given that it did not exist in WM
before the cue? The same problem arises in both kinds
of models, if the prioritized object was in WM and it
received a resource boost or an extra slot. This would
lead to an increase in the precision of its representation
in memory. Increasing the precision means increasing
the information retained about an object. Where does
that information come from?
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If the information in WM is the only information available
to the cognitive system for recalling a tested object’s feature,
the assumption that performance can be improved by shifting
extra capacity to it during the retention interval is absurd. To
escape theoretical absurdity, these models will have to be
augmented by assumptions about additional sources of infor-
mation that could be available to WM during the retention
interval. One possibility is that focusing attention on a cued
object before the test enables salvaging information from a
fragile high-capacity memory system (Landman et al., 2003;
Pinto, Sligte, Shapiro, & Lamme, 2013; Sligte et al., 2008)
that is abolished by the test display. Another possibility is that
focusing enables retrieval of information from long-term
memory that, for some reason, is not available at the time of
test (Brady, Konkle, & Alvarez, 2011). Either route implies
that the models will have to become substantially more com-
plex, adding a second memory store in addition to the
resource-limited or slot-limited WM.
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