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Abstract Research over the past decade has suggested that
the ability to hold information in visual working memory
(VWM) may be limited to as few as three to four items.
However, the precise nature and source of these capacity
limits remains hotly debated. Most commonly, capacity limits
have been inferred from studies of visual change detection, in
which performance declines systematically as a function of
the number of items that participants must remember.
According to one view, such declines indicate that a limited
number of fixed-resolution representations are held in inde-
pendent memory “slots.” Another view suggests that such
capacity limits are more apparent than real, but emerge as
limited memory resources are distributed across more to-be-
remembered items. Here we argue that, although both per-
spectives have merit and have generated and explained im-
pressive amounts of empirical data, their central focus on the
representations—rather than processes—underlying VWM
may ultimately limit continuing progress in this area. As an
alternative, we describe a neurally grounded, process-based
approach to VWM: the dynamic field theory. Simulations
demonstrate that this model can account for key aspects of
behavioral performance in change detection, in addition to
generating novel behavioral predictions that have been con-
firmed experimentally. Furthermore, we describe extensions

of the model to recall tasks, the integration of visual features,
cognitive development, individual differences, and functional
imaging studies of VWM. We conclude by discussing the
importance of grounding psychological concepts in neural
dynamics, as a first step toward understanding the link be-
tween brain and behavior.
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Working memory refers to the cognitive and neural processes
underlying our ability to hold information in mind when it is
no longer present in the environment, to mentally manipulate
this information, and to use it in the service of cognition and
behavior (Baddeley, 1986; Postle, 2006). Over the past several
decades, a growing body of research has revealed that the
amount of information that may be held in working memory,
known as working memory capacity, is severely limited to as
few as three to five items (Cowan, 2001; Luck & Vogel, 1997;
Sperling, 1960). Individual differences in working memory
capacity are predictive of other important cognitive abilities
including language comprehension, learning, planning, rea-
soning, general fluid intelligence, and scholastic achievement
(Baddeley, 1986; Cowan et al., 2005; Engle, Kane, &
Tuholski, 1999; Jonides, 1995; Just & Carpenter, 1992).
Additionally, impaired working memory function has been
implicated in the constellation of cognitive deficits that ac-
company psychiatric and neurological conditions, including
schizophrenia (Keefe, 2000). Given its central importance,
significant efforts within the neural and behavioral sciences
have focused on characterizing the limits of working memory
and elucidating the processes that underlie this critical aspect
of cognition.

Capacity limits in working memory have been probed
using a variety of tasks across verbal and visual domains
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(Cowan, 2001; Miyake & Shah, 1999). Much of the evidence
suggesting the existence of capacity limits in the visual do-
main stems from studies employing some variant of the
change detection task depicted in Fig. 1A (Luck & Vogel,
1997). In this task, participants view briefly presented mem-
ory arrays consisting of one or more simple objects to remem-
ber. After a short delay, a test array is presented, and the
participant must compare the test array with the memory array
to identify whether the arrays are the same or different. Inmost
experiments, the memory and test arrays are identical on 50%
of trials, and differ by one item on the other 50 % of trials;
however, some variants of the task probe memory for a single
item at test, either by means of a cue or by presenting only one
item in the test array. Figure 1B shows an example of adults’
performance in an experiment in which each memory array
contained between one and six colored squares (see the
Appendix for the methodological details). As is shown by
the dashed line, accuracy is near perfect for arrays with small
numbers of items, and decreases systematically as the number
of items increases. This decline in performance with increas-
ing numbers of to-be-remembered items, referred to as the set
size , provides the primary evidence for the limited capacity of
visual working memory (VWM).

A topic of considerable debate over the past 5–10 years has
been how best to characterize and explain the apparent capac-
ity limits suggested by studies of visual change detection;
Table 1 summarizes the primary contrasts between the dom-
inant theories. According to one prominent perspective, the
observed decline in performance with increasing set size

reflects the functioning of a working memory system that
stores a limited number of fixed-resolution representations in
discrete memory “slots” (Cowan, 2001; Luck & Vogel, 1997;
Zhang&Luck, 2008). According to this view, errors primarily
arise when the item probed at test is not stored in memory,
which occurs when the set size exceeds the number of avail-
able memory slots.1 That is, performance declines are caused
by a structural limit in the number of items that can be stored
in VWM.More recently, an alternative view that does not rely
on the notion of a capacity-limited working memory store has
been put forth (Bays & Husain, 2008; Wilken & Ma, 2004).
This approach conceives of VWM as a continuous resource
that is flexibly allocated to each of the items in memory. As set
size increases, less and less of this resource is available for
each item, and as a result, each item is stored with lower
fidelity (i.e., with greater amounts of variability or noise).
The increase in noise as more items are encoded in VWM
makes it difficult to discriminate familiar from novel inputs at
test (i.e., to detect the signal in the noise), giving rise to the
appearance of a capacity limit at higher set sizes, when in fact
there is none.

These two perspectives have generated and explained im-
pressive amounts of empirical data and have largely dominat-
ed the discourse in VWM research over the last several years.
Despite their successes, however, an increasing number of
researchers have begun to develop approaches that attempt
to move beyond the slots-versus-resources dichotomy. The
most prominent among these are the so-called “hybrid” views,
in which an upper bound on capacity is proposed to coexist
with a variable limit on the total amount of information that
can be stored about each object (Alvarez & Cavanagh, 2004;
Xu & Chun, 2006). In the present article, we describe an
alternative account based on the dynamic field theory, a neu-
rally grounded, process-based approach to working memory
that has been used to capture performance in change detection
and recall tasks that probe VWM (Johnson & Simmering,
in press). As Table 1 shows, this theory incorporates some
characteristics of both the slots and resource accounts, as well
as providing more specificity as to the processes underlying
performance in the change detection task.

Through a series of simulations, we illustrate how the
model can capture performance in change detection.
Additionally, we highlight novel behavioral predictions that
have been derived from the model, and consider how the
model addresses issues relevant to the proposed neural sys-
tems underlying VWM, the integration of visual features, and
VWM development. We show that, although our model

Memory array 
(100-500 ms) 

Delay       
(250-900 ms) 

Test array
   (until response) 

Response 
a

b

Fig. 1 a Schematic of the change detection task. b Behavioral results
from change detection: Across set sizes 1–6, the line shows percentages
correct, and bars show the percentages separated by response types. Error
bars show one standard deviation. SS = set size, CR = correct rejections,
H = hits, M =misses, FA = false alarms; note that CR and FA sum to 100,
and H and M sum to 100

1 Note, however, that according to the discrete-slots view articulated by
Zhang and Luck (2008), which applies a signal detection theory concep-
tualization to a strictly limited number of items, errors may also arise
when the probed item is in memory but its resolution is insufficient to
support accurate change detection (e.g., when the change is very small, as
in Awh, Barton, & Vogel, 2007).
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overlaps to some extent with both slots and resource ap-
proaches, it violates key assumptions of both views of the
nature of VWM (see Table 1). We conclude by arguing that
moving in the direction of neurally plausible, process-based
approaches to working memory will be critical if we are to
move the debate in this area forward and begin to understand
the link between brain and behavior.

The dynamic field theory of visual working memory
and change detection

In this section, we describe a formal theory of VWM and
change detection that builds on the dynamic field theory
(DFT) of visuospatial cognition (Johnson & Simmering,
in press; Spencer, Perone, & Johnson, 2009; Spencer,
Simmering, Schutte, & Schöner, 2007) and how this theory
embodies the characteristics listed in Table 1. Performance in
the change detection task can be conceptualized as involving
four cognitive processes: encoding items from the memory
array into VWM, maintenance of these items over the mem-
ory delay, comparison of the items in VWM to the test array,
and generating a “same” or “different” decision . The two
types of trials, change and no-change , combined with the
two possible responses, lead to four response types. In the
parlance of signal detection theory (Green & Swets, 1966),
correct responses are referred to as “correct rejections” (on no-
change trials) and “hits” (on change trials), and errors are
referred to as “false alarms” (on no-change trials) and “mis-
ses” (on change trials). Through a series of simulations, we
illustrate how the model encodes, maintains, and compares
visual inputs, and generates same/different decisions in the
context of change detection. We also show how each of these
response types comes about in the model, highlighting how

the model’s explanation of errors, in particular, diverges from
common assumptions in the literature. Later sections will
describe how the model can be used to account for perfor-
mance in cued-recall tasks, as well as recent work using the
DFT to capture neuroimaging results, extensions of the model
architecture, and the development of working memory across
domains.

The DFT is in a class of continuous-attractor neural net-
work models originally developed to capture the dynamics of
neural activation in visual cortex (Amari, 1977; Wilson &
Cowan, 1972). The general form of models in this class
consists of a layer of feature-selective excitatory neurons
reciprocally coupled to a layer of inhibitory interneurons.
Neurons within the excitatory layer interact via short-range
excitatory connections and project to similarly tuned neurons
in the inhibitory layer. The inhibitory layer, in turn, projects
broad inhibition back to the excitatory layer. The resulting
locally excitatory and laterally inhibitory, or “Mexican Hat,”
pattern of connections allows localized peaks of activation to
form in response to input. The center of mass of such peaks
provides an estimate of the particular stimulus value (e.g., hue,
orientation, spatial location) represented by the neural system
at a particular moment in time. Additionally, with strong
excitatory and inhibitory projections, peaks of activation can
be sustained in the absence of continuing input. This property
of dynamic neural fields forms the basis for the sustained
activation purported to underlie working memory (Compte,
Brunel, Goldman-Rakic, & Wang, 2000; Edin et al., 2009;
Tegner, Compte, & Wang, 2002; Trappenberg & Standage,
2005; Wang, 2001).

To apply this neural framework to change detection perfor-
mance, Johnson and colleagues (Johnson, Spencer, Luck, &
Schöner, 2009; Johnson, Spencer, & Schöner, 2009) proposed
the three-layer model depicted in Fig. 2. The model consists of

Table 1 Comparison of slots, resource, and DFT accounts of change detection performance

“Classic” Slotsa “Modern” Slotsb Resourcesc DFT

Encoding: discrete, all-or-none discrete, all-or-none continuous, partial discrete, all-or-none

Maintenance:

Capacity fixed, small fixed, small unlimited variable, small

Resolution fixed, high fixed, high variable (inversely related
to number)

variable (depends on metrics
and noise)

Comparison process: unspecified unspecified unspecified inhibitory feedback from
WM to input layer

Same/different
decision:

unspecified decision rule
(process unspecified)

decision rule
(process unspecified)

competition between
activation related to items
in WM vs. new inputs

Source of errors: items not in VWM,
guessing

items not in VWM, guessing,
insufficient resolution,
attention lapse

insufficient resolution failure of consolidation,
maintenance, comparison,
or decision

a e.g., Pashler, 1988; Cowan, 2001; Luck & Vogel, 1997. b e.g., Zhang & Luck (2008); Rouder, Morey, Morey, & Cowan, 2011. c e.g., Bays & Husain,
2009; Wilken & Ma, 2004

1632 Atten Percept Psychophys (2014) 76:1630–1654



an excitatory contrast field (CF), an excitatory working mem-
ory field (WM), and a shared inhibitory layer (Inhib). In each
cortical field, the x -axis consists of a collection of neurons
with receptive fields tuned to particular color values, the y -
axis shows each neuron’s activation level, and the z -axis
captures the time within a trial; interactions within and be-
tween layers are shown as green (excitatory) and red
(inhibitory) arrows (equations and the parameter values can
be found in the Appendix). In addition, to capture the decision
required in the change detection task, a simple competitive
neural accumulator model (Standage, You, Wang, & Dorris,
2011; Usher & McClelland, 2001), composed of two self-
excitatory and mutually inhibitory neurons, was coupled to
the three-layer architecture. One neuron receives summed
excitatory activation from CF to generate different responses,
whereas the other receives summed activation from WM to
generate same responses (see Simmering & Spencer, 2008,
for a similar process in position discrimination). Activation
autonomously projects to these neurons when a decision is
required in the task: A “gating” neuron receives projections
fromWMaswell as the stimulus input; when activation of this
gate neuron rises above threshold (at the presentation of the
test array), its activation combines with specific projections
(i.e., CF and WM) to the response neurons (described further
in “Correct rejections and hits”; see the Appendix for com-
plete details). The response neurons are coupled in a “winner-
takes-all” fashion, such that only one neuronwill attain above-
threshold activation, thereby generating a response. Thus, the
model’s response is the result of competition between

activation projected from CF, which preferentially represents
novel perceptual inputs (i.e., items that are not currently being
held in memory), and WM, which represents the current
contents of memory.

Note that although variants of this architecture have been
closely linked to neurophysiology (e.g., Bastian, Riehle,
Erlhagen, & Schöner, 1998; Erlhagen, Bastian, Jancke,
Riehle, & Schöner, 1999; Erlhagen & Schöner, 2002; see
Spencer & Schöner, in press, for a review), the specific model
described here was not derived directly from neurophysiolog-
ical studies of workingmemory and change detection. Instead,
the model was designed to provide a functional neural account
of behavior in the change detection task by linking a particular
neural implementation of encoding and maintenance in work-
ing memory to plausible comparison and decision processes.
We contend that models of this sort can make an important
contribution to our understanding of the neural bases of cog-
nitive processes by showing how the functionality required to
support behavior in tasks such as change detection can arise
within relatively simple neural circuits organized according to
known neural principles. Below we will discuss current work
aimed at connecting this model more directly to neural data
(see “Expanded model architecture” and “Relationship be-
tween the model and neural processes”).

Quantitative model simulations

To demonstrate that the DFT provides a plausible neural
mechanism for change detection performance, we conducted
a set of quantitative simulations to fit the model’s performance
to behavioral data collected in our lab. Full details of the
behavioral method and results (shown in Fig. 1B) can be
found in the Appendix. In brief, we conducted a change
detection study using colored squares as the stimuli; the
memory array was presented for 500 ms, followed by a 1-s
delay. Next, the test array was presented, in which all of the
items were identical to those in the memory array (50 % of
trials) or one item had changed (50 % of trials). The test array
remained visible until the participant entered a response on the
keyboard (see Fig. 1A). Set size varied randomly across trials
between one and six items, with no colors repeated within an
array. Our results replicate the general finding of a monotonic
decrease in accuracy as set size increased, as is shown in
Fig. 1B. We estimated capacity by computing Pashler’s k
(Pashler, 1988) separately for each participant at each set size,
and then taking the highest value across set sizes as the
participant’s capacity (e.g., Olsson & Poom, 2005; Todd &
Marois, 2005). The mean capacity across 19 participants was
estimated to be 4.58 items (SD = 0.78, range = 3.00–5.68).
This mean estimate of capacity is somewhat higher than the
three- to four-item capacity reported by some investigators
(e.g., Luck&Vogel, 1997), although the range of performance
is comparable to other reports in the literature using a similar
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Fig. 2 The dynamic field theory, consisting of three layers: (a) an
excitatory contrast field (CF), (b) an inhibitory layer (Inhib), and (c) an
excitatory working memory field (WM). In each panel, time is across the
x-axis, activation on the y-axis, and color value on the z-axis. Arrows
indicate excitatory (green) and inhibitory (red) projections between
layers. The excitatory fields are coupled to two self-excitatory, mutually
inhibitory neurons: the one for different (d) decisions receives activation
projected from CF, and the one for same (S) decisions receives activation
projected from WM
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methodology (e.g., Alvarez & Cavanagh, 2004; Cowan,
Fristoe, Elliott, Brunner, & Saults, 2006; Gold et al., 2006;
Ross-Sheehy, Oakes, & Luck, 2003).

Table 2 shows the results from our model simulations,
along with the participants’ data, demonstrating the close
fit of the model across both change and no-change trials
(see the Appendix for full details; the parameter values are
shown in Table 4). Note that each mean from the simu-
lations fell within one standard deviation of the means
from the behavioral data, and that the mean absolute error
between the model’s performance and our behavioral data
was 2.26 %, less than one half of the overall standard
deviation observed for the behavioral data (7.11 %). As
with the behavioral data, we used Pashler’s k to compute
the model’s capacity separately for each “participant”
(simulation run) by taking the highest estimate across
set sizes and then averaging across runs; this resulted in an
estimate of 4.64 items. Thus, the DFTcan provide a close fit of
adults’ performance in the change detection task across set
sizes 1–6.

Decision-making, errors, and capacity limits in the DFT

In addition to providing robust quantitative fits to adults’
change detection performance, a key strength of the proposed
framework is the opportunity that it provides to explore the
dynamic processes underlying performance on a trial-by-trial
basis. This opportunity is lacking in other, non-process-based
accounts of VWM capacity limits that may capture overall
performance but fail to specify a response on each trial (see
Table 1). Here, we probe how change detection decisions arise
in the DFT to account for the capacity limits observed in
behavioral experiments. We begin by considering how correct
responses (i.e., correct rejections and hits) arise. Next, we
examine the factors contributing to errors (i.e., misses and
false alarms). Finally, we consider the origin of capacity limits
by exploring the number of unique neural representations that
can be maintained concurrently in WM.

Correct rejections and hits

Figure 3 shows a trial in which the DFT model makes a correct
rejection, correctly responding same when the display colors
were identical between the memory and test arrays. This figure
shows time slices through all three layers at critical points in the
trial: at the end ofmemory array presentation following encoding
(Fig. 3A), at the end of the delay when the colors are being
maintained in memory (Fig. 3B), and when the decision is
generated during presentation of the test array (Fig. 3C). To show
the time course of the decision process, activation of the decision
neurons is shown across time in the trial. Note that, although
separate task “stages” are highlighted for simplicity in each
simulation, patterns of activation evolve continuously throughout
the trial, and the stage-like character of performance arises as a
result of the timing of specific task events, together with dynamic
interactions within and between the model’s layers, rather than
from different processes corresponding to different stages.

The trial begins with the presentation of the memory array
for 500 ms. This event is captured as localized excitatory input
projected strongly into CF and weakly into WM (see the
Appendix for details). As is shown in Fig. 3A, by the end of
the stimulus presentation period, multiple peaks of activation
have formed in WM, reflecting the consolidation of each of
the memory array colors in memory. At this time, bumps of
activation have also formed in Inhib, as a result of excitatory
input from both WM and CF. Activation from Inhib is
projected back to both WM and CF. Inhibitory input to WM,
together with local excitatory recurrence among neurons,
allows self-sustained peaks to remain active in WM through-
out the delay interval (Fig. 3B). In contrast, inhibitory input to
CF produces regions of inhibition centered at field sites
representing the colors being held in WM. Thus, when the
test array colors match the colors being held in memory,
excitatory stimulus-related input to CF is met with strong
inhibitory input (resulting from the reciprocal connection
between Inhib and both CF andWM) at the same color values.
This prevents peaks of activation from forming at those loca-
tions in CF (see Fig. 3C), and the model “recognizes” that the
test array colors are the same as the items currently held in
memory. When the test array is presented, the stimulus input
combines with an excitatory projection fromWM to drive the
activation of a “gate” neuron. When the gate neuron’s activa-
tion exceeds threshold (zero), this autonomously enables the
projection from CF and WM to the different and same neu-
rons, respectively. In this trial, the presence of four peaks in
WM results in strong activation of the same neuron, whereas
the inhibitory troughs in CF prevent this layer from sending
activation to the different neuron. Thus, the same neuron rises
above threshold, producing a correct rejection.

Figure 3 also shows how the model generates a hit re-
sponse, correctly responding different when one item has
changed at test. In this trial, following the encoding and delay

Table 2 Comparison of results from simulations and the behavioral
experiment

Simulations Behavioral Data

CR Rate H Rate CR Rate H Rate

SS1 99.00 (2.05) 99.00 (2.05) 99.21 (1.87) 97.89 (3.46)

SS2 99.75 (1.12) 96.50 (3.66) 97.89 (4.19) 97.89 (3.46)

SS3 99.50 (1.54) 94.75 (6.38) 94.47 (6.43) 93.95 (5.67)

SS4 99.25 (1.83) 87.25 (4.13) 93.16 (7.68) 90.53 (8.96)

SS5 94.50 (4.56) 76.75 (8.63) 92.11 (7.51) 81.32 (11.28)

SS6 85.75 (6.93) 72.25 (8.50) 89.21 (7.31) 73.95 (17.45)

CR correct rejection, H hit
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(Figs. 3A, D), the test array appears with a change in one of the
colors (from –120° to 80°; Fig. 3E). This new input projects to a
relatively uninhibited region of CF, allowing an input-driven
peak to form (see the circle in Fig. 3E); note that a peak also
begins to form inWM, although activation buildsmore slowly in
WM than in CF at this new color value. Because above-threshold
peaks are present in bothWM and CF at test, strong activation is
projected to both the same and different neurons, resulting in
competition for response output. In the model, the projection
from CF to the decision system is stronger than the associated
projection from WM (see the Appendix). Consequently, the
different neuron pierces threshold first and is able to suppress
the same neuron, generating a correct different response (see the
dotted line at the top of Fig. 3).

Misses and false alarms

The previous simulations show how the model performs the
encoding, maintenance, comparison, and decision processes nec-
essary for correct performance in the change detection task.
These two response types are the most frequent responses ob-
served in adults’ change detection performance (see Fig. 1B and
Table 2). As set size increases, however, performance begins to
decline. In particular, the proportion of hits begins to decrease as
participants make more misses. The failure to detect changes
when they occur is the most common type of error seen in
change detection tasks, typically occurring about two to three
times more frequently than false alarms (see, e.g., Vogel,
Woodman, & Luck, 2001).

Figure 4 shows the DFT performing a set size 4 miss trial. As
before, the trial begins with the presentation of four inputs to the
model (Fig. 4A), and this event produces peaks in WM that
sustain throughout the delay (Fig. 4B). At test, one of the colors is

changed to a new value (i.e., –120° changes to –80°). However,
unlike on the hit trial described above, on this trial the new color
falls between two colors already held in WM (Fig. 4C). Because
inhibition spreads laterally around the two remembered items,
activation at the changed value in CF is still inhibited relative to
other field sites during the delay (e.g., compare activation at the
location of the change in Fig. 3D vs. Fig. 4B). Thus, the test array
input to CF is unable to rise to above-threshold levels of activa-
tion at the color value of the new item (see the circle in Fig. 4C).
As a result, the activation projecting from WM to the same
neuron is stronger than the input fromCF to the different neuron,
and the model incorrectly makes a same response (see solid line
in Fig. 4). In general, misses become more likely as inhibition
spreads more broadly in CF at higher set sizes. Moreover, the
present simulation highlights that the likelihood of missing a
change may depend on the metric relationship between the
changed item and the items in WM. We return to this issue in
“Other contributions to errors in the DFT”.

An example of the final response type—false alarms—is also
shown in Fig. 4. This trial begins with the four inputs projecting
to CF and WM, building peaks in WM (Fig. 4A). However,
during the delay on this trial (Fig. 4D), activation for one color
value is not maintained (see the circle in Fig. 4D). Without a
peak in WM, there is no corresponding inhibition in CF at this
field location. Consequently, an input-driven peak builds in CF
at the location of the forgotten item, even though the same four
colors are present in the test array (see the circle in Fig. 4E). The
presence of an above-threshold peak in CF strongly activates the
different neuron in the decision system, which generates an
incorrect response (see the dotted line at the top of Fig. 4).
Thus, even though the model is capable of holding four (or
more) items in WM at one time, competition between neighbor-
ing peaks prevented one item from being consolidated in WM

Fig. 3 Simulations of the dynamic field theory (DFT) illustrating correct
performance in the model, with time slices through the three layers of the
model during key points in the trial: (a) after encoding, which did not
differ across trial types, (b) during the delay and (c) at test on a no-change
trial, and (d) during the delay and (e) at test on a change trial. Activation

of the decision neurons over the course of the trial is shown above the
delay and test panels, with lines indicating the onset of the memory array
(M), the beginning of the delay (D), onset of the test array (T), and the
response time (R). The dashed horizontal lines in each of the lower panels
indicate zero. CR = correct rejection
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(discussed further in the following section), which produces a
false alarm.

The DFT contrasts with other prominent approaches to
change detection in that guessing does not explicitly factor
into our account of errors. For example, many models assume
that, on trials in which no change is detected and the set size
exceeds capacity, participants generate a response by random-
ly guessing (e.g., Pashler, 1988; Rouder, Morey, Morey, &
Cowan, 2011; Wei, Wang, & Wang, 2012). By contrast,
responses in our model are always driven by activation of
the same and different neurons, which results from the dy-
namic interactions between the neurons as they receive pro-
jections from WM and CF, respectively. Although the notion
of guessing has intuitive appeal, and participants’ confidence
in their responses surely varies across trials, the current im-
plementation of decisions in the DFT avoids the need to posit
metacognitive processes that would be necessary to generate a
guess. For example, to implement guessing in the model,
some component would be needed to monitor WM to deter-
mine whether all of the items were present, and then to select a
response at random at test if any items were missing.
Including such a mechanism in the model would be possible,
in principle, but the close correspondence between the model
simulations and the behavioral data suggests that this is not
necessary. We are not arguing that guessing never occurs in
the behavioral task. To the best of our knowledge, no defini-
tive evidence exists regarding the prevalence of guessing and/
or the normative form that guessing takes. Thus, whether
some form of guessing needs to be added to the model is, at
present, an open question.

Capacity limits in the DFT

A critical component of the debate between the slots and
resource accounts of VWM is whether the number of

representations that can be held in VWM is truly limited, or
whether insufficient resolution merely gives the appearance of
capacity limits at higher set sizes (see Table 1). On this
particular issue, the DFT provides an alternative to these two
views, in that the total number of items is limited but not fixed.
This can be seen in Fig. 5, which shows the numbers of peaks
that were present inWM at the end of the delay in each trial of
the quantitative simulations described above. Two important
points should be noted. First, the number of items being held
in WM was somewhat higher than the capacity estimated
using Pashler’s (1988) formula for calculating k , with an
average of 5.79 peaks at SS6 producing an estimated k of just
4.64 items. Thus, the model must hold five or six items in
memory in order to generate a capacity estimate between four
and five items. This result highlights the importance of con-
sidering the processes underlying VWM, not just the repre-
sentations: Errors may still arise on trials in which all of the
items were held in memory.

Fig. 4 Simulations of the dynamic field theory (DFT) illustrating errors in the model, with time slices through the three layers of the model during key
points in the trial, plus activation of the response neurons over the course of the trial, as in Fig. 3. FA = false alarm

Fig. 5 Mean numbers of peaks sustaining in WM at the end of the delay,
averaged across all trials. The line shows the overall mean, and
the bars show the means separated by response types. Error bars
show one standard deviation. SS = set size, CR = correct rejections,
FA = false alarms
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This leads to the second notable point from our simula-
tions, that the numbers of peaks maintained across trials vary
systematically by response type (see the separate bars in
Fig. 5). For set sizes of three and above, we found that fewer
peaks were present in WM at the end of the delay on false
alarm trials—that is, on trials in which the model incorrectly
generated a different response. By contrast, the highest aver-
age number of peaks was present on miss trials, in which the
model incorrectly generated a same response. This contrasts
with the assumptions underlying commonly used approaches
to estimating capacity (see Table 1). As can be seen in Fig. 5,
for set sizes 1 and 2, all of the array items were held in
memory for each response type, demonstrating that errors
can arise even when all items have been successfully stored.
At higher set sizes, the number of items maintained was
frequently less than the set size. A clearer picture of the effect
of forgetting on performance can be seen in Table 3, which
shows the frequency of each response type when all of the
items were remembered or when the number of peaks present
at the end of the delay was either one or two items lower than
the set size. As can be seen, misses (and correct rejections)
were most likely when all of the items were held in memory,
whereas false alarms (and hits) weremost likely to occur when
at least one of the items failed to be consolidated and main-
tained inWM. This suggests that errors in change detection do
not arise solely from the number or resolution of items held in

memory, but also through the comparison and decision pro-
cesses (as was previously suggested by Mitroff, Simons, &
Levin, 2004).

The simulations described above suggest that, although the
number of items in WM at the end of the delay was less than
set size on some trials, in many cases, nearly all of the items
were maintained. A critical question is whether this holds true
for set sizes greater than six. To explore capacity limits in the
model further, we assessed the model’s performance at higher
set sizes across a series of 250 separate simulations, corre-
sponding to 20 participants in a change detection task.
Overall, these simulations revealed that, as the set size was
increased beyond six items, the model’s performance declined
from 78.8 % correct for set size 6, to 71.88 % for set size 7, to
63.75 % for set size 8. To illustrate the role that forgetting may
have played in increasing the occurrence of errors, Fig. 6
shows the patterns of activation in the WM layer at different
points in a set of representative trials when five, six, seven, or
eight inputs were presented.

As can be seen in Fig. 6, when five items were presented
(top row), four peaks were formed and a fifth had begun to
form within ~250 ms; although this fifth peak remained rela-
tively weak, all five peaks were sustained throughout the
delay. The next row of Fig. 6 shows a set size 6 trial. In this
case, only five peaks were able to build in WM and sustain
throughout the delay—that is, one item was forgotten. When
seven items were presented (third row), peaks for six items
built within the first 250 ms of the memory array, and a
seventh peak reached threshold by the end of the memory
array. However, because this peak was relatively weak, it was
suppressed by inhibition associated with the other items in
WM. As a result, only six peaks remained inWM at the end of
the delay. Finally, when eight items were presented (bottom
row), six peaks were both formed by the end of the memory
array and maintained throughout the delay, whereas two items
failed to consolidate in WM. Our simulations demonstrate
how the capacity of the DFT is limited to, at most, five or
six items, but that the number of peaks maintained is not fixed
(for a complementary analysis of capacity in a model with
similar dynamics, see Edin et al., 2009). The time-dependent
nature of peak formation may seem to suggest that capacity
can be increased arbitrarily by lengthening the memory array
duration. This is not the case: At some point, inhibition from
the other items in WM makes it impossible to maintain more
than five or six items inWMonce input is removed, regardless
of how long the items were presented.

As this figure demonstrates, the relative strengths of exci-
tation and inhibition between layers provides an upper limit on
the number of peaks that can be maintained simultaneously in
WM. Thus, capacity limits in the DFT can be attributed to the
strength and width of the Mexican hat function. With weaker
interactions, the capacity of the model is decreased (see
“Cognitive development” below for a discussion of how this

Table 3 Numbers of trials of each response type, based on the number of
items held in working memory

Correct Rejection Hit Miss False Alarm Total

All items

SS1 396 396 4 4 800 (100 %)

SS2 399 386 14 1 800 (100 %)

SS3 398 377 21 0 796 (99.50 %)

SS4 386 331 51 0 769 (96.13 %)

SS5 351 269 91 3 714 (89.25 %)

SS6 294 188 99 1 582 (72.75 %)

One item below set size

SS3 0 2 0 2 4 (0.50 %)

SS4 11 17 0 3 31 (3.88 %)

SS5 27 37 2 19 85 (10.63 %)

SS6 47 91 11 51 200 (25.00 %)

Two items below set size

SS5 0 1 0 0 1 (0.03 %)

SS6 1 10 1 5 17 (2.13 %)

Three items below set size

SS6 1 0 0 0 1 (0.03 %)

Across all simulations, 400 trials were conducted per trial type (i.e., no-
change vs. change trials) per set size; thus, the percentages of the respec-
tive trial types correspond to the numbers of trials divided by 800. SS =
set size
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type of parameter change can capture developmental improve-
ments in VWM). Critically, however, the performance of the
model is not influenced solely by the number of items inWM,
as we describe in the following section.

Other contributions to errors in the DFT

To conclude this subsection, we revisit the question of where
errors come from in the model. In our analysis of this issue
(see “Misses and false alarms”), we suggested that errors are
most likely to occur when either (a) one or more items have
failed to be consolidated or maintained in WM throughout the
delay interval, increasing the likelihood of a false alarm, or (b)
WM is full, and as a result, inhibition projects broadly back to
CF, making it difficult for a peak to build in that layer when a
change occurs at test, and increasing the likelihood of a miss.
Note that these two explanations align roughly with the slots
and resource accounts, respectively; this is how the DFT is
able to capture many of the same empirical phenomena that
support one or the other of those theories within a single
framework (see the further discussion in “Recall tasks probing
VWM”). The exact number of peaks held in WM on a given
trial is partly influenced by random fluctuations of activation
(i.e., noise). Noise within the fields may increase the excita-
tion or inhibition at a given color value, which can bias nearby
peaks toward an on or off state, respectively. In addition to

noise, more systematic influences on activation and inhibition
are related to the items being held in WM. Specifically, our
simulations revealed that errors could occur on trials in which
no items were forgotten and WMwas not full to capacity. For
example, in “Misses and false alarms” we described a set size
4 trial that resulted in a miss response, even though all of the
items were successfully remembered throughout the delay and
set size was below the maximum number of peaks that could
simultaneously be maintained in WM. In this case, one item
changed to a color that fell in-between the colors of two other
items that were being held in WM. Because these colors were
relatively close together in color space, the inhibition contri-
butions associated with the two peaks in WM were overlap-
ping, producing a region of relatively strong inhibition be-
tween these two color values in CF (see the pattern of inhibi-
tion in CF in Fig. 4). As a consequence, the test input failed to
generate a peak of sufficient strength in CF to drive a different
response.

The false alarm trial shown in Fig. 4 illustrated another
potential consequence of metric interactions in WM, in which
a peak “died out” during the delay due to strong inhibition
from neighboring peaks. These simulations lead to a novel
prediction that we can evaluate with our own behavioral
data—that the metric relationship between the items in WM
will influence which items are stored, and by extension, will
have a measurable effect on performance. Although our task
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Fig. 6 Time slice throughWM, demonstrating how many peaks can be built and maintained simultaneously. Color values are shown on the x-axes and
activation on the y-axes

1638 Atten Percept Psychophys (2014) 76:1630–1654



was not specifically designed to test this prediction, we eval-
uated it by calculating an approximate-similarity metric be-
tween the items in the memory array on each trial and com-
paring response types on the basis of item similarity.2 To do
this, we ordered the stimuli in eachmemory array by similarity
and calculated the number of “steps” between nearest neigh-
boring items, such that two neighboring colors (e.g., cyan and
blue) would have one step between them, colors separated by
one other color would have two steps, and so on for each
additional color. We then computed the mean distance be-
tween items for set sizes 2–6. Note that the minimum mean
distance score for any set size is one, corresponding to a trial in
which all of the colors are no more than one color step away
from their nearest neighbor. Given that nine possible colors
were used in the behavioral experiments, the maximum pos-
sible distance between two colors was 4, but with each addi-
tional item added to the array, the mean distance score would
necessarily decrease. Collapsing across trial types, the mean
distance scores across set sizes 2–6 were, respectively, 2.53,
1.95, 1.65, 1.41, and 1.25 steps.

Figure 7 shows the percentages of correct versus incorrect
responses on no-change (Fig. 7A) and change (Fig. 7B) trials
as a function of the mean distance between items in the
memory array, collapsed across set sizes 2–6. Because stimuli
were selected randomly on every trial and higher mean dis-
tances were only possible at lower set sizes, there were large
variations in the numbers of trials that yielded each possible
mean; as such, we combined roughly equal numbers of trials
to arrive at the bins specified along the x -axis (note that 1,900
trials contributed to each panel—19 participants each com-
pleted 20 no-change and 20 change trials in each of these five
set sizes). As this figure shows, errors were more likely when
the mean distance was small—that is, when items in the
memory array were more similar to one another. We also
considered how the similarity between the memory array items
and the novel test color on change trials influenced perfor-
mance. Figure 7C shows the percentages of change trials that
resulted in hits or misses, this time as a function of the mean
distance between the changed color and the items in the
memory array. Again, smaller distances (more similarity) led
to more errors, as was predicted by the DFT. Although these
results are consistent with the model’s performance, this pre-
diction warrants further testing because it was not an explicit
goal of the present experiment, but rather was tested post hoc.

Note that these results contrast with the findings of Johnson
and colleagues (Johnson et al., 2009; Lin & Luck, 2009), who
observed a similarity-based enhancement of change detection
performance in two separate experiments exploring memory

for colors and memory for orientation. In contrast to the
present study, in which we derived the prediction of a
similarity-based increase in false alarms from the model’s
performance after fitting it to our behavioral data, the enhance-
ment effect observed by Johnson and colleagues was an a
priori prediction derived from a systematic exploration of the
effects on change detection of different metric separations
between inputs (Johnson & Spencer, unpublished observa-
tions). Specifically, at very close separations, two peaks in
WM nearly always fused (combining into a single peak at an
average color), or one peak “killed” the other. At slightly
larger separations, mutual inhibition produces a sharpening
and reduction in the amplitude of each peak, weakening and
narrowing the inhibitory projection to CF, and allowing rela-
tively small changes to be detected more readily. With even
larger separations, the peaks are less affected by the metrically
specific lateral inhibition associated with the other peak and
more influence comes from global inhibition (see the
Appendix). Global inhibition limits the total number of peaks
that can be held in WM, and combined effects of lateral
inhibition will make some peaks more likely to “die out” than
others (see Fig. 4). Thus, metric interactions between nearby
items may enhance or disrupt performance under different
circumstances in the DFT.

In a related model, Wei, Wang, and Wang (2012) proposed
a form of primarily excitatory interaction as one of the main
causes of errors in change detection. Our view differs from
theirs in that merging in our model only occurs at very close
separations (i.e., at separations smaller than those used inmost
change detection experiments), with primarily inhibitory in-
teractions predominating at larger separations. For example, at
the intermediate separations shown to produce a sharpening of
peaks, overlap between the lateral inhibition profiles of nearby
peaks leads to an asymmetry in inhibition, with stronger
inhibition in-between the peaks than on the “outside.” As a
consequence, the peaks move away from each other over the
delay period—they are “repelled” from each other.
Importantly, this postulated form of neural interaction leaves
a behavioral signature that can be detected using recall work-
ingmemory tasks (see Johnson, Dineva, & Spencer, 2013, and
“Recall tasks probing VWM”).

Taken together, the results and simulations described in this
section highlight that, although individual items are represent-
ed as discrete peaks inWM, they are not stored independently,
but rather interact in systematic ways that can impact perfor-
mance. This unique feature of the DFT contrasts with the
assumptions underlying the discrete-slots perspective, that
items are stored independently in working memory (see
Table 1); similarly, no such provisions for neural interactions
of this sort are provided by the resource perspective, although
high item similarity could be expected to produce interference
according to this view (Wilken & Ma, 2004). Furthermore,
several of the consequences arising from high item similarity

2 We constructed this metric of similarity by asking ten adults to order the
nine colors by similarity and then taking the modal ordering: black, blue,
cyan, green, yellow, white, violet, red, brown (wrapping back to black).
See the Appendix for RGB values.
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considered here only become evident through comparison and
decision processes in the DFT—other theories and models do
not explicitly address these processes.

As with the slots and resource models, failures in the
encoding or consolidation processes contribute to errors in
the DFT. Behavioral studies of the rate of consolidation in
VWM have suggested that encoding occurs more slowly as
set size increases (Vogel, Woodman, & Luck, 2006), which
can result in the failure to encode one or more items when the
display duration is relatively short. We examined this charac-
teristic of the model by plotting the mean above-threshold
activation (averaged across trials and runs of the model) in
WM during the presentation of the memory array. Figure 8
shows the mean activation across set sizes during encoding
(8A) and the delay period (8B). As Fig. 8A shows, the rise
time of activation per item increased as additional items were
added to the memory display, but only to a point: The total
amounts of activation were similar for set sizes 3 and above,
despite the increased number of items. Thus, consolidation
occurred more slowly per item with more items, as has been
seen in behavioral studies (Vogel et al., 2006). In the DFT, this
occurs as a result of increasing inhibitionwith greater numbers
of inputs, which slows down the overall increase in excitatory
activation necessary to sustain peaks.

The same pattern can be seen in activation in WM during
the delay period: the amount of activation increased as the
number of items increased, but not linearly (Fig. 8B).
Although there is not a direct correspondence between activa-
tion in the WM field of the DFTand specific neural measures,
this pattern is generally consistent with fMRI and electroen-
cephalographic (EEG) data showing a correspondence be-
tween neural activity and capacity limits in change detection
(e.g., Todd & Marois, 2004, 2005; Vogel, McCollough, &
Machizawa, 2005). This feature of the model contrasts with
other recent approaches that have attempted to reconcile the
slots and resource views of working memory by positing that
the total amount of above-threshold excitatory activation is
akin to a continuous resource that remains roughly constant
across set sizes (see, e.g., Wei et al., 2012, and the discussion
below).

Comparison to slot- and resource-based approaches to change
detection

We conclude this section by considering the similarities and
differences between our approach and the discrete-slots and
continuous-resource models. Table 1 summarized the con-
trasts between the approaches; we will briefly discuss each
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Fig. 7 Percentages of (a) no-change and (b) change trials that resulted in
errors (False Alarm, Miss) or correct responses (Corr Rej, Hit), as a
function of the similarity of items in the memory array. c Percentages
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in turn here. A central contrast between approaches is how
items are encoded: Slots theories posit discrete, all-or-none
encoding, whereas resource models assume continuous
encoding, with a gradual accumulation of information over
time, allowing for the partial representation of a potentially
very large number of items. In the DFT, encoding occurs when
the input is sufficiently strong and enduring to produce a self-
sustaining peak in the WM layer (for further discussion, see
Johnson et al., 2009). This involves a discrete transition—
known as a bifurcation in dynamic systems theory (Braun,
1994)—from an “off” state, characterized by graded sub-
threshold patterns of activation, to an “on” state in which
locally excitatory interactions among similarly tuned neurons
are engaged. Thus, either peaks are stabilized in an above-
threshold activation state or they relax back to the neuronal
resting level. They do, in fact, have a discrete, all-or-nothing
character.

According to slots theories, the capacity of VWM is limited
to a small number of high-resolution representations, with
capacity being more or less fixed within a given participant
(but see Kundu, Sutterer, Emrich, & Postle, 2013, for
evidence that capacity can be increased through particular
types of training). Resource models, by contrast, posit that
the number of representations that can be maintained is essen-
tially unlimited, although only a small number can be repre-
sented with high precision. In the DFT, the number of peaks
that can be sustained in WM has an upper limit; however, the
total number of peaks maintained is not fixed, but varies from
trial to trial, depending on stochastic processes (i.e., noise) and
more systematic influences, such as the metric separation
between maintained items.

The DFT differs from the classic form of the slots view in
that items are not encoded and maintained with perfect fidelity
(see Table 1). Instead, each item is represented as a noisy
population vector of activation occupying a unique position
within a continuous feature space. In this sense, the DFT is
more similar to resource models; although such models have
not been explicitly implemented in a neural framework, the

underlying assumption is that individual items are represented
as noisy population codes, with the amount of noise (i.e.,
variance) associated with each item increasing as limited
resources are spread out among larger numbers of items
(Bays, Catalao, & Husain, 2009; Bays & Husain, 2008,
2009). However, we are unaware of any implemented
population-coding model that captures multi-item VWM in
the manner described by proponents of the resource view (Ma
& Huang, 2009). Indeed, until quite recently, the majority of
models in this class that have addressed working memory
have focused on memory for single spatial locations
(Camperi & Wang, 1998; Compte et al., 2000). Achieving
multi-item working memory in such models has proven to be
a challenge, because this requires a delicate balance between
excitation and inhibition (Trappenberg, 2003). With too little
inhibition (or when exCitation is too broad), peaks have a
strong tendency to merge, making it difficult for unique peaks
of activation to be formed and maintained (discussed above;
see also Wei et al., 2012). Conversely, if inhibition is too
strong, only a single peak can be maintained at a time, which
is inconsistent with capacity estimates obtained from behav-
ioral experiments. Thus, the same neural dynamics that make
it possible to maintain multiple neural representations at one
time in these models (locally excitatory recurrence together
with broad inhibition) also give rise to capacity limits at higher
set sizes. As a result, a plausible neural basis for the unlimited-
capacity working memory proposed by proponents of the
resource view remains unclear.

This difficulty is demonstrated in a recent model developed
by Wei et al. (2012), which attempts to reconcile the slots and
resource views of working memory. In their model, the
strengths of excitatory and inhibitory interactions among the
neurons supporting maintenance are tuned such that the total
number of activated neurons during the delay remains more or
less constant (i.e., continuous) across set sizes. This mode of
functioning is in keeping with the conceptualization of work-
ing memory as a continuous resource that is divided up evenly
among the items in memory, with less and less resource
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Fig. 8 Above-threshold activation in WM during encoding (a) and during the delay period (b), as a function of set size
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available for each item as set size increases. However, they
also showed that the capacity of the model is strictly limited,
since the peaks of activation representing items in working
memory either fade out (as a result of increased competition)
or merge together (due to overlapping excitation) as set size
increases. Thus, although some aspects of the model’s func-
tioning are consistent with the resource view, others are not.
Additionally, it is difficult to see how this model, or the
resource view more generally, could capture findings from
neural-recording studies of working memory showing that,
rather than remaining constant, activation during the delay
interval steadily increases with increasing set size, leveling
off at an individual’s capacity (e.g., Todd & Marois, 2004,
2005; Vogel et al., 2005).

Proponents of slots theories have proposed a neural imple-
mentation of a limited-capacity working memory system al-
ternative to the one described here. In this model, each item is
actively stored by a separate cell assembly that fires synchro-
nously in the gamma-band frequency range and out of phase
with cell assemblies representing other items (Lisman &
Idiart, 1995; Raffone & Wolters, 2001). Capacity limits arise
when the number of items to be maintained exceeds the
number of distinct phases available. In addition, the ability
to maintain separate sustained oscillatory states can be influ-
enced by noise, item similarity, and other factors that have
been shown to influence performance in the DFTand in neural
population-coding models more generally. Although this is a
promising explanation, to date little direct evidence has sup-
ported this proposal (see the discussion in Fukuda, Awh, &
Vogel, 2010). Additionally, thoughmaintaining multiple high-
ly similar items might produce interference among represen-
tations, it is unclear whether such a temporal-coding model
could accommodate the various kinds of metric interactions
that our work has uncovered.

The most notable difference between the DFTand slots and
resource accounts is that only the DFT includes specific
mechanisms underlying the comparison and decision process-
es that are required in change detection. Even in neural
implementations of slots models (e.g., Raffone & Wolters,
2001), or in what could be considered hybrid slots/resource
models (e.g., Edin et al., 2009; Wei et al., 2012), the compar-
ison and decision processes are not explicitly implemented.
As our simulations have demonstrated, however, the process
of translating a memory representation into a behavioral re-
sponse introduces the potential for errors, which brings us to
the final contrast among theories: the source of errors in the
change detection task. The “classic” slots accounts were ad-
mittedly simple, attributing all errors to items not being held in
memory. More recent variations of slots models, however,
provide a richer set of hypotheses to account for performance
in change detection, including insufficient resolution to detect
small changes (see the discussion in Awh, Barton, & Vogel,
2007), or lapses in attention (Rouder et al., 2008; Rouder

et al., 2011), in addition to failures of encoding or mainte-
nance. The primary source of errors in the resourcemodels, by
contrast, is limited resolution, which makes decisions more
prone to error as set size increases (Wilken & Ma, 2004). In
the DFT, errors can arise through any of the processes in-
volved in the change detection task and are not solely, or even
primarily, attributable to failures of memory (seeMitroff et al.,
2004). Adopting a process-oriented approach to VWM, in
which the proposed mechanisms underlying performance are
explicitly implemented in a formal model, affords the oppor-
tunity to explore additional sources of errors that may not be
evident in other approaches that focus primarily on character-
izing the representations underlying VWM. Importantly, the
potential sources of errors suggested by our model are not
simply theoretical curiosities, but have led to testable predic-
tions that have been confirmed in behavioral and neuroimag-
ing experiments, as we describe in the next section.

Beyond change detection

Thus far, our discussion has focused exclusively on modeling
the change detection task in adults. In this section, we consider
how the model can be used to address performance in other
tasks used to measure VWM in the laboratory, and in age
groups other than adults. First, we describe a DFTapproach to
modeling cued recall, which has overtaken the change detec-
tion task as the primary paradigm used to study VWM. Next,
we describe recent extensions of this architecture that incor-
porate higher-dimensional representations, attention, and se-
quence learning. These additions make it possible to capture
performance in several other tasks that are widely used to
measure VWM. In a final section, we consider how the model
can account for the development of visuospatial working
memory.

Recall tasks probing VWM

Much of the current debate between proponents of slots and
resource views focuses on performance in recall, rather than
change detection, VWM tasks. The recall task is identical to
the change detection task, with the exception that, instead of
making a same/different decision in response to a test array,
observers are cued to report a particular attribute of a remem-
bered stimulus (e.g., its color) by, for example, clicking on the
region of a color wheel that matches the remembered attribute.
Although the primary focus of the present article has been
change detection, the majority of the previous work applying
the DFT to working memory has addressed spatial recall
(Simmering, Schutte, & Spencer, 2008; Spencer et al.,
2007). As a result, adapting the model described in “The
dynamic field theory of visual working memory and change
detection” to recall studies of VWM is fairly straightforward.
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Recall that the basic units of representation within the DFTare
localized peaks of activation, whose center of mass can be
taken as an estimate of the particular stimulus value(s) (e.g.,
hue, orientation, spatial location) represented by the neural
system at a particular moment in time. Thus, a simple means
of deriving simulated recall data from the model is to present it
with one or more inputs followed by an unfilled delay, as in
change detection, and then read out the position of each
distinct peak that is present in WM at a specified point in time
after the end of the delay. The simulated response distributions
can then be used to estimate the capacity, accuracy and preci-
sion of peaks inWM in the same way that recall responses are
used to estimate these parameters from behavioral data (as in,
e.g., Bays et al., 2009; Zhang & Luck, 2008).

Using this method, Johnson and colleagues (Johnson,
2008; Johnson et al., 2013) used the DFT to derive a novel
prediction that was confirmed behaviorally: that neural inter-
actions between nearby peaks in WM would produce
similarity-based feature repulsion (see the discussion in
“Other contributions to errors in the DFT”). Additionally,
model simulations and behavioral data revealed a decrease
in precision when one item versus three items were retained in
WM, in keeping with previous findings (see, e.g., Zhang &
Luck, 2008). Note that the method of deriving recall data from
the model simplifies the generation of responses in the recall
task, in which participants are typically required to map the
color they are holding in memory onto a spatially distributed
representation of the color space. That is, generating the
response requires the integration of spatial and nonspatial
dimensions. One means of achieving this is to couple the
one-dimensional color WM field to a two-dimensional
color-space response field (spanning, e.g., 360° of color and
360° of polar angle), which makes it possible to map activa-
tion in WM onto a feature-space representation of the color
wheel (see “Cognitive development” for further discussion of
the use of higher dimensional fields to represent conjunctions
of features and spatial locations). In principle, the DFT is in a
position to capture all of the necessary processes required to
perform the recall task, from the encoding and maintenance of
individual colors, to the generation of a spatially localized
recall response. Formally implementing the processes under-
lying both recall and change detection in the same architecture
may provide a more direct means of assessing the connection
between performance in these tasks than is possible with
current slots and resource models.

Expanded model architecture

Although the three-layer architecture described in “The dy-
namic field theory of visual working memory and change
detection” has been used to capture performance in spatial
cognition and VWM tasks in children and adults (see Johnson
& Simmering, in press; Simmering & Schutte, in press, for

reviews), it is still limited in the extent to which it has been
applied to many of the well-documented empirical phenome-
na in VWM research. To remedy this, we have been working
with a group of colleagues to expand the model architecture to
incorporate a wider array of cognitive processes (see Spencer
& Schöner, in press, for a review). The full range of applica-
tions of this expanded architecture is beyond the scope of this
article, but we will briefly highlight the examples that apply
most directly to VWM research here.

One limitation of the three-layer architecture described
above is that it only captures WM for single features (i.e.,
the colors of the items), not their locations or other visual
attributes; similarly, spatial versions of the model only capture
the spatial locations of objects and no other visual features.
The expanded DFT architecture addresses this limitation by
incorporating higher dimensional representations in which
activation in a single field can span different dimensions, such
as a spatial dimension and a metric feature like orientation,
direction of motion, or hue. Representations of this sort are
ubiquitous throughout many cortical areas. Most notably,
neurons in the early visual system are known to form a
population code over the two dimensional space of stimulus
positions on the retina. Importantly, many of these neurons
also respond to particular visual features, like edge orientation,
spatial frequency, movement direction, or hue (see, e.g.,
Blasdel, 1992; Hubel & Wiesel, 1959; Issa, Trepel, &
Stryker, 2000; Livingstone & Hubel, 1988). The DFT uses
these kinds of visual representations to capture the integration
of spatial and nonspatial dimensions in VWM. For instance,
using a simplified one-dimensional representation of space
(capturing, e,g., the position of a stimulus relative to fixation
in polar coordinates), Johnson, Spencer, and Schöner (2008)
showed how feature–location integration could be realized by
combining separate one-dimensional architectures for individ-
ual features (color, space, etc.), and two-dimensional fields
that localize features in space. In this type of architecture, the
two-dimensional color-space WM field receives input from
color WM along one dimension and spatial WM along the
second dimension; the place where these inputs intersect
specifies the spatial location of the color in the visual scene
(see Schneegans, Spencer, & Schöner, in press, for further
details).

To represent multifeature objects, individual feature dimen-
sions (orientation, hue, etc.) are represented in separate two-
dimensional feature-space fields. The separate feature dimen-
sions can then be bound across the shared spatial dimension
through reciprocal connectivity with a single field
representing the spatial locations of a limited number of
encoded objects (see Simmering, Miller, & Bohache, 2013,
for further discussion in the context of change detection). In
the simplest case, in which one multifeatured object is present
in the visual field, input from the one-dimensional feature and
space fields would uniquely specify the location of the object
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and each of its associated features. However, in more realistic
situations, in which multiple objects are simultaneously pres-
ent in the visual field, a problem can arise in which the features
of different objects are incorrectly combined; a variant of the
well-known “binding problem” (Treisman, 1996; von der
Malsburg, 1981). One proposed solution to this problem is
to process individual items in a sequential fashion (Treisman
& Gelade, 1980). To achieve this, another component needed
to be added to the model: visuospatial attention. Specifically,
in addition to the two-dimensional WM fields and their asso-
ciated contrast fields, this architecture includes both one- and
two-dimensional attention fields. These fields include local
excitatory interactions paired with global inhibition such that
peaks are self-stabilized but not self-sustaining (i.e., activation
returns to resting level when input is removed), and only a
single peak can rise above-threshold at any given time.
Attention fields are reciprocally coupled with both CF and
WM in the respective architectures (i.e., one- vs. two-
dimensional). The function of these fields is to serially attend
to items within the visual scene, thereby reducing the likeli-
hood of misbinding features across different objects. The
addition of an explicit attentional mechanism to the DFT
architecture allows for further comparison with other models
of VWM that emphasize the role of attention in capacity limits
(e.g., Cowan & Rouder, 2009). Additionally, as discussed
further below, reciprocal coupling between WM, CF, and the
attention fields makes it possible to capture behavioral perfor-
mance in tasks other than change detection.

Before considering the application of the expanded model
to other working memory tasks, we briefly consider its ability
to capture findings related to the storage of multifeature ob-
jects in VWM. Behavioral studies have shown that both
children (Riggs, Simpson, & Potts, 2011; Simmering et al.,
2013) and adults (e.g., Luck & Vogel, 1997) have comparable
capacity estimates for single- versus multifeature objects,
suggesting that VWM capacity is limited by the number of
objects rather than the number of features (for important
qualifications of these findings, see Oberauer &
Eichenberger, 2013; Olson & Jiang, 2002; Wheeler &
Treisman, 2002). In the expanded DFT, this limited number
of objects would arise through similar mechanisms as those
that limit capacity in the three-layer DFT (described in
“Capacity limits in the DFT”). In particular, the balance be-
tween excitation and inhibition would limit the number of
peaks that could be maintained in each of the WM fields—
not only in the one-dimensional fields (e.g., hue, orientation,
space) but also in the two-dimensional fields (e.g., color space,
orientation space, etc.). Within the expanded architecture,
capacity would ultimately be limited by the number of distinct
peaks that could be maintained in the spatial field that each of
the two-dimensional feature-space fields is coupled with.
Thus, although it would be possible to represent three to five
multifeature objects (e.g., four colored oriented bars at

different locations), it would not be possible to maintain four
colors and four orientations at different locations (i.e., eight
single-feature objects) because this would exceed the capacity
of the spatial field. Thus, it seems plausible that the extended
model could accommodate the “object benefits” observed in
studies of VWM. However, the implementation of feature
binding in the DFT architecture described here has only been
tested qualitatively; further tests will be needed to see whether
this mechanism can quantitatively capture behavioral data
requiring memory for multifeature objects and generate novel
predictions.

The expanded model was designed, in part, to account for
the proposed close relationship between the storage function
of VWM and the control of visual attention (Desimone, 1996;
Desimone & Duncan, 1995). One piece of evidence
supporting this proposal is the observation that saccadic eye
movements to visual targets can be modulated by the relation-
ship between the target stimuli and the contents of VWM.
Specifically, Hollingworth, Matsukura, and Luck (2013)
showed that saccades to targets matching the contents of
VWM were generated more rapidly and landed closer to the
center of the target than saccades to nonmatching objects. In
the model, the proposed interaction between workingmemory
and perceptual processes arises as a result of excitatory cou-
pling between the WM field and the attention field, which
biases attention (and thereby the oculomotor system) toward
targets that share features with items beingmaintained inWM.
A similar mechanism could be used to capture performance in
other tasks that require the selection of targets that match the
contents of VWM (as opposed to detecting nonmatching
items, as in change detection), such as visual search, a widely
used measure of attention, or the delayed match-to-sample
task, a widely used measure of VWM in humans and nonhu-
man primates. A full consideration of how the model can be
applied to each of these tasks is beyond the scope of the
present work. For in-depth discussion of these issues, includ-
ing the use of dynamic neural fields to capture multifeature
objects, attention, performance in visual search and other tasks
used to probe the relationship between attention and working
memory, the reader is directed to Schneegans, Lins, and
Spencer (in press) and Schneegans, Spencer, and Schöner
(in press).

To conclude this section, we briefly consider additional
extensions of the DFT that make it possible to capture perfor-
mance in more complex tasks than have been considered thus
far. One important goal within working memory research
more generally is to understand how it relates to higher-level
cognitive abilities, such as general fluid intelligence. Many
studies that demonstrate links between working memory and
such high-level skills use more complex tasks than the visual
change detection paradigm discussed here. As an example,
consider the n -back task: In this task, participants are required
to monitor a sequence of stimuli and press a response key
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when the current stimulus matches the item that appeared n
items previously in the sequence. This task is reliably corre-
lated with fluid intelligence, and some studies have shown that
training on n -back improves performance on measures of
intelligence (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008;
but see Chooi & Thompson, 2012; Redick et al., 2013),
suggesting it is an important task to understand.

In order to perform the n -back task, a few additional
modifications to the extended model described above would
be needed. Most importantly, the model would need to incor-
porate information about the order of item presentation: To
evaluate whether the appropriate two stimuli match, knowing
the number of intervening items in the sequence is vital. More
generally, the ability to represent sequential information and to
generate sequentially ordered actions plays a critical role in
even the simplest activities. To address this important issue,
Sandamirskaya and colleagues (Sandamirskaya, in press;
Sandamirskaya & Schöner, 2010; Sandamirskaya, Zibner,
Schneegans, & Schöner, 2013) developed a system for se-
quence learning and generation. Briefly, the proposed system
includes three separate components: a neural representation of
seriality itself in which activation is defined over an abstract
dimension, the “ordinal” axis along which the serial order of
actions is represented; an intention field , in which activation is
defined over relevant motor, perceptual, or cognitive dimen-
sions (akin to the continuous neural fields described above);
and a neural representation of the condition-of-satisfaction ,
whose activity reflects the match between the state that corre-
sponds to the fulfillment of the current intention and the
perceived state of the environment or the agent. With these
additions, Sandamirskaya and Schöner demonstrated that a
robotic agent could learn to perform a sequence of actions
(e.g., visiting a series of colored blocks in a specific order).

The robotic implementation of the model described above
provides a compelling proof of concept, demonstrating the
feasibility of representing ordinal position in the DFT frame-
work, a key requirement of capturing performance in more-
complex working memory tasks such as n -back. With the
sequential information encoded, the next step in modeling
behavior in this task would be to compare the current item
to the item from the appropriate ordinal position in the se-
quence. This could be done in the same manner in which the
three-layer DFT compares the memory and test arrays in the
change detection task and generates a same/different decision
(described in “Decision-making, errors, and capacity limits in
the DFT”). The comparison and decision required in n -back
tasks is essentially a single-item change detection trial: Does
the current item match the item at the appropriate ordinal
position in memory or not? The response nodes could be
modified such that a response is only generated for a same
decision by, for example, decreasing the resting level of the
different neuron from the change detection model. Although
this application to the n -back task is only hypothetical at this

point, and would need to be tested to determine whether it
could indeed capture behavioral results from that task, this
section demonstrates the utility of a process-based model in
extrapolating to other cognitive tasks.

Cognitive development

A final component that separates the DFT from most other
accounts of VWM is that it focuses on developmental change
in memory and performance (see Simmering & Schutte, in
press, for a review). The developmental mechanism imple-
mented in the DFT—the spatial-precision hypothesis—ex-
tends from previous work in spatial cognition, which has
captured developmental changes in spatial recall and position
discrimination, including the influences of reference frames
and long-term memory. According to this hypothesis, neural
interactions strengthen over development (Perone,
Simmering, & Spencer, 2011; Perone & Spencer, 2013, in
press; Schutte & Spencer, 2009; Schutte, Spencer, &
Schöner, 2003; Simmering, 2013; Simmering et al., 2013;
Simmering & Patterson, 2012; Simmering et al., 2008;
Spencer et al., 2007; see Edin, Macoveanu, Olesen, Tegner,
& Klingberg, 2007). This increase in excitation and inhibition
leads to peaks that increase in strength, stability, and precision
over development.

The spatial-precision hypothesis can account for increased
capacity estimates from change detection observed between 3
and 7 years of age (Simmering, 2013; Simmering et al., 2013).
Simulations showed that the number of peaks held in WM
increases over development, but this change alone is not
sufficient to account for children’s performance. In addition,
quantitative fits required changes in the decision system, such
that younger children were more likely to respond same in the
task. The same underlying memory system has also been
linked with a fixation system to capture infants’ and young
children’s performance in a preferential looking paradigm
developed to measure VWM capacity (Perone et al., 2011;
Simmering, 2008, 2013).

Using the parameters that captured the developmental tra-
jectory in both change detection and preferential looking tasks
between 3 and 5 years, Simmering and Patterson (2012)
generated novel predictions of developmental improvements
in the precision of VWM, which were supported by children’s
performance in a color discrimination task. As compared to
other models of VWM capacity in adults, the DFT has gener-
alized across a wider range of behavioral tasks, and has
accounted for developmental changes in these tasks through
improvements in the underlying memory system and the
behavioral response systems. These applications of the DFT
to VWM follow extensive work showing how this develop-
mental process captures multiple types of change in spatial
cognition, including the A-not-B error (Simmering et al.,
2008), position discrimination (Simmering & Spencer,
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2008), and recall biases arising from long-term memory
(Schutte et al., 2003) and reference frames (Schutte &
Spencer, 2009).

Beyond visuospatial memory tasks, similar dynamic neural
field architectures have also been used to account for a variety
of cognitive development processes. For example, Buss and
Spencer (in press) developed a multilayered architecture of
dynamic neural fields to perform the dimensional change card
sort task, in which young children (typically, 3-year-olds)
have difficulty shifting rules used to sort cards. In their model,
Buss and Spencer approximated executive control through the
process of boosting the resting levels in the neural fields that
represent the different dimensions of the cards (e.g., shape
versus color) used to generate the sorting rules. Through
simple, quantitative changes in the magnitude of these boosts
over development, they successfully captured performance
across a variety of different conditions in this task.
Samuelson, Schutte, and Horst (2009) applied a dynamic
neural field architecture to word-learning tasks and showed
that changing input strength for different object characteristics
(e.g., shape vs. material) captured children’s performance on
multiple novel-noun generalization tasks. Finally, Perone and
Spencer (2013, in press) have shown how a dynamic neural
field architecture can explain developmental changes in infants’
looking behavior in both habituation and paired-comparison
tasks through changes in neural interactions in memory and
looking dynamics. As these examples demonstrate, a model
like the DFT has broad application across behavioral tasks,
cognitive domains, and developmental periods.

Remaining challenges

Although the DFT framework has been applied to a wide
variety of phenomena related to VWM, a number of important
challenges remain. In this final section, we discuss two such
challenges, which we view as especially important: the devel-
opment of a DFT approach to individual differences in work-
ing memory, and clarification of the relationship between the
model’s behavior and the neural processes underlying perfor-
mance. Ongoing efforts to address each of these challenges are
discussed in the sections that follow.

Individual differences in working memory

As noted above, working memory capacity has been closely
related to other important cognitive functions and to general
fluid intelligence (Baddeley, 1986; Cowan et al., 2005; Engle
et al., 1999; Jonides, 1995; Just & Carpenter, 1992) in addition
to deficits observed in psychiatric populations (Keefe, 2000).
This relationship provides a compelling motivation for the
study of working memory in general, and the underlying
factors influencing capacity in particular. Thus, one important
goal for future work within the DFT framework is the

development of an explicit account of individual differences
in working memory. Individual differences could be imple-
mented in the DFT in a number of ways. In the simulations
presented here, average performance and variation were cap-
tured across separate runs of the model, which served as a
proxy for individual participants. However, the parameters of
the model were identical across each run; thus, any variation
in the model’s performance across runs arose solely through
noise. Specifically, two forms of noise were used here: spa-
tially correlated noise within the fields, and colored noise that
influences the resting levels of the fields. Each of these noise
sources impacts performance on a trial-by-trial basis, but
variation in resting levels does not carry over from one trial
to the next within a given run of the model (i.e., for a given
“participant”). That is, variation in resting levels in each of the
fields is random across trials and runs. Thus, a first step toward
capturing individual differences would be to modify the mod-
el such that small differences in the effective resting levels in
the fields carried over from trial to trial for a given run (see
Buss & Spencer, 2013, for this type of change implemented in
a similar DFT architecture). Changes in the resting level can
have an important influence on the model’s behavior.
Generally speaking, with a lower resting level stronger input
is required to form and maintain stable peaks, whereas with a
higher resting level, the overall activity level within a field is
increased. Each of these changes would have consequences
for patterns of activation within a field as well as projections to
other fields.

Another approach to individual differences could build
from the DFT approach to development. As we described in
“Cognitive development”, developmental changes in spatial
and visual working memory have been modeled using the
spatial-precision hypothesis, in which the strength of excitato-
ry and inhibitory neural interactions become stronger and
more precise over development. These variations in parameter
strengths have previously been used to simulate relatively
large differences in performance between children and adults,
but Simmering (2013) showed that relatively small changes in
these parameters produced enough variation across runs of the
model to capture correlations in performance across VWM
tasks. Additionally, Spencer, Perone, and Johnson (2009)
described another consequence of increasing the strength of
neural interactions in the model that could factor into a DFT
account of individual differences: greater resistance to noise
and the impact of task-irrelevant distractors on performance.
Thus, variation in parameters of this sort could provide an
account of individual differences in capacity, and in perfor-
mance in working memory tasks more generally.

Relationship between the model and neural processes

As we noted above, the DFT model described here provides a
functional neural account of phenomena related to VWM and
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change detection. Specifically, we implemented a neurally
plausible form of encoding and maintenance through the
sustained activation of feature selective neurons, and we
showed how these can be linked to a plausible comparison
and decision process. As we demonstrated in “The dynamic
field theory of visual working memory and change detection”,
the resulting model captures behavioral performance in
change detection tasks, and suggests specific sources for
errors. An important remaining challenge for this framework
is to clarify the relationship between the model’s behavior and
the neural processes underlying each response type (see
Spencer & Schöner, 2013, for a discussion). As a first step
in this direction, Buss, Magnotta, Schöner, and Spencer
(2013) adopted a model-based approach to fMRI data
(Ashby & Waldschmidt, 2008; Davis, Love, & Preston,
2012; Deco, Rolls, & Horwitz, 2004; White & Poldrack,
2013). A critical component of a model-based approach to
fMRI is to specify a linking hypothesis that states how the
processes in a model map onto the neural process driving the
blood-oxygen level dependent (BOLD) signal. Recent bio-
physical work has demonstrated that the local field potential
(LFP) is most strongly correlated with the BOLD response
(Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). An
LFP is a measure of dendritic activity within a local neural
population that accounts for both inhibitory and excitatory ion
channels. This provides a measure of the input to, and local
processing within, a given neural region. Furthermore, a
BOLD response can be reconstructed by convolving the
LFP with a general impulse response function that specifies
the time course of the slow changes in blood flow that
occur in response to neural activity. Deco et al. built off
of this work to simulate the neural dynamics of VWM using
an integrate-and-fire neural network. Specifically, they simu-
lated an LFP by summing the absolute value of all ionic
channels in the model that contribute to the rate of change in
neural activation.

Buss et al. (2013) showed that this same mapping could be
used with the DFT by tracking the absolute value of all
excitatory and inhibitory neural interactions over the course
of an experiment. Using a variant of the model architecture
described in “The dynamic field theory of visual working
memory and change detection”, they clarified the neural pro-
cesses underlying the four different kinds of responses in the
change detection task. Specifically, Buss et al. used the same
model to quantitatively simulate behavioral performance as
well as make quantitative predictions about the BOLD signal.
Assessing the data across the four different response types,
their results showed a close correspondence between different
components of the model and particular cortical regions of
interest. In particular, the different neuron hemodynamics
corresponded to the pattern of data reported from frontal eye
field (FEF), the same neuron hemodynamics corresponded to
the data reported from parietal cortex, and CF layer

hemodynamics corresponded to the data reported from fusi-
form cortex. This mapping of model dynamics to cortical
areas suggests that the frontal eye fields (FEF) are involved
in detecting changes when they occur, parietal cortex is in-
volved with spatially orienting to the changed item, and
fusiform cortex is involved with maintaining active represen-
tations of colors in the array.

Thus, although DFT is implemented at the fairly abstract
level of neural population dynamics, this work demonstrates
that the DFT can provide a neurally plausible account of both
behavioral and neural imaging data related to change detec-
tion. Nonetheless, directly linking particular components of
the proposed model to specific neural processes remains a
central challenge for this perspective going forward.

Conclusions

The goals of this article were to present a process-based neural
model of VWM, the DFT, and to illustrate how it captures key
characteristics of capacity limits, while also contributing to
our understanding of the processes underlying change detec-
tion performance. The dominant models of VWM for the past
decade have debated whether representations are best charac-
terized as “slots” or “resources”; although these perspectives
have generated and explained impressive amounts of empiri-
cal data, we contend that the field is at a point where it can
benefit from the development of formal process-based ap-
proaches to VWM that can capture behavioral and neuroim-
aging data using neurally plausible mechanisms. Far from
representing a mere “implementation” of cognitive concepts,
such endeavors can provide rich insights into the processes
underlying cognitive phenomena, and can lead to novel pre-
dictions that can be tested behaviorally and by using neuro-
imaging methods such as fMRI and EEG. In addition to our
own work, other models in the same class of neurally ground-
ed process models have recently been proposed as a means of
reconciling, and potentially moving beyond, the slots-versus-
resource stalemate (see, e.g., Edin et al., 2009; Wei et al.,
2012). To date, these models have been used to generate novel
behavioral predictions and have been supported by neuroim-
aging data, suggesting that they are poised to make continued
contributions to our understanding of VWM.

Most importantly, and in contrast to other models, the
model that we present here is grounded in a broader context:
The DFT has already been applied across a wide range of
behavioral tasks, age groups, and cognitive domains, and it
continues to be developed to incorporate our expanding
knowledge of the neural bases of cognition. Linking specific
models within the domain of VWM to broader neurocognitive
architectures is critical if we are to understand the relationship
between VWM and the wider perception–cognition–action
system within which it is embedded.
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Appendix: Change detection experiment

Method

Participants A group of 19 University of Iowa undergradu-
ates (12 females, seven males) participated in exchange for
course credit. Participants received course credit for their
participation. All reported normal or corrected-to-normal vi-
sual acuity and normal color vision.

Apparatus Stimulus presentation was controlled by a
Macintosh G4 computer running MATLAB 5.2 using the
Psychophysics Toolbox extensions (Brainard, 1997; Pelli,
1997). Stimuli were presented against a gray background
(28.73 cd/m2; R = 150, G = 150, B = 150) at a viewing
distance of approximately 60 cm. They consisted of small
colored squares (1 × 1 in., subtending approximately 2° ×
2°. Nine colors were used for the squares: black (0, 0, 0),
brown (164, 42, 42), green (0, 255, 0), cyan (0, 255,
255), blue (0, 0, 255), red (255, 0, 0), violet (238, 130,
238), yellow (255, 0, 0), and white (255, 255, 255). On
each trial, the positions of the squares were randomly
determined for the memory array with the constraint that
none could appear within 1.5 in. of the edges of the
monitor or other squares (for set sizes greater than one).
The positions of the squares within the test array were
identical to the memory array for each trial. Colors were
selected randomly without replacement on every trial.

Procedure Each trial began with a blank gray screen for
500 ms, followed by the memory array presented for
500 ms, a blank delay of 1 s, and the test array, which
remained visible until a response was generated. Participants
were instructed to indicate whether the color(s) within the test
array were the same as the memory array, or if one color had
changed; they entered their response on the computer
keyboard by pressing “a” for different and “l” for same
(keys were marked with stickers to help participants
remember the mapping). Accuracy was emphasized over
speed, and a short buzz sound was played following
incorrect responses. Participants completed 12 practice
trials followed by 240 test trials, 40 each at set sizes 1–
6, with breaks offered every 24 trials. On half of the
trials (no-change trials), the test array matched the
memory array; on the other half of trials (change trials),
one item within the test array had changed to a new
color, selected without replacement from the nine pos-
sible colors. Both set size and change type varied ran-
domly across all trials. To prevent verbal recoding of
the memory array colors, participants were instructed to
repeat a randomly generated three-digit number throughout
the experiment. A new number was generated to begin
each block.

Results

Participants’ responses were classified as correct rejections,
hits, misses, and false alarms across trials within each set size,
shown by the bars in Fig. 1B. We also computed the overall
percentage correct for each set size, shown with the line in
Fig. 1B. Performance was near ceiling for small set sizes, with
performance declining as set size increased and misses be-
came more common than false alarms. To analyze perfor-
mance, we conducted a one-way analysis of variance with
Set Size (1–6) as a within-subjects factor. This analysis re-
vealed a significant effect of set size, F (5, 90) = 27.24, p <
.001, η2 = .52; follow-up Tukey HSD tests (ps < .05) showed
that performance was significantly lower in set size 5 than in
set sizes 1 and 2, and in set size 6 than in set sizes 1–4; all other
differences were not significant. We also computed capacity
(K ) for each participant using Pashler’s (1988) formula, K =
SS * (H – FA) / (1 – FA), based on the hit (H) and false alarm
(FA) rates for each set size (SS). Figure 9 shows each partic-
ipant’s K estimates across set sizes, along with the mean K
across participants. Because K can equal, at most, the set size
for each block, we then selected each participant’s maximum
estimate across set sizes (see Olsson & Poom, 2005;
Simmering, 2012; Todd & Marois, 2005) in order to derive
Kmax for each participant. The mean Kmax estimate across
participants was 4.58 (SD = 0.078).

Model equations

Activation in the contrast field, CF(u ), is captured by

τ u̇ x; tð Þ ¼ –u x; tð Þ þ hu þ
Z

cuu x–x0ð ÞΛuu u x0; tð Þð Þdx0

–

Z
cuv x–x0ð ÞΛuv v x0; tð Þð Þdx0 þ aucΛuc rc tð Þð Þ

þ S x; tð Þ þ cud*rdð Þ þ noise

ð1Þ

where u̇ x; tð Þ is the rate of change of the activation level for
each neuron across the spatial dimension, x , as a function of

Fig. 9 Capacity estimates (K) across set sizes for each participant (col-
ored lines), as well as the mean across participants (black line)
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time, t . The constant τ determines the time scale of the
dynamics (Erlhagen & Schöner, 2002). The first factor that
contributes to the rate of change of activation in CF(u ) is the
current activation in the field, –u (x , t ), at each site x . This
component is negative so that activation changes in the direc-
tion of the resting level hu. The resting level included colored
noise, which was determined by the equation
τh

⋅
h h tð Þ ¼ –h tð Þ þ qh � noise, in which the current resting

state is increased or decreased by a random amount
(qh * noise) at each time step; qh was set to 6 and τh
was 80. This is termed colored noise because the value at
each time step is partially determined by the value at the
previous time step; this contrasts with white noise, which is
independent across time steps.

Next, activation in CF(u ) is influenced by the local
excitation/lateral inhibition interaction profile, defined by
self-excitatory projections, ∫ cuu(x – x′)Λuu(u (x′ , t )) dx′ , and
inhibitory projections from Inhib(v ), ∫ cuv(x – x′)Λuv(v (x′ , t ))
dx′ . These projections are defined by the convolution of a
Gaussian kernel with a sigmoidal threshold function. In par-
ticular, the Gaussian kernel is specified by

c x–x0ð Þ ¼ c exp −
x–x0ð Þ2
2σ2

" #
–k; ð2Þ

with strength c , width σ , and resting level k . The sigmoidal
function is given by

Λ uð Þ ¼ 1

1þ exp –βu½ � ; ð3Þ

where β is the slope of the sigmoid, that is, the degree to
which neurons close to threshold (i.e., 0) contribute to the
activation dynamics. Lower slope values permit graded
activation near threshold to influence performance,
whereas higher slope values ensure that only above-
threshold activation contributes to the activation dynam-
ics. At extreme slope values, the sigmoid function ap-
proaches a step function. For all simulations presented
here, β = 0.5.

Inputs to the model take the form of a Gaussian,

S x; tð Þ ¼ c exp −
x–xcenterð Þ2

2σ2

" #
χ tð Þ; ð4Þ

centered at xcenter, with width σ and strength c . These inputs
can be turned on and off through time (e.g., as items appear
and then disappear). This time interval is specified by the
pulse function χ (t).

Next, a global input to the field is projected from the
different response node (rd) when the activation of the node
is above zero. Lastly, activation within the field is influenced

by the addition of a stochastic component consisting of spa-
tially correlated noise:

noise ¼ q

Z
dx0gnoise x–x0ð Þ ξ x0; tð Þ :

Noise was added to the simulations by convolving a noise
field composed of independent noise sources with a Gaussian
kernel specified by

gnoise x–x0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2σnoise

p exp −
x–x0ð Þ2
2σnoise

2

" #
;

where σnoise is the spatial spread of the noise kernel (set to 10
in all simulations). (For discussion of the differences between
spatially correlated noise and Gaussian white noise, see
Schutte et al., 2003).

The second layer of the model, Inhib(v ), is specified by the
following equation:

τ v̇ x; tð Þ ¼ –v x; tð Þ þ hv þ
Z

cvu x–x0ð ÞΛvu u x0; tð Þð Þdx0

þ
Z

cvw x–x0ð ÞΛvw w x0; tð Þð Þdx0 þ noise:

ð7Þ

As before, v̇ x; tð Þ specifies the rate of change of activation
across the population of feature-selective neurons, x , as a
function of time, t ; the constant τ sets the time scale (note
that the time scale for inhibition is faster than for the excitatory
layers—i.e., τv < τu); v (x , t ) captures the current activation of
the field; and h v sets the resting level of neurons in
the field. As with CF(u ), colored noise was added to
the resting level. Inhib(v ) receives activation from
two projections: one from CF(u), ∫ cvu(x – x′)Λvu(u(x′ , t)) dx′ ,
and one from WM(w ), ∫ c vw(x – x′ )Λvw(w (x′ , t )) dx′ .

As we described above, projections are defined by the con-
volution of a Gaussian kernel (Eq. 2) with a sigmoidal threshold
function (Eq. 3). Finally, this field also receives spatially corre-
lated noise, as described above. This noise is independent from
the noise sources in the other layers of the model.

The third layer of the model, WM(w ), is governed by the
following equation:

τẇ x; tð Þ ¼ –w x; tð Þ þ hw þ ∫cww x–x 0ð ÞΛww w x0; tð Þð Þdx 0

– ∫cwv x–x 0ð ÞΛwv v x 0; tð Þð Þdx 0
þ awnΛwn rn tð Þð Þ þ ∫cwu x–x 0ð ÞΛwu u x0; tð Þð Þ dx 0

þ csS x; tð Þ þ noise:

ð8Þ

Again, ẇ x; tð Þ is the rate of change of activation across the
population of feature-tuned neurons, x , as a function of time,
t ; the constant τ sets the time scale; w (x , t ) captures the
current activation of the field; and hw sets the resting level.
As with CF(u ), colored noise was added to the resting level.
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WM(w) receives self-excitation, ∫ cww(x – x′)Λww(w(x′ , t)) dx′ ,
lateral inhibition from Inhib(v), ∫ cwv(x – x′)Λwv(v(x′ , t)) dx′ ,
and excitatory input from CF(u), ∫ cwu(x – x′)Λwu(u(x′ , t)) dx′ .
This field also receives direct target inputs, S(x , t), scaled by cs
to be weaker (i.e., cs < 1), and includes spatially correlated
noise as described above. Again, this noise is independent
from the noise sources in the other layers of the model.

The neurons in the response layer are governed by the
following equations:

τ ṙ d tð Þ ¼ –rd þ hd þ cddΛd rdð Þ–cdsΛds rsð Þ þ adgΛdg g tð Þð Þ
þ Λdg g tð Þð Þ∫cduΛu u x0; tð Þð Þdx0 þ noise

ð9Þ

τ ṙ s tð Þ ¼ –rs þ hs þ cssΛs rsð Þ – csdΛsd rdð Þ þ asgΛsg g tð Þð Þ
þ Λsg g tð Þð Þ∫cswΛw w x0; tð Þð Þdx0 þ noise

ð10Þ

The rate of change of each neuron’s activation, ṙ (where the
constant τ determines the time scale and the subscripts d and s
denote the different and same neurons, respectively), is deter-
mined by the current activation level, –r, and the resting level of
the neuron activation, hr. Each neuron has a self-excitatory
connection, cddΛd(rd) or cssΛs(rs), and receives inhibition from
the other neuron, cdsΛds(rs) or csdΛsd(rd). Additionally, the
different neuron receives summed excitatory input from CF(u),
∫ cduΛu(u(x′ , t)) dx′ , and the same neuron receives summed
excitatory input from WM(w), ∫ cswΛw(w(x′ , t)) dx′ .

Activation to the neurons was controlled by a gating sys-
tem, given by the following equation, which served as an
indication of when a response was required in the task.

τ ṙ g tð Þ ¼ –rg þ hg þ cggΛg rg
� �þ ∫cgwΛw w x0; tð Þð Þdx0

þ ctar þ ctrans þ noise

ð11Þ

This system consisted of a single neuron that received input
from the stimulus presentation and WM(w); as such, activa-
tion of this neuron only passed threshold when one or more
items (peaks) was held in WM(w ) and the stimulus was
present. The stimulus presentation consisted of both a constant
input while the arrays were present (c tar), as well as a transient
input (c trans, for 30 ms) at the onset of the stimulus. These
combined inputs, combined with input from WM(w) drove
activation of the gate neuron above threshold; throughout each
trial, this neuron’s activation was sigmoided and multiplied by
the activation from CF(u ) and WM(w) to the decision nodes.
In this case, activation from the fields to the decision nodes
was only robust when the gate node was activated above
threshold.

Lastly, noise represents white noise added to the activation
of the two decision neurons and gate neuron at each time step.
The noise sources are independent for each neuron.

Model parameters and fits

We began with the parameters from Johnson and colleagues
(Johnson et al., 2009),3 with the exception of the gating neuron,
which was not used in Johnson and colleagues model. Our
behavioral task differed from theirs in three ways. First,
Johnson and colleagues tested only set size 3, whereas we
tested set sizes 1–6. Second, Johnson and colleagues used a
single-item test array rather than the whole-array test we used.
Third, our stimuli were selected randomly on each trial from a
predetermined set of nine colors; Johnson and colleagues se-
lected from a continuous color space with 180 possible colors
equally distributed in CIELAB 1976 color space with some
constraints on their separations. These changes were straight-
forward to implement in the model, first by changing how
many stimuli were presented to the model in the memory and
test arrays, and then by defining the colors as equally distribut-
ed through the 360° color space.

Despite these changes in the task, the parameters from
Johnson and colleagues (Johnson et al., 2009) provided a
relatively good fit to our data. We chose to modify the param-
eters slightly to achieve a closer fit, eventually producing
means for each trial type at each set size that were within
one standard deviation of the behavioral means (see Table 2).
The mean absolute error of the model relative to the behav-
ioral data was 2.26 %, which is about one-third the overall
standard deviation of 10.73 %. Thus, the performance of the
model was well within the range of typical participants in this
task.

To accomplish this fit, we began with the parameters from
Johnson and colleagues (Johnson et al., 2009) and modified
three parameters within the fields: increasing the resting level
of CF(u) from −7 to −6.75, decreasing the resting level of
WM(w) from −4 to −4.5, and increasing self-excitation in the
WM layer from 1.5 to 1.6; these changes were necessary to
accommodate the range of set sizes used and the whole-array
test, as opposed to all set size 3 trials and the single-item test used
by Johnson and colleagues.We also added excitatory projections
from the decision neurons to their associated neural layer. These
were used to help stabilize activation within the system once a
decision was made. For the decision system, we added the gate
neuron to control the projections to the decision neurons.We also
changed the following parameters within the decision neurons:
increased the resting level of the same node from −5 to −4.35;
made the projections from CF(u) to the different node stronger,
from 1 to 1.4; made the projection from WM(w) to the same
neuron stronger, from 0.01 to 0.025; and decreased the strength
of noise on the decision neurons from 0.1 to 0.065. The complete
parameter set is shown in Table 4.

3 The published table of parameters included errors that were later dis-
covered by J. S. Johnson; a correction has been filed with the journal, and
the corrected parameters are the ones used here.
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