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Abstract How do spatially disjoint and ambiguous local
motion signals in multiple directions generate coherent and
unambiguous representations of object motion? Various
motion percepts, starting with those of Duncker (Induced
motion, 1929/1938) and Johansson (Configurations in event
perception, 1950), obey a rule of vector decomposition, in
which global motion appears to be subtracted from the true
motion path of localized stimulus components, so that
objects and their parts are seen as moving relative to a
common reference frame. A neural model predicts how
vector decomposition results from multiple-scale and
multiple-depth interactions within and between the form-
and motion-processing streams in V1-V2 and VI1-MST,
which include form grouping, form-to-motion capture,
figure—ground separation, and object motion capture mech-
anisms. Particular advantages of the model are that these
mechanisms solve the aperture problem, group spatially
disjoint moving objects via illusory contours, capture object
motion direction signals on real and illusory contours, and
use interdepth directional inhibition to cause a vector
decomposition, whereby the motion directions of a moving
frame at a nearer depth suppress those directions at a farther
depth, and thereby cause a peak shifi in the perceived
directions of object parts moving with respect to the frame.

Keywords Motion perception - Vector decomposition -
Frames of reference - Peak shift - Complementary
computing - V2 - MT- MST

S. Grossberg (D<) - J. Léveillé - M. Versace

Center for Adaptive Systems, Department of Cognitive and
Neural Systems, and Center of Excellence for Learning in
Education, Science, and Technology,

Boston University,

677 Beacon Street,

Boston, MA 02215, USA

e-mail: steve@bu.edu

How do we make sense of the complex motions of multiple
interacting objects and their parts? One required computa-
tional step is to represent the various motion paths in an
appropriate reference frame. Various ways of defining a
reference frame have been proposed, ranging from retino-
centric, in which an object is coded relative to the location
of the activity it induces on the retina, to geocentric, in
which objects are represented independent of the observer’s
viewpoint (Wade & Swanston, 1987). According to an
object-centered reference frame (Bremner, Bryant, &
Mareschal, 2005; Wade & Swanston, 1996), objects are
perceived relative to other objects. For example, on a
cloudy night, the moon may appear to be moving in a
direction opposite to that of the clouds. In a laboratory
setting, this concept is well-illustrated by induced-motion
experiments, wherein the motion of one object appears to
cause opponent motion in another, otherwise static, object
(Duncker, 1929/1938).

Frames of reference

From a functional perspective, the creation of perceptual
relative frames of reference may be one mechanism evolved
by the brain to represent the motion of individual objects in
a scene. This ability appears especially important when
considering that the meaningfulness of the motion of a
particular object can often be compromised by the motion
of another object. For example, when looking at a person
waving a hand from a moving train, the motion components
of the hand and the train become mixed together. By
representing the motion of the hand relative to that of the
train, the motion component of the train can be removed
and the motion of the hand itself recovered (Rock, 1990).
Relative reference frames may also be more sensitive to
subtle variations in the visual scene, as suggested by the
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lower thresholds for motion detection in the presence of a
neighboring stationary reference than in completely dark
environments (Sokolov & Pavlova, 2006).

Another evolutionary advantage may be that information
represented in an object-centered reference frame is partly
invariant to changes in viewpoint (Wade & Swanston,
2001). Furthermore, as exemplified by the model presented
here, computing an object-centered reference frame does
not necessitate a viewer-centered representation (Sedgwick,
1983; Wade & Swanston, 1987), making it an efficient
substitute for the latter.

Aperture problem

How does the laminar organization of visual cortex create
such a reference frame? The neural model proposed in this
article predicts how the form and motion pathways in cortical
areas V1, V2, MT, and MST accomplish this task using
multiple-scale and multiple-depth interactions within and
between form- and motion-processing streams in V1-V2
and VI-MT. These mechanisms have been developed
elsewhere to explain data about motion perception by
proposing how the brain solves the aperture problem.
Wallach (1935/1996) first showed that the motion of a
featureless line seen behind a circular aperture is perceptu-
ally ambiguous: No matter what may be the real direction of
motion, the perceived direction is perpendicular to the
orientation of the line—that is, the normal component of
motion. The aperture problem is faced by any localized
neural motion sensor, such as a neuron in the early visual
pathway, which responds to a local contour moving through
an aperture-like receptive field. In contrast, a moving dot,
line end, or corner provides unambiguous information
about an object’s true motion direction (Shimojo, Silverman,
& Nakayama, 1989). The barber pole illusion demonstrates
how the motion of a line is determined by unambiguous
signals formed at its terminators and how these unambiguous
signals capture the motion of nearby ambiguous motion
regions (Ramachandran & Inada, 1985; Wallach, 1935/
1996). The model proposes how such moving visual features
activate cells in the brain that compute feature-tracking
signals that can disambiguate an object’s true direction of
motion. Our model does not rely on local pooling across
motion directions, which has been shown not to be able to
account for various data on motion perception (Amano,
Edwards, Badcock, & Nishida, 2009). Instead, a dominant
motion direction is determined over successive competitive
stages with increasing receptive-field sizes, while pre-
serving various candidate motion directions at each
spatial position up to the highest model stages, where
motion-grouping processes determine the perceived
directions of object motion.
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The model is here further developed to simulate key
psychophysical percepts, such as classical motion percep-
tion experiments (Johansson, 1950), the Duncker wheel
(Duncker, 1929/1938), and variants thereof, and casts new
light on various related experimental findings. In particular,
the model makes sense of psychophysical evidence that
suggests that properties shared by groups of objects
determine a common coordinate frame relative to which
the features particular to individual objects are perceived.
This process is well-summarized in the classical concept of
vector decomposition (Johansson, 1950).

Vector decomposition

Johansson (1950) showed that the perceived motion of a
stimulus can be characterized as a linear combination of
motion vectors corresponding to different stimulus parts.
Accordingly, the true motion vectors (i.e., the vectors
generated by the true motion path of the stimulus) are
dissociated into orthogonal components. One component
represents the motion of the grouped stimulus, or, in some
cases, of a large stimulus element that appears to
encompass smaller ones (e.g., the rectangular frame in
induced motion experiments). The other component corre-
sponds to the motion of individual objects from which the
first component has been subtracted. An example of this
vector decomposition process is shown in Fig. 1.

Figure la depicts the visual stimulus presented to the
subject. Here, two dots oscillate in orthogonal directions and
meet at one endpoint (point ab) of their trajectories.
Observers report viewing either the nonrigid motion shown
in Fig. 1b or the rigid motion of a bar rotating in depth. The
former percept is that of two dots oscillating along a common
diagonal axis, denoted by the ellipse, which itself oscillates
along the orthogonal direction. In other words, the dots are
seen as moving relative to a common reference frame, the
diagonal axis. The pertinence of vector decomposition to the
stimulus of Fig. 1 is shown in greater detail in Fig. 2.
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Fig. 1 Johansson’s Experiment 19. (a) The stimulus consists of two
dots oscillating in orthogonal directions and meeting periodically at
point ab. (b) The emergent percept is that of two dots oscillating on a
common diagonal axis (represented as an ellipse), which itself
oscillates in the orthogonal direction
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Fig. 2 Vector decomposition analysis. (a) The true motion vectors
(solid vectors) are cast into an orthogonal basis (dashed vectors). (b)
In this basis, the component common to both dots is directed toward
the southwest corner. (¢) The remaining component, specific to each
dot, moves along a common axis

Figure 2a shows vector components into which down-
ward and leftward motions of the individual dots can be
decomposed. If the moving frame captures the diagonal
direction down-and-left, as in Fig. 2b, the individual dots
are left with components that oscillate toward and away
from each other, as in Fig. 2c. A complete account of vector
decomposition requires simultaneously representing
common- and part-motion components. In our model,
simultaneous representation of both types of motion is made
possible by having cells from different depth planes represent
the different motion components. Subtraction of the common-
motion component is due to inhibition from cells coding for
the nearer depth to cells coding for the farther depth. We show
below how interdepth directional inhibition causes a peak
shift (Grossberg & Levine, 1976) in directional selectivity
that behaves like a vector decomposition.

Following Johansson (1950), vector decomposition has
been invoked to explain motion perception in multiple
experiments employing a variety of stimulus configurations
(e.g., Borjesson & von Hofsten, 1972, 1973, 1975, 1977,
Cutting & Proffitt, 1982; Di Vita & Rock, 1997; Gogel &
MacCracken, 1979; Gogel & Tietz, 1976; Johansson, 1974;
Post, Chi, Heckmann, & Chaderjian, 1989). The bulk of
this work supports the view that vector decomposition is a
useful concept in characterizing object-centric frames of
reference in motion perception. However, no model has so
far attempted to explain how vector decomposition results
from the perceptual mechanisms embedded in the neural
circuits of the visual system.

The present article fills this gap by further developing
the 3D FORMOTION model (Baloch & Grossberg,
1997; Berzhanskaya, Grossberg, & Mingolla 2007; Chey,
Grossberg, & Mingolla, 1997, 1998; Francis & Grossberg,
1996a, 1996b; Grossberg, Mingolla, & Viswanathan,
2001; Grossberg & Pilly, 2008). As the model’s name
suggests, it proposes how form and motion processes
interact to form coherent percepts of object motion in
depth and already proposes a unified mechanistic expla-
nation of many perceptual facts, including the barber pole
illusion, plaid motion, and transparent motion. Form and

motion processes, such as those in V2/V4 and MT/MST,
occur in the “what” and “where” dorsal cortical processing
streams, respectively. Key mechanisms within the “what”
ventral and “where” streams seem to obey computationally
complementary laws (Grossberg, 1991, 2000): The ability
of each process to compute some properties prevents it
from computing other, complementary, properties. Exam-
ples of such complementary properties include boundary
completion versus surface filling-in—within the (V1
interblob)—(V2 interstripe) and (V1 blob)—(V2 thin stripe)
streams, respectively—and, more relevant to the results
herein, boundary orientation and precise depth versus
motion direction and coarse depth—within the V1-V2 and
V1-MT streams, respectively. The present article clarifies
some of the interactions between form and motion
processes that enable them to overcome their complemen-
tary deficiencies and to thereby compute more informative
representations of unambiguous object motion.

3D FORMOTION model

Figure—ground separation mechanisms play a key role in
explaining vector decomposition data. Many data about
figure—ground perception have been modeled as part of the
form-and-color-and-depth (FACADE) theory of 3-D vision
(e.g., Cao & Grossberg, 2005, 2011; Fang & Grossberg,
2009; Grossberg, 1994, 1997; Grossberg & Kelly, 1999;
Grossberg & McLoughlin, 1997; Grossberg & Pessoa, 1998;
Grossberg & Yazdanbakhsh, 2005; Kelly & Grossberg,
2001). FACADE theory describes how 3-D boundary and
surface representations are generated within the blob and
interblob cortical processing streams from cortical areas
V1 to V4. Figure—ground separation processes that are
needed for the present analysis are predicted to be
completed within the pale stripes of cortical area V2.
These figure—ground processes help to segregate occlud-
ing and occluded objects, along with their terminators,
onto different depth planes.

In response to the dot displays of Fig. 1, the model
clarifies how an illusory contour forms between the pair of
moving dots within cortical area V2 and captures motion
direction signals in cortical area MT via a form-to-motion,
or formotion, interaction from V2 to MT. The captured
motion direction of this illusory contour causes vector
decomposition of the motion directions of the individual
dots. Indeed, at the intersection of an illusory contour and a
dot, contour curvature is greater in the dot’s real boundary
than in the illusory contour-completed boundary, since the
illusory contour is tangent to the dot boundary. This greater
curvature initially results in a weaker representation of the
dots’ boundaries in area V2. These boundaries are then
pushed farther in depth than the grouped illusory contour-
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completed shape due to interacting processes of orientational
competition, boundary pruning, and boundary enrichment,
which are described and simulated in the FACADE theory.

Motion processing is performed in the “where” stream,
whose six levels model dynamics homologous to LGN, V1,
MT, and MST (Fig. 3). These stages are mathematically
defined in the Appendix.

Level I: Input from LGN

In the 3D FORMOTION model of Berzhanskaya et al.
(2007), as in the present model, the boundary input is not
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Fig. 3 Motion-processing stream of the 3D FORMOTION model.
Level 1: ON and OFF input cells. Level 2: Transient nondirectional
and directional cells. Level 3: Short-range filter. Level 4: Spatial
competition and opponent direction inhibition. Level SA: Boundary
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depth-specific. Rather, the boundary input models signals
that come from the retina and LGN into V1 (Xu, Bonds, &
Casagrande, 2002). This boundary is represented in both
ON and OFF channels. After V1 motion processing,
described below, the motion signal then goes on to MT
and MST. The 3-D figure—ground-separated boundary
inputs in the present model come from V2 to MT and
select bottom-up motion inputs from V1 in a depth-
selective way. This process clarifies how the visual system
uses occlusion clues to segregate moving boundaries into
different depth planes, even though the inputs themselves
occur within the same depth plane.

MST
Directional
grouping and
suppression in
depth

MT 2/3

Long-range
motion
grouping

MT 4, 5/6

Boundary
selection
of motion
in depth

Spatial competition and
V1 4B opponent direction inhibition

Short range motion grouping

V1 4C Directional transients

V1 4C Nondirectional transients

Center- surround (LGN-like V1)

selection of motion signals at multiple depth planes. Level 5B: Long-
range spatial filter. Level 6: Directional grouping and depth
suppression
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Berzhanskaya et al. (2007) showed how a combination
of habituative (Appendix Egs. 7, 8 and 9) and depth
selection (Appendix Eq. 20) mechanisms accomplish the
required depth segregation of motion signals in stimuli
containing both static and moving components, such as
chopstick displays (Lorenceau & Alais, 2001). In particular,
habituative preprocessing enables motion cues to trigger the
activation of transient cells (model Level 2 in Fig. 3),
whereas signals due to static elements in the display
habituate and become weak over time. As simulated by
Berzhanskaya et al. (2007), this mechanism can explain
why visible occluders in a chopstick display generate
weaker motion signals at all depth planes. Although not
necessary in the present simulations due to the absence of
static elements in the displays, habituative mechanisms in
the early stages of the model are included to enable a
unified explanation of the data.

The motion selection mechanism separates motion
signals in depth by using depth-separated boundary signals
from V2 to MT. The model of Berzhanskaya et al. (2007)
simulated in greater detail the formation of these depth-
separated boundaries. The present model uses algorithmi-
cally defined boundaries to simplify the simulations. The
model shows how these boundaries can capture only the
appropriate motion signals onto their respective depth
planes in MT. Although the question of how the time
course of boundary formation impacts vector decomposi-
tion is not analyzed in detail in the present article, in part
because there do not seem to be empirical data on this
matter, some of our results nevertheless begin to address
this issue, such as the persistence of the perceived motion
until a large fraction of the boundary is pruned (see
Fig. 15).

Both ON and OFF input cells are needed. For example,
when a bright dot moves downward on a dark background
(Fig. 4a), ON cells respond to its lower edge (Fig. 4b), but
OFF cells respond to its upper edge (Fig. 4c). Likewise,
when the dot reverses direction and starts to move upward,
the upper edge now activates ON cells and the lower edge
activates OFF cells. By differentially activating ON and
OFF cells in different parts of this motion cycle, these
cells have more time to recover from habituation, so that

Fig. 4 Input to the motion
pathway. (a) Motion path of the
dots directed toward the lower
left corner. The input to the ON
input cells corresponds to the
leading edge of the dot (b),
whereas the input to the OFF
input cells corresponds to the
trailing edge (c)

the system remains more sensitive to repetitive motion
signals. Model ON and OFF responses are thus relevant
to the role played by habituative mechanisms in
generating transient-cell responses.

Level 2: Transient cells

The second stage of the motion processing system (Fig. 3)
consists of nondirectional transient cells, inhibitory direc-
tional interneurons, and directional transient cells. The
nondirectional transient cells respond briefly to a change in
the image luminance, irrespective of the direction of
movement (Appendix Egs. 7, 8 and 9). Such cells respond
well to moving boundaries and poorly to static objects
because of the habituation that creates the transient
response. The type of adaptation that leads to these
transient cell responses is known to occur at several
stages in the visual system, ranging from retinal Y cells
(Enroth-Cugell & Robson, 1966; Hochstein & Shapley,
1976a, 1976b) to cells in V1 and V2 (Abbott, Sen, Varela,
& Nelson, 1997; Carandini & Ferster, 1997; Chance,
Nelson, & Abbott, 1998; Francis & Grossberg, 1996a,
1996b; Francis, Grossberg, & Mingolla, 1994; Varela,
Sen, Gibson, Fost, Abbott, & Nelson, 1997) and beyond.
The nondirectional transient cells send signals to inhibitory
directional interneurons and directional transient cells, and
the inhibitory interneurons interact with each other and with
the directional transient cells (Eqgs. 10-12). A directional
transient cell fires vigorously when a stimulus is moved
through its receptive field in one direction (called the
preferred direction), while motion in the reverse direction
(called the null direction) evokes little response (Barlow &
Levick, 1965).

The directional inhibitory interneuronal interaction enables
the directional transient cells to realize directional selectivity
at a wide range of speeds (Chey et al., 1997; Grossberg et al.,
2001). Although in the present model directional interneur-
ons and transient cells correspond to cells in VI, this
predicted interaction is consistent with retinal data
concerning how bipolar cells interact with inhibitory
starburst amacrine cells and direction-selective ganglion cells
and how starburst cells interact with each other and with
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ganglion cells (Fried, Miinch, & Werblin, 2002). The
possible role of starburst cell inhibitory interneurons in
ensuring directional selectivity at a wide range of speeds has
not yet been tested. The model is also consistent with
physiological data from cat and macaque species showing
that directional selectivity first occurs in V1 and that it is
due, at least in part, to inhibition that reduces the response to
the null direction of motion (Livingstone, 1998; Livingstone
& Conway, 2003; Murthy & Humphrey, 1999).

Level 3: Short-range filter

A key step in solving the aperture problem is to strengthen
unambiguous feature-tracking signals relative to ambiguous
motion signals. Feature-tracking signals are often generated
by a relatively small number of moving features in a scene,
yet can have a very large effect on motion perception. One
process that strengthens feature-tracking signals relative to
ambiguous aperture signals is the short-range directional
filter (Fig. 3). Cells in this filter accumulate evidence from
directional transient cells of similar directional preference
within a spatially anisotropic region that is oriented along
the preferred direction of the cell. This computation
selectively strengthens the responses of short-range filter
cells to feature-tracking signals at unoccluded line endings,
object corners, and other scenic features (Appendix Eq. 13).
The use of a short-range filter followed by competition at
Level 4 eliminates the need for an explicit solution of the
feature correspondence problem that various other models
posit and attempt to solve (Reichardt, 1961; Ullman, 1979;
van Santen & Sperling, 1985).

The short-range filter uses multiple spatial scales
(Appendix Eq. 15). Each scale responds preferentially to a
specific speed range. Larger scales respond better to faster
speeds due to thresholding of short-range filter outputs with
a self-similar threshold; that is, a threshold that increases
with filter size (Appendix Eq. 16). Larger scales thus
require “more evidence” to fire (Chey et al., 1998).

Level 4: Spatial competition and opponent direction
competition

Two kinds of competition further enhance the relative
advantage of feature-tracking signals (Fig. 3 and Appendix
Egs. 17, 18 and 19). These competing cells are proposed to
occur in Layer 4B of V1 (Fig. 3). Spatial competition
among cells of the same spatial scale that prefer the same
motion direction boosts the amplitude of feature-tracking
signals relative to those of ambiguous signals. Feature-
tracking signals are contrast-enhanced by such competition
because they are often found at motion discontinuities, and
thus get less inhibition than ambiguous motion signals that
lie within an object’s interior. Opponent-direction compe-
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tition also occurs at this processing stage (Albright, 1984;
Albright, Desimone, & Gross, 1984) and ensures that cells
tuned to opposite motion directions are not simultaneously
active.

The activity pattern at this model stage is consistent with
the data of Pack, Gartland and Born (2004). In their
experiments, V1 cells demonstrated an apparent suppression
of responses to motion along visible occluders. A similar
suppression occurs in the model, due to the adaptation of
transient inputs to static boundaries. Also, cells in the middle
of a grating respond more weakly than cells at the edge of
the grating. Spatial competition in the model between
motion signals performs divisive normalization and end-
stopping, which together amplify the strength of direc-
tionally unambiguous feature-tracking signals at line ends
relative to the strength of aperture-ambiguous signals
along line interiors.

Level 5: Long-range filter and formotion selection

Motion signals from model Layer 4B of V1 input to model
area MT. Area MT also receives a projection from V2
(Anderson & Martin, 2002; Rockland, 1995) that carries
depth-specific figure—ground-separated boundary signals
whose predicted properties were supported by Ponce,
Lomber, and Born (2008). These V2 form boundaries
select the motion signals (formotion selection) by selec-
tively capturing at different depths the motion signals
coming into MT from Layer 4B of V1 (Appendix Eq. 20).

Formotion selection, or selection of motion signals in
depth by corresponding boundaries, is proposed to occur
via a narrow excitatory center and a broad inhibitory
surround projection from V2 to Layer 4 of MT. First, in
response to the oscillating dot pair, the larger spatial scale at
the nearer depth (D1) in V2 allows illusory contours to
bridge the two dots. At the same time, ON—center OFF—
surround spatial competition inhibits boundaries within the
enclosing shape at that depth (Fig. S5a). In the smaller
spatial scale of farther depth (D2) of V2, no illusory
contours bridge the dots. In addition, boundaries at the
farther depth are inhibited by corresponding ones at the
nearer depth at the corresponding positions. The resulting
pruned boundaries are shown in gray in Fig. 5b.

Formotion selection from V2 to MT is depth-specific. At
the nearer depth D1, V2 boundary signals that correspond
to the illusory contour grouping select the larger-scale
motion signals (Fig. 5a) and suppress motion signals at
other locations in that same depth. At the farther depth D2,
V2 boundary signals that correspond to the individual dots
(Fig. 5b) select motion signals that represent the motion of
individual parts of the stimulus.

Boundary-gated signals from Layer 4 of MT are
proposed to input to the upper layers of MT (Fig. 3;
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Appendix Eq. 22), where they activate directionally
selective, spatially anisotropic filters via long-range hori-
zontal connections (Appendix Eq. 25). In this long-range
directional filter, motion signals coding the same directional
preference are pooled from object contours with multiple
orientations and opposite contrast polarities. This pooling
process creates a true directional cell response (Chey et al.,
1997; Grossberg et al., 2001; Grossberg & Rudd, 1989,
1992).

The long-range filter accumulates evidence of a given
motion direction using a kernel that is elongated in the
direction of that motion, much as in the case of the short-
range filter. This hypothesis is consistent with data showing
that approximately 30% of the cells in MT show a preferred
direction of motion that is aligned with the main axis of
their receptive fields (Xiao, Raiguel, Marcar, & Orban,
1997). Long-range filtering is performed at multiple scales
according to the size—distance invariance hypothesis (Chey
et al., 1997; Hershenson, 1999): Signals in the nearer depth
are filtered at a larger scale, and signals in the farther depth
are filtered at a smaller scale.

The model hereby predicts that common and part
motions are simultaneously represented by different cell
populations in MT due to form selection. This type of effect
may be compared with the report that some MT neurons are
responsive to the global motion of a plaid stimulus, whereas
others respond to the motion of its individual sinusoidal
grating components (Rust, Mante, Simoncelli, & Movshon,
2006; Smith, Majaj & Movshon, 2005).

The long-range filter cells in Layer 2/3 of model MT are
proposed to play a role in binding together directional
information that is homologous to the coaxial and collinear
accumulation of orientational evidence within Layer 2/3 of
the pale stripes of cortical area V2 for perceptual grouping of

s

o

Fig. 5 V2 input to MT for the dot configuration of Fig. 1. Strong
boundaries are represented in black, whereas weaker boundaries are
represented in gray. (a) Nearer-depth (larger-scale) input contains
FACADE boundaries corresponding to the dots and illusory contours
linking the pair. The parts of the dot boundaries that would be located
inside the enclosing shape are inhibited due to spatial competition. (b)
Farther-depth (smaller-scale) input contains the boundaries of indi-
vidual dots. Dot boundaries in that depth and at the same spatial
locations as the boundaries in the nearer depth are inhibited by the
latter, due to near-to-far suppression (see Eq. 28), and are thus shown
as being weaker

form (Grossberg, 1999; Grossberg & Raizada, 2000; Hirsch
& Gilbert, 1991). This anisotropic long-range motion filter
allows directional motion signals to be integrated across the
illusory contours in Fig. 5a that link the pair of dots.

Level 6: Directional grouping, near-to-far inhibition,
and directional peak shift

The model processing stages up to now have not fully
solved the aperture problem. Although they can amplify
feature-tracking signals and assign motion signals to the
correct depths, they cannot yet explain how feature-tracking
signals can propagate across space to select consistent
motion directions from ambiguous motion directions,
without distorting their speed estimates, and at the same
time suppress inconsistent motion directions. They also
cannot explain how motion integration can compute a
vector average of ambiguous motion signals across space to
determine the perceived motion direction when feature-
tracking signals are not present at that depth. The final stage
of the model accomplishes this goal by using a motion
grouping network (Appendix Eq. 28), interpreted to occur
in ventral MST (MSTv), both because MSTv has been
shown to encode object motion (Tanaka, Sugita, Moriya &
Saito, 1993) and because it is a natural anatomical marker,
given the model processes that precede and succeed it. We
predict that feedback between MT and MST determines the
coherent motion direction of discrete moving objects.

The motion grouping network works as follows: Cells
that code similar directions in MT send convergent inputs to
cells in MSTv via the motion grouping network. Unlike the
previous 3D FORMOTION model, in which MST cells
received input only from MT cells of the same direction, a
weighted sum of directions inputs to the motion grouping
cells (Appendix Eq. 29). Thus, for example, cells tuned to
the southwest direction receive excitatory input not only
from cells coding for that direction but also, to a lesser
extent, from cells tuned to either the south or west
direction, enabling a stronger representation of the common
motion of the two dots.

Directional competition at each position then determines
a winning motion direction. This winning directional cell
then feeds back to its source cells in MT. This feedback
supports the activity of MT cells that code the winning
direction, while suppressing the activities of cells that code
all other directions. This motion grouping network enables
feature-tracking signals to select similar directions at nearby
ambiguous motion positions, while suppressing other
directions there. These competitive processes take place in
each depth plane, consistent with the fact that direction-
tuned cells in MST are also disparity-selective (Eifuku &
Wurtz, 1999). On the next cycle of the feedback process,
these newly unambiguous motion directions in MT select
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consistent MSTv grouping cells at positions near them. The
grouping process hereby propagates across space as the
feedback signals cycle through time between MT and
MSTv.

Berzhanskaya et al. (2007), Chey et al. (1997), and
Grossberg et al. (2001) have used this motion-grouping
process to simulate data showing how the present model
solves the aperture problem. Pack and Born (2001)
provided supportive neurophysiological data, wherein the
responses of MT cells over time to the motion of the
interior of an extended line dynamically modulate away
from the local direction that is perpendicular to the line and
toward the direction of line terminator motion.

Both the V2-to-MT and the MSTv-to-MT signals carry
out selection processes using modulatory on—center, off—
surround interactions. The V2-to-MT signals select motion
signals at the locations and depth of a moving boundary.
The MST-to-MT signals select motion signals in the
direction and depth of a motion grouping. Such a
modulatory on—center, off-surround network was predicted
by Adaptive Resonance Theory to carry out attentive
selection processes in a manner that enables fast and stable
learning of appropriate features to occur. See Raizada and
Grossberg (2003) for a review of behavioral and neurobi-
ological data that support this prediction in several brain
systems. Direct experiments to test it in the above cases still
remain to be done.

Near-to-far inhibition and peak shift are the processes
whereby MST cells that code nearer depth inhibit MST cells
that code similar directions and positions at farther depths.
In previous 3D FORMOTION models, this near-to-far
inhibition only involved MST cells of the same direction.
Depth suppression in the present model is done via a
Gaussian kernel in direction space (Appendix Eq. 31).
When this near-to-far inhibition acts, it causes a peak shift
in the maximally activated direction at the farther depth.
This peak shift causes vector decomposition.

In particular, consider the stimulus in Fig. 1. First, note
that large-scale MST cells in the near plane inherit the
dominant southwest motion direction of the grouped
stimulus from MT Layer 2/3 cells in the same plane
(Fig. 6a). For the same reason, MST cells in the far plane
inherit the motion direction of single dots from MT Layer
2/3 cells in the corresponding depth plane (Fig. 6b).
Figure 6c¢ illustrates the effect of depth suppression from
the direction in Fig. 6a on the distribution of directionally
specific activity of an MST cell that responds to the dot
moving to the left.

If near-to-far depth suppression were disabled, the peak
of motion activity would be in the left direction of motion
(Fig. 6b). With depth suppression, however, motion
directions close to the southwest direction are strongly
inhibited, resulting in a peak shift to the northwest direction
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of motion (Fig. 6¢). The same scenario occurs, but in the
opposite direction, for the vertical oscillating dot. Thus,
vector decomposition occurs because of a peak shifi in
motion direction, which is in turn due to depth suppression
and the representation of stimulus motion at various scales
and corresponding depths. Empirical evidence supporting
the predicted model connections is summarized in Table 1.

Simulation of psychophysical experiments
Symmetrically moving inducers

Johansson (1950, Exp. 19) used a stimulus display (Fig. 2)
wherein each stimulus contributed equally to the common
reference frame, because of the symmetry in the display.
Each frame in the simulation summarized by Fig. 7
represents the activity of a different model level at two
scales at a single time as the dots move toward the lower
left corner.

For ease of viewing, network activity is overlaid on top
of the V2 boundary input, which is depicted in gray.
Motion signals selected by V2 boundaries in MT Layers 4
and 5/6 are displayed in the top row. The larger scale (left)

L a i
zde

b ]
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- . 0.2
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Fig. 6 Peak shift in motion perception via depth suppression over the
leftward-moving dot in Johansson’s Experiment 19. (a) MST cell
activity in nearer depth (larger scale). (b) MST cell activity at the same
spatial location but in the farther depth (smaller scale), without depth
suppression. (¢) MST cell activity in the farther depth (smaller scale),
with depth suppression. Each bin represents the activity in one of eight
directions
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Table 1 Anatomical connections

Model Connection Functional Interpretation

Selected References

LGN— V1 Layer 4

V1 Layer 4 nondirectional transient
cells— directional transient cells

V1 Layer 4B—MT Layers 4 and 6

Directional selectivity

V2—MT Layers 4, 5/6

MT Layer 2/3 large receptive fields
MT Layer 2/3—>MST
MST—MT Layer 2/3

Strong LGN input; ON and OFF center—surround

Feedforward local motion input to MT
Boundary selection of motion in depth

Long-range spatial summation of motion
Directional motion grouping

Selection of consistent motion direction

Blasdel and Lund (1983), Cai, DeAngelis, and
Freeman (1997)

De Valois, Cottaris, Mahon, Elfar, and Wilson
(2000)

Anderson, Binzegger, Martin, and Rockland
(1998)

Gattass, Sousa, Mishkin, and Ungerleider
(1997), Ponce et al. (2008)

Born and Tootell (1992)
Maunsell and van Essen (1983)
Maunsell and van Essen (1983)

selects motion signals corresponding to the grouped
boundary, whereas the smaller scale (right) selects motion
signals corresponding to individual dots. Long-range
filtering in MT Layer 2/3 (middle row) groups motion
signals at each scale. Thus, in the larger scale, the coherent
southwest direction is enhanced with respect to its activity
level at the previous layer. In comparison, the smaller scale
maintains the physical motion directions corresponding to
each dot. Directional competition in MSTv (bottom row)
results in an enhanced diagonal direction of motion in the
large scale, which is then subtracted from the corresponding
activity in the small scale, resulting in an inward peak shift.
Note that the magnitude of the shift reported in Fig. 7 is less
than the 45° initially reported in Johansson (1950), which is
compatible with results from a more recent instantiation of
this paradigm, where angles of 30—40° were reported
(Wallach, Becklen, & Nitzberg, 1985).

Wallach et al. (1985) explained this result by noting that
it corresponds to the average direction that combines the
true motion paths and the paths formed by the dots moving
relative to each other, a mechanism they called process
combination. In the model, the magnitude of the shift can
be controlled by varying the strength of suppression in
depth, which balances the contributions of the real and
relative motion paths. Process combination can therefore be
interpreted as resulting from the interaction of feedforward
mechanisms representing true motion paths and feedback
mechanisms responsible for the peak shift in motion
direction. Figure 8 shows the MST cell activity in the two
scales at the two critical moments of the stimulus cycle:
when the dots move toward the left corner (top) and when
they move in the reverse direction toward their respective
origins (bottom). Note the reversal of motion directions in
the small scale, which is again consistent with the percept
and obeys the principle of vector decomposition.

In his description of this experiment, Johansson (1950,
p- 89) reported that this motion configuration was not the only

one that subjects experienced. The physical motion path of
one of the two dots could be recovered with overt attention
directed to that dot, in which case the unattended dot was seen
as on a sloping path—or even 3-D rigid motion of a rotating
rod could be perceived. The simulation of Fig. 9 was obtained
by attending in the nearer depth to the motion direction of the
horizontal oscillating dot. As observed by Johansson (1950),
attending to the horizontal oscillating dot in the westward
direction results in the perception of its real direction of
motion in the nearer depth, while the motion of the unattended
dot is on a sloped path in the farther depth. Previous
explanations of how top-down attention can bias form and
motion percepts can also be applied here (Berzhanskaya et al.,
2007; Grossberg & Swaminathan, 2004; Grossberg &
Yazdanbakhsh, 2005). In Fig. 9, the slanted motion direction
of the vertical dot results from a peak shift induced by the
strong westward motion direction induced in the larger scale
by the attended horizontal dot. In the model, top-down
attention operates in the motion stream at the level of MST
cells (Appendix Egs. 28 and 30).

The robustness of the results in Figs. 7, 8 and 9 can be
assessed by considering that the network with the same
parameters simulates a related experiment, where the dot
paths intersect at their midpoint rather than at one end
(Johansson, 1950, Exp. 20), such that observers report a
percept similar to the one in the previous experiment, with
the difference that four phases can be distinguished: when
the dots move to the lower left toward the center; away from
the center; to the upper right toward the center; and away
from the center once more. Figure 10 shows the peak-shifted
activity obtained in the small scale at the four crucial phases.

Rolling wheel experiment
The rolling wheel experiment of Duncker (1929/1938)

demonstrates that not all elements in a display need
contribute equally to the emergence of a relative reference
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Fig. 7 Simulation of Johansson’s Experiment 19. Each frame
represents the activity of one level at the two scales considered, for
a single time frame as the dots are moving toward the lower left corner
(¢t = 20). V2 form boundaries select signals in MT Layers 4 and 5/6
(Fig. 3, Level 5A), which enhances the diagonal motion direction in
the large scale and the horizontal/vertical motion directions in the
small scale. Long-range filtering in MT Layer 2/3 (Fig. 3, Level 5B)
groups motion signals over the area subtended by the stimulus.
Directional competition in MST (Fig. 3, Level 6) results in an
enhanced diagonal direction of motion in the large scale, which is then
subtracted from the corresponding activity in the small scale, resulting
in an inward peak shift

frame. The experiment can be described as follows (Fig. 11;
see the Appendix Eq. 4): A single dot moving on the rim of
a rolling illusory wheel is perceived to move according to
its physical trajectory, in this case a cycloid curve
(Fig. 11a). If a second dot is added that moves as if on
the hub of the same illusory wheel (Fig. 11b), the cycloid is
then seen as orbiting on a circular path with the hub at its
center and translating to the right (Fig. 11c).

A proper account of the Duncker wheel experiment
must explain the percept of true motion in the case of
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Fig. 8 Two different phases of Johansson’s Experiment 19. (Top)
Motion toward the lower left corner causes the dots to be perceived as
moving inwardly. (Bottom) Motion toward the outer corners results in
an outward motion percept. Insets indicate which phase of the
stimulus corresponds to the activity shown
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Fig. 9 Simulation of Johansson’s Experiment 19 with top-down
attention to the horizontal moving dot. The true motion direction of
the horizontal dot is perceived in the nearer plane, while the path of
the nonattended dot is seen as moving on a sloping path, as described
in Johansson’s (1950) original experiment. (Top) Motion perceived as
the dots move toward the lower left corner. (Bottom) Motion
perceived as the dots move toward the outer corners
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Larger scale (Nearer depth)

Fig. 10 Simulation of Johansson’s Experiment 20 with top-down
attention to the grouped diagonal motion in the nearer plane at the
level of MST. Insets indicate which phase of the stimulus corresponds
to the activity shown

the single cycloid dot and the rotational motion
perceived over the cycloid dot in the two-dot configu-
ration, as well as the global rightward motion in the
later configuration. Figure 12 shows that the network is
able to represent the true cycloid motion path at the level
of MST cells in the single-cycloid-dot case. Here, each
polar histogram shows the distribution of motion direc-
tions in MST cells over the area subtended by the cycloid
dot at a particular phase of the revolution.

O._.7
ﬁ—/

Fig. 11 Rolling wheel experiment (Duncker, 1929/1938). (a) When a
single dot is seen moving on a cycloid path, which describes the motion
of a dot on the rim of a wheel, cycloid motion is seen. (b) When an
additional dot moves on the hub of an illusory wheel of radius a, the
cycloid path is then perceived as rotating on a circular path around the
hub (¢), and the total stimulus is seen as moving globally to the right

Johansson (1974) provided a mathematical explanation
of the wheel experiment in terms of vector analysis. As
before, if the motion common to both dots is subtracted
from the cycloid dot’s physical motion, the cycloid dot is
seen to move in a circle around the center dot.

It has been suggested that the visual system treats the dot
moving with constant velocity as the center of a configu-
ration relative to which the motion of the other dots is
perceived (Cutting & Proffitt, 1982; Rubin & Richards,
1988). The successive short-range and long-range direc-
tional filtering stages in the 3D FORMOTION model
implement this constraint by accumulating directional
evidence in the constant rightward motion direction of the
hub dot. A strong rightward motion direction in the large
scale hereby emerges at the hub and captures the motion of
the cycloid dot. Figure 13 shows the activity observed at

%

@ W

®

Fig. 12 Simulations of a single cycloid dot. Each polar histogram
shows the motion activity over the cycloid dot at different phases of
one rotation cycle. The presence of multiple bins in a given histogram
denotes activation in multiple directions
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Fig. 13 Horizontal motion capture in the large (near) scale over both
stimulus dots in the Duncker wheel experiment. Activity in the
rightward direction is shown by the curve denoted E. In each graph, a
small vertical line on the x-axis indicates the time at which rightward
motion activity reaches 0.18. (a) Activity observed over the hub dot’s
location. (b) Activity observed over the cycloid dot’s location. Notice
how the rightward direction quickly becomes dominant and stable
over time

the level of MST (large scale) over time for the dot located
at the center of the hub (Fig. 13a) and the cycloid dot
(Fig. 13b).

Note the early appearance of the rightward motion
direction over the hub as compared to the cycloid. This is
made explicit in Fig. 13 by a small vertical bar on the
horizontal axis of each graph, which marks the time at
which corresponding levels of activity are reached for both
dots. The rightward motion signal propagates to the cycloid
dot over the illusory contours that join them through time.
The rightward direction of motion is retained at the position
of the cycloid dot, even though its position on the y-axis
changes throughout the simulation.

The 3D FORMOTION model predicts that elements of a
visual display with constant velocity are more likely to
govern the emergence of a frame of reference, due to the
accumulation of motion signals in the direction of motion.
A related prediction is that stimuli designed to prevent such
accumulation of evidence will not develop a strong object-
centered frame of reference. Partial support for this
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prediction can be found in an experiment by Kolers
(1972, cf. Array 17 on p. 69) using stroboscopic motion
on a display otherwise qualitatively the same as that in
Johansson’s (1950) Experiment 19. Subjects’ percepts here
seemed to reflect the independent motion of the dots rather
than motion of a common frame of reference. A related case
is that of Ternus—Pikler displays, in which one of the moving
disks contains a rotating dot. Here, vector decomposition
occurs only at the high ISIs that are also necessary to perceive
grouped disk motion (Boi, Ogmen, Krummenacher, Otto, &
Herzog, 2009).

As noted previously, the common motion direction is
subtracted from part motion via near-to-far suppression in
depth, which gives rise to a wheel-like percept over the
cycloid dot, as the simulations in Fig. 14 show, using the
same polar histogram representation as in Fig. 12, for
various levels of pruning (indicated as percentages) of the
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Fig. 14 Simulations of the Duncker wheel stimulus, at various levels
of boundary pruning. Each polar histogram shows the motion activity
in the small (farther) scale over the cycloid dot at different phases of
one rotation cycle. The presence of multiple bins in a given histogram
denotes activation in multiple directions. For each wheel plotted, the
amount of pruning completed is shown as a percentage
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farther V2 boundaries. Although these results could be
improved with a finer sampling of the direction space, they
are sufficient to demonstrate a predicted role of MSTv
interactions in generating a peak shift in motion direction
that leads to the observed vector decomposition.

In order to quantify the degradation of the percept as a
function of the amount of boundary pruning, the motion
directions obtained at each time step over the cycloid dot were
correlated with that of an ideal rotating wheel according to the
measure (R) defined in the Appendix Egs. 33, 34 and 35.
The measure is defined so as to be bounded in [1, 1], where
R = —1 corresponds to a wheel rotating in the opposite
direction, and R = 1 corresponds to a perfectly represented
wheel. Figure 15a shows the results obtained using this
similarity measure for Duncker wheel simulations with
increasing amounts of pruning completed. Figure 15b shows
the result obtained for the simulation of the cycloid dot only,
in which there is no boundary pruning. Comparing
Fig. 15a and b is sufficient to see that Duncker wheel
simulations yielded more wheel-like activation in MST than
did the cycloid simulation, at all levels of boundary pruning.

Discussion

The 3D FORMOTION model predicts that the creation of
an object-centric frame of reference is driven by interacting
stages of the form and motion streams of visual cortex:
Form selection of motion-in-depth signals in area MT and
interdepth directional inhibition in MST cause a vector
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Fig. 15 Effect of boundary pruning on MST activity evaluated using
similarity measure R. Directional activity in MST perfectly consistent
with wheel-like rotation in the rightward direction should yield R = 1,
whereas nonrotational motion should lead to a smaller value of R. (a)
As the percentage of pruning completed increases, MST activity
observed in the Duncker wheel simulations becomes less wheel-like.
Nevertheless, motion is always more circular than that observed in
cycloid dot simulations (b)

decomposition whereby the motion directions of a moving
frame at a nearer depth suppress these directions at a farther
depth, and thereby cause a peak shifi in the perceived
directions of object parts moving with respect to the frame.
In particular, motion signals predominant in the larger scale,
or nearer depth, induce a peak shift of activity in smaller
scales, or farther depths. The model qualitatively clarifies
relative motion properties as manifestations of how the brain
groups motion signals into percepts of moving objects, and
quantitatively explains and simulates data about vector
decomposition and relative frames of reference.

The model also qualitatively explains other data about
frame-dependent motion coherence. Tadin, Lappin, Blake,
and Grossman (2002) presented observers with a display
consisting of an illusory pentagon circularly translating
behind fixed apertures, with each side of the pentagon
defined by an oscillating Gabor patch. The locations of the
apertures and of the corners of the pentagon never over-
lapped, such that the latter were kept hidden during the entire
stimulus presentation. Subjects had to judge the coherence of
motion of the Gabor patches belonging to the different sides
of the pentagon. Crucially, when the apertures were present,
subjects reported seeing the patches as forming the shape of
a pentagon, whereas when the apertures were absent, the
patches did not seem to belong to the same shape. Results
showed that motion coherence estimates were much better
when apertures were present than when they were not.
According to the FACADE mechanisms in the form stream,
the presence of apertures triggers the formation of illusory
contours linking the contours of the Gabor patches into a
single pentagon behind the apertures (see Berzhanskaya et
al., 2007). Subsequent form selection and long-range
filtering in MT lead to a representation of the pentagon’s
motion at a particular scale. This global motion direction is
then subtracted from local motion signals of individual
patches, thereby leading to better coherence judgments. In
the absence of the apertures, form selection followed by
long-range filtering of motion signals did not occur, such that
the motion of individual patches mixed the common- and
part-motion vectors, making coherence judgments difficult.

Table 2 Spatial displacements

Direction (d) A9 Ady
0 1 0

1 1 1

2 0 1

3 -1 1

4 -1 0

5 -1 -1

6 0 -1
7 1 -1
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Table 3 Parameter values

Table 3 (continued)

Level Parameter Value Equation Number Level Parameter Value Equation Number
2 Ay 100 8 6 Ay 80 28
B, 5 8 Bo 1 28
C, 1 8 Cy 6 28
Ay 0.01 9 Dy 6.5 28
K, 20 9 v 1 29
Aj 50 10 oy 1.2 29
B; 2 10 oo 10 30
Cs 10 10 A 5 30
Kj 20 10 V4 0.5 31
Ay 50 12 oy 2 31
B, 6 12
Ca 10 12 In displays where the speeds of the moving reference frame
Ky 20 12 and of a smaller moving target can be decoupled, the perceived
3 A51 20 13 amount of vector decomposition has been shown to be
le 3 15 proportional to the speed of the frame (Gogel, 1979; Post et
Oy 2 15 al., 1989). This can be interpreted by noting that the firing rate
o)’ 2 15 of an MT cell in response to motion stimuli is proportional to
0’ 1 15 the speed tuning of the cell (Raiguel, Xiao, Marcar, & Orban,
G 5 15 1999). A frame of reference moving at a higher speed should
0, 0.0002 16 therefore lead to higher cortical activation in the larger scales
02 0.0001 16 of MT and MST, and thus to a more pronounced motion
4 Ag 5 17 direction peak shift, reflecting the stronger percept of vector
Cs 1 17 decomposition (Gogel, 1979; Post et al., 1989). For the same
Ds 10 17 reason, the model also predicts that the amount of shift in the
O 25 18 perceived direction of the moving target is inversely
oy 0.5 18 proportional to target speed: A stronger peak in the motion
J 2 18 direction distribution in the smaller scale (before subtraction)
o 55 19 will be shifted less by subtraction from the large scale.
K 2 19 Another prediction is that vector decomposition mechanisms
5A Ay 100 20 occur mainly through MT-MST interactions.
Kg 1 20 The simulations shown here were conducted using a
K, 0.12 20 minimum number of scales in order to explain the experi-
Kg 10 20 mental results. However, the model can be generalized to
Or 6 21 include a finer sampling of scale space, perhaps with depth
R 9 21
5B Ag 50 22 a
Dg 0.1 22
0, 0.001 24
9,2 0.001 24 b
A 50 25 ﬂ:::l I:Z:U
A 35 25
L, 20 25 .
N Fig. 16 Base shapes used as V2 boundary input to MT. These shapes
As 8 25 are made to follow the path described by a rolling wheel by applying
?\yz 4 25 the affine coordinate transform in Eq. 5. (a) Grouped boundaries. (b)
L2 20 25 Individual dot boundaries. Unlike the V2 boundaries defined for
‘) 20 2% Johansspn’s (195.0) experimepts (Fig.. 5), which have a constant 45°
orientation and in which stimulus size changes as the dots move
K2 8 26 toward and away from each other, the orientation of the V2 boundaries
whtax 2 27 here rotates due to Eq. 5, while stimulus size remains constant
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suppression occurring as a transitive relation across scale.
Such an arrangement of scales would then be able to account
for experimental cases in which vector decomposition must be
applied in a hierarchical manner, such as in biological motion
displays (Johansson, 1973). Accordingly, residual motion of
the knee is obtained after subtraction of the common motion
component of the hip and knee, whereas residual motion of
the ankle is obtained after subtraction of the common motion
component of the knee and ankle. Similar decompositions
occur for upper limb parts. Such vector decompositions
would require the use of spatial scales roughly matched to
the lengths of the limbs, with depth suppression occurring
from larger scales coding for limb motion to smaller scales
coding for joint motion.

The present model explains cases of vector analysis in
which retinal motion is imparted to all display elements, as
opposed to some being static. The model would need to be
refined to account for induced motion displays using an
oscillating rectangle to induce an opposite perceived motion
direction in a static dot (Duncker, 1929/1938). The suggestion
that additional mechanisms are needed to explain induced
motion is supported by experimental evidence highlighting
differences between induced motion and vector decomposi-
tion, as summarized by Di Vita and Rock (1997). For
example, induced motion is typically not observed when the
reference frame’s physical speed is above the threshold for
motion detection, whereas the vector decomposition stimuli
analyzed here are robust to variations in speed. Also, in
induced motion, the motion of the frame is underestimated or
not perceived at all, whereas the common motion component
in vector decomposition stimuli is perceived simultaneously
to that of the parts.

Acknowledgments This work was partially supported by CELEST,
an NSF Science of Learning Center (Grant SBE-0354378), and by the
DARPA SyNAPSE program (Grant HR0011-09-C-0001).

Appendix

All stages of the model were numerically integrated using
Euler’s method. All motion sequences are given to the
network as series of static 2-D frames representing black-
and-white image snapshots at the consecutive moments of
time (see the next section). All model equations are
membrane, or shunting, equations of the form

dX

Cn n = —[X — Eleak]gleak - [X - Eexcit]gexcit

— [X' — Einhib]inhib- (1)

(Grossberg, 1968; Hodgkin & Huxley, 1952). In this
equation, g, is a leakage conductance, whereas g..cit

and g, represent excitatory and inhibitory inputs.
Parameters FEjeay, Eexciy and Ejnp, are reversal potentials
for leakage, excitatory, and inhibitory conductances, re-
spectively. All conductances contribute to the divisive
normalization of the equilibrium membrane potential, X:

o Eleakgleak + Eexcitgexcit + Einhibginhib .
8leak + 8excit + &inhib

X

(2)

Reversal potentials in the following simulations were for
simplicity set to Ejeax = 0, Eexeit = 1, and Ejppip, = —1 unless
noted otherwise. When the reversal potential of the
inhibitory channel, Ej, is close to the resting potential,
the inhibitory effect is pure “shunting”; that is, it decreases
the effect of excitation only through an increased membrane
conductance. By abstracting away some of the details of the
Hodgkin—Huxley neuron, the model in Eq. 1 allows us to
bridge, in a parsimonious way, the temporal gap between
the dynamics of perception and of neuronal populations and
networks. Although using the full range of Hodgkin—
Huxley dynamics would likely require some model refine-
ments in order to handle issues such as fast synchroniza-
tion, recent work on converting rate into spiking neural
networks has clarified that the network organizational
principles and architecture remain the same, even as finer
dynamical and structural details that are compatible with
this architecture are revealed (Cao & Grossberg, 2011;
Grossberg & Versace, 2008; Léveillé, Versace, & Grossberg,
2010).

Depending on a layer’s functionality, activities at each
position (i, j) are represented as xZ-, where p {1, 2}
indicates whether the cell (population) belongs to the ON or
OFF stream; as xg, where d € {0, . . . , 7} indicates
directional preference within a single spatial scale; or else
as x?;s, where d € {0, . . ., 7} indicates motion directional
preference and s €{1, 2} indicates spatial scale, with s = 1
indicating a farther scale (D2) and s = 2 a nearer scale (D1).
The values used for all parameters are summarized in
Tables 2 and 3.

All simulations were implemented in C++ on a dual, 2-
GHz AMD Opteron workstation (AMD, Sunnyvale, CA)
with 4 GB of RAM running Microsoft Windows XP x64
(Microsoft, Redmond, WA). Convolution kernels separable
along the horizontal and vertical axes (directions d € {0, 2,
4, 6}) were implemented as one horizontal 1-D convolution
followed by one vertical 1-D convolution, in order to speed
up computations (Haralick & Shapiro, 1992). Comparable
speed-ups were obtained for nonseparable kernels (direc-
tions d € {1, 3, 5, 7}) by applying the convolution theorem
with the FFTW library (Frigo & Johnson, 2005). Additional
speed-ups were obtained by using OpenMP to assign
convolutions at each model layer to different processors
(Chapman, Jost, & van der Pas, 2007). Computation time
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for one integration step was roughly 100 ms for the
Johansson (1950) stimuli (120 x 120 frames) and 1.2 s
for the rolling wheel experiment (170 x 350 frames).

Level 1: Input

Inputs Jf]7 to the motion system are provided by three-cell-
wide boundaries in separate ON and OFF channels, p = 1, 2.
Oscillating dots are created by generating trajectories
indexed by the position of a single point per shape for each
time frame and then convolving the stimulus shape (a circle,
square, or parallelogram) with the obtained frames. Input to
the motion system is generated by subtracting the stimulus of
the preceding time frame from the stimulus at the current
time frame and convolving the result with a 2 x 2 uniform
mask in order to yield motion boundaries three cells wide,
denoted by 1{; in Eq. 3. The convolved shapes are filled in,
with positive values corresponding to inputs to the ON
system, and negative values corresponding to inputs to the
OFF system. All obtained values are constrained to be
composed of 1’s or 0’s only by computing

1 ifIf>0andp =1
Ji=S1 ifff <0andp=2. (3)
0 otherwise

Given the simplicity of experimental vector decomposition
displays (all white boundaries on a dark background), the
scheme used here to define motion inputs is sufficient to
demonstrate key perceptual properties. The model’s front end
could be further extended to process more natural scenes (e.g.,
as in Browning, Grossberg, & Mingolla, 2009). For the
Johansson (1950) stimuli, the trajectories of the dots are both
rectilinear, one vertical and one horizontal. Figure 4 shows
typical inputs to the motion stream generated with the above
procedure. The position and direction of the dots at one
particular time are indicated in Fig. 4a. Corresponding ON
and OFF inputs are displayed in B and C, respectively. For
the rolling wheel stimulus, the trajectories of both the
cycloid and hub dots are given by Eq. 4:

xX=ap—bsiny (4)

b

y=a—bcosp

where ¢ represents scaled time or instantaneous phase,
a = 40 is the radius of the wheel, and b is the distance
between the peripheral dot and the center of the wheel. The
trajectory of the dot on the spoke is obtained by setting a = b,
whereas the trajectory of the central dot is obtained by setting
b = 0. The equations above are computed for ¢ €[0, 27],
which corresponds to one revolution of the wheel. The
resulting coordinates are rounded to the nearest integer
(so that each value corresponds to a discrete pixel).

@ Springer

Input from V2 to the motion system (Bj; in Eq. 20) is
provided by m-cell-wide boundaries in separate depth planes,
where m = 1 and 3 for the Johansson displays and the
Duncker wheel, respectively. Using m = 3 in the Duncker
wheel simulations was necessary to reduce spurious spatial
aliasing that occurs when simulating a rotating stimulus in
low-resolution input frames (170 x 350 pixels). The shape
and strength of V2 boundaries is designed based on the
following FACADE mechanisms (Grossberg, 1994). In nearer
depth D1 (s = 2), bipole cells quickly group the collinear
boundaries between the two dots, and spatial competition
within that depth inhibits the portions of the dot boundaries
located within the emerging enclosing shape, thereby yielding
a representation of the global shape of the object, shown in
Fig. 5a (cf. Grossberg & Mingolla, 1985; Grossberg &
Raizada, 2000). At the same time, in farther depth D2 (s = 1),
the smaller-scale bipole cells group the boundaries of each dot
individually, while newly emerged boundaries in the nearer
depth start to inhibit the emerging boundaries in farther depth
that are at the same position. Inhibited boundaries in the
farther depth are shown in gray in Fig. 5b. Since this
temporally extended process—termed boundary pruning—
occurs as the stimulus is in motion, inhibition of the farther
boundaries by the nearer ones may not be complete at a given
time frame. There do not seem to be any psychophysical data
available to indicate the proper amount of pruning that may
occur at each time frame. Simulations were thus conducted
assuming various amounts of V2 boundary pruning (specif-
ically, 0, 25, 50, 75, 90, and 100% pruning complete). The
amount of pruning did not affect the Johansson stimulus
simulations, while it led to a graceful degradation of the
Duncker wheel simulation (Fig. 15).

For the Johansson (1950) stimuli, V2 input to the near
plane is generated by convolving the trajectory points with
half-shape boundaries (instead of full shapes) and then
linking the two half shapes with straight lines (Fig. 5a). The
use of half-shape boundaries removes those boundaries that
would otherwise be contained in the interior region of the
grouped stimulus of Fig. 5a. V2 input to the far plane is
generated by convolving the trajectory points with dot
boundaries at the various amounts of pruning considered
above (Fig. 5b). In both cases, the value of a V2 boundary
at a particular spatial location is set to 0, 0.1, 0.25, 0.5,
0.75, or 1, depending on the amount of pruning.

For the rolling wheel stimulus, the rotating grouped
boundary is generated for each time step [i.e., for each
angle ¢ and global translation (#, f,)] by applying the
following affine transform to the coordinates of the pixels
on the boundaries of an initially horizontal grouping, shown
in Fig. 16:

ME Reamedn M A 5)
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In order to reduce aliasing and increase input strength, the
resulting boundaries are filtered with a 2 x 2 uniform
mask, and pixel values are clipped as for the other
stimuli.

Spatial and temporal characteristics of the input were
determined as follows. In all cases, each pixel in the
simulations is assumed to represent roughly 1/10 of a
degree of visual angle. For the Johansson (1950)
experiments, the length of each dot’s path is 34 pixels—
that is, approximately 3.4° of visual angle. The speed of
the dots is set so as to take 5 s for one complete cycle of
the stimulus. It was found in psychophysical experiments
that these parameters yielded the desired effect. In
comparison, in Johansson’s experiment, the observer was
placed 75 cm away from the display, the dots had a
diameter of 3 mm, and they made a single 20-mm-wide
oscillation in approximately 1.5 s. This represents angular
sizes much smaller than the ones simulated here, but he
also reported that the effects were robust to variations on
these parameters. The stimuli move by a distance of
exactly 1 pixel (along their respective oscillatory axes)
over successive input frames. The diameter of the dots is 7
pixels (<1° of visual angle). The size of each input frame is
120 x 120 pixels.

For the Duncker wheel stimulus, the length of the
horizontal translation of the central dot is 251 pixels (25.1°
of visual angle), the radius of the wheel is approximately 40
pixels (4°), the diameter of the dots is 13 pixels (1.3°), the
spoke rotates 0.025° per frame, and the wheel performs one
revolution every 5 s. The size of the simulated display is
170 x 350 pixels.

Based on the settings above, the number of (Euler)
integration steps performed on each frame is given by
Eq. 6:

frame duration  Cycle duration

dt © # frames - dt
1

- Cycles/s - # frames - dt

# Euler steps =

(6)

where, consistent with previous 3D FORMOTION
simulations (Berzhanskaya et al., 2007), dt = 0.001. In
the Johansson (1950) stimuli, the number of frames per
cycle is 68 (34 toward the southwest corner, 34 toward the
northeast corner). Since it takes 5 s for one cycle, the
number of cycles per second is approximately 0.2. Thus,
the number of Euler steps per frame for these simulations
is 1/(0.2-68-0.001) ~ 74. In the rolling wheel experi-
ment, the number of frames is 252. Since it takes 5 s for
one revolution, the number of cycles per second is 0.2.
Thus, the number of Euler steps per frame for these
simulations is 1/(0.2 - 252 - 0.001) = 20.

Level 2: Transient cells

At the first stage of V1, nondirectional transient cell
activities b; are computed as a sum of ON (p = 1) and
OFF (p = 2) channels:

by =Y )2, )
p

where input cell activities, x‘;, perform leaky integration on
their inputs JJ:
dxl

L= i~y (€1 = ). (8)

Nonzero activation xJZ results in slow adaptation of a
habituative presynaptic transmitter gate, or postsynaptic

membrane sensitivity, z/:

> 1]
&
dt

(Abbott et al., 1997; Grossberg, 1972, 1980). In Eq. 8,
—Alle‘Z is the rate of passive decay and C; is the
maximum activity x}; can reach. For nonzero inputs J, xj;
approaches C; with a rate proportional to (Cy — ;) while it
decays with the rate proportional tofAlleg. In Eq. 9, when
a nonzero input x;; is presented, ZZ is inactivated or habituates
at the rate —Aszxf;-zZ as it tries to recover to 1 at rate A4,.

Input activity x; combined with transmitter gate z
results in transient nondirectional cell activities b; that
model activity of the nondirectionally selective cells in
Layer 4Ca with circular receptive fields (Livingstone &
Hubel, 1984). ON and OFF inputs summate at this stage.
For visual inputs with a short dwell time, such as moving
boundaries, activities b;; respond well. A static input, on the
other hand, produces only a weak response after an initial
presentation period, because of habituation (Muller, Metha,
Krauskopf, & Lennie, 2001).

The next two cell layers provide a directional selectivity
mechanism that can retain its sensitivity in response to
variable speed inputs (Chey et al., 1997). As noted above,
index d denotes the directional preference of a given cell.
First, directional interneuron activities cg integrate transient

cell inputs b;;:

= (1~ 2 - Kol ©)

dc?
dtj = 43 (_3303 + C3by — K3 [cy ] +)'

(10)
A directional inhibitory interneuron cg receives excitatory
input from a nondirectional transient cell activity b;; at the
same position, as well as suppression from a directional
interneuron c¥ of opposite direction preference, D, at the
position (X, Y) offset by one cell in the direction d. For
example, for the direction of motion 45°, X=i+ 1, Y=+ 1,
and D = 135°
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.. d . . . .
Activity ¢ increases proportionally to the transient input by
at rate 4;C; and passively decays to zero with rate — A3B; cfj’
The strength of opponent inhibition is — A3K3 [y ] * where

(11)

W] = max(w,0),
defines an output threshold. Inhibition is stronger than
excitation (see Table 3) and “vetoes” a directional signal if
the stimulus arrives from the null direction. Thus, a bar
arriving from the left into the rightward directional
interneuron receptive field would activate it well, while a
bar arriving from the right would inhibit it, even if activation
b;; is non-zero.

Directional transient cell activities ef-j’- at the next level
combine transient input b; with inhibitory interneuron
activity cg.. Their dynamics are similar to those of cg:

ded

i d D 1+
dt] = A4 (—B4eij + C4by — K4 [CXY] )

(12)
d

As in Eq. 10, activity ej; increases proportionally to
transient input b;;, passively decays at a fixed rate, and is
inhibited by an inhibitory interneuron tuned to the
opponent direction. Computation at Level 2 results in
multiple directions activated in response to a moving line,
which is consistent with the ambiguity caused by the
aperture problem due to the limited size of V1 receptive
fields.

Level 3: Short-range motion filter

ds

fa accumulate motion in each

Short-range filter activities,
direction d:

ds

dfe
y ds d ds
7 _A5<—l.j +;EXYGW>.

(13)

dhi} , : s :
— =4 (—h;j“ + (1=K FHISy — 0.1+ )
XY

Co Y FiyKiy + DFp*
XY

In Eq. 13,

By =[] (14)

is the rectified output of the directional transient cell e)“:y
from Level 2, and G;&Y is a Gaussian receptive field that
depends both on direction d and scale s:

N 2 N 2
x—i —i
S) + yS
ol o

Kernel Gg}y is elongated in the direction of motion.
Scale s determines receptive field size, and therefore the
extent of spatiotemporal integration of lower-level motion
signals. Larger receptive fields respond selectively to larger
speeds, and smaller receptive fields to smaller speeds; see
Chey et al. (1998). While speed did not vary much in our
simulations, in more motion-rich environments, speed—
depth correlations can help to assign an approximate depth
order to the moving objects. The output of the short-range
filter is thresholded and rectified according to Eq. 16:

GZ}Y:Gexp —0.5 ( (15)

= J-al (16)

with thresholds 6, = s, where s = 1, 2. The thresholds are
thus scale-specific. If they were the same, the larger scale
would always activate more strongly. With a larger threshold,
the larger scale prefers larger speeds. See Chey et al. (1998).

Level 4: Spatial competition and opponent direction
inhibition

The spatial competition and opponent direction inhibition

activities, hj.j’?', are determined according to the following

membrane equation:

>7 (17)

where F§, is the output (see Eq. 16) of a Level 3 cell at
spatial location XY, direction d, and scale s. Equation 17
defines a spatial competition within one motion direction d
with inhibition from the opponent motion direction D at the
same location. The on—center kernel Jg}y of the spatial
competition is elongated in the direction of motion:

gio =T ol —os| (A= 2+ y=iy’ (18)
gxY 2100y P ' oy oy

@ Springer

whereas the off-surround Kg}y is spatially isotropic,

K (= (1= AY) + (v — (j — AD)’
KZ}Y—Wexp<—O.S< ( ) 3 4 ))>>

3 O

(19)

The center of the inhibitory kernel K;}Y is offset from the
(i, j) position by one cell in the direction opposite the
preferred direction d, as determined by Ag and Ag (see
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Table 2). This arrangement results in a on—center off—
surround recurrent spatial competition network wherein
inhibition trails excitation. Signal Fif“ is the output of a
Level 3 cell at spatial location ij, and opponent
direction D = d + m. The strength of spatial competition
is determined by parameter Cg, and that of opponent
inhibition by Ds.

Level 5: Formotion capture and long-range filter

Rectified motion output signals, Hj* = hfjlf"lr, from V1
(model Level 4) are selected by form boundary signals,

Bj;, from VZ in the input Layers 4 and 6 of MT. The
activities, q , of these MT cells combine motion and
boundary s1gna1s via a membrane equation:

dqif
dt

=47 (“L/ +(1—qj )de (Kp +KpB;) — Ki(1 + ‘If;‘;x) ;B}YRE‘XY>'

(20)

In Eq. 20, input from the V1 motion stream Hl./d.SKE is
positively modulated by boundaries KzBj; in the excitatory
term of the equation. Activity Bj; in Eq. 20 codes an
idealized m-cell-wide boundary that simulates output from
V2. In the case of the Johansson (1950) stimuli, m = 1. In
the rolling wheel experiment, m = 3 to reduce aliasing
effects due to the rotation of the wheel on the discrete input
grid. In addition, these boundaries inhibit unmatched
motion signals via term _ ByyRjyy. This modulatory

XY

on—center, off-surround network allows boundaries to
select motion signals at their positions and depths.

dm®

dt

Y — Ag (—mgs—i—(l —ml‘;s)l\fgs(l —|—a[Tgs] ) — Dg( 1+mds dee Tes

Parameter Ky determines the strength of feedforward
inputs Hgs , and Kz determines the strength of modulation
by V2 boundaries. The V2 boundary projection to MT is
stronger than the bottom-up motion projection; that is,
K; << Kp. The strength of V2 boundary inhibition
> ByyRiyy is scaled by the coefficient K, and its spatial
Xy

range is determined by an inhibitory Gaussian kernel
RijY:

Riyy :%exp<—0.5<( i (;i—(y J) )) (21)

The modulatory on—center and driving off-surround
in Eq. 20 could be implemented in the brain in various
ways after direct excitatory inputs from V2 to MT are
registered in MT. We interpret this network as being built
up in much the same way as seems to occur in primary
visual cortex; namely, with a Layer 4 on—center and
inhibitory interneurons from cortical Layer 6 to Layer 4
(Ahmed, Anderson, Martin, & Nelson, 1997; Callaway,
1998; McGuire, Hornung, Gilbert, & Wiesel, 1984;
Stratford, Tarczy-Hornoch, Martin, Bannister, & Jack,
1996). When no boundary is provided and Bj; =0
everywhere (e.g., the parvocellular stream is 1nact1vated),
motion signals can still activate MT via the term HgSKE in
Eq. 20. In this case, no inhibition is present as well. In the
presence of boundary input, motion signals at boundary
positions are strong, whereas those outside of the
boundary position are suppressed.

Next, model MT cell activities, m,j , in Layer 2/3 receive
MT signals, Njé, from Layer 4 via a long-range filter and
top-down matching signals, 7%, from MST:

17

To compute the long-range filter inputs, st, the MT
input activities, qg’.s, are rectified,

e (23)

and squared to generate output signals before being
anisotropically filtered by a long-range filter L,?‘js , thresh-
olded, and rectified again:

) Ly — 6,

(24)

M?’S[Z( &

XY

In Eq. 24, the long-range filter LZ}(Y is defined by an
anisotropic Gaussian kernel

2
L x—i\? y—i
Ly = 5575 exp | —0.5 < 5 ) + < 5 ) (25)
W DA ( ( PN 2

that is elongated in the direction of preferred motion. This
long-range filter accumulates evidence for motion in its
preferred direction over time and space. The anatomical
basis for such integration can be provided by long-range
horizontal projections in Layer 2/3 of MT. The squaring
operation gives higher preference to larger signals, which

@ Springer



1166

Atten Percept Psychophys (2011) 73:1147-1170

leads to winner-take-all dynamics in competitive recurrent
networks (Grossberg, 1973, 1980, 1988).

Due to the locality of the winner-take-all dynamics,
multiple directions of motion in different spatial positions
and depth planes can, in principle, be simultaneously
represented in MT and further projected to MST. However,
the evidence that is accumulated at one position may be
similar to that accumulated at nearby positions, leading to
the same winner at these positions. The long-range filter is
not, however, sufficient to realize the kind of motion
capture that can solve the aperture problem and impart a
global perceived motion direction on an entire object. This
is accomplished by positive feedback between the long-
range grouping process in MT and the directional grouping
process in MST. This combination of properties has
elsewhere been shown capable of simulating properties of
motion transparency at different depths (Berzhanskaya et
al., 2007).

As in the case of the V2-to-MT projection, MST-to-MT
feedback is defined by a modulatory on—center, off—surround

network. Excitatory feedback o | T’ ds} in Eq. 22 from MST

(see Eq. 28) is modulatory in nature, and its strength is
determined by coefficient c. Thus, top-down input 7} ds
only effective if bottom-up input Nj; 9 is positive. The strength
of MST off-surround feedback Z whe [Tg,] " Py is

determined by coefficient Dg. The spatlal extent of the off—
surround is determined by the isotropic kernel Pjyy:

N2 N2
P;Xy:ﬁexp<—0.5<(x_l) :%(y_]) >> (26)

dT{

dt

ds

i :A9<—Tids I_Tds Z deMev +O§Ji:v)_(89_~_]wlj)

Off—surround inhibition is from all directions except d.
This is controlled by the inhibitory weight w* between a
given direction d and another direction e:

de :WMax ‘d—€|7
T

where d and e € {-37/4, —x/2, . . ., w} denote the direction
preferences of the cells. The kernel in Eq. 27 is maximal
when d and e are of opposite directions, and zero when
d = e. Because excitatory input I\’ydf‘ is from the preferred
direction, this directionally asymmetric suppression effec-
tively amplifies d and suppresses other motion directions.
Motion from unambiguous feature-tracking signals prop-
agates to ambiguous motion positions through the large
kernel Pjyy.

Although various neurophysiological studies are con-
sistent with directionally selective receptive fields in MT
(e.g., Livingstone, Pack, & Born, 2001; Xiao, Marcar,
Raiguel, & Orban, 1997; Xiao et al., 1997), we are not aware
of direct anatomical data concerning the validity the synaptic
kernel defined in Eq. 27. Such an inhibitory sharpening
mechanism within MT itself is compatible with reports
that blockage of GABA-ergic transmission in area MT
weakens direction selectivity (Thiele, Distler, Korbmacher, &
Hoffmann, 2004).

(27)

Level 6: Directional grouping and suppression in depth

The MT-MST directional grouping circuit acts in a winner-
take-all mode, selecting a single direction of motion at each
point. MST activity 7} ds is described by

s e | reS
Py + Co sz [Tij }

s<S.,e

)

Do w1 -
e XY

The act1v1ty T 4 decays at rate —Ao. Bottom-up input
My = [ f}} is the rectified MT output. A Gaussian

kernel v* determines the magnitude of input from different
directions:

v = Vexp (—0.5 <(e;72d)2> > .

Bottom-up excitation is modulated by attention via term
Ofyl:g. Such a modulatory term has been shown to be able to
account for the effect of spatial attention on the activity of
direction-selective neurons in area MT (cf. Eq. 2 in
Womelsdorf, Anton-Erxleben & Treue, 2008). If attention

(29)
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focuses on features in the near depth plane, this modulation
would help one motion direction to win in the near depth.
The suggestion that attention directed to a particular
direction of motion may enhance the activity of cells
selective for that motion direction is corroborated by
physiological data in both MT and MST (Treue & Martinez
Trujillo, 1999; Treue & Maunsell, 1996).

Attention was used only in the simulations in Figs. 8, 9,
and 10 in order to show that attention directed to the
dominant direction of motion of the grouped stimulus can
bias the vector decomposition observed over the stimulus
parts. Attention was applied as a single Gaussian “spot” in
the near depth (s = 1) and along the southwest—northeast
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diagonal axis for the simulations in Figs. 8 and 10 (d =5 or
1, depending on the current direction of the grouped
stimulus), and along the horizontal axis for the simulation
in Fig. 9 (d = 0 or 4, depending on the current direction of
the tracked dot):

O‘.’.S:Aexp<—05<( ) +0}0_ ) ))
i . p) .

Here, xo and y, are the coordinates of the center of the
attentional spotlight and are designed to follow the middle of
the grouped stimulus, for the simulations in Figs. 8 and 10, or
coordinates of one particular dot for the simulation in Fig. 9.
This bias is similar to the one used in the case of transparent
motion in Grossberg et al. (2001) and Berzhanskaya et al.
(2007), and it allows a single motion signal to win in the near
depth, D1.

Inhibition in Eq. 28 takes the form of directional
competition and suppression in depth. All inhibitory terms
are gated by shunting term —(Bo + T¢"), where By > 0.
Directional competition is implemented by recurrent connec-
tions within MST in the term Do Y w[Tg] Py Its

e XY ’

(30)

strength is determined by coefficient Dy, and its spatial extent
by the kernel Pjy,, where XY and i represent the spatial
locations of the presynaptic and postsynaptic cells, respec-
tively, and s is the scale. The weighting coefficient w,, and
surround suppression kernel P}y, are the same as in Eqs. 26
and 27. MST also includes direction-specific suppression,
Co 3 z% [TeS } from the near depth (D1, S =2) to the far

s<S,e

depth (D2, s =1), which is important for the proposed
mechanism of vector decomposition. Kernel z;, determines
the magnitude of depth suppression across directions and is
computed as

=Zexp (—0.5 <(e;2d)2> ) .

If the motion in the direction d wins in D1, this direction
will be suppressed in D2. This allows the model to avoid a
single motion direction being represented in both depths. In
the case of transparent motion, suppression of one direction
in D2 would allow another direction to win there. The
kernel in Eq. 31 also implies that suppression from the
larger (nearer) scale to the smaller (farther) scale is
strongest for the same direction e =d, and weakest for
opposite directions e =d + m. This prediction is consistent
with experimental data in which lesions to cortical areas
including MT and MST resulted in weaker activation of
superior colliculus neurons—which receive feedback from
MT—to a small target when it was moving in the same
direction as a textured background, but not when it was
moving in the opposite direction (Joly & Bender 1997).

(31)

Vector summation

The output of MST cells (Level 6) is displayed as a vector
summation according to the following equation:

_ ds  d
= E Tiju
d

(32)

where T7; 95 is a scalar representing the activity of the MST
cell at locatron ij and direction d. The variable u“ is a unit
vector representing dlrectron d. For example, for the
castward direction u¥ = (1, 0), and for the northeast

direction, «"* = (v/2/2, \/_ 2/2).
Similarity estimate for Duncker wheel

In order to calculate the influence of pruning on the path of
the cycloid (Fig. 15), a similarity estimate was defined as
follows. Using Eq. 32, let v' (e ()be the 2-D vector
representing the velocity of the MST cell in scale s = 1
whose coordinates are located at the center [c.(?), ¢,(f)] of
the cycloid dot at time step . Furthermore let v(z) = [v(?),
()] be the orthogonal projection of V! Veu(t)ey (1) O the x- and
y-axes, respectively. These components are - compared to the
theoretically derived velocity components for a perfectly
represented wheel. The latter is defined as the derivative of
Eq. 4, from which common motion is subtracted:

T
P R ON
n= lﬂ(r)] -|
The difference between v(7) and v'(7) is calculated as a
normalized inner product:

—b cost} (33)

sin ¢

r(1) = (34)

V@I

<
=

~
=

which takes a value of 1 if the two vectors are perfectly
aligned and —1 if they are of opposite orientations. The
similarity measure is given by integrating across all time
frames and dividing by the number of frames:

(35)

where N, is the number of time frames. It follows that
R €[-1, 1], where R = 1 indicates a perfectly represented
wheel and R = —1 indicates wheels rolling in opposite
directions. In order to ensure that r(t) is always well-
defined in Eq. 35, it is set to 0 when ¥° Vet = = 0, which
occurs in the first few time frames of the wheel when the
cycloid dot has not accumulated enough motion activity.
Note that this does not bias the estimate R in any direction.
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