
Performance in a discrimination task depends on two 
factors: the available evidence and the rules whereby that 
evidence is applied to a decision. Suppose that an observ-
er’s goal is to discriminate between targets and lures (for 
example, between target-present and target-absent trials 
in visual detection, or between old and new items in rec-
ognition memory) and that an experimental manipulation 
increases the rate of correct target identifications. Has the 
manipulation led subjects to become more sensitive in 
their discriminations, or has it only made them more will-
ing to claim that a target was present on any given trial? 
The ability of signal detection theory (SDT) to model this 
critical distinction between sensitivity and response bias 
has made it an invaluable tool in psychophysics, percep-
tion, memory, and other domains (Green & Swets, 1966; 
Macmillan & Creelman, 2005).

A useful construct motivated by SDT is the receiver op-
erating characteristic (ROC), which plots the hit rate (H ) 
versus the false alarm rate (F ) at different degrees of re-
sponse bias as sensitivity is held constant. ROCs can be 
constructed efficiently with a rating design: For each test 

probe, the subject responds with some level of confidence 
that it is a target or lure, each level corresponding to a dif-
ferent degree of response bias. The ROC connects (F, H ) 
points calculated by cumulating response proportions from 
the most conservative to most liberal decision rules. Dis-
crimination is accurate to the extent that the hit rate exceeds 
the false alarm rate, and as the difference between hits and 
false alarms increases, the ROC moves closer to the upper 
left corner (Figure 1). An important virtue of the ROC func-
tion was demonstrated by Green (1964): The area under the 
curve equals the proportion correct obtained by an unbiased 
observer in a two-alternative forced choice task. This area 
is thus a pure measure of sensitivity, uncontaminated by 
response bias. Its value can be estimated by using the ROC 
points to form a series of trapezoids and adding their areas 
(Pollack & Hsieh, 1969).

Many researchers find it difficult or impractical to 
gather rating data or to manipulate response bias in multi-
ple experimental conditions, as is required to obtain ROCs. 
A (very common) alternative task provides subjects with 
only two response choices, “target” or “lure,” and the re-
sulting data consist of a single hit and false alarm rate per 
condition. Such data constitute a single point on the ROC 
curve. Any single-point sensitivity measure has implica-
tions for the overall shape of the ROC curve on which it 
lies and the form of the underlying distribution of evi-
dence. A number of measures can be applied to data from 
the two-response discrimination task, and in this article 
we compare three of them: d , Az, and A .
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The first two of these indexes are derived from explicit 
SDT assumptions. The distributions for targets and lures 
are Gaussian with equal variance, and d  is defined as the 
standardized distance between the means. The statistic Az 
equals the area under the (equal-variance Gaussian) ROC 
curve that contains (F, H ), and is a monotonic transfor-
mation of d . Many empirical studies support the Gauss-
ian assumption, but many fewer are consistent with equal 
variance (Swets, 1986).

A heavily used alternative to d  (or Az) is A , a geometric 
approximation of the area under the ROC curve (Pollack 
& Norman, 1964). The popularity of A  is due in large part 
to the claim (by its inventors and many users since) that it 
is nonparametric, although this claim has been shown to 
be false (Macmillan & Creelman, 1996). In fact, A  makes 
strong assumptions about the forms of the underlying dis-
tributions, which resemble equal-variance logistic distri-
butions at low sensitivity and rectangular distributions at 
high sensitivity. For example, Figure 2 shows one pair of 
evidence distributions that are consistent with A   .9. 

Although the distributional assumptions have not been 
precisely specified, A  does imply symmetric ROCs and 
equal-variance underlying distributions.

Statistical Properties of Sensitivity Estimators
All single-point measures are fallible—that is, they en-

tail assumptions that are sometimes wrong. If some such 
measure must be used, however, a choice among them can 
be made on statistical grounds. Every sensitivity measure 
is a statistic and thus has a sampling distribution with prop-
erties that depend on sample size and the model parameters 
(in this case, the true degree of discriminability). Each sen-
sitivity statistic is an estimator of some model parameter 
and can be evaluated for three standard properties of esti-
mators: accuracy (good agreement between the parameter 
and the sampling distribution mean), precision (small vari-
ance of the sampling distribution), and robustness (small 
influence of violated assumptions on accuracy). We exam-
ined these properties of d , Az, and A  by systematically 
varying sample size and true discriminability.

Previous studies have looked at these issues in a more 
limited way. Miller (1996) and Kadlec (1999) examined 
the accuracy and precision of d  given the standard model 
of equal-variance Gaussian evidence distributions. Miller 
considered only performance by an unbiased observer, 
whereas Kadlec varied criterion location (response bias) 
as well as sensitivity. Miller noted that with small sample 
sizes the sampling distribution of d  is neither Gaussian 
nor unimodal and can produce extremely biased estima-
tors; in this respect his calculations constituted an im-
portant advance over previous methods (Gourevitch & 
Galanter, 1967) that assumed normal sampling distribu-
tions. Both Miller and Kadlec found that statistical bias is 
most extreme when true discriminability is very high. Nei-
ther author examined characteristics of the area measures 
Az and A , nor did they address the robustness question.

Donaldson (1993) did evaluate the robustness of d  and 
A  over a portion of ROC space and concluded that d  is 
more robust than A  when the variance of evidence dis-
tributions is equal, but that A  is more robust when it is 
not. If true, this would make A  an attractive alternative in 
domains where unequal variance is the rule (for example, 
recognition memory; Donaldson, 1996; Macmillan, Ro-
tello, & Verde, 2005; Ratcliff, Sheu, & Gronlund, 1992; 
Verde & Rotello, 2003). Although Donaldson (1993) con-
sidered Az to be an appropriate standard against which to 
evaluate estimated values of A , he did not examine its 
statistical properties.

Calculational Method
To evaluate the statistical bias1 of an index, we com-

pared it against true discriminability, computed from an 
underlying ROC defined by the model parameters. For 
the SDT measures d  and Az, it is helpful to consider an 
ROC curve in which the z scores of F and H are plotted as 
coordinates to form a zROC (Figure 3). The slope s of the 
zROC equals the ratio of the lure and target distribution 
standard deviations, so equal-variance Gaussian distribu-
tions imply a zROC that is linear with unit slope. The stan-
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Figure 2. Hypothetical evidence distributions implied by A .
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dardized distance between the means of the target and lure 
distributions, d , equals the vertical distance between the 
zROC and the chance line; because these lines are parallel, 
this value can be derived from any point on the zROC:

 d   z(H )  z(F ). (1)

For Gaussian distributions of unequal variance, the 
zROC is not parallel to the chance line; it is steeper if the 
target distribution has smaller variance than the lure dis-
tribution, and shallower otherwise. Because the vertical 
distance to the chance line varies along the ROC curve, a 
decision must be made about the point at which “sensitiv-
ity” is to be defined or, equivalently, how the two stan-
dard deviations are to be combined. We follow Donaldson 
(1993) in adopting da (Simpson & Fitter, 1973), which 
measures the mean difference in units of the root mean 
square of the two standard deviations.
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This statistic is equivalent to d  when s  1; thus, d  can 
be thought of as a special case of da (the equal-variance 
case). When evaluating the accuracy and robustness of d , 
true discriminability is computed in terms of da.

The index Az, the area under the best-fitting ROC curve 
derived from equal-variance Gaussian distributions, is 
simply related to da. In fact, this relation provides another 
justification for using da rather than some other distance 
measure.
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When calculating Az for a single (F, H ) observation, d  is 
substituted for da in this equation.

The geometric approximation of ROC area, A , was de-
scribed by Pollack and Norman (1964) as the average of 
the maximum and minimum areas of ROCs containing the 
point (F, H ). Subsequent work has shown this to be not 
exactly true (Smith, 1995; Zhang & Mueller, 2005), but 
the exact rationale for using A  is unimportant given how 
widely it is adopted. The computational formula is
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When evaluating the accuracy and robustness of the 
area-based indexes, Az and A , true discriminability is 
computed in terms of Az. Note that because A  cannot 
accommodate different values of s, it cannot be used to 
index true discriminability. Another reason to favor Az as 
a standard is that empirical ROCs are generally consistent 
with the Gaussian model.

In order to examine the statistical properties of d , Az, 
and A , we systematically varied sample size and true dis-
criminability. Sample size N, which equaled the number 
of targets and the number of lures, was set to 8, 16, 32, 
64, 128, 256, and 512. True discriminability can be de-
scribed by an (F, H ) point in ROC space and the slope 
of the zROC that passes through this point. We surveyed 
all of ROC space representing above-chance performance 
(i.e., the area above the major diagonal in Figure 1).2 We 
allowed F and H to take on the values .01, .1, .2, . . . , .9, 
and .99. For the zROC slope, we included the standard 
equal-variance case (s  1), as well as four cases of un-
equal variance (s  0.6, 0.8, 1.2, and 1.5). Results from 
a representative subset of these parameter values are dis-
cussed below; a complete treatment can be found in the 
Psychonomic Society online archive.

For a given (F, H ) point, the sampling distribution of 
each sensitivity index was constructed according to the 
method described by Miller (1996). Each sampling dis-
tribution has three parameters: N, H, and F. The observed 
number of hits (Nh) and the observed number of false 
alarms (Nf) are binomial random variables. For Nh,
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The analogous distribution for Nf involves the parameters 
N and F.

The product of the Nh and Nf distributions is the sam-
pling distribution of (F̂, Ĥ ), where 

 
F̂ Nf /N and Ĥ  

Nh /N.3 This discrete distribution has (N  1)2 possible 
values. The sampling distributions of 

 
d̂ ,  Âz, and  Â , com-

puted by applying Equations 1, 3, and 4, respectively, to the 
(F̂,  Ĥ ) distribution, were used to find E(d̂ ), E(Âz), E(Â ), 
and standard errors.
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Figure 3. ROC curves on z-coordinates. If the underlying distri-
butions are Gaussian, zROC curves are straight lines with slope s 
equal to the ratio of lure and target distributions.
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A difficulty that arises in calculating d  and Az is that 
Equations 1 and 3 are undefined when  Ĥ  and  

F̂ take on 
values of 0 or 1. This problem can be addressed by dis-
carding, replacing, or transforming those cases. For ex-
ample, one can simply discard observations for which

 
N̂h 

or
 
N̂f 

takes on values of 0 or N, normalizing the remain-
ing observations so that their probabilities sum to 1. As 
is often done in psychophysics (Macmillan & Kaplan, 
1985), one can replace  N̂h and  N̂f values of 0 with 0.5 and 
values of N with (N  0.5). Finally, one can transform 
all of the observed hit and false alarm rates so that 

 
N̂h  

(N̂h  0.5)/(N  1) and 
 
N̂f  (

 
N̂f  0.5)/(N  1), referred 

to as the log-linear rule because of its association with 
log-linear analysis. With regard to 

 
d̂  bias, Miller (1996) 

found the discarding and replacement corrections to be 
about equally successful. Hautus (1995) described simu-
lations that favored the log-linear rule over the replace-
ment correction. However, Kadlec (1999) noted that those 
simulations sometimes involved unrealistic parameter set-
tings; her own simulations suggested that the two correc-
tions performed about equally well. We implemented all 
three corrections in our computations for  

d̂  and  Âz and 
found that no single correction was always best at mini-

mizing statistical bias and standard error; the winner varied 
with sample size, location in ROC space, and s. However, 
the log-linear model transformation seemed the best choice 
overall, and the results presented here use this correction. 
We refer those interested in a more detailed comparison of 
the correction methods to the online database.

Accuracy
The statistical bias of a sensitivity index (the inverse of 

accuracy) is the difference between the value of a param-
eter and the expected value of its estimator. We compared 
the distance measure 

 
d̂  with the parameter da and the 

area measures  Âz and  Â  with the parameter Az. Figure 4 
displays statistical bias when s  1 for sample sizes N 
of 16, 64, and 256. Each panel shows separate dashed-
line functions for each level of H as F is varied. Note that 
only above-chance performance is shown, so that each H 
function terminates at H  F (in the figures, the different 
termination points make it easier to distinguish between 
the functions).

Figure 4 (top row) shows statistical bias for 
 
d̂ , E(

 
d̂ )  

da (because s  1, da  d  in this case). The effect of bias 
in all cases is to underestimate true sensitivity. The influ-
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ence of sample size is considerable; although bias can be 
quite large when N  16, it is minimal when N  256. 
Several factors contribute to this pattern of bias. One fac-
tor is that the number of observations (N ) constrains the 
possible values of 

 
d̂  that can be obtained in a sample. For 

example, when N  1, there are only two possible values 
of F̂ (0 or 1), two possible values of Ĥ (0 or 1), and three 
possible values of 

 
d̂ . It is difficult to make generaliza-

tions about the effect of this factor on bias except to note 
that the effect becomes smaller as N grows larger. A sec-
ond factor is that the parametric values of F  .01 and 
H  .99 are much more likely to lead to underestimation 
bias than are values toward the middle of the probability 

scale. For example, the sampling distribution of F  .20 
will produce observations that are well above or below 
.20. However, the sampling distribution of F  .01 can-
not produce observations much below .01 due to a floor 
effect. The sampling distribution of H  .99 suffers from 
an analogous ceiling effect. These effects tend to reduce 

 
d̂  and are partly responsible for the extreme bias observed 
when F  .01 or H  .99.

A third factor is that the log-linear rule correction of N̂f 
and N̂h 

constrains the minimum F̂ and maximum Ĥ that can 
be obtained in a given sample. This constraint is driven by 
the value of N. When N  16, minimum F̂ is [0.5 / (16  
1)]  .029 and maximum Ĥ is [(16  0.5) / (16  1)]  
.971. When N  256, on the other hand, minimum F̂ is .002 
and maximum Ĥ is .998. In other words, as N increases, 
minimum F̂ and maximum Ĥ converge to 0 and 1, respec-
tively. This effect has two consequences. First, remember 
that d  takes on extreme values as F approaches 0 or H 
approaches 1. The transformation moderates the values 
of F and H, reducing d  and thus producing the observed 
underestimation of true sensitivity. The effect of the trans-
formation, and thus the underestimation problem, is re-
duced as N grows larger. Second, because sampled values 
of N̂f  0 and N̂h  1 are extremely likely when F  .01 
and H  .99, respectively, the correction has its greatest 
effect on bias in these areas of ROC space.

Different correction methods place different con-
straints on obtainable F̂ and Ĥ. Thus, methods other than 
the log-linear rule produce somewhat different patterns of 
bias; this can be seen in previous studies of d  accuracy 
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by Miller (1996) and Kadlec (1999) (see also the online 
database for this article). However, the other factors that 
affect bias lead to similarities across all of the studies. 
Both Miller and Kadlec noted that greater statistical bias 
is found with very high levels of true discriminability, and 
Kadlec further noted that statistical bias increases when 
the decision criterion deviates from that of an optimal ob-
server (in other words, when response bias is greater). Our 
findings are consistent with these observations but sup-
port the more comprehensive point that it is the specific 
location in ROC space that determines the magnitude of 
statistical bias.

Figure 4 (middle row) shows statistical bias for Âz, 
E(Âz)  Az. All estimates are again biased low, and the 
large bias for N  16 all but disappears for N  256. As 
with d̂ , bias is greatest for extreme values of H and F. 
However, the patterns of bias in general are somewhat dif-
ferent. Figure 4 (bottom row) shows statistical bias for Â , 
E(Â )  Az. Both positive and negative biases occur for 
this index. Notably, accuracy does not improve as sample 
size increases, because with increasing N, Â  converges 
on a model with different underlying assumptions from 
Az (Macmillan & Creelman, 1996).

On what metric should the accuracy of these indexes  
be compared? Donaldson (1993) calculated percent error 
for each statistic:
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Donaldson found A  to be superior by this measure, and 
an examination of Figure 4 confirms his result: Using the 
calculations above, extreme error (for N  16, H  .99, 
F  .9) reaches about 50% in d , but only about 10% in 
A . However, this comparison is problematic, because one 
measure (d ) is on a distance scale, and the other (A ) is 
on an area scale; it is more informative to compare the 
two area measures A  and Az. The two comparisons can be 
expected to produce different results because the transfor-
mation from d  to Az is nonlinear, as shown in Figure 5: 
A given percent change in Az does not lead to the same 
percent change in d . As a consequence, the sampling dis-

Figure 7. Comparisons of A  and Az. The ordinate represents differences in absolute values of A  and Az 
accuracy (top), precision (middle), and robustness when s  0.6 (bottom). Positive values indicate that Az 
is superior, negative values that A  is superior.
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tributions of d  and Az are quite different: Figure 6 shows 
that the discrepancy is particularly great at high levels of 
sensitivity.

When A  and Az are compared, A  loses its advantage. 
Figure 7 (top row) compares accuracy of A  and Az in 
terms of absolute bias, | E(Â )  Az

 
| | E(Âz) Az |. 

Positive values mean that Az is more accurate, negative 
values that A  is preferable. For N  16 neither statistic is 
clearly superior, but for larger N the more accurate index 
is Az, especially for extreme values of H and F.

Precision
Figure 8 displays standard error of the sensitivity in-

dexes as a function of sample size (N  16, 64, and 256) 
and the true hit and false alarm rates. Standard error is 
determined by the parameters of the sampling distribution 
and is unaffected by the value of s.4 Increasing the sample 
size reduces standard error. Miller (1996) examined the 
variance of 

 
d̂  and observed a complex trend in which vari-

ance increases as 
 
d̂  increases, but for smaller values of N 

variance decreases as 
 
d̂  approaches perfect performance. 

Miller identified two factors at work: the spread of the 
 
d̂  

distribution as discriminability departs from zero and the 
narrowing of the distribution as it hits the limit of the maxi-

mum possible value of 
 
d̂ . These factors interact to produce 

the trends evident in Figure 8 for the two SDT indexes. 
For 

 
d̂ , standard error generally increases as true discrim-

inability increases (in other words, for a given F, standard 
error increases as H increases), but for Âz and Â  the oppo-
site is true. This curious difference seems to be related to 
the differential impact of the two factors Miller identified 
on the distance and area scales, as can be seen in Figure 6. 
Visual inspection of that figure suggests that for 

 
d̂ , the 

spread of the distribution increases as H increases and F 
remains constant. However, when H  .99 the distribu-
tion becomes more compact, because it presses against 
the maximum attainable value of d . Note that the rever-
sal does not occur with larger N (this can also be seen in 
Miller’s data); as N increases, so too does the maximum 
obtainable d , reducing its limiting effect. For Âz, on the 
other hand, the limit imposed by its maximum obtainable 
value seems to have an influence from the start, so that 
the distributions become more compact immediately as 
performance increases above chance.

Figure 7 (middle row) compares A  and Az in terms of 
the difference in their standard errors [standard error A   
standard error Az]. Where values are positive, Âz is more 
precise than Â  (and vice versa). Which index has superior 

Figure 8. Standard error of the estimator of three sensitivity indexes. Rows are d , Az, and A ; columns 
are numbers of trials, N  16, 64, and 256.
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precision depends on the location in ROC space, and this 
is true for all values of N. In general, Âz is somewhat more 
precise, especially for larger values of N.

Robustness
Robustness refers to accuracy of the sensitivity index 

when underlying assumptions are violated. We focus here 
specifically on violation of the assumption that the evi-
dence distributions have equal variance (i.e., s  1), be-
cause all three indexes make this assumption. The ratio of 
lure and target standard deviations, s, was set to 0.6, 0.8, 
and 1.2, and we again considered sample sizes N  16, 
64, and 256 (additional values of s and N are included in 
the online database).

Figure 9 shows the statistical bias of d  under condi-
tions of unequal variance. When s  1, d  generally be-
comes more positively biased for smaller values of H and 
F (left side of ROC space) and more negatively biased for 
larger values of H and F (right side of ROC space). The 
reverse is true when s  1. Bias due to unequal variance 
can be significant, over 20% when H and F are very large 
or small. Moreover, the problem is not much alleviated by 
increasing N, because d  converges on an incorrect model 
of the underlying distributions.

The systematic bias produced by incorrectly assuming 
equal variances is illustrated in Figure 10. In this figure, 
lines A, B, C, and D are z-transformed ROCs consistent 
with underlying Gaussian distributions. The slopes equal 
the ratio of the lure to the target standard deviations; for 
line A, the variances are equal (s1  1), whereas for lines 
B, C, and D, the variances are unequal (s2  1). An experi-
menter who calculates d  from a single point implicitly 
assumes that the true ROC is of unit slope, like line A. If 
the true ROC is line B and point p1 is observed, then the 
calculated d  equals true da. The agreement is, however, 
entirely fortuitous. If a point to the left of p1 (such as p2) 
is observed, d  produces a value larger than true da; for 
points to the right of p1 (such as p3), d  produces a value 
smaller than true da. This is exactly the pattern displayed 
in Figure 9.

Figure 11 shows Az bias, and Figure 12 shows A  bias 
when s  1. The patterns and conclusions to be drawn 
about these indexes are similar to those for d . Donaldson 
(1993) calculated the percent error of d  and of A  (Equa-
tions 6A and 6B) as true discriminability and s varied and 
concluded that A  is more accurate in the majority of cases 
when s  1. The present survey covers a larger region of 
ROC space and includes the effect of sample size. More 

Figure 9. Statistical bias of d  if zROC slope  1. Rows are slopes of 0.6, 0.8, and 1.2; columns are num-
bers of trials, N  16, 64, and 256.

.1 .3 .5 .7 .9 .1 .3 .5 .7 .9 .1 .3 .5 .7 .9

False Alarm Rate

N = 16 N = 64 N = 256

0.8

0.4

0

–0.4

–0.8

–1.2

0.8

0.4

0

–0.4

–0.8

–1.2

0.8

0.4

0

–0.4

–0.8

–1.2

d
 B

ia
s,

 s
 =

 0
.6

d
 B

ia
s,

 s
 =

 0
.8

d
 B

ia
s,

 s
 =

 1
.2

.1

.2

.3

.4

.5

.6

.7

.8

.9

.99

Hit Rate



SENSITIVITY STATISTICS    651

importantly, as we suggested earlier, directly comparing 
percent error of d  and A  is problematic because the dis-
tance and area scales are not comparable. A comparison of 
the robustness of A  and that of the SDT area measure Az 
is shown in Figure 7 (bottom row), which plots the differ-
ence in absolute bias of the two indexes, | E (Â )  Az

 
| 

| E(Âz) Az |, when s  0.6. Contrary to Donaldson’s con-
clusion, neither statistic is clearly superior; each is more 
accurate in some regions of ROC space (although Az has 
the advantage over a slightly larger portion of the space).

Implications
Signal detection theory is a standard tool for analyzing 

performance in many domains. In SDT terms, discrimina-
tion sensitivity is determined by the nature of target and 
lure evidence distributions. One should ideally construct 
ROCs that provide detailed information about these under-
lying distributions, but it is not always feasible to gather 
the data required for ROCs. The alternative is to use a two-
response task that provides only one hit and false alarm 
rate per condition and relies on sensitivity indexes like 
d , Az, and A  that make simplifying assumptions about 
the underlying distributions. The present findings offer in-
vestigators several lessons to consider when designing ex-
periments and analyzing data that rely on these indexes.

The need for reasonable sample sizes is something one 
keeps in mind with any statistic. Miller (1996) cautioned 
that a difference in statistical bias between conditions 
that differ in N can confound any d  comparison between 
them, and Macmillan, Rotello, and Miller (2004) raised 

the same point about several statistics abstracted from 
ROC curves. The present findings show that accuracy and 
precision of Az and A  can also vary greatly between con-
ditions that differ in sample size. Dealing with this prob-
lem is usually a simple matter of designing an experiment 
such that N is equated across conditions. A more complex 
problem is that bias and standard error also depend on un-
derlying discriminability. Differences in discriminability 
may be inherent in the phenomenon under investigation: 
It may be of interest to compare a hard to an easy condi-
tion, or to compare overall discrimination judgments to a 
subset of those judgments. Such comparisons are analo-
gous to comparing performance in different locations of 
ROC space. Of course, as long as the locations are not too 
far apart, the problem can be minimized by ensuring that 
sample size is reasonably large.

Violation of the equal-variance assumption is a problem 
that is sometimes acknowledged, but the consequences of 
such violation have not been well documented. Our find-
ings reveal that unequal variance produces systematic 
positive bias in one region of ROC space and negative bias 
in the opposite region, the regions depending on the value 
of s. Over much of ROC space, this bias is significant 
(for example, when N  256 and s  0.6, Az bias often 
exceeds 10% and can be much higher) and is not much 
reduced by increasing N, which only leads the index to 
converge on the wrong model of the underlying distribu-
tions. The assumption of equal variance is made by all the 
single-point indexes we have considered; if incorrect, this 
assumption can lead to serious errors that cannot be elimi-
nated by computational adjustment or correction.

Recent issues in the memory literature illustrate how 
systematic statistical bias can pose serious difficulties for 
theoretical interpretation. In some circumstances, memory 
illusions (the false belief that something was previously 
encountered) seem to be the product of changes in deci-
sion criterion rather than changes in the actual quality of 
memory (McDermott & Watson, 2001; Niewiadomski & 
Hockley, 2001; Verde & Rotello, 2003; Whittlesea, 2002). 
According to SDT, criterion change has no effect on the 
characteristics of the evidence distributions, whereas a 
change in discrimination sensitivity does imply a change 
in distributional characteristics. Thus, one should be able 
to claim that a memory illusion that affects the sensitiv-
ity index is not solely a product of criterion placement. 
A problem with this interpretation arises from the obser-
vation that evidence distributions in recognition memory 
typically have unequal variance (Ratcliff et al., 1992). 
In their investigation of the “revelation effect” illusion, 
Verde and Rotello (2003) observed consistent effects on 
d  (calculated from overall H and F ) but no effect on da 
(calculated from empirical ROCs). They argued that the 
illusion in fact affected only criterion placement, but that 
the change in criterion combined with unequal variance 
led to systematic effects on d . The lesson is that under 
conditions of unequal variance, a change in decision cri-
terion alone can affect a sensitivity index like d , even 
when sensitivity has not actually changed. Distinguishing 
between changes in criterion (i.e., response bias) and sen-

Figure 10. Unequal variance and the zROC. Four hypothetical 
zROCs: A represents equal variance, with slope s1  1; B, C, and 
D represent unequal variance with slope s2 < 1. If the underlying 
zROC has slope s2, then d  will underestimate sensitivity for any 
point on A to the right of p1 and overestimate sensitivity for any 
point to the left of p1.
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sitivity is a theoretically important matter in any domain. 
Unfortunately, if equal variance cannot be assumed but 
one must rely on a sensitivity index based on a single H 
and F, then making this distinction is difficult.

If one must rely on a single-point index, which is the 
best choice? A  has had many proponents over the years. 
Much of this popularity seems to derive from the mistaken 
belief that A  is nonparametric (Macmillan & Creelman, 
1996). The convenient property that A  can accommodate 
H and F values of 0 and 1 has also been noted. Finally, 
Donaldson (1993) has suggested that A  seems to be more 
robust than d .

Our results lead us to the conclusion that Az, the area 
under the normal–normal ROC curve going through the 
(F, H ) point, is the preferred index on several grounds. 
The distributional assumptions entailed by A  are as spe-
cific but far less commonly justified than the normality 
assumption of Az (Macmillan & Creelman, 1996; Mac-
millan et al., 2005; Pastore, Crawley, Berens, & Skelly, 
2003). The use of corrections like the log-linear transfor-
mation for d  and Az solves the in-principle problem of 
infinite d  (when F or H takes on values of 0 or 1). With 
regard to the claim of greater robustness made by Don-

aldson (1993), the present findings allow more detailed 
conclusions. To avoid comparing percent error d  with 
percent error A  (which is problematic due to the nonlin-
ear relationship between the distance and area scales), we 
compared Az with A , both of which are in units of area, 
and found Az to be clearly more accurate under conditions 
of equal variance except when N is small. With regard to 
precision and robustness (accuracy under conditions of 
unequal variance), the picture is less clear; each index 
does better in different regions of ROC space. However, 
as N grows large, Az tends to gain the advantage. Based on 
these statistical properties alone, Az seems to be the better 
choice, especially when the variance ratio is unknown. 
There seems to be little statistical justification for choos-
ing A  over competing indexes.

All the limitations of single-point measures can, of 
course, be circumvented by collecting ROC curves (see 
Macmillan et al., 2004, for the statistics of parameters 
obtained from ROCs). If a single-point measure must be 
used, its negative consequences can be minimized by en-
couraging equal response bias—that is, H  1  F. This 
requirement can, however, be difficult to follow. For ex-
ample, in the remember–know recognition memory lit-

Figure 11. Statistical bias of Az if zROC slope  1. Rows are slopes of 0.6, 0.8, and 1.2; columns are num-
bers of trials, N  16, 64, and 256.
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erature, sensitivity is sometimes calculated from “remem-
ber hit rates” and “remember false alarm rates.” Dunn’s 
(2004) survey of such experiments showed that the latter 
averaged only about .05, so the corresponding ROC points 
fall close to the left edge of ROC space. The unfortunate 
consequences of using single-point measures in this case 
have been explored by Macmillan et al. (2005).
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NOTES

1. The term bias is used in two senses in this article: statistical bias 
(inverse of accuracy) and response bias (tendency by the observer to 
prefer one of the two responses). Unless the context makes the meaning 
clear, we avoid referring simply to “bias.” Similarly, some authors use the 
term accuracy as a synonym for sensitivity, but in this article it always 
refers to statistical accuracy.

2. Results above and below the major diagonal mirror one another, so 
the latter can be easily derived.

3. We adopt the standard convention of representing an estimator of 
the parameter p by p̂.

4. The sampling distribution of Az is found from Equations 2, 3, and 
5. Although the term s does appear in Equation 2, it is set equal to 1 for 
single (F, H ) observations, as noted earlier.
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