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Abstract Direct ratio scaling (e.g., magnitude estimation;
Stevens, 1956, American Journal of Psychology) is a widely
used approach in psychophysics resting on the assumption
that participants are able to refer to sensations with numbers
that are valid on a ratio scale. Only recently, the neces-
sary conditions of commutativity and multiplicativity have
been formulated (Narens, 1996, Journal of Mathematical
Psychology) and tested empirically, e.g., for the sensation
of loudness. The present investigation evaluated these prop-
erties for the ratio production of pitch intervals. Musically
trained (n = 10) and untrained (n = 11) participants
adjusted intervals defined by two ascending pure-tone fre-
quencies to given fractions (1/3, 1/2, 2/3), starting either
from a 12 or 17-semitone standard pitch interval. The results
show that the axioms of commutativity and multiplicativ-
ity held for most of the participants, irrespective of musical
training. Furthermore, all participants produced larger fre-
quency intervals in response to larger ratio numbers used in
the instructions (monotonicity), but only musically trained
participants were sensitive to the size of the standard interval
(thus producing strictly increasing magnitudes). Overall, the
results indicate that pitch intervals are ratio-scalable. How-
ever, restrictions must be made, especially for non-musical
listeners, and when an octave is exceeded.

Keywords Direct scaling · Ratio production · Pitch ·
Commutativity · Multiplicativity · Monotonicity

F. Kattner (�) · W. Ellermeier
Technische Universität Darmstadt, Darmstadt, Germany
e-mail: kattner@psychologie.tu-darmstadt.de

F. Kattner
Institute of Psychology, Technische Universität Darmstadt,
Alexanderstr. 10, 64283 Darmstadt, Germany

The issue of whether human sensations can be measured
directly by asking the participant to assign numbers to sen-
sations has a long history (e.g., Merkel 1888; Richardson
1929; Stevens 1956). Since the 1970s, direct scaling (e.g.,
magnitude or ratio estimation) has become one of the most
widely used method of scaling in psychophysics (Stevens
1975; Gescheider 1997). In typical applications of direct
scaling, participants are asked either to assign numerals
to magnitudes of sensations (magnitude estimation), or to
adjust the intensity of a stimulus corresponding to a given
numeral (magnitude production; see, Stevens 1971). The
methods of magnitude estimation and magnitude production
have produced a large amount of data with various stim-
ulus modalities showing that the magnitude of a sensation
ψ(s) can be described as a power function of the stimu-
lus intensity s: ψ(s) = asb, with a > 0 and b > 0
(Stevens 1975). However, as direct numerical scaling of
sensations rests on the untested assumption that the numer-
ical judgments made are multiplicatively related to the
sensation magnitudes they are to describe, the validity of
these scaling methods has been doubted (e.g., McKenna
1985; Parker & Schneider 1974; Shepard 1981). That is,
even though Stevens (1946) himself distinguished between
different scale types (e.g., ordinal, interval or ratio),
psychophysicists have rarely tested whether participants are
actually capable of processing sensation magnitudes on a
ratio scale.

Only recently, and four decades after Stevens’ proposal,
did Narens (1996) formulate a comprehensive axiomatic
theory, defining the fundamental conditions (axioms) that
are inherent in the procedure of direct ratio scaling. In his
‘behavioral axiomatization’, an empirically testable system
of axioms is provided distinguishing the numerals as used
by the participant (behavior) from the mathematical num-
bers characterizing the sensations elicited by the physical
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intensity of the stimuli. Following Narens (1996) termi-
nology, the participant in a direct magnitude production
experiment produces a stimulus x that is perceived as being
p times as intense as a standard stimulus t (in line with
Narens (1996) terminology, ‘numerals’, i.e. number words,
are written in boldface throughout this article to distinguish
them from ‘true’ numbers). The participant’s behavior can
thus be formalized as (x, p, t) ∈ E; with the triple refer-
ring to a ratio production trial, and E referring to the set
of all possible ratio productions (the triple is equally valid
for magnitude estimation experiments where participants
respond with the numeral p).

Narens (1996) showed that the numerals as used by the
participant are valid on a ratio scale only if the magni-
tude adjustments (or estimates) made by the participant
meet the testable commutativity property (and a number
of technical side conditions, including monotonicity; see
below). Commutativity holds if the order of successive mag-
nitude productions (e.g., first doubling and then tripling
the loudness of a standard tone vs. first tripling and then
doubling the loudness) is irrelevant for the outcome of the
adjustments, and it can be formalized as follows:

If (x, p, t) ∈ E, (z, q, x) ∈ E, (y, q, t) ∈ E, (1)

and (w, p, y) ∈ E, then z ∼ w.

That is, a participant is adjusting a stimulus x that appears
to be p times as intense as the standard t , and then producing
a stimulus z that is q times as intense as the outcome of the
first adjustment x. Equation 1 states that the same intensities
should result after the second adjustments (z ∼ w) if the
adjustments were made in the opposite order (first q and
then p).

In addition, the numerals p can be interpreted as ‘true’
mathematical numbers (and as representing the correspond-
ing sensation magnitudes) only if the stronger multiplicativ-
ity property holds (Narens 1996):

If (x, p, t) ∈ E, and (z, q, x) ∈ E, and r = pq (2)

then (z, r, t) ∈ E.

Multiplicativity requires that two successive adjustments
(e.g, 2 × 3× as loud) match with a single adjustment (e.g.,
6× as loud) if the number corresponding to the numeral in
the single adjustment equals the product of the respective
numbers in the successive adjustments. If both commutativ-
ity and multiplicativity hold, then a ratio scale is available
directly by using the numbers corresponding to the numerals
at face value: ψ(x) = pψ(t).

Testing these axioms for loudness production with 1000-
Hz tones and ratio production factors of p = 2 and q = 3,

Ellermeier and Faulhammer (2000) found that most adjust-
ments were consistent with the commutativity property,
but not with the multiplicativity property. Zimmer (2005)
reported very similar results for fractionations of loudness
sensations (p < 1). According to Narens (1996) axiomati-
zation, these results indicate that loudness productions are
valid on a ratio scale, but the numerals as used by the par-
ticipants may not be interpreted as mathematical numbers
(cf., Steingrimsson & Luce 2007), or that the actual sensa-
tion scale is not yet known. An analogous pattern of results
has been obtained with brightness productions (Peißner
1999), showing that the multiplicativity axiom is violated
in another modality. Moreover, Augustin and Maier (2008)
recently evaluated the axioms of commutativity and multi-
plicativity (and monotonicity; see below) in the ratio pro-
duction of area. Again, their results showed that successive
area productions met the commutativity property, whereas
most of the adjustments significantly violated multiplica-
tivity. Taken together, there is evidence that magnitude
productions of loudness, brightness, and area are valid on a
ratio scale. However, it turned out to be difficult to derive
the exact function that relates the numerals used by the
participants to mathematical numbers (see, Steingrimsson
& Luce 2007; Zimmer 2005). The present study is an
attempt to test the axioms of ratio production with a differ-
ent auditory sensation that may potentially be ratio-scalable
with mathematically interpretable numeric values, namely
the pitch of pure tones (e.g., due to the usage of certain
numerical pitch ratios in musical intervals).

Pitch has been defined as the auditory attribute accord-
ing to which sounds may be ordered from low to high,
with high-frequency sounds typically being associated with
higher pitch (ANSI 1973). However, such a monotoni-
cally increasing function of frequency may only apply to
the pitch of pure tones (Stevens and Volkman 1940; Beck
1962), but not to the pitch of complex tones. The pitch
of complex tones is best described by a two-dimensional
model that distinguishes pitch height and tone chroma
(e.g., Shepard 1964; Idson & Massaro 1978; Krumhansl &
Shepard 1979), with pitch height referring to the frequency-
dependent ordering of sounds (Stevens and Volkman 1940;
Beck 1962), and tone chroma accounting for the enhanced
similarity of tones that are separated by an octave (fre-
quency relation of 1:2). That is, the pitch of a complex
tone is affected by both the frequency and the periodicity
of the tone (see Plack & Oxenham 2005; Plomp 1967). In
a similar vein, others suggested that pitch is a mixture of
(a) a ‘prothetic’ continuum (quantitative sensations) yield-
ing psychophysical power functions of stimulus intensity
(e.g., frequency) and (b) a more qualitative ‘metathetic’ con-
tinuum accounting, for instance, for octave equivalences
(Stevens 1946, 1957; Stevens & Galanter 1957, arguing that
‘prothetic’ and ‘metathetic’ continua differ with regard to
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several functional criteria, e.g. the size of just noticeable
differences, time-order errors, or hysteresis effects). In order
to avoid the two-dimensionality of pitch, the present investi-
gation of ratio-scaling properties of pitch perception focuses
on pure tones, with spectral and periodicity components
being identical.

The category labels associated with musical intervals
(e.g., a major third or a perfect fifth) imply a pitch model
that assumes a logarithmic function of frequency. How-
ever, early efforts of direct pitch scaling cast doubt into
such a simple logarithmic relation between pitch and fre-
quency (e.g., Stevens et al. 1937; Stevens & Volkman 1940).
In typical direct-scaling approaches to study pitch percep-
tion, listeners are either asked to adjust the frequency of
a comparison tone until it appears to be half as high as
the standard tone (method of fractionation; Stevens et al.
1937), or to adjust frequency intervals corresponding to
‘equal-sense-distances’ (Stevens and Volkman 1940). Alter-
natively, magnitude estimates have been obtained by asking
the participants to assign numerals to frequency intervals
(e.g., Beck & Shaw 1961, 1962). These methods were
used, for instance, to derive the mel-scale of pitch height,
which describes a roughly logarithmic relation between
pitch and frequency with a 1000 Hz pure tone, 40 dB above
threshold, being defined as 1000 mels (e.g., Siegel 1964;
Stevens & Volkman 1940; Stevens & Galanter 1957, but
see Painton et al. 1977). Supporting the validity of direct
numerical scaling, Parker and Schneider (1974) demon-
strated that similar representations of pitch magnitudes (i.e.,
in line with the mel scale) can be obtained with non-metric
scaling techniques. Others, however, questioned the reliabil-
ity of direct pitch judgments (e.g., Rasch & Plomp 1999).
Since there have been no attempts so far to address the
problem from the perspective of representational measure-
ment theory, the fundamental axioms of direct ratio scaling
were evaluated for the pitch of pure tones in the present
study.

As the sensitivity to relations between pitches (pitch
intervals) is fundamental to musical experience, we decided
to investigate the fractionation of pitch intervals. Particu-
larly, fractions of pitch intervals were obtained by using
a generalized form of the ratio production procedure (as
introduced by Luce 2002, 2004). In a generalized ratio pro-
duction task, participants match an interval between y and
x (i.e., by adjusting x) to a certain proportion p of a stan-
dard interval from y to t , that is, they set x to a certain
proportion p of the interval from y to t (Luce’s terminology:
x := t◦py). This procedure generalizes typical ratio produc-
tion (Stevens 1957) which implicitly assumes a reference of
y = 0 (such as, e.g., an absolute threshold in the case of
loudness). As the reference on the pitch continuum may be
less obvious, the generalized procedure appears to be appro-
priate for the purpose of pitch scaling. Like in a standard

ratio production experiment, a set of pitch-interval adjust-
ments can also be used to derive a scale of pitch magnitudes
(in fact, simple pitch adjustments would just be a special
case of pitch-interval adjustments; Luce (2002)). For the
sake of convenience, we will adhere to Narens (1996) termi-
nology in this article, defining generalized ratio productions
as (x, p, t − y) ∈ E, where the participant is adjusting x to
the ratio p of the standard interval from y to t .

Another property that is inherent in ratio production
measurements and may be relevant to the scaling of pitch
intervals is the monotonicity axiom assuming the order-
ing of numerals to correspond to the usual ordering of
numbers (see Augustin 2006; Narens 1996, p. 114, Axiom
3.1). Empirically, this property means that the order of
two (or more) ratio productions with the same standard
but different production factors should preserve the order
of the mathematical numbers corresponding to the pro-
duction factors (e.g., half a pitch interval should always
be less than two thirds of the same pitch interval). With
regard to ‘generalized-ratio-production’ experiments, it can
be formalized as follows:

If (x, p, t − y) ∈ E and (z, q, t − y) ∈ E, then p > q ⇔ x � z, (3)

with > referring to a numerical order, and the � sign
denoting an ordering of empirical adjustments. However,
the monotonicity property also implies that magnitude pro-
ductions correspond to the order of different standards
(compare the assumption of magnitudes to behave in a
strictly increasing manner; Narens 1996, p. 114, Axiom
2.5). That is, two ratio productions with identical produc-
tion factors but based on different standard intervals t − y

and s − y should preserve the order of the magnitudes (fre-
quency differences) of the standards (e.g., a given fraction
of an octave should be smaller than the same fraction of an
octave-exceeding pitch interval):

If (x, p, t −y) ∈ E and (z, p, s −y) ∈ E, then t � s ⇔ x � z. (4a)

In principle, in generalized ratio production experiments,
the size of the standard interval can also be altered by chang-
ing the magnitude of the lower reference y. Actually, the
present investigation contains a manipulation of the lower
reference of the standard interval (in order to test whether
participants are capable of using variable pitch references;
see below). The monotonicity property with regard to the
order of the standards can then be assumed if Eq. 4b holds:

If (x, p, t − y) ∈ E and (z, p, t − w) ∈ E, then y � w ⇔ x � z.

(4b)
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Both types of monotonicity (Eqs. 3 and 4b) were tested
empirically for generalized pitch productions in the present
study.

We expected that the fractionations of intervals within an
octave might be different from the adjustments of intervals
larger than an octave as the latter ones are extremely rare
in musical melodies (Russo and Thompson 2005). There-
fore, and to control for the effects of tone chroma on the
perception of pitch intervals, fractionations of pitch inter-
vals were obtained with two different standard intervals: an
octave interval (12 semitones between the musical notes F4
and F5; Young 1939) and a larger pitch interval (17 semi-
tones; C4 to F5). Previous studies showed that particularly
the perceived size of pitch intervals up to an octave depends
on musical training. For instance, the estimates of pitch
intervals made by musically trained participants (on a scale
ranging from 1 to 100) were more differentiated and closer
to a logarithmic function of (fundamental) frequency than
those made by musically untrained participants (Russo and
Thompson 2005). For intervals larger than an octave, differ-
ences between musically trained and untrained participants
diminished. Therefore, we decided to separately evaluate
the fundamental axioms of ratio scaling in pitch adjustments
for musically experienced and unexperienced participants
within and beyond the frequency range of an octave.

Method

Participants

Twenty-one participants (11 female) were recruited for
individual testing. Four of them were members of the
psychoacoustics laboratory, the remainder primarily psy-
chology students. Ages ranged between 19 and 55 (M =
30.0; SD = 9.0) years. Ten participants (5 female), report-
ing more than 7 years of musical instruction and presently
continuing musical activity were categorized as ‘musicians’
or ‘musically trained participants’. The remaining 11 musi-
cally untrained participants will be referred to as the ‘non-
musicians’ group. All participants had normal hearing with
thresholds not exceeding 20 dB with respect to the audio-
metric reference (ISO 1998) in the frequency range between
125 and 8000 Hz.

Stimuli and apparatus

445 pure sine tones for all integer frequencies between 259
Hz and 703 Hz were generated digitally with a sampling
rate of 44.1 kHz. Each tone had a duration of 250 ms includ-
ing 20-ms cosine-shaped rise and decay ramps. The signals
were D/A converted by an external sound card (RME mul-
tiface II), passed through a Behringer HA 8000 Powerplay

PRO-8 headphone amplifier and played back diotically with
Beyerdynamics DT 990 PRO (250 Ohm) headphones. The
sounds were attenuated to comfortable levels corresponding
to approx. 70 dB SPL. Since both the frequency response of
the headphone, and the equal-loudness contours at this level
are relatively flat in the frequency range studied, no salient
loudness differences were expected (Fletcher and Munson
1933).

The experiment was conducted in a single-walled sound-
attenuated listening room (International Acoustics Com-
pany). Visual instructions were displayed on a 19” TFT
monitor. The participants used a standard keyboard (Cherry)
for the adjustments. Stimulus presentation and response
registration was programmed in MATLAB utilizing the
Psychophysics Toolbox extensions (Brainard 1997; Pelli
1997).

Procedure

Each participant was tested in three experimental ses-
sions. In each session, the participant completed 50 pitch-
adjustments trials. There was a short break after 30 trials
in each session. The first session started with an additional
training block consisting of 10 adjustments that were not
included in the analysis.

In each trial (x, p, t − y), two ascending pitch intervals
(a lower tone being followed by a higher tone) were pre-
sented successively to the participant via headphones. The
first pair of tones defined the standard interval (frequencies
fy and ft ), and the second pair was the comparison inter-
val (fy and fx ). The two tones of an interval were separated
by a silent gap of 450 ms, and the two intervals were sepa-
rated by a 750-ms gap (see Fig. 1 for an illustration of the
procedure; c.f. Steingrimsson & Luce 2005, p. 312). The
participants’ task was to adjust the second tone in the com-
parison interval to a frequency that makes the subjective

Time

Frequency f

y t y x

Fig. 1 Illustration of the ‘generalized ratio production’ procedure,
applied to the production of pitch intervals, with x to be adjusted to a
subjective fraction p of the interval from y to t



2512 Atten Percept Psychophys (2014) 76:2508–2521

interval from fy to fx stand in the proportion p to the stan-
dard interval. In each trial, the value of the fraction p (1/3,
1/2 or 2/3) was shown on the screen, together with a short
text instruction and a graphical illustration representing the
pitches of the four tones (at target state) as horizontal bars.
Participants were explicitly requested not to adjust the loud-
ness but the pitch height of the tone. At the beginning of
each trial, the frequency of the to-be-adjusted tone fx was
chosen randomly from a uniform distribution of frequen-
cies between fy and ft . The participants could decrease or
increase fx by pressing the left or right cursor key, respec-
tively. The resulting frequency increment or decrement of
fx was determined by a logarithmic function of the cur-
rent frequency: �fx = (10 · (log(fx/262) + 1)Hz. The
adjustments could be accelerated by pressing the “Shift” key
together with the respective cursor key (in that case, the fre-
quency increment �fx was multiplied by 10). After each
key press, both pitch intervals were played again with fx

having changed in frequency. The participants were encour-
aged to repeat the adjustments until they were satisfied with
the frequency ratio. There was no time limit to the task. An
adjustment was confirmed by pressing the “Enter” key. The
final frequency adjustment was recorded, and the next trial
started after a 1-s delay.

There were ten different adjustment conditions. The stan-
dard was either a 12-semitone interval (fy = 349, ft = 699
Hz; corresponding to the octave from F4 to F5 on a stan-
dard twelve-tone equally-tempered chromatic scale) or a
17-semitone interval (fy = 262, ft = 699 Hz; C4 to
F5).1 For both standard intervals, the participants adjusted a
comparison interval that appeared to be 1/3, 1/2 or 2/3 as
large as the standard. In addition, there were two successive
adjustments in which 2/3 or 1/2 of a previously fractionated
interval (1/2 or 2/3 of the standard interval, respectively)
had to be produced. In line with Narens (1996), the notation
p•q is used for two concatenated adjustments p and q: First,
fx is adjusted with respect to the subjective ratio p of the
standard interval from fy to ft , and then that interval from
fy to fx serves as the standard interval in the successive
adjustment trial in which the comparison tone is adjusted to
the subjective ratio q (see Eqs. 1 and 2). In each of the three
sessions, the participants completed 5 blocks consisting of

1We decided to manipulate the frequency of the lower reference of the
standard fy rather than the upper reference ft to compare the adjust-
ments between two different standards. This was done in order to direct
attention to the fact that the sizes of standard intervals varied. If the
lower reference would have been constant in all adjustment trials, e.g.
349 Hz, then participants might have learned to ignore the lower ref-
erence. By varying the lower reference, it is possible to test whether
participants are adjusting fx with respect to ft (indicating that partic-
ipants use a constant, octave-dependent lower pitch reference fy ) or
whether they refer to a variable reference as defined by the standard
frequency intervals.

the ten different adjustments conditions, thus accumulat-
ing 15 trials per condition. The order of the adjustments
within each block was randomized (of course, with single
adjustments being made prior to successive adjustments).

Results

Quality of pitch-interval adjustments

The quality of the adjustments may be evaluated based on
some descriptive statistics. For each participant, standard
deviations were computed for the fifteen repeated frequency
adjustments within each condition. The mean standard devi-
ation was 47.2 Hz (ranging between SD = 3.7 Hz for
participant MH and SD = 79.2 Hz for participant CL).
Variability was slightly smaller with the octave standard
(SD = 46.3 Hz) than with the 17-semitone standard (SD =
52.6 Hz).

On average, the participants made M = 11.8 (SD =
5.3) key presses per adjustment trial before confirming the
adjusted frequency (ranging between an average of 5.1 and
26.5 key presses for participants DS and XS, respectively).
They used M = 5.8 fine steps of frequency adjustments
per trial (ranging between 0.68 and 15.6 for participants DS
and JB, respectively). In only 10.7 % of all trials, did par-
ticipants not make any fine adjustments of frequency. There
were M = 12.4 (7.0 fine adjustments) key presses per trial
in session 1, M = 11.2 (5.8 fine adjustments) in session 2,
and M = 11.6 (6.1 fine adjustments) in session 3.

Pitch adjustments of musicians and non-musicians

Figure 2 illustrates the mean adjustments of fx (Hz) per
fractionation condition and standard interval separately for
musically trained and untrained participants. As the distri-
butions of our estimates are unknown, non-parametric tests
have been used predominantly for statistical evaluation in
the present paper. However, we conducted an additional
analysis of variance in order to test for possible interactions
between Numerals, Standards, and Musical Training.

A 3 (Numeral: 1/3, 1/2, 2/3) × 2 (Standard: 12
and 17 semitones) × 2 (Musical Training: trained and
untrained) mixed-effects analysis of variance (Type II,
Huynh-Feldt corrections applied) on the single adjust-
ments (unconnected points above the arrows in Fig. 2)
with repeated measurements on the factors Numeral and
Standard revealed a significant main effect of Numeral,
F(2, 38) = 218.94; p < .001; η2

generalized = 0.64
(Huynh-Feldt ε = 0.87), and a main effect of Standard,
F(1, 19) = 46.45; p < .001; η2 = 0.14, confirming that
the adjustments were sensitive both to the numerals in the
fractionation instructions and to the extent of the standard
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pitch interval. There was also a significant Numeral × Stan-
dard interaction, F(2, 38) = 12.67; p < .001; η2 = 0.03
(Huynh-Feldt ε = 0.79). In addition, there was a main effect
of Musical Training, F(1, 19) = 5.38; p = .03; η2 = 0.17,
and a significant interaction between Musical Training
and Standard, F(1, 19) = 28.37; p < .001; η2 = 0.09,
indicating that differences between musically trained
and untrained participants were more prominent with
the 17-semitone standard interval than with the octave
standard interval (compare Fig. 2). There was no sig-
nificant Musical Training × Numeral interaction,
F(2, 38) = 0.31; p = .73; η2 = 0.002, and no three-way
interaction, F(2, 38) = 1.28; p = .29; η2 = 0.003.

F-tests showed that variances of single adjustments dif-
fered significantly between the two standard intervals,
F(62, 62) = 2.05; p < .01, with the mean adjustments
scattering more in the 17-semitone interval (SD = 75.9
Hz) than in the 12-semitone interval (SD = 53.0 Hz).
However, there were no significant differences in variance
between musically trained and musically untrained partic-
ipants, F(65, 59) = 0.80; p = .37, nor did the variance
of single adjustments differ between the fractions to be
adjusted, Bartlett’s K2(2) = 3.04; p = .22.

It is also interesting to see (compare Fig. 2, right ordi-
nate) that the musicians’ adjustments of pitch intervals
correspond better to the number of semitones defining
the respective fractions of the standard interval (e.g., 4,

6 and 8 semitones within the 12-semitone standard inter-
val). A difference between musically trained and untrained
listeners is particularly evident in the octave-exceeding
standard interval. That is, although they still overesti-
mated the intervals (probably due to hysteresis; see below),
the musicians’ adjustments of 1/3, 1/2, and 2/3 of the
17-semitone interval fell closer to 5.7, 8.5, and 11.3
semitones, compared to those of the musically-untrained
listeners.

Evaluation of the monotonicity property

To assess the monotonicity of the pitch productions, the
single adjustments (unconnected points in Fig. 2) were com-
pared with respect to (a) the fractions to be adjusted (Eq. 3),
and (b) the two standard intervals (Eq. 4b). Therefore, for
each participant, the mean adjustments of fx were com-
pared descriptively for increasing numerals p (separately for
both standards) and between standards (separately for all
fractions).

In order to evaluate the validity of Eq. 3, we determined
for each participant and both standard intervals, whether
the adjusted frequency for p = 2/3 was greater than for
p = 1/2, and whether it was greater for p = 1/2 than for
p = 1/3 (resulting in 84 comparisons; 4 for each of the 21
participants). In 83 of these 84 cases (98.8 %), the adjusted
frequency fx increased with the numeral of the fraction p
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(participant CL adjusted higher frequencies to p = 1/3 than
to p = 1/2 of the 17-semitone standard).

To evaluate Eq. 4b, there was one pairwise compari-
son between standards for each participant and for each
fraction to be adjusted (resulting in 63 comparisons; 3 per
participant). As the two standard intervals differed with
regard to the lower tone (262 vs. 349 Hz), frequency adjust-
ments with the 17-semitone standard should be lower than
those made with the 12-semitone standard in order to meet
Eq. 4b. In 49 of 63 cases (77.7 %), the frequency adjusted
to the same numeral p was lower when based on the
17-semitone standard interval than when based on the 12-
semitone standard interval (compare Table 1 and the means
depicted in Fig. 2). It is interesting to see that monotonic-
ity with regard to the size of the standard interval (4b) was
satisfied in 28 of 30 cases (93.3 %) by musically trained par-
ticipants, but only in 21 of 33 cases (63.6 %) by musically
untrained participants. Moreover, for the latter sample, the
number of these monotonicity violations increased with the
fractions p to be adjusted (2 with p = 1/3, 3 with p = 1/2,
and 9 with p = 2/3).

In addition to these descriptive comparisons, two rank-
order Kruskal-Wallis analyses of variance were conducted
for each participant to test for statistically significant dif-
ferences in the adjusted frequencies fx as a function of the
numeral p and the standard interval t − y (data were pooled
across standard intervals and numerals, respectively; within
each analysis, frequency adjustments were treated as inde-
pendent observations). The results of these tests are listed
in Table 1. As can be seen, all participants produced sta-
tistically distinguishable adjustments as a function of the
fractionation condition (numeral). However, the results also
confirm the descriptive differences between musicians and
non-musicians regarding sensitivity to the size of the stan-
dard interval. Whereas most of the musicians’ frequency
adjustments systematically varied as a function of the stan-
dard interval (that is, lower adjusted frequencies of x in
case of the 17-semitone standard interval, compare Table 1),
only 2 of 11 musically untrained participants produced sta-
tistically distinguishable frequencies for the two different
standards intervals. The lack of sensitivity to the size of the
standard interval in most of the non-musicians’ frequency
adjustments is inconsistent with Eq. 4b and thus violates one
form of the monotonicity axiom. This will be discussed in
greater detail below.

Evaluation of the commutativity property

The commutativity axiom holds if the outcome frequency
of successive p • q (1/2 • 2/3) adjustments does not dif-
fer from q • p (2/3 • 1/2) adjustments. This was tested
for each participant and both standard intervals by means

of Mann-Whitney U tests (two-tailed). These 42 tests were
conducted without corrections (α = .05) for multiple com-
parisons, because the aim of these tests was to accept the
statistical null hypothesis (α < .05 corrections would make
it more likely to accept the null hypothesis). Table 2 lists the
individual mean frequencies produced by the two types of
successive adjustments together with respective z-scores of
U values and the p-values for the octave standard. Table 3
lists the respective values for the 17-semitone standard
interval.

Tables 2 and 3 show that there were 5 violations of
commutativity with the octave standard (only musically
trained participants) and 3 with the 17-semitone standard
(one musically trained participant). Thus, for the pitch
adjustments of most of the musically trained and untrained
participants, the commutativity property holds. The few sig-
nificant axiom violations might have different causes in the
sample of musicians and non-musicians. On the one hand,
only 2 musically untrained participants showed a violation
of commutativity with one of the two standards. Thus, the
observed rate of violations (.09) is consistent with what is
expected by chance as the a-priori probability for obtain-
ing one of two significant violations is p = .095 (given
α = .05). On the other hand, the magnitude of axiom
violations in musically-trained participants (the differences
between the two types of successive frequency adjustments)
was relatively small (MD = 6 Hz; range: 3-27 Hz). Partic-
ularly, the higher precision of the adjustments made by the
musically trained participants (lower SDs in Tables 2 and 3)
may have increased the likelihood of significant effects (4×
1 violation and 1× 2 violations).

However, the variance of successive adjustments did
not differ significantly as a function of Musical Training,
F(43, 39) = 1.34; p = .35. Variances did not differ
between the two orders of successive adjustments, either,
F(41, 41) = 1.04; p = .89, but they differed between
the two standards, F(41, 41) = 3.13; p < .001 (with
¯SD17-semitones = 56.4 Hz; ¯SD12-semitones = 31.8 Hz) - as

the single adjustments did.

Evaluation of the multiplicativity property

Multiplicativity of pitch adjustments holds if the frequency
that has been adjusted to be the fraction r (with r = p · q)
(1/3) of the standard equals the frequency that has been
adjusted to be p (1/2), and q (2/3) of that outcome, sub-
sequently, or vice versa (see Eq. 2). This was tested by
means of Mann-Whitney U tests (two-tailed) for each par-
ticipant and both standard intervals (see Table 4). For the
same reasons as with the commutativity tests, no corrections
for multiple comparisons were made (α = .05).

Table 4 shows that there were 7 violations of multiplica-
tivity with the octave standard and 5 with the 17-semitone
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Table 1 Single adjustments of fx (mean frequencies in Hz) for 1/3, 1/2, or 2/3 of a 12- or 17-semitone standard interval

Participant 12-semitone standard 17-semitone standard Numeral Standard

1/3 1/2 2/3 1/3 1/2 2/3 χ2(2) χ2(1)

Musically untrained participants

AK 517 615 639 545 609 645 63.25** 1.42

CL 501 518 569 531 509 601 16.23** 0.36

CW 448 491 566 441 485 553 65.08** 0.00

FK 446 503 528 386 470 519 49.70** 4.52*

JB 463 481 534 456 483 559 11.62** 0.20

JK 445 473 533 388 468 562 36.06** 0.30

JS 458 533 598 449 477 534 24.80** 5.33*

MD 506 537 546 434 520 602 20.77** 0.02

MS 444 495 584 424 480 586 53.41** 0.12

SD 448 505 563 434 479 579 63.15** 0.38

WE 474 522 606 467 530 639 48.74** 0.22

Musically trained participants

AR 447 472 568 360 427 526 65.13** 12.44**

AS 450 489 553 370 448 522 68.46** 12.75**

DD 474 527 562 406 462 537 30.48** 8.44**

DS 430 509 597 357 445 599 54.71** 3.91*

JM 450 455 577 378 448 557 36.91** 1.72

MH 441 496 554 364 428 498 18.17** 8.94**

SB 452 488 523 344 420 464 33.98** 34.49**

US 549 560 604 480 498 567 23.13** 16.02**

XS 422 479 540 329 394 469 36.36** 24.06**

YR 487 512 566 462 513 554 24.00** 0.08

* p < .05; ** p < .001

Kruskal-Wallis rank sum tests were used to test for the monotonicity with regard to the Numerals and Standard Intervals (last two columns)

standard. For most of these violations, the sign of the
adjustment difference (M1/3 −M1/2•2/3) was positive, indi-
cating that the single 1/3 pitch adjustments produced larger
intervals than the successive adjustments.

Discussion

The aim of the present investigation was to test Narens’
(1996) fundamental axioms of direct ratio scaling for the
perception of pitch intervals. The data show that, for
most of the participants, commutativity and multiplicativity
hold. However, differences are evident between musically
trained and untrained participants with the former produc-
ing slightly more axiom violations. In addition, the data
were checked for monotonicity with regard to (a) the frac-
tions to be adjusted and (b) the size of the standard interval.
Again, differences between musically trained and untrained
participants were found, with the latter failing to pro-
duce pitch intervals that increase strictly with the extent of

the standard interval (compare the left and right panel in
Fig. 2).

Commutativity and multiplicativity

In line with the commutativity axiom, in most of the cases
(81.0 %), the successive concatenation of two fractionations
(e.g., producing 1/2 • 2/3 of a standard pitch interval) con-
verged on approximately the same frequency irrespective
of the order of the two operations. According to Narens
(1996) and Luce (2002), this implies that the participants
use a ratio scale when producing intervals of pitch height.
Nevertheless, the few violations of commutativity are worth
considering. There were two violations of commutativity in
the sample of musically untrained participants. However, as
the relative frequency of observed violations nearly coin-
cides with the probability to obtain one violation with two
standards by chance (p = .095 given α = .05), this pat-
tern of results is in line with what would be expected if
commutativity held.
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Table 2 Successive adjustments (mean frequencies in Hz) and Mann-Whitney tests of Narens’ (1996) axiom of commutativity with the octave
standard interval (zcritical(U) = 1.96)

Participant Frequency adjustment (Hz) Commutativity violation

M1/2 • 2/3 SD1/2 • 2/3 M2/3 • 1/2 SD2/3 • 1/2 z(U)

Musically untrained participants

AK 549 63 561 46 0.52

CL 461 83 447 55 0.06

CW 440 26 424 44 0.60

FK 427 28 439 33 0.77

JB 440 56 426 52 0.81

JK 413 44 423 57 0.04

JS 467 50 443 57 1.22

MD 435 51 472 59 1.89†

MS 459 43 448 46 0.97

SD 452 34 444 32 0.46

WE 496 41 477 57 0.81

Musically trained participants

AR 444 3 448 5 2.55*

AS 444 11 437 10 2.80*

DD 448 49 454 40 0.37

DS 442 80 451 68 0.10

JM 424 44 413 36 0.58

MH 440 1 437 2 1.98*

SB 437 10 444 11 2.20*

US 520 31 493 32 2.38*

XS 419 21 429 26 1.20

YR 439 23 435 31 0.50

† p < .1; * p < .05

In contrast, in the sample of musically trained partici-
pants, there were 5 violations of commutativity with the
octave standard interval, and one violation with the 17-
semitone standard. Thus, the number of musically trained
listeners producing axiom violations with an octave stan-
dard is somewhat higher than what would have been
expected by chance alone. The probability to observe sig-
nificant axiom violations in the sample of musicians might
have been enhanced by the higher precision (and reliabil-
ity) of their adjustments within the octave interval (indi-
cated by these participants’ small standard deviations in
Table 2). Nevertheless, the frequency adjustments observed
cast doubt on the validity of a ratio-scale representation
of pitch intervals in five musically-trained listeners. Poten-
tially, their profound musical experience biased their judg-
ments of frequency distances. According to Greenwood
(1997, p. 203), particularly non-musical listeners should
be able to judge pitch intervals as sensory distances (i.e.,
frequency differences), whereas musically trained listen-
ers are likely to be unable to judge the distance without
referring to the ‘interval quality’ (the octave reference). As

pitch intervals within an octave are frequently encountered
in music, musically experienced participants may perceive
them differently than musically unexperienced participants.
In addition to an ordering from low to high, musicians
may experience the intervals as consonant or dissonant
or they may associate particular labels with the intervals
(e.g, their names on the chromatic scale). These strategies
may have biased their adjustments in ways presently not
completely understood. Interestingly, with the 17-semitone
standard, musicians did not produce more commutativity
violations than non-musicians. This is consistent with previ-
ous studies reporting that, particularly for musically trained
participants, the differentiation of pitch intervals is better
within an octave than for intervals exceeding an octave
(in the former case, magnitude estimates of pitch inter-
vals increased faster in musically trained listeners; Russo &
Thompson 2005).

In addition to commutativity, we tested Narens’ (1996)
axiom of multiplicativity which holds, if two successive
1/2 • 2/3 pitch adjustments do not differ from a single 1/3
adjustment. This was the case for most of the pitch-interval
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Table 3 Successive adjustments (mean frequencies in Hz) and Mann-Whitney U tests of Narens’ (1996) axiom of commutativity with the
17-semitone standard interval (zcritical(U) = 1.96)

Participant Frequency adjustment (Hz) Commutativity violation

M1/2 • 2/3 SD1/2 • 2/3 M2/3 • 1/2 SD2/3 • 1/2 z(U)

Musically untrained participants

AK 583 14 584 30 1.04

CL 480 82 451 91 0.87

CW 405 58 419 42 1.51

FK 401 48 395 42 0.02

JB 401 72 418 69 0.71

JK 418 65 380 59 1.41

JS 413 58 397 69 0.89

MD 465 95 404 118 1.53

MS 444 44 432 70 0.08

SD 449 29 408 32 2.88**

WE 542 48 479 54 2.80*

Musically trained participants

AR 355 3 355 10 0.77

AS 370 7 373 18 1.37

DD 401 61 386 68 0.75

DS 426 60 392 76 0.81

JM 413 87 384 81 1.02

MH 354 5 359 2 1.98*

SB 352 30 345 14 0.48

US 448 51 440 43 0.48

XS 355 42 340 52 0.95

YR 419 32 405 48 0.91

* p < .05; ** p < .001

fractionations produced in musically trained (70.0 %) and
untrained (72.7 %) participants. The violations of mul-
tiplicativity were evident for both musically trained and
untrained participants alike and with both standard inter-
vals. This indicates that the violations were neither due to
systematic effects of musical training, nor to interactions
between tone chroma (or category labels) and pitch height.
In contrast to the high number of multiplicativity viola-
tions obtained in ratio productions of loudness and area
(Ellermeier and Faulhammer 2000; Zimmer 2005; Augustin
and Maier 2008), and given Narens’s own prediction that
the multiplicativity property will fail in most situations of
magnitude estimation (Narens 1996, p. 110), the low num-
ber of multiplicativity violations in the fractionation of pitch
intervals is rather surprising. The results imply that, in
most cases, the numerals used in the instructions have been
treated like ‘true’ mathematical numbers by the listeners.
Consequently, the numerals p can be taken at face value,
and the perceived magnitude of the pitch intervals may be
represented on a ratio scale characterized by these numerals
without further transformation.

The overall consistency of (generalized) pitch produc-
tions (i.e., adjustments of pitch with respect to a fre-
quency interval; Luce 2002) with commutativity implies
that listeners are representing pitch on a ratio scale
continuum. This argues for the validity of applying direct
scaling techniques like magnitude production or magnitude
estimation to pitch sensations of pure tones (distinctions in
terms of the instructions given to the participants should
be of minor importance, given that a ratio-scale represen-
tation is shown; Narens 2002). The fact that the stronger
multiplicativity property held in most of the cases indi-
cates that the numerals presented to the participants may be
taken at face value, suggesting that numerals from arbitrary
ranges referring to pitch sensations (e.g., absolute magni-
tude estimation) are likely to be interpretable on a ratio-scale
level.

Monotonicity

However, the conclusion that the representation of pitch
intervals is valid on a ratio scale rests on the assumption that
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Table 4 Frequency differences between single 1/3 and successive (1/2 • 2/3 or 2/3 • 1/2) adjustments, and Mann-Whitney U tests of Narens’
(1996) axiom of multiplicativity with the octave and 17-semitone standard (zcritical(U) = 1.96)

Participant Octave standard 17-semitone standard

M1/3 − M1/2 • 2/3 (Hz) z(U) M1/3 − M1/2 • 2/3 (Hz) z(U)

Musically untrained participants

AK −38 3.09** −38 1.05

CL 47 2.02* 65 2.47*

CW 16 1.31 29 2.20*

FK 13 1.60 −12 1.00

JB 30 0.98 46 1.41

JK 27 1.53 −11 0.59

JS 3 0.16 44 1.82†

MD 53 2.28* 0 0.01

MS −9 0.48 −14 0.61

SD 0 0.02 5 0.51

WE −12 1.29 −43 2.37*

Musically trained participants

AR 2 1.18 5 0.91

AS 9 2.54* −1 0.67

DD 23 1.29 12 0.47

DS −17 0.70 −52 2.36*

JM 31 1.63 −20 0.77

MH 2 1.59 8 1.78†

SB 11 2.11* −4 0.95

US 42 2.71* 36 2.20*

XS −2 0.04 −19 1.05

YR 50 2.41* 50 1.69†

† p < .1; * p < .05

the adjustments made also satisfy the basic monotonicity
property. This has been tested by comparing the pitch inter-
vals adjusted to different fractions presented in the instruc-
tions (Eq. 3) and with different standard intervals (Eq. 4b).
Whereas all participants produced monotonically increasing
pitch intervals as a function of the numerals presented, only
the musically trained participants were able to produce pitch
intervals that reflected the size of the standard interval.

Virtually, most musically untrained participants pro-
duced indistinguishable frequencies when asked to adjust
either a 12-semitone interval or a 17-semitone standard to
the fraction p. This suggests that they did not attend to the
lower limit of the standard interval, but made their adjust-
ments solely with regard to the upper tone (see Fig. 2).
Consequently, only two musically untrained listeners satisfy
monotonicity with regard to the size of the standard interval
(violating Eq. 4b). Eleven listeners (including two musi-
cally trained participants), however, were unable to produce
a fraction that varied as a function of the standard inter-
val presented. Formally, this describes a violation of a basic
property of a (no less than ordinal) scale, and it suggests

that direct pitch productions may be valid only within an
octave interval for these participants. This is a paradox that
requires further investigation. Particularly, their discounting
the lower reference of the standard interval might indicate
that these participants are using a constant frequency refer-
ence, e.g., one that is defined by an octave below the upper
boundary of the standard interval (which varied between
trials and thus potentially attracted more attention). Musi-
cal training appears to be required in order to process a
reference that lies in a different octave.

Most of the musically trained participants actually satis-
fied monotonicity with regard to both the numerical frac-
tions and the standard intervals presented, and their adjust-
ments of pitch intervals seem to be representable on a ratio
scale even for intervals larger than an octave. Interestingly,
musically trained participants produced smaller pitch inter-
vals on average than musically untrained participants did.
This suggests that the former may have tended to produce
frequency intervals that are in accordance with particular
fractions of musical intervals (as defined by the number of
semitones).
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Altogether, these group differences indicate that musi-
cians and non-musicians may have relied on different strate-
gies to adjust pitch intervals. Whereas musically trained
listeners might be able to count the number of semitones
spanned by arbitrary musical intervals, non-musicians may
have to rely on their ‘naı̈ve’ sensations of pitch height.
These standard-dependent monotonicity violations in non-
musicians imply that ‘naı̈ve’ sensations of pitch intervals
may be valid on a ratio scale within but not beyond
an octave. Acquired musical skills like semitone-counting
could be required in order to produce meaningful pitch inter-
vals that are larger than an octave. Deutsch (1969) argued
that the perception of pitch intervals exceeding an octave
(which is extremely rare in music) needs an additional pro-
cess of transposing the interval to the same octave range.
This transposition of pitch intervals may have been respon-
sible for the different patterns of responses that have been
obtained with the two standards in the present study. That
is, it might be extremely difficult for musically untrained
listeners to discriminate frequency intervals that exceed an
octave.

Hysteresis and order effects

One limitation of the present study is that the pitch inter-
vals were always presented in the same order with a
lower tone being followed by a higher tone (as in all
axiomatic studies known to us; for an example with loud-
ness intervals, see Steingrimsson & Luce 2005). The data
presented could thus be influenced by hysteresis effects
(e.g., Stevens 1957). That is, fractionations of intervals
(e.g., equisection) have been shown to depend on whether
the interval is presented in an ascending or a descend-
ing order (with ascending intervals typically producing
greater adjustments). For instance, bisection of ascending
loudness intervals resulted in level adjustments that were
about 5-8 dB higher than with descending loudness inter-
vals (Garner and Hake 1951). Similar effects have been
reported for other sensory continua (e.g., brightness or
heaviness; see Stevens 1957). Stevens (1957) hypothesized
that hysteresis should not occur in ‘metathetic’ continua
(including pitch), but the empirical evidence is not entirely
consistent. Whereas Cohen et al. (1954) found (on aver-
age) no hysteresis in pitch bisections, Greenwood (1997)
reported higher equisection adjustments (1/4, 1/2, 3/4
of an interval from 400 to 7000 Hz) with ascend-
ing frequency intervals than with descending frequency
intervals.

In the present data, potential hysteresis effects could
be evaluated by comparing the adjusted frequencies with
certain expected semitone intervals. By referring to the
chromatic scale, a closer look at Fig. 2 (right ordinate)
reveals that each average adjustment of a frequency inter-

val exceeded the expected number of semitones. This bias,
however, was much stronger in musically untrained listen-
ers, suggesting that pitch hysteresis can be minimized by
musical experience. Moreover, if the bias was larger for
smaller fractions (as for loudness equisections; see Stevens
1957), then successive adjustments should produce larger
outcomes if a smaller fraction (e.g. 1/2) had been adjusted
prior to a larger fraction (e.g., 2/3). In the present data, there
is some indication of a trend in this direction. 2

Taken together, the data suggest that the hysteresis effect
with regard to pitch judgments is rather small in magnitude
(if present at all), and that it should be approximately equal
for different partitions made (compare Greenwood 1997,
see Fig. 4). Consequently, it should not have affected axiom
testing systematically in the frequency range investigated
in the present study. Nevertheless, it might be an interest-
ing issue for further research to study whether ratio-scale
properties can be shown with descending pitch intervals, as
well.

Order effects could also be discussed with regard to the
fact that the standard interval was always presented prior
to the comparison interval. Again, although it is conceiv-
able that this may introduce a bias, the impact of that bias is
likely to be the same in all adjustments made in the present
experiment, and it would consequently not influence axiom
testing.

Conclusions

To sum up, the present study shows that direct ratio pro-
ductions of pitch intervals meet the commutativity property
in most of the participants. This implies, that pitch inter-
vals may be represented on an internal ratio scale. However,
for a few musically trained participants, commutativity was
violated within an octave, suggesting that these participants
may not represent frequent musical intervals on a simple
ratio scale (rather they might represent them by labels on
the chromatic scale). Moreover, in contrast to what has
been found in direct scaling of loudness, brightness, or area
(Ellermeier and Faulhammer 2000; Zimmer 2005; Peißner
1999; Augustin and Maier 2008), most of the pitch adjust-
ments were also in line with the multiplicativity property,
irrespective of musical training. This demonstrates that most
of the listeners used the numerals referring to fractions of
pitch intervals just like scientific numbers, meaning that
these numbers can be interpreted as values on a ratio scale
without further transformation. That is, any adjustment rep-
resented by the triple (x, p, t − y) will correspond to a
subjective pitch interval of ψ(x −y) = p∗ψ(t −y), imply-
ing that p = p. That situation is far more favorable than
merely being able to state that participants are operating on

2Thanks to one of the reviewers who pointed out this effect.
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an unknown ratio scale; rather the number words used in the
procedure can be taken as indicative of the actual ratio-scale
values.

The present study also investigated monotonicity of pitch
productions as a function of the standard - a property rarely
tested explicitly in this kind of axiomatic study. Whereas
musically trained listeners produced frequencies that var-
ied as a function of the standard interval, this property was
systematically violated by the musically untrained partic-
ipants. They appeared to have difficulty distinguishing a
standard interval spanning an octave from one exceeding
it. It thus appears that, for fractionations of pitch intervals
larger than an octave, some musical training is necessary
in order to obtain responses that are in accordance with the
monotonicity axiom.

Finally, the data show that the overall variability and
the precision of pitch adjustments differed considerably
between participants. This may imply that the task difficulty
varied dramatically between participants, for instance as a
function of the participants’ prior experience with or knowl-
edge about musical intervals. Moreover, ‘the pitch contin-
uum probably means different things to different people’
(Stevens 1957, p. 161). Nevertheless, for some individuals,
direct magnitude productions of pitch intervals were shown
to be valid with respect to a behavioral axiomatization of
ratio scaling.

Author notes Portions of the data were presented at the
28th Annual Meeting of the International Society of Psy-
chophysics in Ottawa, Canada. The authors are indebted to
Martha Teghtsoonian and an anonymous reviewer who made valu-
able comments and suggestions on a previous version of the
manuscript.
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