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Psychologists often conduct research to establish
whether and to what extent one variable affects another.
However, the discovery that two variables are related to
each other is only one small part of the aim of psychol-
ogy. Deeper understanding is gained when we compre-
hend the process that produces the effect. For example, it
might be useful to know whether a management training
program leads to an increase in employee satisfaction by
affecting employee attitudes toward management or by
changing behavioral habits. In this example, attitudes
and habits are potential mediators of the relationship be-
tween the management training program and employee
satisfaction.

A variable may be called a mediator “to the extent that
it accounts for the relation between the predictor and the
criterion” (Baron & Kenny, 1986, p. 1176).1 Panel A of
Figure 1 represents the effect of some proposed cause
(X ) on some outcome (Y ). Panel B of Figure 1 represents
the simplest form of mediation—the type that occurs
when one variable (M) mediates the effect of X on Y. We
term this model simple mediation. More complex medi-
ation models are possible, but we limit our discussion
here to simple mediation because it is by far the most com-
monly employed type of mediation model.

The simple relationship between X and Y is often re-
ferred to as the total effect of X on Y (see Figure 1,
panel A); we denote the total effect c to distinguish it
from c¢, the direct effect of X on Y after controlling for M
(see Figure 1, panel B). The formal heuristic analysis
often used to detect simple mediation effects is straight-
forward and follows directly from the definition of a me-
diator provided by Baron and Kenny (1986). Variable M
is considered a mediator if (1) X significantly predicts Y
(i.e., c � 0 in Figure 1), (2) X significantly predicts M
(i.e., a � 0 in Figure 1), and (3) M significantly predicts
Y controlling for X (i.e., b � 0 in Figure 1). Baron and
Kenny discuss several analyses that should be performed
and the results assessed with respect to the criteria just
described. These criteria are assessed by estimating the
following equations:

where i is an intercept coefficient. When the effect of X on
Y decreases to zero with the inclusion of M, perfect medi-
ation is said to have occurred (James & Brett, 1984, call
this situation complete mediation). When the effect of X
on Y decreases by a nontrivial amount, but not to zero, par-
tial mediation is said to have occurred.2 In addition to sat-
isfying these requirements, two further assumptions must
be met in order to claim that mediation has occurred, ac-
cording to Baron and Kenny; namely, there should be no
measurement error in M, and Y should not cause M. The
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first of these assumptions is routinely violated, but that is
not the focus of our discussion here. At the end of this ar-
ticle, we shall emphasize that, ultimately, the validity of
one’s conclusions about mediation is determined by the
design of the study as much as by statistical criteria.

Mediation hypotheses are frequently tested in both
basic and applied psychological research, and mediation
analyses are most often guided by the procedures out-
lined by Baron and Kenny (1986). For example, in an in-
formal content analysis of the 2000, 2001, and 2002 is-
sues of the Journal of Applied Psychology, we found that
22% of the articles reported an analysis focused on me-
diation, and the overwhelming majority of them were
based on the Baron and Kenny procedure. We believe this
to be fairly representative of the major journals in psy-
chology, not only with respect to the frequency of medi-
ation hypotheses but also to the use of the Baron and
Kenny criteria for assessing mediation. Indeed, their
paper is one of the most frequently cited in the modern
psychological literature, with nearly 5,300 citations as of
September 2004, according to the Science Citation Index.

There are more statistically rigorous methods by
which mediation hypotheses may be assessed. Baron and
Kenny (1986) describe a procedure developed by Sobel
(1982; hereafter referred to as the Sobel test) that pro-
vides a more direct test of an indirect effect. In the case
of simple mediation, the Sobel test is conducted by com-
paring the strength of the indirect effect of X on Y to the
point null hypothesis that it equals zero. The indirect ef-
fect of X on Y in this situation is defined as the product
of the XÆM path (a) and the MÆY path (b), or ab. In
most situations,3 ab � (c � c¢), where c is the simple
(i.e., total) effect of X on Y, not controlling for M, and c¢
is the XÆY path coefficient after the addition of M to the

model (see Figure 1). Standard errors of a and b are rep-
resented, respectively, by sa and sb. The standard error of
the indirect effect (sab) is given by Aroian (1944), Mood,
Graybill, and Boes (1974), and Sobel (1982) as

(4)

In order to conduct the test, ab is divided by sab to yield
a critical ratio that is traditionally compared with the
critical value from the standard normal distribution ap-
propriate for a given alpha level. One of the assumptions
necessary for the Sobel test is that the sample size is
large, so the rough critical value for the two-tailed ver-
sion of the test, assuming that the sampling distribution
of ab is normal and that a � .05, is �1.96. As sample
size becomes smaller, the Sobel test becomes less con-
servative. One variation of the Sobel test subtracts the
last term of the standard error (s2

a s2
b in Equation 4) rather

than adds it (Goodman, 1960). Another version omits
s2

a s2
b altogether because it is likely to be trivial (Baron &

Kenny, 1986; Goodman, 1960; MacKinnon & Dwyer,
1993; MacKinnon, Warsi, & Dwyer, 1995; Sobel, 1982).
Sobel (1982) describes a general procedure whereby
more complicated indirect effects may be tested. The util-
ity and performance of the Sobel test has been discussed
and demonstrated frequently (Hoyle & Kenny, 1999;
MacKinnon, 1994; MacKinnon & Dwyer, 1993; Mac-
Kinnon et al., 2001; MacKinnon, et al., 1995; Stone &
Sobel, 1990). MacKinnon, Lockwood, Hoffman, West,
and Sheets (2002), in their comparison of 14 methods of
assessing mediation effects, settle on the Sobel test (and
its variants) as superior in terms of power and intuitive
appeal. But, as we discuss below, there is reason to be
suspicious of the use of the normal distribution for com-
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Figure 1. Panel A: Illustration of a direct effect. X affects Y. Panel B:
Illustration of a mediation design. X affects Y indirectly through M.
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puting the p value for the Sobel test because the sam-
pling distribution of ab may not be normal.

Curiously, the Sobel test is discussed, with requisite
formulas, by Baron and Kenny (1986), but it is rarely
used in practice (cf. MacKinnon et al., 2002). We cannot
say for sure why the significance of the indirect effect is
rarely tested formally, but at least two possibilities sug-
gest themselves. First, the statistical significance of the
difference between the total effect (c) and the direct ef-
fect (c¢ ) of X on Y is not formally stated by Baron and
Kenny as a requirement for mediation. Instead, Baron
and Kenny simply state that perfect mediation has oc-
curred if c¢ becomes nonsignificant after controlling for
M, so researchers have focused on that requirement. Sec-
ond, whereas most popular programs used for regression
(such as SPSS and SAS) will conduct all the tests re-
quired to establish mediation according to the Baron and
Kenny criteria, few of the commonly used programs con-
duct a test of the null hypothesis that the indirect effect
(c � c¢ ) is 0 (or, equivalently, that ab � 0). Although
these programs provide all the information needed for
the researcher to conduct the Sobel test manually, some
extra hand computation is required, and researchers sim-
ply may not see the point in bothering with those com-
putations given that the significance of the indirect effect
is not listed by Baron and Kenny as one of the criteria for
establishing mediation.

Before we proceed, it is important to clarify a poten-
tially confusing point. Although the terms mediated ef-
fects and indirect effects are sometimes used interchange-
ably, an important distinction should be drawn between
them in general (Holmbeck, 1997). A mediated effect is
usually thought of as the special case of indirect effects
when there is only one intervening variable. However, a
conclusion that a mediation effect is present implies that
the total effect XÆY was present initially. There is no such
assumption in the assessment of indirect effects. It is quite
possible to find that an indirect effect is significant even
when there is no evidence for a significant total effect.
Whether or not the effect also represents mediation should
be judged through examination of the total effect. For con-
trasting views on the requirement that XÆY be signifi-
cant, see Collins, Graham, and Flaherty (1998), MacKin-
non (2000), and Shrout and Bolger (2002).

In the remainder of this article, we provide arguments
favoring estimation of the indirect effect of X on Y through
M and end with a description of an SPSS macro that will
formally test the significance of the indirect effect both
parametrically and nonparametrically, while simultane-
ously providing the output relevant to assessing mediation
with the Baron and Kenny criteria, all in a few lines of out-
put. An equivalent SAS version of the macro is also pro-
vided. We hope that access to these macros will make it
more likely that researchers will include a formal test of
the indirect effect as part of simple mediation analyses.

The Need for a Formal Test
Given that Baron and Kenny (1986) provide a concep-

tually appealing recipe to follow in order to determine the

presence or absence of a mediation effect, one may well
ask why it is necessary to perform a formal significance
test of the indirect effect if the Baron and Kenny criteria
have been met. Two broad benefits of formal testing may
be suggested. First, there are shortcomings inherent in the
Baron and Kenny method. For example, Holmbeck (2002)
points out that it is possible to observe a change from a
significant XÆY path to a nonsignificant XÆY path upon
the addition of a mediator to the model with a very small
change in the absolute size of the coefficient. This pattern
of results may lead a researcher to erroneously conclude
that a mediation effect is present (Type I error). Con-
versely, it is possible to observe a large change in the
XÆY path upon the addition of a mediator to the model
without observing an appreciable drop in statistical sig-
nificance (Type II error). The latter situation is especially
likely to occur when large samples are employed because
those are the conditions under which even small regres-
sion weights may remain statistically significant. Finally,
it is possible for a Type I error about mediation to occur
if either a or b appears to be statistically different from
zero when one of them is in fact zero in the population. A
Type I error in the test of either a or b (or both) could lead
to an incorrect conclusion about mediation.

Second, testing the hypothesis of no difference between
the total effect (c) and the direct effect (c¢) more directly
addresses the mediation hypothesis than does the series of
regression analyses recommended by Baron and Kenny
(1986). In the case of simple mediation, the indirect effect
of X on Y through M is measured as the product of the
XÆM and MÆY paths (ab), which is equivalent to (c � c¢)
in most situations. Therefore, a significance test associated
with ab should address mediation more directly than a se-
ries of separate significance tests not directly involving ab.

In addition, it has been found that the method de-
scribed by Baron and Kenny (1986) suffers from low sta-
tistical power in most situations (MacKinnon et al.,
2002). Intuition suggests that this may be the result of the
requirement that both the a and b coefficients be statisti-
cally significant, according to the Baron and Kenny cri-
teria. Especially in small samples, it is possible that either
the a or the b coefficient (or both) may be nonsignificant
only because of low statistical power. If either of these pa-
rameters fails to meet the Baron and Kenny criteria even
though they are in fact nonzero in the population, the in-
vestigator cannot claim mediation by the Baron and
Kenny criteria, and thus a Type II error results. In con-
trast, testing the null hypothesis that (c �c¢) � 0 requires
one fewer hypothesis test, and thus a Type II error in the
testing of mediation would be less likely. Indeed, joint
significance tests involving the product of coefficients
such as the Sobel test have been found to have greater
statistical power than that of other formal methods of as-
sessing mediation, including the Baron and Kenny ap-
proach (MacKinnon et al., 2002). Thus, a more powerful
strategy for testing mediation may be to require only
(1) that there exists an effect to be mediated (i.e., c � 0)
and (2) that the indirect effect be statistically significant
in the direction predicted by the mediation hypothesis.
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Estimating the Size and Significance of the
Indirect Effect

Appendixes A and B contain macros for SPSS and
SAS that provide a test of the indirect effect using the
Sobel test (the version that uses the standard error in
Equation 4) as well as a version that relies on a nonpara-
metric bootstrapping procedure. The macros also pro-
vide all the output that one needs in order to assess me-
diation using the Baron and Kenny (1986) criteria. SPSS
and SAS are very widely used throughout the social sci-
ences, and in psychology in particular, and we hope that
these macros will increase the likelihood that researchers
will conduct a formal test of the significance of the in-
direct effect in simple mediation models. A macro is a
program that will run when a shortcut command is given
to execute it. Rather than running the entire program for
each analysis, the program simply needs to be “acti-
vated” by running it once or requesting that it be exe-
cuted first in a batch using the INCLUDE command (see
the SPSS or SAS manuals for guidance on the use of the
INCLUDE command). The user needs to run the macro only
once when SPSS or SAS is first executed; the macro will
remain active until the user quits the program. The use of
the macros is documented in the appendixes, and elec-
tronic copies of the macros themselves can be obtained at
http://www.comm.ohio-state.edu/ahayes/sobel.htm.

Suppose an investigator is interested in the effects of
a new cognitive therapy on life satisfaction after retire-
ment. Residents of a retirement home diagnosed as clin-
ically depressed are randomly assigned to receive 10 ses-
sions of a new cognitive therapy (X � 1) or 10 sessions
of an alternative therapeutic method (X � 0). After Ses-
sion 8, the positivity of the attributions the residents
make for a recent failure experience is assessed (M). Fi-
nally, at the end of Session 10, the residents are given a
measure of life satisfaction (Y ). The question is whether
the cognitive therapy’s effect on life satisfaction is me-
diated by the positivity of their causal attributions of
negative experiences.

Output of the SPSS version of the macro is displayed
in the top half of Figure 2 using hypothetical data.4 In
accordance with the instructions in Appendix A, this
output was generated with the following command:

sobel y�satis / x�therapy / m�attrib / boot�5000.

The macros provide unstandardized coefficients for re-
gression Equations 1–3 given above and discussed by
Baron and Kenny (1986) as required to test mediation.
The rows of output are interpreted as follows: b(YX ) is
the total effect of the independent variable X on the de-
pendent variable Y (c in Figure 1). This effect is statisti-
cally different from zero in this example; residents who
received the cognitive therapy felt more satisfied with
life after 10 sessions than did those who did not receive

the therapy. The next row of the output, b(MX ), is the ef-
fect of the independent variable on the proposed media-
tor M (a in Figure 1), also statistically different from
zero; residents who received the cognitive therapy made
more positive attributions for a recent failure experience.
The third row of the output, b(YM.X ), is the effect of the
mediator on the dependent variable, controlling for the in-
dependent variable (b in Figure 1). Residents who made
more positive attributions for a prior failure tended to be
more satisfied with life, even after controlling for whether
or not they received the therapy. Finally, b(YX.M ) is the di-
rect effect of the independent variable on the dependent
variable, controlling for the mediator (c¢ in Figure 1). This
effect is not statistically different from zero, indicating no
relationship between method of therapy and life satisfac-
tion after controlling for the positivity of attributions for
failure. In this example, all of Baron and Kenny’s criteria
for mediation are established, and the evidence is that pos-
itivity of attributions completely mediates the effect of
cognitive therapy on life satisfaction.

The output also contains the estimate of the indirect
effect of X on Y through M. In this example, the indi-
rect effect is 0.3306, which is both ab in Figure 1, or
b(MX ) � b(YM.X ) from the output, as well as c � c¢ in Fig-
ure 1, or b(YX ) � b(YX.M ) from the output. A formal two-
tailed test of the significance of this indirect effect follows,
based on the assumption that the ratio of the indirect effect
to its standard error is normal. From Equation 4, the stan-
dard error is estimated as shown in the equation at the bot-
tom of this page. The macro also produces a 95% confi-
dence interval5 for the size of the indirect effect, again on
the assumption that the sampling distribution of the ef-
fect is normal. Whereas the procedure outlined by Baron
and Kenny involves combining the results of several hy-
pothesis tests, the Sobel test directly addresses the pri-
mary question of interest—whether or not the total ef-
fect of X on Y is significantly reduced upon the addition
of a mediator to the model.

The Sobel test contradicts the Baron and Kenny (1986)
strategy and suggests no mediation (z � 1.67, p � .05).
However, there is reason to be suspicious of the results of
the Sobel test in this case. As alluded to earlier, the two-
tailed p value [under “Sig(two)” in the output] is based on
the assumption that the distribution of ab (or c � c¢ ) fol-
lows a normal distribution under the null hypothesis. But
this assumption has been seriously questioned. Not only
is the distribution not necessarily normal, often it is not
even symmetrical, especially in small samples (Bollen &
Stine, 1990). Because the distribution of products is usu-
ally positively skewed, the symmetric confidence interval
based on the assumption of normality will typically yield
underpowered tests of mediation. As a consequence of
these problems, MacKinnon et al. (2002) argue against the
use of the normal distribution for assessing significance

sab = + + =( . ) ( . ) ( . ) ( . ) ( . ) ( . ) . .0 4039 0 2990 0 8186 0 1808 0 2990 0 1808 0 19852 2 2 2 2 2
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and instead suggest either comparing the obtained product
with a table of critical values established through simula-
tion research, or using an alternative approach that also
requires a table of critical values in order to assess sig-
nificance. Unfortunately, those tables and the research
on which they are based are not published in a source

conveniently available to many (Meeker, Cornwell, &
Aroian, 1981).

An alternative approach is to bootstrap the sampling
distribution of ab and derive a confidence interval with the
empirically derived bootstrapped sampling distribution.
Bootstrapping is a nonparametric approach to effect-size

Figure 2. SPSS macro output and a graphical depiction of the bootstrapped sampling distribution of the
indirect effect.
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estimation and hypothesis testing that makes no assump-
tions about the shape of the distributions of the variables or
the sampling distribution of the statistic (see, e.g., Efron &
Tibshirani, 1993; Mooney & Duval, 1993). This approach
has been suggested by others as a way of circumventing
the power problem introduced by asymmetries and other
forms of nonnormality in the sampling distribution of ab
(Bollen & Stine, 1990; Lockwood & MacKinnon, 1998;
Shrout & Bolger, 2002). It also produces a test that is not
based on large-sample theory, meaning it can be applied
to small samples with more confidence. The macros
provide a bootstrap estimate of the indirect effect ab, an
estimated standard error, and both 95% and 99% confi-
dence intervals for population value of ab. The bootstrap-
ping is accomplished by taking a large number of samples
of size n (where n is the original sample size) from the
data, sampling with replacement, and computing the indi-
rect effect, ab, in each sample. Assume for the sake of il-
lustration that 1,000 bootstrap samples have been re-
quested. The point estimate of ab is simply the mean ab
computed over the 1,000 samples, and the estimated
standard error is the standard deviation of the 1,000 ab
estimates. To derive the 95% confidence interval, the el-
ements of the vector of 1,000 estimates of ab are sorted
from low to high. The lower limit of the confidence in-
terval is defined as the 25th score in this sorted distrib-
ution, and the upper limit is defined as the 976th score
in the distribution. Using the same logic, the upper and
lower bounds of a 99% confidence interval correspond
to the 5th and 996th scores in the sorted distribution of
1,000 estimates, respectively.

As can be seen in the output, the bootstrapped esti-
mate of the indirect effect is similar to the point estimate
computed from the conventional regression analysis of
the raw data, and the true indirect effect is estimated to
lie between 0.0334 and 0.7008 with 95% confidence.
Because zero is not in the 95% confidence interval, we
can conclude that the indirect effect is indeed signifi-
cantly different from zero at p � .05 (two tailed). Ob-
serve the slight asymmetry in the confidence interval,
evidenced by the fact that the upper and lower bounds of
the confidence interval are not equidistant from the point
estimate. Through a modification of the macro as de-
scribed in Appendix A, the bootstrap estimates of ab can
be output as a new data file, and the distribution of the
estimates then depicted graphically, as in the lower half
of Figure 2. The asymmetry of the sampling distribution
of the indirect effect is evident visually, and a formal test
that skew � 0 can be rejected in this case. Bollen and
Stine (1990) and Shrout and Bolger (2002) provide other
examples with real and simulated data sets illustrating
that the sampling distribution of the indirect effect is not
always symmetrical or normal.

A second example illustrates the distinction between
mediation and indirect effects, and how different analytical
strategies can produce different results. Suppose patients
with Alzheimer’s disease are randomly assigned to receive
a drug (X � 1) or placebo (X � 0) that purportedly can in-

crease a patient’s long-term memory (Y ) through its effect
on the rate of neural regeneration (M ). Figure 3 displays
the output from the SPSS macro. As can be seen, neural re-
generation could not possibly be a mediator of the drug’s
effect by the Baron and Kenny (1986) criteria, because the
drug has no initial direct effect on memory. However, there
is evidence that the drug does have an indirect effect on
memory, with the effect occurring through neural regener-
ation. The positive, albeit nonsignificant, relationship be-
tween receipt of the drug and memory (c � 0.27) is smaller
after controlling for rate of neural regeneration (c¢ �
�0.02). The bootstrap output shows that the indirect effect
is different from zero with 95% confidence, but the Sobel
test (which incorrectly assumes normality of ab) does not.
The lower half of Figure 3 clearly shows that the assump-
tion of normality of the sampling distribution is unwar-
ranted. Indeed, a formal statistical test of the normality of
the sampling distribution estimated with the bootstrap
leads to a rejection of that assumption.

DISCUSSION

Our discussion and the macros presented here apply
only to the case of the simple mediation model, depicted in
Figure 1, panel B. Many extensions to the simple media-
tion model are, of course, possible, as noted earlier. Mac-
Kinnon, Krull, and Lockwood (2000) have demonstrated
that mediation, suppression, and confounding effects are
mathematically equivalent, although they are assessed by
looking for different patterns of relationships among vari-
ables. Given this equivalence, the method and macros de-
scribed here for the determination of mediation effects may
also be useful in the context of determining the presence
and strength of suppression or confounding effects.

In addition, it has been recommended that structural
equation modeling (SEM) be considered for assessing
mediation because it offers a reasonable way to control
for measurement error as well as some interesting alter-
native ways to explore the mediation effect (Baron &
Kenny, 1986; Holmbeck, 1997; Hoyle & Kenny, 1999;
Judd & Kenny, 1981; Kline, 1998). Models involving la-
tent variables with multiple measured indicators inher-
ently correct for measurement error by estimating common
and unique variance separately. This, in turn, increases the
likelihood that indirect effects, if present, will be discov-
ered. More complicated mediation models, such as those
with several mediators linked serially or operating in par-
allel (or both), can be explored in the context of SEM with
any combination of latent or measured variables. The
normal theory approach developed by Sobel (1982) has
been incorporated in popular SEM software applications
such as LISREL (Jöreskog & Sörbom, 1996) and EQS
(Bentler, 1997), and it is discussed in the context of SEM
by Bollen (1987) and Brown (1997). A bootstrapping ap-
proach to assessing indirect effects is implemented in the
current version of AMOS (Arbuckle & Wothke, 1999).
In addition, Shrout and Bolger (2002) provide syntax
that enables EQS to conduct tests of indirect effects with
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bootstrapping. The macros described in this article bring
this method of analysis to users of SPSS and SAS with a
simple command, but researchers should be aware that
options exist for exploring mediation in more complex
models.

Finally, it is important to emphasize that finding a sta-
tistically significant indirect effect supportive of media-

tion does not prove the pattern of causation shown in
panel B of Figure 1. For example, a model similar to that
in panel B, but with the a path reversed in direction, may
be theoretically equally reasonable to specify. The two
models could be distinguished only on the basis of the
causal priority of X and M. This causal priority may be
established in a number of ways, such as (1) manipulat-

Figure 3. SPSS macro output showing an indirect effect without satisfying the Baron and Kenny crite-
ria for mediation.
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ing X and measuring M, (2) measuring X before M, al-
lowing enough time for X to exert an effect on M, or
(3) arguing on the basis of theory or prior research that X
is always causally prior to M. As in almost any scientific
undertaking, the results of a statistical analysis can only
disprove or lend support to a hypothesis, never prove it.
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NOTES

1. Rozeboom (1956) coined the term mediation to describe a partic-
ular pattern of linear prediction among measured variables, but Judd
and Kenny (1981) and Baron and Kenny (1986) are mainly responsible
for popularizing mediation models in psychology.

2. We regard the determination of complete versus partial mediation
as relying on the pattern of observed coefficients in Figure 1, panel B.
Another way to test a complete mediation model is to estimate the
model XÆMÆY as a structural equation model, constraining the XÆY
path to zero. If the c2 statistic is significant, then constraining the XÆY
path to zero is regarded as unreasonable given the data, ruling out the
possibility of complete mediation by Baron and Kenny’s criteria.

3. It is straightforward to show how ab � (c � c¢ ). MacKinnon,
Warsi, and Dwyer (1995) provide the following simple proof:

Therefore, ab � (c �c¢ ), and a test of the significance of the former is
equivalent to a test of the latter. The only assumptions necessary for this
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equality to hold are that there are no missing data and the model is a sat-
urated simple mediation model, such as can be specified in linear re-
gression, path analysis, and structural equation modeling. If there are
missing data, or if parameters are estimated in a multilevel modeling
context (for example), this equality no longer holds, although ab is
likely to be quite close to (c �c¢ ).

4. The data set used in this example is available at http://www.
comm.ohio-state.edu/ahayes/sobel.htm.

5. In line with recommendations of the APA Task Force on Statistical
Inference (Wilkinson & the APA Task Force, 1999) and recommenda-
tions in the latest APA Publication Manual (American Psychological As-
sociation, 2001), we strongly encourage the use of confidence intervals
in the investigation of mediation hypotheses and reporting of results.

ARCHIVED MATERIALS

The following materials and links may be accessed through the Psy-
chonomic Society’s Norms, Stimuli, and Data archive, http://www.psy-
chonomic.org/archive/.

To access these files and links, search the archive using the journal
(Behavior Research Methods, Instruments, & Computers), the first au-
thor’s name (Preacher), and the publication year (2004).

File: Preacher-BRMIC-2004.zip
Description: The compressed archive file contains three files:
sobel_spss.txt, containing the SPSS macro developed by Preacher

and Hayes (2004). Instructions for using this macro can be found in the
file sobel_instr.txt.

sobel_sas.txt, containing the SAS macro developed by Preacher and
Hayes (2004). Instructions for using this macro can be found in the file
sobel_instr.txt.

sobel_instr.txt, containing instructions for using both the SPSS and
SAS versions of the macro developed by Preacher and Hayes (2004).

Link: http://www.comm.ohio-state.edu/ahayes/sobel.htm.
Description: The authors’ Web site, with macros and instructions.

Authors’ e-mail addresses: preacher@unc.edu; hayes.338@osu.edu.

Authors’ Web sites: http://www.unc.edu/~preacher/; http://www.
comm.ohio-state.edu/ahayes/.

APPENDIX A
Instructions for Use of SPSS Macro

To activate the macro, execute the command set at the end of this appendix by typing it verbatim into an
SPSS syntax file or downloading an electronic copy from http://www.comm.ohio-state.edu/ahayes/sobel.htm.
Once the command set is executed, a new SPSS syntax command, sobel, will be available for use. This com-
mand is available until SPSS is closed. To run the mediation analysis on a data set, execute the following com-
mand in SPSS:

SOBEL y=yvar/x=xvar/m=mvar/boot=z.

—where yvar is the name of the dependent variable in your data file, xvar is the name of the independent vari-
able, mvar is the name of the proposed mediating variable, and z specifies the number of bootstrap resamples
desired, in increments of 1,000 up to a maximum of 1,000,000. For example, if z is set to 3,000, the bootstrap
estimates will be based on 3,000 resamples. If z is set to 0 (or any number less than 1,000), the bootstrapping
module is deactivated.

All four of these arguments must be provided. Any cases that are system missing on any of the three vari-
ables will be deleted from the mediation analysis (i.e., listwise deletion), but they will remain in the active
SPSS data file. If the user desires any kind of imputation of missing values, imputation must be completed
prior to running the sobel command. The SPSS matrix language does not recognize user-defined missing val-
ues, so any cases with user-defined missing values will be treated as valid data.

There are no error-checking procedures in the macro, so the output should be examined carefully to ensure
there are no errors printed. The most likely causes of errors include entering the command (or the original
macro) incorrectly, using a variable that is actually a constant in the data file, or requesting a bootstrapped es-
timate when the original sample is very small. The latter error stems from the fact that bootstrap resampling
is done with replacement, and it is possible for a variable resulting from a bootstrap sample to end up being
a constant even though none of the variables are actually constants. The minimum sample size will depend on
a number of factors, but in testing, the macro usually worked as long as n was at least 25 or so. Depending
upon processor speed and the size of the sample, it may appear that SPSS has locked up or crashed once the
SOBEL command is executed. Be patient.

Because bootstrapping is based on random sampling from the data set, each run of the program will gen-
erate slightly different estimates of the indirect effect and its standard error, and the upper and lower bounds
of confidence intervals will vary from run to run. The larger the number of bootstrap samples taken, the less
variable these estimates will be over consecutive runs of the program. However, it is possible to replicate a set
of bootstrap resamples by setting the random number seed prior to executing the SOBEL command. This is ac-
complished by preceding the SOBEL command with the command SET SEED seedval where seedval is a num-
ber between 1 and 2,000,000. If the same seed and number of bootstrap samples are requested over multiple
runs on the same data, the output from those runs will be identical.
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APPENDIX A (Continued)

It is possible to save the bootstrapped estimates of the indirect effect as an SPSS data file for later examina-
tion. To do this, the following command should be added just before the END MATRIX command at the end of the
macro SAVE RES/OUTFILE � filename, where filename is any valid SPSS file name, including its storage
path or file handle. Each command in the macro should be typed on a single line, even it if appears on multiple
lines in the code below. Hit the return key when typing in the macro only after a command-terminating period (“.”).

DEFINE SOBEL (y = !charend('/')/x = !charend('/')/m = !charend('/')/boot =
!charend('/')).
SET MXLOOPS = 10000001.
MATRIX.

/* READ ACTIVE SPSS DATA FILE */.
get dd/variables = !y !x !m/MISSING = OMIT.
compute n = nrow(dd).

/* DEFINE NUMBER OF BOOTSTRAP SAMPLES */.
do if (!boot > 999).
compute btn = trunc(!boot/1000)*1000.
compute btnp = btn+1.
else.
compute btn = 1000.
compute btnp = btn+1.

end if.

compute res=make(btnp,1,0).
compute dat=dd.
/* START OF THE LOOP FOR BOOTSTRAPPING */.
loop #j = 1 to btnp.
do if (#j = 2 and !boot < 1000).
BREAK.

end if.
/* DO THE RESAMPLING OF THE DATA */.
do if (#j > 1).
loop #m = 1 to n.
compute v=trunc(uniform(1,1)*n)+1.
compute dat(#m,1:3)=dd(v,1:3).

end loop.
end if.

/* SET UP THE DATA COLUMNS FOR PROCESSING */.
compute y = dat(:,1).
compute x = dat(:,2).
compute z = dat(:,3).
compute xz = dat(:,2:3).

/* CALCULATE REGRESSION STATISTICS NEEDED TO COMPUTE c-c'  */
/* c-c' is held as variable 'ind' */.

compute con = make(n,1,1).
compute xo = {con,x}.
compute bzx = inv(t(xo)*xo)*t(xo)*z.
compute bzx = bzx(2,1).
compute xzo = {con,xz}.
compute byzx2 = inv(t(xzo)*xzo)*t(xzo)*y.
compute byzx = byzx2(3,1).
compute byxz = byzx2(2,1).
compute ind = bzx*byzx.
compute res(#j,1) = ind.
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/* GENERATE STATISTICS FOR BARON AND KENNY AND NORMAL SOBEL SECTION OF
OUTPUT */.
do if (#j = 1).
compute sd = sqrt(((n*cssq(dat))-(csum(dat)&**2))/((n-1)*n)).
compute num = (n*sscp(dat)-(transpos(csum(dat))*(csum(dat)))).
compute den = sqrt(transpos((n*cssq(dat))-
(csum(dat)&**2))*((n*cssq(dat))-
(csum(dat)&**2))).
compute r = num&/den.
compute sdbzx = (sd(1,3)/sd(1,2))*sqrt((1-(r(3,2)*r(3,2)))/(n-2)).
compute ryi = r(2:3,1).
compute rii = r(2:3,2:3).
compute bi=inv(rii)*ryi.
compute rsq = t(ryi)*bi.
compute sec=sqrt((1-rsq)/(n-3))*sqrt(1/(1-(r(3,2)*r(3,2)))).
compute sdyzx = (sd(1,1)/sd(1,3))*sec.
compute sdyxz = (sd(1,1)/sd(1,2))*sec.
compute seind = 
sqrt(((byzx*byzx)*(sdbzx*sdbzx))+((bzx*bzx)*(sdyzx*sdyzx))+
((sdbzx*sdbzx)*(sdyzx*sdyzx))).
compute byx = r(2,1)*sd(1,1)/sd(1,2).
compute sebyx = (sd(1,1)/sd(1,2))*sqrt((1-(r(2,1)*r(2,1)))/(n-2)).
compute se = {sebyx; sdbzx; sdyzx; sdyxz}.
compute bb = {byx; bzx; byzx; byxz}.
compute tt = bb&/se.
compute p =2*(1-tcdf(abs(tt),n-2)).
compute p(3,1)=2*(1-tcdf(abs(tt(3,1)),n-3)).
compute p(4,1)=2*(1-tcdf(abs(tt(4,1)),n-3)).
compute tst = ind/seind.
compute bw = {bb,se,tt,p}.
compute p2=2*(1-cdfnorm(abs(tst))).
compute LL95 = ind-1.96*seind.
compute UL95=ind+1.96*seind.
compute op={ind, seind, LL95,UL95, tst, p2}.

end if.
end loop.
/* END OF BOOTSTRAPPING LOOP */.

/* COMPUTE MEAN AND STANDARD DEV OF INDIRECT EFFECT ACROSS BOOTSTRAP 
SAMPLES */.
compute res = res(2:btnp,1).
compute mnbt = csum(res)/btn.
compute se = (sqrt(((btn*cssq(res))-(csum(res)&**2))/((btn-1)*btn))).

/* SORT THE BOOTSTRAP ESTIMATES */.
do if (!boot > 999).
compute res = {-999;res}.
loop #i = 2 to btnp.
compute ix = res(#i,1).
loop #k= #i to 2 by -1.
compute k = #k.
do if (res(#k-1,1) > ix).
compute res(#k,1)=res(#k-1,1).
else if (res(#k-1,1) <= ix).
BREAK.

end if.
end loop.
compute res(k,1)=ix.

end loop.
compute res = res(2:btnp,1).

end if.
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/* GENERATE BOOTSTRAP CONFIDENCE INTERVAL FOR INDIRECT EFFECT */.
compute lower99 = res(.005*btn,1).
compute lower95 = res(.025*btn,1).
compute upper95 = res(1+.975*btn,1).
compute upper99 = res(1+.995*btn,1).
compute bt = {mnbt, se, lower95, upper95, lower99, upper99}.

/* GENERATE OUTPUT */.
print bw/title = "DIRECT AND TOTAL EFFECTS"/clabels = "Coeff" "s.e." "t " 

"Sig(two)"/rlabels = "b(YX)" "b(MX)" "b(YM.X)" "b(YX.M)"/format f9.4.
print op/title = "INDIRECT EFFECT AND SIGNIFICANCE USING NORMAL 
DISTRIBUTION"/rlabels 

= "  Sobel"/clabels = "Value" "s.e." "LL 95 CI" "UL 95 CI" "Z"
"Sig(two)"/format f9.4.
do if (!boot > 999).
print bt/title = "BOOTSTRAP RESULTS FOR INDIRECT EFFECT"/rlabels =" 

Effect"/clabels 
"Mean" "s.e." "LL 95 CI" "UL 95 CI" "LL 99 CI" "UL 99 CI"/format f9.4.
print n/title = "SAMPLE SIZE"/format F8.0.
print btn/title = "NUMBER OF BOOTSTRAP RESAMPLES"/format F8.0.

end if.
END MATRIX.
!END DEFINE.

APPENDIX B
Instructions for Use of SAS Macro

The procedures for using the SAS version of the macro are largely the same as for the SPSS version. The user
should first execute the command set at the end of this appendix (available online at http://www.comm.ohio-
state.edu/ahayes/sobel.htm). This will activate a command called %sobel, with syntax:

%sobel(data=file, y�dv, x=iv, m�med, boot=z);

where file is the name of an SAS data file containing the data to be analyzed, dv is the name of the dependent
variable in the data file, iv is the name of the independent variable, med is the name of the proposed mediating
variable, and z specifies the number of bootstrap resamples desired. Except for command format, usage is the
same as for the SPSS version of the macro.
The macro will exclude all cases from the analysis missing on any of the three variables, where missing is de-
fined as the period character (“.”). There is no error checking in the macro, so examine the log file carefully for
errors. It will be obvious if an error occurs because a line marked ERROR will appear in the SAS log file. The same
conditions described in Appendix A will produce errors in the SAS version of the macro.
To save the bootstrapped estimates of the indirect effect as a SAS data file for later examination, the following
commands should be added just before the quiz command at the end of the macro:

create filename from res [colname='indirect'];

append from res;

where filename is any valid SAS file name.
As currently listed, the random number generator will be seeded randomly. To set the seed, thus allowing you

to replicate a set of bootstrap samples, change the “0” in the line that reads v � int(uniform(0)*n) � 1 to any
positive integer less than 232 � 1.

%macro sobel(data=,y=,x=,m=,boot=);

/* READ ACTIVE SAS DATA FILE */
proc iml;
use &data where (&y ^= . & &x ^= . & &m ^= .) ;
read all var {&y &x &m};
n=nrow(&y);
dd=&y||&x||&m;
dat=dd;
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/* DEFINE NUMBER OF BOOTSTRAP SAMPLES */
if (&boot > 999) then;
do;
btn = floor(&boot/1000)*1000;
btnp=btn+1;
end;

/* START OF THE LOOP FOR BOOTSTRAPPING */
if (&boot < 1000) then;
do;
btn = 1000;
btnp = btn+1;
end;

res=j(btnp,1,0);
do mm = 1 to btnp;

/* DO THE RESAMPLING OF THE DATA */
if (mm > 1) then if (&boot > 999) then;
do;
do nn=1 to n;
v = int(uniform(0)*n)+1;
dat[nn,1:3]=dd[v,1:3];
end;

end;
con=j(n,1,1);

/* SET UP THE DATA COLUMNS FOR PROCESSING */
x=dat[,2];
y=dat[,1];
m=dat[,3];
xt=dat-J(n,1)*dat[:,];
cv=(xt`*xt)/(n-1);
sd=sqrt(diag(cv));
r=inv(sd)*cv*inv(sd);

/* CALCULATE REGRESSION STATISTICS NEEDED TO COMPUTE c-c'  */
/* c-c' is held as variable 'ind' */
xo=con||x;
bzx=inv(xo`*xo)*xo`*m;
bzx=bzx[2,1];
xzo=con||x||m;
byzx2=inv(xzo`*xzo)*xzo`*y;
byzx=byzx2[3,1];
byxz=byzx2[2,1];
ind=bzx*byzx;
res[mm,1]=ind;

/* GENERATE STATISTICS FOR BARON AND KENNY AND NORMAL SOBEL SECTION OF
OUTPUT */
if (mm = 1) then;
do;
sdbzx=(sd[3,3]/sd[2,2])*sqrt((1-(r[3,2]*r[3,2]))/(n-2));
ryi=r[2:3,1];
rii=r[2:3,2:3];
bi=inv(rii)*ryi;
rsq=ryi`*bi;
sec=sqrt((1-rsq)/(n-3))*sqrt(1/(1-(r[3,2]*r[3,2])));
sdyzx=(sd[1,1]/sd[3,3])*sec;
sdyxz=(sd[1,1]/sd[2,2])*sec;
seind=sqrt(((byzx*byzx)*(sdbzx*sdbzx))+((bzx*bzx)*(sdyzx*sdyzx))+
((sdbzx*sdbzx)*(sdyzx*sdyzx)));
byx = r[2,1]*sd[1,1]/sd[2,2];
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sebyx=(sd[1,1]/sd[2,2])*sqrt((1-(r[2,1]*r[2,1]))/(n-2));
se = sebyx//sdbzx//sdyzx//sdyxz;
bb= byx//bzx//byzx//byxz;
tt = bb/se;
df=j(4,1,n-2);
df[3,1]=n-3;
df[4,1]=n-3;
p=2*(1-probt(abs(tt),df));
bw=bb||se||tt||p;
tst=ind/seind;
pv=2*(1-probnorm(abs(tst)));
LL95 = ind-1.96*seind;
UL95=ind+1.96*seind;
op=ind||seind||LL95||UL95||tst||pv;

end;
end;
/* END OF BOOTSTRAPPING LOOP */

/* COMPUTE MEAN AND STANDARD DEV OF INDIRECT EFFECT ACROSS BOOTSTRAP 
SAMPLES */
res=res[2:btnp,1];
mnbt = sum(res)/btn;
res=-999//res;

/* SORT THE BOOTSTRAP ESTIMATES */
do i=2 to btnp;
ix=res[i,1];
do k =i to 2 by -1;
m=k;
if res[k-1,1] > ix then;
do;
res[k,1]=res[k-1,1];

end;
else;
if res[k-1,1] <= ix then;
do;
goto stpit;

end;
end;
stpit:
res[m,1]=ix;

end;
res=res[2:btnp,1];
btpt=sum(abs(res) >= abs(op[1,1]))/btn;
if op[1,1] <=0 then;
do;
btpo=sum(res <= op[1,1])/btn;

end;
else;
if op[1,1] >= 0 then;
do;
btpo=sum(res >= op[1,1])/btn;

end;

/* GENERATE BOOTSTRAP CONFIDENCE INTERVAL FOR INDIRECT EFFECT */
lower99 = res[.005*btn,1];
lower95 = res[.025*btn,1];
upper95 = res[1+.975*btn,1];
upper99 = res[1+.995*btn,1];
xt=res-J(btn,1)*res[:,];
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cv=(xt`*xt)/(btn-1);
se=sqrt(diag(cv));
bt=mnbt||se||lower95||upper95||lower99||upper99;

/* GENERATE OUTPUT */
rn={"b(YX)" "b(MX)" "b(YM.X)" "b(YX.M)"};
cn={"Coeff" "s.e." "t" "Sig(Two)"};
print "DIRECT AND TOTAL EFFECTS";
print bw [rowname = rn colname = cn format = 9.4];
rn={"Sobel"};
cn={"Value" "s.e." "LL 95 CI" "UL 95 CI" "z" "Sig(Two)"};
print "ESTIMATE AND TEST OF INDIRECT EFFECT";
print op [rowname = rn colname = cn format= 9.4];
if (&boot > 999) then;
do;
print "BOOTSTRAP RESULTS FOR INDIRECT EFFECT";
rn={"Effect"};
cn={"Mean" "s.e." "LL 95 CI" "UL 95 CI" "LL 99 CI" "UL 99 CI"};
print bt [rowname = rn colname = cn format = 9.4];
print "NUMBER OF BOOTSTRAP RESAMPLES" btn;

end;
print "SAMPLE SIZE" n;
quit;
%mend sobel;

(Manuscript received February 18, 2003;
revision accepted for publication May 9, 2004.)
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