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Detection of noisy visual targets: Models for
the effects of spatial uncertainty and

signal-to-noise ratio
RICHARD G. SWENSSON and PHILIP F. JUDY

Harvard Medical School and the Brigham and Women's Hospital, Boston, Massachusetts 02115

An "extreme-detector" model for detecting spatially uncertain targets in noisy backgrounds
- predicts how both detection and localization abilities are degraded by increasing the number

of possible target locations. Experiments 1 and 2 show that the model accurately predicts
detection and localization performance in tasks with two, four, and eight locations from d'
estimates of the observer's ability to detect the target in a known spatial location. These
predictions can be linked to the physical stimuli by combining the extreme-detector model
with a "psychophysical" model that specifies how stimulus measures determine the target's
detectability in a given location. Single-parameter fits of four such combined models were
compared with estimates of detection and localization performance in Experiment 3, which
manipulated the target's physical signal-to-noise ratio across various conditions of an eight
location task.
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Situations that require the detection of visual tar
gets often include considerable uncertainty about the
spatial location in which the target might appear.
For example, a radiologist who interprets a radio
graphic image must decide whethe; or not a lesion is
present in anyone of many possible anatomic loca
tions. An air-traffic controller who monitors a visual
display may need to determine when an aircraft has
entered the radar field from any direction. Many of
these situations include sources of physical noise that
would limit the detectability of the visual signal, even
if there were no uncertainty about precisely where
the target might appear on the visual display. In such
noise-limited situations, any increase in the target's
spatial uncertainty will degrade an observer's visual
performance, even if there are no time constraints
that prevent adequate attention to the information
from all relevant spatial locations. Intuitively, the
degradation in performance occurs because each ad
ditional spatial location that the observer must con
sider increases his opportunity to encounter a sample
of noise extreme enough to resemble an actual target.

For a target that may appear in anyone of m
distinct spatial locations, an increase in m will reduce
both the observer's ability to distinguish cases when
the target is present from cases when it is not (tar
get detectability) and his ability to identify the cor
rect location of the target. The following section de
velops an "extreme-detector" model for performance
under spatial uncertainty, which assumes no limita-
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tion on the observer's ability to process visual infor
mation from additional spatial locations. This model
predicts a specificrelation between measures of target
detection and target-localization performance and
also predicts how these measures should vary as a
function of m, the number of distinct spatial loca
tions in which the target might appear.

The three experiments applied the extreme-detector
model to observers' performance with noise-limited
visual images viewed without any time pressure. Ex
periments 1 and 2 presented detection and localization
tasks, separately and in combination, varying the
number of possible locations for the visual target
from one to eight. Experiment 3 used several types
of stimulus manipulations to vary the physical detect
ability of the target, as measured by the "signal-to
noise" ratio (SIN) calculated for a matched filter.
Detection and localization performances in to con
ditions of an eight-location task were compared with
predictions the extreme-detector model made when
combined with four separate "psychophysical"
models. Each of these combined models used a single
fitted parameter to specify the assumed relation be
tween measures defined on the physical stimuli and
the target's detectability (d ') in a known location on
the image.

The Extreme-Detector Model

The task of detecting and locating a target that can
appear at anyone of m distinct spatial locations may
be treated as a particular type of combined detection
and identification task, in which both the detection
and identification (localization) decisions are based
upon the same visual information. One formal model
for such a task represents the observer's stimulus in-
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formation as a set of m orthogonal random variables
(Xi, i =1, ... , m) that are defined by the output of
m filters, each separately tuned to detect the target in
one of the possible locations (Green & Swets, 1974;
Green & Birdsall, 1978). The distribution of Xi is as
sumed to be identical for all m locations (i=1, ... , m)
and independent of the value of m. The model as
sumes that the observer's detection and location
decisions depend only upon the most-extreme sample
of x obtained for the m random variables. This ex
treme value determines both the location he identifies
as "most likely" to contain the target and his rating
of the absolute likelihood that a target is present.
Whether this "extreme detector" considers the maxi
mum or the minimum sampled value depends upon
whether the target tends to increase or decrease Xi
when it appears in the [th location.

ROC curve for detection performance in a known
location task (m = 1). This prediction does not depend
upon any specific assumptions about the form of the
known-location ROC curve or the distributions of
the underlying random variables. In certain cases,
however, it will closely approximate the detection
performance achieved by an optimal procedure
which would be based upon the joint likelihood ratio
for the entire set of m sampled variables, rather than
simplythe most-extremevalue(Green & Birdsall, 1978).

If Xi has a normal distribution with mean JAt or
JAn and standard deviation at or an, depending upon
whether a target is or is not present in the [th loca
tion, then the ROC curve for detection in any single
location is given by:

(2)

and

where 1- a, and p, are the respective conditional
probabilities of negative decisions given the absence
and the presence of a target in any particular indi
vidual location (m = 1).

Equations la and lb can be used to predict the ROC
curve for detection in any m-location task from the

(3)

where B = aniat and A =( I JAn - JAt I )1at. and where
z-I(l-P,) and z-I(a,) are the deviates of the standard
normal distribution whose (lower-tail) areas are equal
to I-P, and a" respectively (Green & Swets, 1974).
In the case that an =at == a (i.e., B = 1), Equation 2
becomes:

and the ROC curve is specifiedby the single parameter
d I == ( I JAn - JAt I )Ia. In this latter case, Nolte and
Jaarsma (1967) have shown that the extreme detector's
ROC curve very closely approximates the ROC curve
for the optimal (joint likelihood-ratio) procedure in
an m-Iocation task. Over a wide range in both d I

and m, these m-Iocation ROC curves are almost linear
in normal-deviate coordinates-that is, when the
values of 1- Pm and am are transformed into z-I
(1- Pm) and z-I(am), their equivalent deviates of the
standard normal distribution.

An index of the target's detectabilityin an m-Iocation
task can be defined by d, == 2z -1(1 - Em), which
characterizes the ROC curve by its point of inter
section with the negative diagonal, when both types
of detection errors are equiprobable (am =Pm == Em).
This index can be interpreted as a perceptual "signal
to-noise ratio" for the m-Iocation detection process.
For detection in a known location (m = 1), setting a,
= P, == E, in Equation 2 shows that d, = 2AI(B+ 1)
= 2( I JAn - JAt I )/(an + at). Thus, the mean of On and
at represents the "noise" in the known-location
detection process for the index dE' which reduces to
d I when an = 0t. An analogous interpretation of d,
can be made for the extreme-detection process in an
m-location task. Once the known-location ROC curve
is specified, the extreme detector's d£ can be calculated
for any m-Iocation task by iterating Equations la and
1b until am = Pm. Each trial value of am in the itera
tion implies a value for a, (Equation Ia), which then
providesP, (e.g., by Equation 2) and the corresponding
value of Pm (Equation lb). Figure lashows how d,

(1a)

(1b)

Target Detection
The performance of an extreme detector in an m

location task can be expressed in terms of the detec
tion performance obtained when the target appears
in a known location (m = 1). Consider the extreme
detector's ability to differentiate cases when the target
is present in one of the m locations from cases when
it is absent, which ignores the accuracy of the location
decisions. This detection performance can be described
by the receiver operating characteristic (ROC) curve
for the m-Iocation task. The m-Iocation ROC curve
is defined by the covariation in 1- Pm and am, the
conditional probabilities of true-positive and false
positive decisions (given the presence and absence of
a target) as a function of the criterion for making a
positive decision. However, the performance of an
extreme detector is easier to calculate in terms of 1 
am and Pm, the complementary probabilities of true
and false negative decisions.

The extreme detector will make a negative decision
only if all m of the observed variables fail to reach
the (minimum or maximum) cutoff for a positive re
sponse, which is assumed to be constant for all m
locations. Since the m variables are identically dis
tributed and mutually orthogonal, this means that the
respective conditional probabilities of the true-negative
and false-negative decisions in an m-Iocation task
will be given by:
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decreases as a function of m for various values of
d' when the known location ROC curve (m = 1) is
givenby Equation 3; Figure lb shows how d£ increases
with d' for various values of m.

Figure 1. Values of the d. index of detedability for the extreme
detector model in m-Iocation tasks: (a) plotted as a function of m
on a log scale for various values of d I in the m = 1 task, and
(b) plotted as a fundion of d I in the m = 1 task for various values
of m. The right ordinate gives values of the detection error rates
that correspond to each value of d. at the point on the m-Iocation
ROC curve where a = (3 == s, 1m - 1\ ra (f3m)

ym(A.) = 1 - f3m(A.) - \Tn} Jo m (A.) \i _am dam'

(4)

the obvious measure of performance in a "pure lo
calization" (forced choice) task that simply required
the observer to identify which of m locations con
tained the target. For an extreme detector, however,
detection and localization capabilities are perfectly
related and the accuracy of location decisions can be
specified in terms of the detection ROC curve for a
given m-location task.

When both detection and location decisions are
considered in an m-location task, the true-positive
decisions can be separated into two mutually-exclusive
categories: those that correctly identify the target's
location and those that misidentify the target. An ex
treme detector misidentifies the target whenever one
of the m - 1 nontarget locations gives rise to a sample
of "noise" more extreme than the sample from the
target's location. If Ym is the joint probability of
making both a true-positive detection decision and
a correct identification of the target's location, then
the (complementary)joint probability of a true-positive
decision and an erroneous localization is given by
(1- f3m) - Ym. Since Ym (like 1- f3m and am) depends
upon the criterion for a positive detection response, it
is possible to define an "identification operating
characteristic" (lOC) curve, which is analogous to
the ROC curve. This IOC curve describes the func
tional relation between Ym and am over changes in
the criterion for making a positive detection decision.
The IOC curve lies below the corresponding ROC
(since Ym ~ 1- f3m for any given value of am) and it
ends at the point Ym == P(CL), when am = 1.0, that is,
when all detection decisions are treated as "positive"
and 1- f3m = 1.0.

Let amO.) be the extreme detector's false-positive
rate for a particular detection criterion A., and let
1- f3mV.) and Ym(A.) be the corresponding points on
the respective ROC and IOC curves. Starr, Metz,
Lusted, and Goodenough (1975) showed that Ym(A.)
can be specified by integrating a function of the m
location ROC curve over the values of am ~ am(A.):

which is equal to the area below the known-location
ROC curve for the special case of m =2 (Green &
Birdsall, 1978; Green & Swets, 1974).

The endpoint of the IOC curve is defined by Ym(A.)
== P(CL), when the integration of Equation 4 is taken
over the entire ROC curve-that is, for am(A.) = 1.0.
Green, Weber, and Duncan (1977) proved that
Equation 4 then reduces to Ym =P(CL) in the form of
the "generalized area theorem":
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Target Localization
The ROC curve for an m-location task ignores

which locations were identified as the target and
simply describes how well the observer's detection
decisions separate the cases with a target in one of the
m locations from cases with no target in any location.
Similarly, the observer's ability to locate the target
can be described independently of his detection deci
sions by P(CL), the probability of correctly identifying
the target's location when it is present. This would be
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Once the m-location ROC curve has been specified,
either as a continuous function or as a discrete set of
points connected by line segments, a relatively simple
computer program can approximate the integral in
Equation 4 to generate any desired number of points
on the m-location IOC curve, including P(CL). Be
cause the known-location ROC curve specifies the ex
treme detector's ROC curve in an m-location task
(by Equation 1), it also determines the IOC curve
and P(CL) in that task.

When the target is present in an m-location task,
the particular location selected by the extreme detec
tor does not depend upon whether or not the task also
requires a detection decision. In either case, the prob
lem of identifying the target's location is formally
equivalent to an m-alternative "forced-choice" task.
Under the assumption that the known-location ROC
curve is given by Equation 3, there exist tables that
relate P(CL) in an m-alternative task to d I, for various
values of m (Elliot, 1964; Hacker & Ratcliff, 1979).
The value z-I[P(CL)], the normal deviate that cor
responds to P(CL), increases virtually linearly with d I

for all values of m (Elliot, 1964).

EXPERIMENTS 1 AND 2

The first two experiments applied the extreme
detector model to observers' visual detection and
localization performance in tasks that varied m, the
number of possible target locations. In Experiment 1,
one- and two-parameter fits of observers' ROC curves
for target detection in a known location were used to
predict the ROC and IOC curves obtained in an eight
location task, as well as estimates of P(CL) obtained
in both the combined task and a separate eight-location
forced-choice task. In Experiment 2, the changes in
separate indices of target detection localization per
formance, d, and P(CL), were compared with predic
tions of the extreme-detector model for tasks with
m=I,2,4,and8.

Method

Visual Stimuli
The visual stimuli were photographs of gray-scale displays pro

duced on a cathode ray tube by a computer program that was
designed to stimulate the images generated by computed tomo
graphic scanners used in diagnostic radiology (Judy, Swensson, &
Szulc, 1981). The visual display was a 64 by 64 matrix of square
"pixel" elements which could assume one of 16 gray-scale values,
equally spaced in luminance. The display showed an elliptical ring,
S pixels thick, on a darker background. The target was a darker
circular area, 2.S pixels in diameter, that could be superimposed
at anyone of eight equally spaced positions within the ring. The
"noise" in these displays represented random variation in the
brightness values assigned to individual pixels; some "texture" in
this noise was produced by a positive correlation of .11 between
the brightness values of adjacent pixels. Figure 2 shows an ex
ample of one of the images with the target location in the bottom
("southernmost") position.

Figure 2. An example of one of tbe stimulus Images used In
Experiments 1 and 2. Tbe target Is located at tbe bottom (soutbern
most) position In tbe eUipticalring.

There were a total of 80 stimulus images, 40 images with no
target in the ring and 40 images with a single target located at
one of the eight possible positions (five images with the target in
each of the eight positions). The images were photographed,
using Polaroid 107 film, to produce hard-copy images for viewing
by observers. The hard-copy images were glossy prints, S.2S em
square, with each individual pixel measuring .82 mm.

The physical detectability of the target in these images was char
acterized in terms of the detection performance achievable by a
"matched filter" detector, assumed to know the target's precise
size and location. This was obtained by calculating the output
distributions of a matched filter that integrated the brightness
values of pixels at the target's location, given the presence and ab
sence of the target (Judy, Swensson, & Szulc, 1981). The filter's
output was a weighted sum of the random variables for individual
pixels;it was approximately normally distributed, given the presence
and absence of the target, with means jolt and join and standard
deviations at and On'· respectively. Because of asymmetries in the
transformation that mapped the numerical values into gray-scale
levels, the two standard deviations were not equal; the linear ROC
curve for a detector based on the matched filter's output was given
by Equation 2, with parameters B = 0nlot = .8S8 and A = (,..n - joIJ
/o, = 2.4S2. The target's physical "signal-to-noise ratio" was
defined by SIN, with S == ~ - ~ and N == (on + 0t)/2, which is
equivalent to defining SIN as the value of dE = 2A/(B + 1) for the
(known-location) ROC curve of the matched-filter detector. The
value of SIN = d, was 2.64 for these images.

Procedure
Experiment I, The six observers weregivensome familiarity with

these types of images before performing four separate tasks, using
the same set of images. The first task presented all 80 images; it
specified the location that would contain the target if it was present
on that image (m = I), and required the observer to givea 6-category
rating of the likelihood that the target was present ("Yes" or "No"
with a high, medium, or low level of confidence). The second task
also presented all 80images, but did not specify which of the eight
locations would contain the target; the observer indicated the most
likely location for the target and used a 6-category scale to rate



his confidence that the target was actually present. The third task
was an eight-location forced-choice task that presented only the
40 images with targets and simply required the observer to indicate
the location of the target. The fourth task replicated the first known
location task as a check on the stability of the detection perfor
mance over the experimental sessions.

The observers were aware that the target and nontarget images
were equiprobable in the detection tasks, and they tried to adjust
their detection criteria within each task to produce about the same
number of judgments in all six rating categories.Reference diagrams
showed the precise locations in the ring at which the target might
appear. The observer also had a reducing lens, which extended the
effective viewing distance for the image to 150 em and facilitated
the visual integration of the discrete pixels in the image. This re
ducing lens was deliberately used to vary the viewing distance over
a large range during the inspection of each image. At the maximum
effective viewing distance, the individual pixels subtended only
about .03 deg of visual angle and were not separately resolvable.

Experiment 2. Three experienced observers from Experiment I
were given two additional detection tasks, which specified either
two or four possible locations for the target on each of the 80
images. As in Experiment I, they indicated the most likely location
for the target on each image (within m = 2 or m = 4) and rated their
confidence that it was actually present on a 6-category scale. After
becoming familiar with these images and targets, two additional
observers performed the four detection tasks (m = 8, 4, 2, and I,
performed in that order). The observers gave a 6-category rating
of the likelihood that the target was present on each image and
(except for m = I) indicated which location was most likely to
contain the target. Other procedural details were identical to those
in Experiment I.

Results

Experiment 1
Detection at a known location. The observers per

formed the detection task with no uncertainty about
the target's location (m = 1) on two separate occa
sions, their first (early) and their final (late) experi
mental tasks. The 6-category confidence ratings about
the presence of the target on each image in the early
and late known-location tasks generated two known
location ROC curves for each observer, which were
separately fit by both Equation 2 and Equation 3.
Equation 2 was fit to each rating ROC curve by a
maximum likelihood procedure (Dorfman & Alf, 1969;
Grey & Morgan, 1972; Sandor & Swensson, 1978)
that provided estimates of the linear slope of the
ROC curve in normal-deviate coordinates (B) and its
detectability index d, =2A/(B + 1). A reduced set of
likelihood equations was used with the same pro-
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cedure to fit Equation 3 and to estimate d' for each
ROC curve under the assumption that B= 1.0.

Table 1 presents values of d£, B, and d' for all
six observers in both their early and late known
location tasks, together with mean values of these
estimates across tasks and observers. All statistical
operations on estimates of B used arctan transforma
tions, in order to correct for the asymmetry in scale
between slope estimates above and below 1.0. Esti
mates of the separate detectability indices, d, and d' ,
were almost identical in every case. Neither they not
the estimates of B changed systematically between
the early and late known-locationstasks, demonstrating
that the observers' performance remained stable over
the course of the experiment. The mean estimate of B
for all observers (.867) was very close to .858, the
slope of the linear ROC curve calculated for the per
formance of the matched-filter detector. However,
the mean estimates of d, and d' (1.54) were con
siderably lower than the matched filter's value of
SIN = d, = 2.64.

The filled and open circles in each panel of Figure 3
show the five points on the ROC curves for each ob
server's early and late known-location tasks. The
smooth curve drawn through both sets of points is
the ROC curve defined by Equation 3, with d'
specified by the mean of the two estimated values for
that observer (from his early and late tasks).

Detection with eight possible locations. In the eight
location task, an ROC curve was generated from the
confidence ratings that each observer assigned to the
target and nontarget images, ignoring whether he
located the target correctly or not. Estimates of d,
and the linear slope of the eight-location ROC curve
were provided by a maximum-likelihood fitting pro
cedure that assumed that the true functional relation
was linear in normal-deviate coordinates. According
to the extreme-detector model, the eight-location
ROC curve should be completely determined by the
observer's ROC curve in the known-location task.

The one-parameter (d ') and two-parameter (d£, B)
fits of each observer's known-location ROC curve
provided two separate predicted ROC curves for his
eight-location task. The predicted ROC curves were
generated by applying Equations la and lb to the
values of Cl't and {3t obtained from either Equations 3

Table I
Estimates of d' and of de and B From Each Observer's ROC Curves in the Early and Late Known-Location Tasks in Experiment I

Estimate of d' Estimate of de Estimate of B

Observer Early Late Mean Early Late Mean Early Late Mean

P.F.I. 1.458 1.382 1.420 1.459 1.381 1.420 .855 .827 .841
R.G.S. 1.753 2.217 1.985 1.790 2.228 2.009 .592 .847 .712
R.G. 1.816 2.065 1.938 1.810 2.062 1.936 .965 .978 .971
K.P.D. 1.343 1.342 1.343 1.343 1.347 1.345 1.012 .838 .921
E.K. 1.498 1.329 1.413 1.499 1.311 1.405 1.024 .778 .893
F.B. 1.309 .935 1.122 1.307 .925 1.116 .925 .847 .885
Mean 1.530 1.545 1.537 1.535 1.542 1.538 .884 .851 .867
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Figure 3. Known-loeation ROC curves and eight-location ROC and fOC curves geneuted from the con
fidence utings of each observer in Experiment 1. The ROC cnrves plot 1-(1, the true-detection rate, as a
function of a, the false-positive ute; the solid and open circles indicate data from the eariy and late
known-location tasks, respectively, whUethe open triangnlar points indicate the eight-location ROC cnrve.
The fOC curves (solid triangles) plot y, the joint proportion of targets both detected and correctly located
at each uting category, as a function of a. The solid triangular point on the right ordinate of each panel
gives the valne of y = P(CL) when a = 1-(1 = 1.0, the proportion of targets correctly located on all target
stimuli; the circled asterisk gives the value of P(CL) in the observer's eight-location forced-cholce task. The
three solid curves in each panel show the fitted ROC curve for the known-loeation task and the ROC and
JOC curves predicted by the extreme-detector model for the eight-location task, based upon the mean
estimate of d I from the observer's early and late known-location tasks. The two broken curves in each
panel show the fitted ROC curve for the eight-location task and the JOC curve predicted by the extreme
detector model from that fitted ROC curve.

or Equation 2, whose parameters were given by that
observer's mean estimates (of d' or of d, and B) in the
known-location tasks. Predicted values of d, for the

.eight-location task were obtained by iterating Equa-
tions 1a and 1b until am =Pm =Em and calculating d£=
2Z- t (l - Em>. Because the predicted ROC curves were
not perfectly linear in normal-deviate coordinates, the
predicted slope for the ROC curve was taken to be
the slope of the line connecting the "X" and "Y"
normal-deviate intercepts-that is, the points on the
predicted eight-location ROC curve that correspond
to 1- Pm = .5 and am = .5, respectively.

In Figure 3, the open triangular points in each
panel show the ROC curve for each observer in the
eight-location task. The broken curve through these
data points is the ROC curve fitted to these data
points by the maximum-likelihood procedure. The

solid curve through these data points is the eight
location ROC curve predicted by the extreme-detector
model from the single-parameter (d') ROC curve in
the known-location task (i.e., the highest solid curve
in each panel).

Table 2 presents the direct estimates of d, and linear
slope of each observer's fitted eight-location ROC
curve, together with the values predicted by the
extreme-detector model from the single-parameter (d')
and two-parameter (d£, B) fits to his known-location
performance. The mean values in Table 2 show that
the predictions based upon d' were closer to the
actual estimates of d, and slope than were the predic
tions based upon the two parameter fits of d, and B
in the known-location task. However, none of the
(correlated) differences between the predicted and
estimated values of d, or slope was consistent enough



Table 2
Experiment 1 Estimates of dE' and Unear Slope of Each
Observer's ROC Curve in the Eight-Location Task and

Values Predicted by the Extreme-Detector Model
From Performance in the Known-Location Task

Value of dE' Linear Slope

Predicted From Predicted From
Esti- Esti-

Observer mate d' dE',B mate d' dE',B

P.F.J. .836 .640 .750 1.255 .950 .860
R.G.S. .934 1.090 1.320 .990 .890 .690
R.G. 1.084 1.050 1.070 .996 .900 .880
K.P.D. .544 .590 .640 .977 .960 .920
E.K. .471 .640 .700 .947 .950 .890
F.B. .712 .450 .510 .848 .980 .920

Mean .764 .743 .832 .990 .938 .857

across observers to be statistically significant at the
.10 level (two-tailed t tests, df =5).

Detection and localization. The identification
operating characteristic (laC) curve was defined as
the functional relation between Ym and am over vari
ations in the observer's detection criterion, where Ym
is the joint probability of a positivedetection response
and a correct identification of the target's location
when it is present. Each observer's detection and
location judgments in the eight-location task were
used to estimate six points on his lac curve, one
value of Ys for each of the six detection rating cate
gories. The endpoint of the lac curve is defined as
P(CL), the marginal probability of a correct localiza
tion decision, estimated by the proportion of correct
location-judgments across all the target images.
Estimates of P(CL) were obtained from both the ob
server's eight-location detection task and his separate
forced-choice task that presented the 40 target images
and only required him to indicate the target's location
on each image.

In Figure 3, the filled triangular points within each
panel show the six estimated points on that observer's
lac curve in the eight-location detection task, with
the estimate of P(CL) on the right ordinate (where
as = 1- (3s = 1.0). The circled asterisk plotted on the
right ordinate of each panel in Figure 3 is the estimate
of P(CL) from the observer's forced-choice task. The
two separate estimates of P(CL) were nearly identical
for all six observers.

Equation 4 for the extreme-detector model expresses
the complete lac curve in terms of the ROC curve
within the eight-location task, which, in turn, is
predicted by the known-location ROC curve. Three
predicted lac curves were generated for each ob
server, usingEquation 4 with three separate continuous
ROC curves for the eight-location task: the ROC
curve fit directly in his performance in the eight
location task and the two ROC curves predicted from
the single parameter (d') and two-parameter (d£,B)

DETECTION OF NOISY VISUAL TARGETS 527

summaries of his performance in the known-location
tasks. The broken curve through the filled triangular
points in each panel of Figure 3 is the lac curve
predicted from that observer's fitted ROC in the
same eight-location task. The solid curve through
these data points is the predicted lac curve based
upon the observer's mean estimate of d' in the known
location task.

Table 3 presents the estimates of P(CL) for each
observer in the eight-location detection and forced
choice tasks, together with the three predicted values
of P(CL) (specified by the endpoints of each separate
predicted lac curve). The extreme-detector model
tended to overestimate the observers' ability to locate
the target in this sample of images. The mean pre
dicted value of P(CL) in Table 3 exceeded the mean
P(CL) estimate, whether the prediction was based
upon detection performance in the known-location
or the eight-location task. The mean predictions
based upon the observers' d' estimates in the known
location task came closest to the mean estimate of
P(CL).

Experiment2
The analysis of the observers' detection performance

followed the procedures used in Experiment 1.
Known-location (m = 1)ROC curves characterized by
separate maximum-likelihood estimates of d' and of
d, and B were used to generate the extreme-detector
model's predictions for observers' d, measures of
detectability in the tasks with m =2, 4, and 8. The
direct estimates of d, in these tasks came from
maximum-likelihood fits of each m-location ROC
curve, under the assumption that the true ROC curve
was linear in normal-deviate coordinates. The analysis
of observers' location judgments focused upon the
measure P(CL), the endpoint of the m-Iocation lac
curve. The direct estimate of P(CL) in each m-Iocation
task was compared with three predicted values for
the extreme-detector model, based upon: (1) the fitted
ROC curve in that m-Iocation task, (2) the known
location ROC curve defined by the estimate of d' ,

Table 3
Experiment 1 Estimates of P(CL) for Each Observer's Detection

and Forced-ehoice Tasks and Values Predicted by the
Extreme-Detector Model From the Eight-Location

(8L) and Known-Location (KL) ROC Curves

Predicted From

Estimated From KL

Observer Detection Choice 8L d' dE',B

P.F.J. .525 .538 .654 .530 .565
R.G.S. .562 .575 .660 .710 .759
R.G. .575 .588 .711 .697 .700
E.K. .475 .488 .425 .527 .548
K.P.D. .588 .562 .476 .503 .522

Mean .515 .515 .580 .571 .597
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and (3) the known-location ROC curve defined by
estimates of d, and B.

Table 4 presents the individual estimates of d I and
d, in the known-location task, the individual fitted
and predicted values of dE for m =2, 4, and 8 and the
means of these values across the five observers. The
extreme-detector model tended to overestimate d.,
particularly for the predictions based upon d, and B
in the known-location task. Two-tailed t tests of the
differences between the 15 individual estimated and
predicted values of d, (df = 14) were statistically sig
nificant for predictions based upon d, and B in the
known-location task (t =2.47, P < .05), but not for
predictions based upon d I (t = 1.85, p > .10).

Table 5 presents the estimates and three predicted
values of P(CL) for each observer in the two, four,
and eight-location tasks together with their mean
values across observers. The extreme-detector model
tended to underestimate P(CL) in the two-location
and four-location tasks and to overestimate these
values in the eight-location task, whether the predic
tions were based upon the observers' detection per
formance in the same m-location task or on their
detection performance in the known-location task.

Values of the chi-square statistic, calculated from
the actual and predicted frequencies of each observer's
correct location judgments for the 40 target images,

were summed over the five observers to obtain a
"total chi-square" value for each type of prediction
(df =5). These total chi-square values are presented
in the final row of Table 5. The predictions based
upon d I in the known-location task were about as
good as the predictions from detection performance
in the same m-location task. For all three types of
predictions, the null hypothesis of an exact fit to the
true correct-location frequencies could be rejected in
the eight-location task, but not in the two- or four
location task.

Discussion

The extreme-detector model provides a theoretical
account of the effects of signal uncertainty on detec
tion and identification performance. The model links
the detectability of a signal to the probability that it
will be correctly identified and specifies how these
measureschange as a function of the observer's degree
of uncertainty about the signal. As discussed earlier,
in certain important cases this model closely ap
proximates the performance of an ideal detection
procedure (Nolte & Jaarmsa, 1967). Experiments I
and 2 applied the extreme-detector model to observers'
detection and localization of visual targets presented
in one of m distinct locations on a noisy stimulus field.

Table 4
Estimates of de for Each Observer in the Four Detection Tasks of Experiments 1 and 2

and Values Predicted by the Extreme-Detector Model for m = 2,4, and 8

Estimate
de for m = 2 de for m = 4 de for m = 8

for m = 1
ROC

Predicted From Predicted From Predicted From
ROC ROC

Observer d' de Estimate d' de,B Estimate d' de,B Estimate d' de,B

P.F.J. 1.42 1.42 .99 1.12 1.15 .74 .86 .93 .84 .64 .75
R.G.S. 1.98 2.01 1.32 1.66 1.76 1.08 1.36 1.53 .93 1.09 1.32
R.G. 1.94 1.94 1.23 1.61 1.62 1.24 1.31 1.32 1.08 1.05 1.07
M.S. 1.34 1.34 1.12 1.05 1.02 .90 .80 .76 .51 .59 .55
R.Z. 1.53 1.53 1.24 1.22 1.26 1.03 .95 .99 .59 .72 .76

Mean 1.64 1.65 1.18 1.33 1.36 1.00 1.06 1.11 .79 .82 .89

Table 5
Estimates of P(CL) in Experiments 1 and 2 and Values Predicted by the Extreme-Detector Model for Each Observer in

Tasks With m = 2, 4, and 8, Together With the Total Chi-square for Each Type of Prediction

m = 2 Task m=4 Task m = 8 Task

Predicted From Predicted From Predicted From

Esti- m= 2
m = 1 Task m = 1 Task m = 1 Task

Esti- m=4 Esti- m= 8
Observer mate ROC d' de,B mate ROC d' de,B mate ROC d' de,B

P.F.J. .900 .008 .844 .840 .712 .613 .682 .692 .515 .654 .530 .565
R.G.S. .888 .882 .922 .921 .738 .752 .823 .841 .562 .660 .710 .759
R.G. .875 .832 .917 .917 .850 .802 .813 .814 .575 .711 .697 .700
M.S. .962 .840 .831 .826 .750 .695 .660 .650 .625 .471 .503 .489
R.Z. .825 .864 .863 .867 .700 .771 .713 .723 .325 .445 .567 .582

Mean .895 .846 .878 .877 .753 .727 .742 .749 .526 .595 .605 .624
Total x' .767 7.820 8.360 3.990 3.990 5.460 14.800* 19.000* 25.500*

"The null hypothesis ofan exact fit can be rejected with p < .05.



The results of Experiments 1 and 2 demonstrate
that the extreme-detector model can describe an ob
server's ability to both detect and locate a spatially
uncertain target, predicting how these capabilities
change with the number of possible target positions.
The probability that an observer would correctly
locate the target could be predicted from the ROC
curve generated by his ability to distinguish between
stimuli that contained a target and those that did not.
In addition, both detection and localization perfor
mances in tasks with two, four, and eight separate
target locations could be predicted from the observer's
ability to detect the target when its spatial location
was specified on the stimulus image. For the visual
stimuli used in these experiments, the extreme-detector
model generated accurate predictions of the ob
server's detection and localization performance in
the m-location tasks from a single-parameter (d ')
specificationof his known-location (m = 1) ROC curve.

Various recent studies have compared observers'
performance with predictions generated by theoretical
assumptions that are equivalent to the present extreme
detector model. Most of these studies concentrated
on the relation between the ROC curve in an m
alternative task and what we have termed the identifi
cation operating characteristic (IOC) curve. The IOC
curve is defined as the joint probability of a positive
detection response and a correct identification of the
signal, plotted as a function of the false-positive rate.
In agreement with the present results, these experi
ments demonstrate that Equation 4 accurately pre
dicts the relation between observers' ROC and IOC
curves, provided that the m stimuli are designed to
satisfy the extreme-detector model's assumption that
they provide a set of mutually orthogonal perceptual
variables.

Starr, Metz, Lusted, and Goodenough (1975) first
showed that Equation 4 could predict observers' IOC
curves from their ROC curves when the task required
observers to identify which quadrant of a noisy visual
stimulus contained the target (m =4). Swets, Green,
Getty, and Swets (1978) obtained similarly good pre
dictions from Equation 4 for decisions that observers
made at five successive stages in an eight-location task,
which progressively increased the amount of visual
information available at each stage. Sandor and
Swensson (1978) showed that Equation 4 could be
used with observers' fitted ROC curves to predict
P(CL), the overall probability of correctly locating
the target, for visual targets presented at various
levels of physical detectability in a five-location task.
In a combined auditory-detection and frequency
identification task, Green, Weber, and Duncan (1977)
found that Equation 4 successfully predicted the
joint probability of detecting and identifying the
stimulus tone in tasks with both two and four dif
ferent frequencies, provided that the differences in
stimulus-frequency were sufficiently large.
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Aside from the present results, however, there is
less empirical evidence that the extreme-detector
model can predict the changes in detectability produced
by variations in m, the number of alternative signals.
Swets and Birdsall (1978) presented observers with
repeated independent observations of an auditory
stimulus in detection tasks that either kept the fre
quency of the tone constant (m = 1) or selected the
stimulus randomly from a set of eight well-spaced
frequencies. For two of their three observers, the
values of d' obtained in the eight-frequency task
agreed with values predicted by the extreme-detector
model from estimates of d I based upon the same
number of observations in the single-frequency task.
The third observer's estimates of d I in the eight
frequency task increasedwith d I in the single-frequency
task, but were below the values predicted by the
extreme-detector model for m =8. Figure 1b of the
present paper suggests that such a pattern of per
formance could be explained by the extreme-detector
model if m were assumed to be greater than eight-that
is, if this observer considered more possible stimulus
frequencies than the eight that were actually presented.

The results of Experiments 1 and 2 indicate that
the extreme-detector model, which should approxi
mate the optimal detection procedure for m locations,
adequately describes the changes in detectability of
these visual targets as the number of possible target
locations increases from one to eight. The absolute
levels of detection performance, however, were con
siderably less than could be achieved by a physical
detector, as indicated by the target's signal-to-noise
ratio (SIN) calculated for a matched filter at a known
location on the image. The matched-filter detector
would have obtained a detectability index (d, =SIN)
of 2.64, while the mean estimate of d, (and d ') in
the known-location task was only 1.54. This devia
tion from the theoretically achievable level of per
formance must reflect observers' inability to extract
all the relevant physical information about the presence
of a target from a given location on these images.

EXPERIMENT 3

This experiment used the physical description of
the visual stimulus to predict the observers' perfor
mance in an eight-location task. For the task of
detecting these visual targets, the physical stimulus
can be characterized by the target's signal-to-noise
ratio (SIN), calculated from the output of a matched
filter that is tuned to detect the target in a specified
location on the image. As discussed earlier, this value
of SIN is equal to the detectability index d, for a
matched filter when m = 1. Experiments 1 and 2
found a considerable discrepancy between observers'
detection performance in the known-location task
and the predicted performance of a matched filter.
However, given an estimate of the target's detectability
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in a known location, the detection and localization
performance in m-Iocation tasks could be predicted
by modeling the observer as an extreme detector.
This suggeststhat the extreme-detector model could
predict an observer's absolute level of performance
in an m-Iocation task from the target's SIN ratio if
it included an adequate model of how this SIN ratio
determines the target's "effective detectability" in a
specified location on the image.

The experiment obtained measures of observers'
eight-location detection and localization performance
in 10 different conditions, which used various stimulus
manipulations to vary the target's SIN ratio over a
large range. Since the details of this experiment have
been reported elsewhere (Judy, Swensson, & Szulc,
1981), we present only selected results here. These
data are used to compare four different "psycho
physical" models that represent alternative formu
lations of the relation between the physical char
acteristics of these visual stimuli (e.g., the SIN ratio)
and the target's detectability in a specified location.

The Psychophysical Models

The four models described below relate the detect
ability of a target that appears in a known location
on the image to the "signal" (S) and "noise" (N)
parameters of the physical stimuli: S == #In - #Jt and
N == (on+0.)12, where #Jto#Jn and 0to0n are the respective
means and standard deviations of the output of a
matched filter that considers the brightness levels of
the relevant set of image pixels, given the presence
and absence of a target. These models assume that an
observer's detection ROC curve in a known-location
task can be characterized by the single parameter
dc;f, his "effective value of d' " for that stimulus con
dition. Each model uses a single fitted parameter to
specify a unique value of dc;f for a given combina
tion of the physical variables S and N. Models 1 and
2 are simply two different formal mappings between
the target's SIN ratio and d~f. Models 3 and 4
represent different possible interpretations of the
reduction in d~f from the physical upper bound set
by the SIN ratio.

Modell
This model assumes that the target's detectability

is reduced by a constant amount, independent of the
value of SIN for the matched filter: dc;f = (SIN) - k.,
where k, > 0 and d~f= 0 whenever SIN ~ k•.

Model 2
This model assumes that the reduction in target

detectability is proportional to the value of SIN for
the matched filter: d~f= k2(S/N), where 0 < k2 < 1.

Model 3
This model attributes the reduction in target detect

ability to some source of "noise" (k, >0), contributed

by the observer, which is assumed to be independent
of N, the physical noise in the output of the matched
filter. Examples of such noise sources would include
inappropriate tuning of the observer's "perceptual
filter" and any variability in his detection procedures
(e.g., the specific decision criteria) between experi
mental trials. These independent sources of noise
would combine additively with N to yield Nef' the
"effective level of noise" for the human observer:
N~f= (W + k~). This model assumes that d~f= S/Nef'
which depends upon the particular values of Sand N
for each stimulus condition (rather than the ratio
SIN). A change in SIN produced by varying N has
less effect upon d~f than the same change when pro
duced by varying S; this asymmetry increases with
the size of the change in SIN.

Model 4
This model assumes that the observer has some

residual spatial uncertainty about each discrete loca
tion for the target, because he is unable to fix its
precise position on the image. This region of un
certainty about each discrete location degrades the
target's detectability, since it renders the observer
susceptible to noise variations that would be ignored
by the matched filter. The degree of this spatial un
certainty can be represented by a parameter k, > I,
which has an interpretation as the number of discrete
orthogonal spatial locations that would provide the
equivalent reduction in target detectability for an
extreme detector. Under this interpretation of the
model, the effect of any assumed degree of spatial
uncertainty (k.) can be calculated by substituting
m=k4 into Equations la and Ib for the extreme
detector model, where values of a. and 1- 13. represent
points on the matched filter's ROC curve (specified
by Equation 3 with d' = SIN). The value of d~f for
this model would then be obtained by iterating Equa
tions 1a and 1b until ak = 13k = £k and calculating
dc;f=2Z-·(I- £0.

Figure 1b shows that, except for small values of d' ,
the effect of increasing the number of target loca
tions for an extreme detector is essentially to shift the
function that relates the m-Iocation d[ to d' in the
m = 1 situation. Thus, the effect of k, > 1 would be
to reduce d~f by an approximately constant amount
for larger values of SIN. For this reason, the predic
tions of Model 4 should be similar to those of Model I,
given appropriate choices of k, and k4 •

Method

The visual stimuli were similar to those used in Experiments
I and 2. Ten different stimulus conditions varied the target's
SIN ratio for separate sets of 80 images, 40 images with a single
target in one of theeight locations and 40 images with no target.
Two sets of 80 images were generated for a baseline condition,
in which the stimulus parameters were identical to those for the
images used in Experiments I and 2. The remaining nine condi
tions changed one physical parameter of the stimuli, while the
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Target Signal-To-Noise Ratio (SIN)

others remained fixed at their baseline levels. These conditions in
cluded three levels of increased SIN ratio for each of three dif
ferent manipulations of the stimulus parameters: (I) increasing the
contrast between the target and the surrounding ring (S), (2) de
creasing the level of the image noise (N), and (3) increasing the
target's size (from 4.95 sq pixels in the baseline condition to 5.94,
6.93, and 8.92 sq pixels). All other characteristics of the stimuli
were the same as in Experiments I and 2.

The observers considered one set of images per session. On each
image, the observer indicated which of the eight possible locations
he considered most likely to contain the target and rated the like
lihood that the target was present on a 6-category scale. There were
31 sessions, including four replications of the baseline condition
(Sessions I, II, 21, and 31) and three replications of the other
nine conditions. In order to minimize the apparent changes in the
image sets between sessions, the three conditions produced by a
given type of stimulus manipulation always appeared together,
in order of increasing SIN ratio. The order of these three types
of conditions was counterbalanced across the three replications for
each observer. All other procedural details were identical to those
in Experiments I and 2.
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Figure 5. Mean estimates of P(CL), tbe proportion of correctly
located targets, for each observer in the 10 stimulus conditions of
Experiment 3, plotted (on a normal-deviate scale) as a functIon of
the target's SIN ratio. Vertical bars around the mean value of P(CL)
for the two observers indicate plus and minus the bluomlal standard
error of that estimate for a sample of 40 target images. The con
tiuuous curves show the values of P(CL) predicted by the extreme
detector model for the matched-filter (with d' = SIN) and for three
of tbe fitted psycbopbysical models.

server's confidence ratings, using the same maximum
likelihood procedure as in Experiments i and 2. The
second measure was P(CL), the proportion of the 40
target images on which the observer correctly identified
the target's location. The three individual estimates
were averaged over replications to obtain the ob
server's mean estimate of d, and P(CL) in each of the
10stimulus conditions.

The observed changes in both d, and P(CL) were
closely related to the changes in the target's SIN
ratio. Figures 4 and 5 present values of d, (Figure 4)
and P(CL) on a normal-deviate scale (Figure 5) for
each observer's 10 stimulus conditions, plotted as a
function of the target's SIN ratio. The shape of each
data point in Figures 4 and 5 indicates the type of
stimulus manipulation used to obtain that level of SIN
ratio. Vertical bars indicate plus or minus one standard
error of the estimates of d, and P(CL) around the
mean value for the two observers in each stimulus
condition. The standard errors of the d[ estimates
were obtained from the maximum-likelihood fitting
procedure; they reflect the expected variability in
estimates of d, among independent samples of 40 tar
get and 40 nontarget stimuli generated from the same
physical parameters. The standard errors of P(CL)
represent the binomial variability in probability
estimates based upon a sample of 40 cases (target
images).

The smooth curves in Figures 4 and 5 show the re
lations between SIN and measures of d, and P(CL)
in the eight-location task, predicted by the matched
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Figure 4. Mean estimates of tbe d, Index of detectablllty for
each observer in the 10 stimulus conditions of Experiment 3,
plotted as a function of tbe target's SIN ratio. The right ordinate
gives values of the detection error rates tbat correspond to eacb
value of d, at tbe point on the ROC curve wbere a = (J=e. The
shape of each data point indicates the type of stimulus manipulation
used to Increase the SIN ratio in tbat condition. Vertical bars
around the mean d, for both observers indicate plus and minus
one standard error of the d, estimate in each of tbe 10 stimulus
conditions, obtained from the maximum likelihood fitting pro
cedure. The continuous curves show tbe value of d, predicted by
the extreme-detector model for the matcbed filter (with d ' = SIN)
and for three of the fitted psychophysical models.

Detailed results for all three observers in this ex
periment are available elsewhere (Judy, Swensson, &
Szulc, 1981); we present only mean data for two ob
servers (P.F.J. and R.O.S.), who also performed in
Experiments 1 and 2. There were two measures of
performance for each of the 31 individual sessions.
One measure was the d, index of detectability,
estimated from the ROC curve generated by the ob-
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Table 6
Fitted Parameters for the Four Psychological Models in

Experiment 3 and the Proportion of Variance in Observers'
Mean Estimates of dE and Z-I [P(CL)1 Explained by

Each Model and by the linear Fit to SiN

filter and by single-parameter fits of three of the
previously defined psychophysical models (Models 1,
2, and 4). These curves are the predicted values given
by the extreme-detector model for the eight-location
task, generated from values of d I for the known
location situation under the assumption that d I = SIN
(for the matched filter) or d' = d~f (for the fitted
models).

The four psychophysical models were fitted to the
combined data from both observers by finding the
values of k that would equate the means of the ob
served and predicted values of d, for the 10 stimulus
conditions. The fitted k for each model reduced the
mean SIN ratio of 3.618 to d~f= 2.68, the value of d I

for which the extreme-detector model predicted the
observed mean d, of 1.748 in the eight-location task.
Each fitted psychophysical model specified a unique
value of d~f in each of the 10 stimulus conditions
from the physical variables of Sand N in that con
dition. The extreme-detector model then used these
values of d~f to predict the 10 values of d, and P(CL)
for each model in the eight-location task. The ability
of each fitted model (in combination with the extreme
detector model) to account for the observed varia
tions in d, of Z -I [P(CL)] can be measured by the
proportion of the total variance in these estimates
that the model explains. This proportion of explained
variance was calculated by subtracting the mean
squared error in the 10 predicted values of d, or
Z-I[P(CL)]-the unexplained variance for each
model-from the total variance in the 10 mean esti
mates (averaged over both observers) and dividing by
this total variance.

Table 6 presents the fitted parameters for each
of the four psychophysical models and the propor
tion of variance in estimates of d, and Z-I[P(CL)]
explained by that model. As a rough estimate of the
amount of systematic variation in these data, Table 6
also gives the proportion of variance (r') in each set
of estimates explained by its two-parameter linear fit
to the values of SIN. The four models are ordered
in nearly,the same way by their ability to account for
variations in both d, and P(CL). Model 1 provided
the best fits to both performance measures, ac-

Model

Linear Fit
Modell
Model 2
Model 3
Model 4

Fitted Value
ofK

k, =" .938
k, = ,7409
k, = 1.0042
k, = 9.4

Proportion of Variance
Explained in
Estimates of

dE Z-I [P(CL»)

,930 ,886
.933 ,864
.885 .853
.694 .566
.920 .844

counting for almost all of the systematic (linear) vari
ation in the estimates of d, and Z-I[P(CL)], while
Model 3 yielded the worst fits. As seen in Figures 4
and 5, the predicted functions for Models 1 and 4
were virtually indistinguishable. Model 2 tended to
underestimate the rate of improvement in observers'
performance as the SIN ratio increased.

The predictions of Model 3 were not functions of
the ratio SIN and could not be plotted in Figures 4
and 5, but they were clearly inferior to those of the
other models in terms of the proportions of variance
they explained in the estimates of performance. In
order to match the predicted and observed mean
levels of dE' Model 3 had to assume that the amount
of additive noise contributed by the observer (1.004
units) was roughly the same in magnitude as N, the
noise in the physical stimuli, which ranged between
.69 and 1.77 units over the 10 stimulus conditions
with a mean of 1.20. This level of assumed additive
noise made d~f relatively insensitive to decreases in
N. As a result, Model 3 considerably underestimated
the improvement in performance produced by large
decreases in the physical image noise and overestimated
the improvement for increases in target size and con
trast (S). For the stimulus condition with the largest
decrease in N, the predicted and observed values of
~ were 1.45 and 2.19, respectively; the corresponding
values of P(CL) were .81 and .93. The shortcomings
of Model 3 reflect the fact that observers' performance
appeared to depend only upon the ratio between S
and N for these visual stimuli, rather than on their
separate individual values.

Discussion

The combined models tested in Experiment 3 all
assume that the observer functions as an extreme
detector in an m-Iocation task, but is less able to
detect the target in any individual location than a
physical detector that uses the output of a matched
filter, whose value of d' is given by the target's
physical signal-to-noise (SIN) ratio. The four com
bined models differ in the particular psychophysical
model that links measures of the physical stimuli to
the target's detectability, its effective value of d' in
a known spatial location. Once the single parameter
of each psychophysical model had been fit to the ob
server's detection data, the model specified the ef
fective d' in each stimulus condition from calcula
tions of Sand N for these physical stimuli. The ex
treme detector model was then used to predict indices
of the observer's detection and localization perfor
mance, d, and P(CL), in the eight-location task. Thus,
the predictions of each combined model in Experi
ment 3 tested the extreme-detector model, as well as
the particular psychophysical model to which it was
appended.

Modell, the simplest psychophysical model, as
sumed that the physical SIN ratio was reduced by a



constant to yield the observer's d ' for a known-location
target in each condition. This produced the most suc
cessful combined model; it accounted for 93070 of the
variation in mean estimates of cit and 86% of the
variation in mean estimates of Z-I[P(CL)] over the
10 independent stimulus conditions. Model 2, which
assumed that the observer's d I was proportional to
the physical SIN ratio in each condition, generated
predictions that tended to underestimate how rapidly
detection and localization performance improved
with increases in the target's SIN ratio.

Model 3 attributed the degradation from ideal detec
tion performance to additive noise, contributed by
the observer, which was independent of the noise in
the physical stimuli (N). This was the least successful
of the four psychophysical models for predicting
detection and localization performance in the eight
location task, primarily because the model greatly
underestimated the degree of improvement in perfor
mance produced by decreases in N. Since this model
had to assume that the additive noise from the ob
server was about the same magnitude as the stimulus
noise, it predicted that performance would be insen
sitive to variations in N. In fact, however, the ob
servers' performance was closely related to the physical
SIN ratio, regardless of the type of stimulus manipu
lation used to achieve that level of SIN ratio.

Model 4 attributed observers' suboptimal detec
tion performance to the presence of some residual
uncertainty about the precise position of each possible
location on the visual images.The model approximated
this region of spatial uncertainty about each possible
location by an "equivalent" number of discrete
orthogonal observations, assuming that each ad
ditional noise sample was distributed the same as a
sample of noise from the target's actual position. The
observer was assumed to fix the spatial position of
his "target candidate" (in each possible location) by
the area corresponding to the most extreme sample
within that region of uncertainty. When Model 4 was
combined with the extreme-detector model for the
eight-location task and fitted to the mean perfor
mance in Experiment 3, its predictionswere essentially
indistinguishable from those generated by Modell.
This is because the effect of considering additional
noise samples is to reduce an extreme-detector's ability
to detect the target-that is, d' for a given target
location in this case-by an approximately constant
amount, over the range in SIN values used in
Experiment 3.

Because of the similar predictions made by Models
1 and 4, both of which closely fit the observed data,
it is tempting to regard Model 4 as a theoretical inter
pretation of the process that underlies the formal ap
proximation specified by Modell. However, there
are difficulties with such an interpretation. Model 4
had to assume that the residual spatial uncertainty
was equivalent to a mean of 9.4 orthogonal areas
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around each possible target location on the image.
This estimate seems excessive for these highly experi
enced observers, even though it need not correspond
to a physical region as large as 9.4 times the actual
target area. A more serious problem for Model 4 is
the fact that manipulations of the target's size were
equivalent to the other stimulus manipulations, in
that comparable increases in the physical SIN ratio
all produced the same degree of improvement in ob
servers' performance. An increase in the target's size
would have reduced the detrimental effects of any
fixed amount of residual spatial uncertainty, which
should have caused Model 4 to underestimate the ob
served rate of improvement in performance as the
target became larger. To interpret the effects of
manipulating the target's size, Model 4 seems forced
to the unlikely assumption that the observer's region
of spatial uncertainty about each target location ex
panded in proportion to the target's area.

CONCLUSIONS

The results of these three experiments demonstrate
that an extreme-detector model can describe the rela
tion between target detection and target localization,
as well as the changes in these capabilities with varia
tions in: (1) the number of possible target locations
and (2) the signal-to-noise (SIN) ratio of the physical
target stimuli. The extreme-detector model assumes
that the observer selects the location that gives rise
to the most extreme value of some underlying decision
variable, basing his detection decision only upon the
value of this extreme sample. For relatively simple
types of visual targets and noise backgrounds, like
those used in these experiments, estimates of a single
parameter may be sufficient to predict the changes in
detection and localization performance produced by
manipulations of both the number of possible target
locations and the target's physical SIN ratio. From
estimates of d /,.the observer's ability to detect the
target in a known location on the image, the extreme
detector model closely predicted detection and lo
calization in tasks with two, four, and eight possible
locations, which varied the target's detectability by a
factor of two. From calculations of the target's
physical SIN ratio (degraded by a fitted constant) the
extreme-detector model predicted a wide range of
detection and localization performances in an eight
location task that manipulated the target's SIN ratio
in various ways.
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