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This study owes its inception to a remark about a physi-
cal chemist overheard by one of the present authors at a so-
cial gathering of staff and students: “He just said the bub-
bles were bigger. He didn’t do any stats at all.” Fouriezos 
joined the conversation by commenting that sometimes 
a statistical analysis is not required, when a difference is 
literally visible. This led to wondering what a significant 
difference—say, of a t test—would look like if it were por-
trayed in a visual display by two groups of similar shapes 
that were varied in size. Would the eyes be more sensitive 
than a formal test of significance, or would it be the other 
way around? Those idle questions have been supplanted 
by the questions posed in this article: When two sets of 
similar objects with individual variation of dimension are 
judged visually, to what variables is the perceptual assess-
ment sensitive? Might the process underlying the judgment 
be a statistical one?

People make accurate judgments about the average size 
or average position of several similar objects when the 
objects are portrayed graphically and when the judgments 
are not consciously computational. Spencer (1961, 1963) 
found that his participants could accurately adjust a cur-
sor’s height to match the average height of 10 or 20 dots 
placed at varied heights on graph paper, and that they did 
so more quickly and with greater precision than when the 
task was to call out the numeric average of 10 or 20 two-
digit numbers viewed on printed cards. The arithmetic 
mean of the graphically portrayed heights came closer to 
matching the participants’ judgments than did the median 
or the midpoint of extremes (Spencer, 1963). The arith-
metic mean also seems better matched to intuitive judg-
ments of graphic central tendency than does the geometric 
mean, harmonic mean, or root mean square (Bauer, 2006). 

Ariely (2001) demonstrated that the average diameter of 
briefly displayed circles is accurately judged to be greater 
or smaller than a test circle’s diameter and that it is ac-
curately chosen from two test circles, of which one equals 
the average. Yet, when asked to declare whether a test cir-
cle had been a member of the displayed set, or when asked 
to choose which of two test circles had been among the 
previously displayed circles, subjects responded at chance 
levels. Ariely’s work suggests that working knowledge of 
the mean size of visible objects is a preattentive process 
that occurs without retention of the values of the individ-
ual elements. Extensions of Ariely’s work replicate that 
main finding (Chong & Treisman, 2003, 2005a, 2005b). 
It thus seems that humans can extract average sizes of vi-
sual objects using an accurate, effortless, and automatic 
process.

The purpose of the present experiment was to see how 
well statistical rules apply to intuitive judgments of group 
differences in size. At least two conditions should be met 
for the process to qualify as a statistical one: (1) Accuracy 
or personal confidence in answers should grow with in-
creases in the number of objects seen, and (2) accuracy 
or personal confidence in answers should diminish with 
increases in the apparent variability. Number and variance 
have been examined, but consensus about their roles has 
not yet been reached. Spencer (1961, 1963) found no dif-
ference in mean estimation with 20 points in view over 
10. Legge, Gu, and Luebker (1989) asked participants 
to choose the greater average or the greater variance of 
two groups presented symbolically as two-digit values, 
as the heights of graphic symbols in a scattergram, and as 
patches of luminance. They found that accuracy in choos-
ing the greater average in scattergram display, for which 
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overall size, and aspects of the appearance of the display 
contribute to judgments of group differences.

The nature of the task demanded of participants—to 
judge which of two fully visible groups of bars had the 
greater average height—carries a minor and a major im-
plication stemming from the fact that statistical inference 
to parent populations was not a task demand. The minor 
implication is that stimulus measures and notation are in 
population format. The major implication applies to theo-
ries about the underlying process. Without preclusion of 
others, two possibilities are suggested: a comparison of 
means and a statistical decision. Comparison of means 
posits that the two groups are mentally represented, each 
by its own average height, and the two heights are com-
pared as two single values to inform the decision. The 
automatic abstraction of the mean size of each side, as 
described by Ariely (2001), may be the process used to 
generate two mental values. If the decision is based on 
a straight comparison of means, the difference in means 
would be the best predictor of decisions made. The al-
ternative, statistical decision, posits that the decision is 
based on an involuntary statistical assessment in which 
the difference in mean heights, the group numbers, and 
the group variances are all taken into consideration in a 
way that mimics a t test—or critical ratio (CR), if we ad-
here to the minor implication. If the decision is based on a 
statistical evaluation, the raw difference in averages would 
be amplified by number and reduced by variance. Deci-
sions would be expected to conform better to CR. While 
the general tone of this project was exploratory, one ob-
jective that guided this report was to determine which of 
these two models provided the better fit to the data.

METHOD
Participants

The participants were two of the authors, a number of staff mem-
bers and students in the School of Psychology at the University of 
Ottawa, and some acquaintances of the authors. Of the 34 people 

efficiency was superior to the numeric and luminance 
displays, improved with greater numbers of displayed 
elements—but not at the rate predicted (  

__
 N  )—by a  

statistically ideal observer. The same conclusion about 
numbers of elements was reached by Sorkin, Mabry, Wel-
don, and Elvers (1991), who, using a signal detection task, 
asked their participants to state whether samples of varied 
vertical positions came from a signal (   2.4,   0.89, 
arbitrary units) or noise (   1.6) distribution. Although 
the magnitude of the perceptual signal (d ) did grow, it 
fell increasingly short of ideal as the number of elements 
increased. No effect of total number of elements, how-
ever, was seen by Chong and Treisman (2005b) when they 
asked participants to choose the side of circles with the 
greater mean diameter. The two positive studies (Legge 
et al., 1989; Sorkin et al., 1991) included smaller sam-
ple sizes than did the negative ones (Chong & Treisman, 
2005b; Spencer 1961, 1963). If the impact of number does 
grow in measure to N’s square root, the greatest differ-
ences will be seen at its low end (see Sorkin et al., 1991, 
Figures 2–4). The role played by variance has received 
less attention than has number. Variance in the displayed 
elements reduces accuracy in graphic estimation of the 
mean (Spencer, 1961, 1963).

Here we examine the statistical properties of snap judg-
ments made of two groups of visual stimuli of varied size 
and number. The goals were to identify the implicit cal-
culation of difference performed by the visual system and 
to examine the roles played by morphological factors in 
guiding decisions about relative average sizes. Partici-
pants were asked to judge the relative average heights of 
two groups of vertical bars shown beside each other (for 
an example, see Figure 1). With only a few constraints, 
the individual heights of the bars were selected at random 
and recorded along with the participants’ judgments. A 
posteriori reviews of the data using multiple regression 
analyses and d  plots were then conducted with the aim 
of understanding how variables like variance, number, 

Figure 1. Sample decision trial. Bars are displayed for 1 sec, whereas the response 
panels are constantly in view.
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deleted. The next trial’s bars were displayed 0.5 ec after the response. 
Halfway into the session, after Trial 125, the participant was invited 
to rest. Sessions took about 20 min to complete.

Independent random variables. The values of three variables 
were chosen pseudorandomly by the software: (1) the number of 
bars assigned to the left and right, (2) the individual heights of the 
bars, and (3) the difference in mean height as defined by “Student’s” 
(1908) t ratio. The number of bars was chosen separately per side 
from a flat probability distribution between 2 and 14. To keep group 
sizes similar, the absolute difference in bar number was constrained 
to be within 25% of the total number of bars. Bar height was initially 
assigned to each bar as a random normal deviate ranging between 

5 and 5 inclusive, multiplied by 20 pixels, and added to 120 
pixels. A randomly selected t value from a rectangular distribution 
of 3.1 was chosen by the software. A constant number of pixels 
was then added to or subtracted from each bar height in one of the 
groups to make the bar heights conform to the selected t value.1 The 
two sets of bars were then randomly assigned to either the left or 
right side of the display.

RESULTS

The data from 6 of the original 34 volunteers were 
dropped from analysis, 2 for failing the mean estimation 
screen and 4 for responding too timidly in the face of ex-
treme differences. In mean estimation, a judgment was 
accepted if its height was somewhere between the tallest 
and shortest members of the set. Participants were allowed 
a couple of slips, so only 23 of the 25 answers had to be 
within range. Two participants who scored only 10 and 
16 within-range answers out of 25 were excluded by this 
criterion. In difference judgments, we wanted participants 
to choose “definitely” answers at least when the two sets 
did not overlap. Trials in which none of the bars on one 
side were taller than the shortest bar on the other were 
examined to see whether the response was definite. Even 

who volunteered, 28 provided data that met the acceptance criteria 
described below. Ages ranged from 20 to 70 years. Beginning with 
participants in their 20s, the numbers of participants by decade were 
15, 5, 2, 4, 0, and 1.

Apparatus and Stimuli
The stimuli were presented on the 15-in. (38-cm) LCD screen of 

a laptop personal computer set to a resolution of 1,024  768 pix-
els. Individual bars were 16 pixels (4.4 mm) wide and averaged 120 
pixels (33 mm) in height. Participants were initially seated to view 
the display from a distance of 1.4 m. A 16  120 pixel bar thus cor-
responded to 0.18º  1.3º of visual angle. (Stimulus sizes will be re-
ported in pixels instead of visual angle because viewing distance was 
not enforced. The scale factor for visual angle at a viewing distance 
of 1.4 m is 0.011 degrees per pixel.) Outlined by 1-pixel-wide black 
lines, the interiors of the bars were filled with moderately varied 
hues of blue and brown. Color variety was provided partly for visual 
interest and partly to enhance bar-to-bar individuality. For those par-
ticipants with experience in interpreting histograms, the varied color 
served as a reminder that these were clusters of individual bars, not 
summaries of data in the form of histograms. The bars were pre-
sented against a light gray background. The experiment was run with 
an in-house program compiled using Microsoft Visual Basic 6.

Procedure 
Participants were tested individually, either in the lab or at home. 

Each participant tested in the lab sat on a sofa, with the computer 
placed on a coffee table 1.4 m away and with an optical mouse 
placed at his or her right or left side. For those tested at home, either 
the lab arrangement was replicated or the participants were tested at 
a dining room table. Illumination was not controlled beyond ensur-
ing that indoor lighting was uniform and that the display was clearly 
visible.

Following instructions, demonstrations, and a little practice until 
they declared themselves ready, participants supplied demographic 
data on age, gender, handedness, and formal statistical training. Test-
ing comprised two tasks: mean estimation and difference judgment. 
Mean estimation was a preliminary 2-min task used to ensure that 
the participants had a working understanding of the term average. 
They were shown only one group at a time of vertical bars of varied 
height that were horizontally centered and rose from the bottom edge 
of a 250  250 pixel frame (Figure 2). The number of bars in each 
group was selected randomly from a flat distribution between 4 and 
13. The heights of the bars were selected randomly from a normal 
distribution (   120,   20 pixels, range 5 ).

The task was similar to Spencer’s adjustment of a cursor to the 
estimated average of graphically displayed data. Participants in the 
present study had 5 sec to drag a horizontal line vertically and to 
register, by clicking the mouse button, the position corresponding 
to what they judged to be the average height of the bars. When the 
mouse button was pressed, the vertical position of the cursor was 
recorded, along with the heights of the displayed bars. One half-
second later, a new set of bars was displayed for the next trial. A 
display was replaced with a new set of bars if no answer was given 
within the 5-sec time limit. This procedure ran until 25 estimates 
were obtained.

The main task was difference judgment. On each of 250 trials, 
participants were shown two sets of vertical bars centered in the left 
and right halves of a 500  250 pixel frame for 1 sec (Figure 1). Five 
response panels with labels “Left Bars Definitely Taller,” “Left Bars 
Possibly Taller,” “Too Close to Say,” “Right Bars Possibly Taller,” 
and “Right Bars Definitely Taller” were aligned horizontally below 
the bars. The response panels were always in view. After each pre-
sentation, the participant had unlimited time to click on one of the 
response panels using the mouse-controlled cursor. An integer be-
tween 2 and 2, inclusive, was recorded as the response, cor-
responding, respectively to the labels above, along with the heights 
of the bars. The participant could also indicate having missed the 
stimulus or that he or she wanted the just-registered response to be 

Figure 2. Mean estimation task. Used to ensure that partici-
pants appreciated the meaning of “average,” the task was to align 
the horizontal line with the average bar height.
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against the combination of a large absolute mean differ-
ence, a large variance, and a small number. Since this cor-
relation was well below that at which collinearity begins 
to be a problem (r  .7–.8; Meyers, Gamst, & Guarino, 
2006), it was not taken as a threat to the interpretation of 
the results. The results of the regression analysis are sum-
marized in Table 2. Four of the measures were found to be 
significant predictors of participants’ responses. The most 
important factor was , accounting for 60% of the vari-
ance. Corresponding precisely to the task demanded of the 
participant, ’s prominence was expected. Highly signifi-
cant contributions of N and  were also detected, but, by 
accounting for a little more and a little less than 1% of the 
variance, respectively, these variables seem to play minor 
roles in comparison with . The overall height ( ) was 
found to be marginally significant ( p  .05). Its marginal 
significance combined with its accounting for less than 

then, we insisted on definite judgments on only a simple 
majority of such trials (median  7 trials administered per 
participant). The data from 4 participants were dropped 
for answers no stronger than “possibly” on at least half of 
their extreme-difference trials.

The results of the mean estimation task are not reported 
in detail because of a suspected artifact. Participants’ 
 responses—the cursor heights—seemed to underestimate 
the arithmetic mean by approximately 4 pixels (3%). Be-
cause the response was registered by clicking the mouse 
button, and because the optical mouse was often at the 
participant’s side on the seat of a sofa, we cannot rule out 
the possibility that the underestimate was an artifact of 
slight downward motion of the mouse when the responses 
were made. Accordingly, the data from our mean estima-
tion task cannot be used to infer the sort of mean (arith-
metic, geometric, etc.) that corresponds best to the subjec-
tive average. For this we rely instead on Spencer’s (1963) 
and on Bauer’s (2006) findings that the arithmetic average 
corresponds best.

Each participant contributed 250 difference judgments. 
A median of 2.5 trials (1%) were marked as having been 
missed by the participants. At the high end, 11, 11, 12 and 
20 (the 70-year-old) trials were marked as having been 
missed. The median number of trials deleted by the par-
ticipants was 0. Six participants deleted 1 of their trials, 
1 participant deleted 4, and 1 participant deleted 8. When 
trials were missed or deleted, new trials were administered 
in order to bring the total to 250.

Multiple Regression Analyses
The participants’ judgments, recorded as integers from 
2 to 2 inclusive, were the sole dependent variable. 

Measures calculated from the heights of the displayed 
bars were treated as independent variables. Their roles 
were examined in three multiple regression analyses, each 
performed on 7,000 judgments (n  28 participants  
250 trials). The first analysis was conducted on elemen-
tary statistical measures alone. The second analysis was 
a moderation analysis to help define the nature of the in-
ternal statistical judgment. In the third analysis, statistical 
measures were combined with factors related to the ap-
pearance of the bar groups.

Elementary statistical measures. Basic statistical 
computations derived directly from the displayed heights 
were submitted as independent variables in the first step-
wise multiple regression. The six measures were , N, 

, , N, and , where  stands for a right-side minus 
left-side difference in the measure and  stands for the sum 
of right- and left-hand sides. N is the number of bars,  rep-
resents the group mean height, and  stands for the standard 
deviation of group height. As can be seen from the correla-
tion matrix of Table 1, these six measures were generally 
independent of each other. Of the 15 correlations, 14 were 
close to 0. The exception of a .30 correlation between 

N and  may have been an artifact of the stimulus selec-
tion process: Drawing from a flat distribution of t values 
between 3.1 and 3.1 inclusive, a stimulus set would be 
rejected if its bars did not fit within the limits of the display 
area. Thus, the selection process may have exerted a bias 

Table 1 
Correlation Matrix of Predictors: Statistical Elements

Variable  M  SD      N

0.46 19.26
24022 24.01 .01

20.13 7.27 .01 .03*

35.52 7.85 .01 .01* .00
N 0.01 2.37 .01 .02 .07* .01*

N  17.6 6.02 .02 .02 .00   .30* .01
*p  .001.

Table 2 
Stepwise Multiple Regression: Statistical Elements

 Variable  B  SE   R2  

 059 .001 .778** .601
N .079 .005 .129** .016

.014 .001 .071** .005

.001 .000 .017** .000

Note— N and  did not meet the entry criterion ( pIN  .05). *p  .05. 
**p  .001.

Table 3 
Moderation Analyses of Statistical Elements 

in Interaction With 

Step  Variable  B  SE   R2  

Step 1 .059 .001 .776**

N .000 .002  .002 .601**

Step 2  N .001 .000 .275** .013**

Step 1 .059 .001 .776**

.002 .001  .010 .602**

Step 2  .001 .000 .509** .012**

Step 1 .059 .001 .776**

.001 .000 .017* .602**

Step 2  .000 .000 .124 .000*

Step 1 .059 .001 .777**

N .076 .005 .124** .617**

Step 2  N .000 .000  .009 .000

Step 1 .059 .001 .776**

.012 .002 .061** .605**

Step 2  .019 .009   .017* .000*

*p  .05. **p  .001.
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scripts R and L designate right and left sides. The posi-
tively moderating effect of N on  in the regression 
analysis and the steeper slope of the discrimination func-
tion at the greater group sizes (Figure 3) agree with each 
other in recommending that  is enhanced by greater 
numbers of bars. Similarly, the negative moderation of  

0.1% of the variance suggests that it was an unimportant 
factor in guiding participants’ responses. As contributors on 
their own, the sum of the left and right standard deviations 
( ) and the total number of bars ( N ) failed to meet the 
entry criterion ( pIN  .05).

Moderation analysis. The purpose of the moderation 
analyses was to see whether any of the statistical measures 
with null effects, given the scaling used, were contributing 
to the responses. For example, if overall variance were to 
reduce apparent differences, responses would be pushed 
toward 0 from positive differences above and from nega-
tive ones below. Thus, the slope of the response–  func-
tion might rotate with changes in variance without an ap-
preciable difference in its general elevation.

The elementary statistical measures other than  
were tested for status as moderators of  in five analy-
ses (Table 3). Each analysis first examined  with one 
of the other five elementary measures as separate pre-
dictors, then examined each pair of predictors with its 
interaction product. Both N and , neither of which 
was found to be significant on its own, were found to be 
highly significant factors in interaction with . Each of 
these interactions added about 1% explained variance. 
The moderating effect of these two variables is also il-
lustrated in Figure 3, where the data were divided into 
high and low N groups or split into high and low  
halves. Separate plots of d  versus  showed steeper 
discrimination functions when the total variance ( ) 
was low and when the total bar number ( N ) was high. 
(The d  computations are detailed below in conjunction 
with Figure 4.) The other three variables that were tested 
for moderation were either marginally significant in in-
teraction with —but added less than 1% to R2 ( , 

)—or were not significant in interaction ( N ). As 
expected, d  plotted against high-versus-low halves of 
these marginally significant and nonsignificant variables 
resulted in indistinguishable line pairs (not illustrated). 
Thus, two variables, N and , were found to possess 
a moderating influence over . The impact of N was 
positive, in that greater numbers of bars strengthened 
discrimination, whereas that of  was negative, in that 
greater variance overall weakened discrimination.

CR. The moderation analyses pointed to CR as a plau-
sible representation of the implicit statistical calculation at 
the core of the decision about which side had the greater 
average. CR was the precursor to the modern t test. The 
t test progressively replaced CR during the second quarter 
of the last century (Rucci & Tweney, 1980), as research-
ers gradually implemented Student’s (1908) solution to 
the problem of underestimating population variance from 
samples. Like t, CR is a ratio of the difference in means to a 
standard error based on both groups. It is calculated thus:

CR R L

R

R

L

L

2 2

N N

,

where  represents the mean bar height, 2 represents the 
variance, N represents the number of bars, and the sub-
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Figure 3. Discrimination as a function of number and variance. 
Median split of number (upper) shows a steeper d  function of  
when the total number of bars is greater than 18 than when fewer 
than 18 bars are displayed. Median split of the sum of left and 
right standard deviations,  (lower), shows a steeper discrimina-
tion function when the variance is lower. Printed limits are 95% 
confidence intervals (CIs) around slope, b. Omitted for clarity, 
95% CIs are approximately as big as the symbols, comparable to 
the CIs in Figure 4.
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the sum of standard deviations ( ), and the total number 
of displayed bars ( N ).

Main regression. CR was entered into the main step-
wise regression analysis to represent the implicit statis-
tical calculation. Because CR incorporates , N, and 

, these elements were omitted. The difference in bar 
number ( N ) and the difference in standard deviations 
( ) were entered into the analysis because they were 
found to be highly significant factors on their own in the 
first regression analysis. The overall height ( ) was also 
entered into the final analysis because it attained marginal 
significance in the first analysis. The roles of apparent dis-
order and outliers were also examined. Apparent disorder 
was calculated using Lathrop’s . Having originally de-
veloped this index to measure subjective variability when 
stimuli were delivered sequentially (Lathrop, 1966), Lath-
rop (1967) applied this index to presentations of adjacent 
bars viewed all at once. If tall and short bars are positioned 
right beside each other, the variability will seem great. If, 
instead, the bars are more or less in progressive order by 
height, with small adjacent-bar differences, the same set 
of bars might seem more uniform. The measure  is the 
square root of the ratio of mean vertical distance between 
adjacent bars to the population standard deviation of the 
group, defined thus by Lathrop (1967):

x x

N

i i
i

N

1
1

1

1( )
.

Typically, s were M  1.12  SD  0.12. They were 
greater when short and tall bars were intermingled, but 
were well under 1 when a lengthy series of bars occurred 
in nearly perfect ascending or descending order. Finally, 
four variables representing outliers were included: These 
were the tallest and shortest bars, on the left and on the 
right. To properly scale these as outliers, we calculated 
their standard scores from the heights of bars within their 
own displayed sets.

Table 4 shows that, whereas many predictor correla-
tions were highly significant, their actual values were 
relatively low. Correlations among the variables sensitive 
to appearance—Lathrop’s  and the outliers—were gener-
ally higher. As can be seen in Table 5, CR dominated the 
analysis by accounting for 63% of the variance on its own. 
The only other variable to increase the explained variance 
by more than 1% was N. The remaining factors, with the 
exception of the marginally significant , were statisti-
cally highly reliable, but they each accounted for less than 
1% of the variance. Display disorderliness, as measured by 
Lathrop’s , was a member of this group, as were the tall 
outliers, designated zHighL and zHighR. Given the scal-
ing of the response, disorder on the left ( L) was expected 
to contribute positively, whereas tall outliers on the left 
(zHighL) were expected to contribute negatively, with op-
posite predictions for their right-hand counterparts. Short 
outliers (zLowL, zLowR) were expected to perform in the 
direction opposite to their tall counterparts. The short out-
liers were not correlated well enough with responses to 

by  and the steeper discrimination function at lower val-
ues of overall variability are consistent with  being per-
ceptually diminished by the overall variance. CR, as does 
Student’s t ratio, incorporates these variables with : CR 
grows with greater number and shrinks with greater vari-
ance. CR was thus included as a potential computation to 
represent the mental summary extracted from the display 
by visual cognition.

The other computations that were considered as po-
tential representatives were the difference in means ( ), 
Cohen’s d, and Student’s t. Only one measure could be 
submitted to the final regression because the correlations 
between them were close to 1. The difference in means 
( ) measures precisely the feature the participants were 
asked to judge. Cohen’s d is sensitive to variance, but not 
to overall number. Between t and CR, which differ from 
each other only in whether one uses degrees of freedom 
or actual numbers to calculate variance, CR is the theo-
retically justified choice by virtue of the lack of inference 
demanded by the task. In testing for empirical support for 
the choice of CR, individual (n  28) correlations were 
determined between raw responses and four measures 
calculated from 250 displays: , a population version 
of Cohen’s d, Student’s t, and CR. Mean Pearson’s cor-
relations with responses were , .788; Cohen’s d, .794; 
Student’s t, .803; and CR, .806. The difference between t 
and CR was not only tiny, but was also the smallest of all 
paired comparisons. Nevertheless, a repeated measures 
t test found it to be statistically robust [t(27)  6.1, p  
10 5]. CR thus seemed—both on theoretical grounds and 
with empirical justification—to be the choice to represent 
the internal metric, incorporating into one calculation , 
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Figure 4. Discrimination plots of d  as a function of critical 
ratio, with 95% confidence corridor as dashed lines. Inset shows 
similar plot of d  as a function of the right- minus left-hand dif-
ference in mean height.
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unexplained variance around CR (Figure 4) seems to be 
due to random error around a straight line (note the point 
at CR  3). In the case of  (Figure 4, inset), however, 
the points seem to systematically follow a cubic trend. Fit-
ting the data to a third-order polynomial helped CR a little 
(R2 increased to .9973 with the quadratic and cubic com-
ponents), whereas, in the case of , the Order 3 poly-
nomial helped a great deal (R2  .9993). Thus, whereas 
adding a second- and third-order term to CR explained 
an additional 53% of the .0057 residual variance, adding 
the two terms to  accounted for nearly all (91%) of its 
.0078 unexplained variance.

Individual raw data averaged into half-CR-unit bins 
were fitted using Campbell, Evans, and Gallistel’s (1985) 
broken-line fit method. This is a conventional least-squares 
fit of growth data to (1) an optional horizontal, lower pla-
teau; (2) a positively sloped line; and (3) an optional upper 
plateau, with breakpoints forced to occur at abscissa test 
points. Figure 5 shows mean judgments, standard errors, 
and fitted lines for the participant who ranked 14th (thus 
deemed to be typical) according to the proportion of vari-
ance explained by the fit (R2 in Figure 5). The proportion 
of explained variance for these 28 participants was not cor-
related with any of the basic demographic measures: age, 
r  .11, n.s.; sex, r  .09, n.s. (14 males); handedness, 
r  .02, n.s. (only 1 left-handed person); and statistics 
training, r  .27, n.s. (mode  one or more undergraduate 
courses). The central line of the broken-line fit was used 
to interpolate CR individually at response levels of 1 
and 1, corresponding to answers at the “possibly” crite-
rion. For bars taller on the left, 95% confidence limits for 
the 28 participants were 1.72  CR  1.39, and for 
bars taller on the right, 1.37  CR  1.67. Respectively, 
these confidence limits would correspond to one-tailed 
personal probabilities of .043 to .082 and .085 to .047.

DISCUSSION

CR was the most important predictor of difference 
judgments, accounting for the greatest share (63%) of the 
variance. Thus, confidence in the decision about which 
group of bars has the greater average is enhanced by the 
total number of bars and diminished by the variance. To 
a first approximation, intuitive decisions about relative 
averages seem to follow rules of statistical inference. It is 

be admitted into the analysis. As was the case with the 
regression on statistical elements,  attained marginal 
significance but evidently contributed a proportion below 
.0005 to the explained variance.

If d  represents psychological magnitude, and if the in-
ternal computation resembles CR, then, as Sorkin et al. 
(1991) have suggested, d  might be predicted from CR 
calculated from the displayed heights. In the main por-
tion of Figure 4, d  is plotted as a function of CR using 
the response distribution (Gescheider, 1997, p. 120). The 
7,000 observations were sorted into an array of 13 CR 
levels ( 3 to 3 inclusive at 0.5 CR increments) by five 
response categories (“Left Bars Definitely Taller” through 
“Right Bars Definitely Taller”). Hits and false alarms 
were unweighted counts of possibly and definitely right 
responses for all positive CRs. The false alarm count was 
taken from the response bins at CR  0 (i.e., 0.25  
CR  0.25). Misses, therefore, were the sums of too close, 
possibly left, and definitely left responses. Similarly, neg-
ative CR hits and false alarms were the total number of 
possibly and definitely left responses taken from trials in 
which CR was substantially negative. Hit and false-alarm 
proportions were expressed in ratios to total responses at 
each CR level (M  511 trials per CR level, SD  25; 358 
trials beyond | CR |  3.25 were disregarded). The linear 
d –CR relation accounted for .9943 of the variance. The 
95% confidence corridor around the 12 points is shown 
as a dashed line. The inset in Figure 4 represents a similar 
exercise performed with the data sorted by  instead of 
CR. With .9922 explained variance, the d –  relation-
ship was also a good fit to a straight line. Visually, the 

Table 4 
Correlation Matrix of Final Predictors

Variable  M  SD  CR  N    R  L  zHighR  zHighL  zLowL

CR 0.04 1.45
N 0.01 2.38 .01

0.13 7.26   .01 .07**

240 24.00   .01 .02* .03*

R 1.13 0.12   .00 .07** .01 .01
L 1.12 0.12 .01 .08**   .01 .00 .17**

zHighR 1.58 0.38   .00 .18** .02* .01 .22** .16**

zHighL 1.58 0.38 .04** .16** .01 .01 .17** .23** .18**

zLowL 1.58 0.38   .02 .14** .02* .00 .18** .23** .20** .21**

zLowR 1.58 0.37   .00 .12** .02* .01 .23** .17** .20** .19** .20**

*p  .05. **p  .001.

Table 5 
Stepwise Multiple Regression of Critical Ratio (CR), 

Statistical Elements, and Appearance Variables

 Variable  B  SE   R2  

CR .59 .01 .80** .631**

N .06 .00 .10** .015**

.01 .00 .07** .005**

R .64 .09 .05** .002**

L .58 .09 .05** .002**

zHighL .18 .03 .04** .001**

zHighR .17 .03 .04** .002**

 .00 .00 .02* .000*

Note—The variables zLowR and zLowL did not meet inclusion criterion 
( pIN  .05). *p  .05. **p  .001.
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number—it is a factor, but not quite by the n1⁄2 recom-
mended by statistical orthodoxy.

Why would a statistical evaluation underlie the deci-
sion when a simple difference gives the right answer? The 
question invites speculation: As illustrated by examples 
cited by Chong and Treisman (2003, 2005a, 2005b), the 
natural world contains sets of varied sizes of the same 
object (flowers, exposed river stones, animal herds, etc.). 
Natural sets of identical dimension are relatively uncom-
mon. Assuming a selection pressure to make accurate deci-
sions about where better to forage or to hunt, and granting 
that life forms are characterized by temporal fluctuation 
(e.g., daily, seasonal, annual), identifying where to find 
the richer resource seems better suited to an inferential 
process that takes variability and number into account. In 
other words, since the natural world has both static and dy-
namic variability, trustworthy knowledge is the statistical 
generality, not the particular instance of which herd has 
smaller members or of which patch has larger berries.

After CR, the statistical variable to contribute some-
thing to the decisions was N, the difference in the num-
ber of bars. Increasing explained variance by only 1.5%, 

N seems to be a minor contributor. Recall, however, that 
N was restricted in range: Differences in number had to 

be within 25% of the total number of bars, so differences 
ranged from 0 to 5. Had N’s range been unrestricted, it 
undoubtedly would have yielded a better result. Neverthe-
less, although its contribution was shortchanged by half, 
its explained variance still falls more than one order of 
magnitude below CR’s explained variance. It is difficult 
to determine whether the contribution of N represents an 
artifact of the display or a general tendency among par-
ticipants to choose the greater number. Since the bars in 
our display had definite width, greater numbers occupied 
greater areas. The artifact might be the error of partially 
confounding greater area with greater average height. On 
the other hand, perhaps there is some ecological sense to 
confounding greater number with greater size: In choos-
ing which patch of berries to approach, a large number 
of ordinary berries in one patch may be just as attractive 
as a few large berries in another. Without studies deliber-
ately designed to test N’s role, we defer dismissing it as a 
stimulus artifact or treating it as a variable with underlying 
significance.

The appearance variables (numbered 5–10 in Table 4) 
made a weak showing. Their small role is surprising 
because these visual features are readily seen; note the 
salience of the short outlier in Figure 1. Lathrop’s  co-
efficient was significant for both sides. Disorder on the 
right was signed negatively, whereas disorder on the left 
exhibited a positive slope. Thus, disorder, like , acts to 
obscure the perceived difference in average height. Tall 
outliers (zHighL and zHighR) were significant variables, 
but short outliers were not found to be significant. Tall 
outliers on the right contributed positively, whereas tall 
outliers on the left were negatively signed; given the scal-
ing, this meant that tall outliers added to the strength of 
the response. The overall weak contribution of appearance 
variables as a group—combined, they explained less than 
1% of the variance—suggests that the process that evalu-

important to recognize that, had the data been related to 
the t statistic, the results would have been nearly identical. 
The correlation between t and CR was almost perfect, so 
we do not wish to place emphasis on the fact that CR was 
chosen over t; t would have done a fine job, had it been 
used. The point to emphasize is how well the general form 
of CR or t as a class accounts for statistical judgments. 
Having said this, we confess curiosity that, when corre-
lated to responses, CR (mean Pearson’s r  .806) edged 
out t (.803) by a tiny, but very consistent degree ( p  
10 5) in individual comparisons. Since the task was not 
an inference to hidden populations, but a decision about 
groups with all elements visible, CR is theoretically the 
appropriate choice over t. Could the slight superiority of 
CR represent empirical confirmation of a statistical pro-
cessor at the heart of visual judgments of average size that 
distinguishes sample from population? It would be very 
interesting to design an experiment in which inferences 
from samples were pitted against judgments about groups 
in order to see whether t would be used for inferences from 
samples and CR for judgments about small populations.

Normatively, the correct answer for the task was , but 
raw responses and regression analyses on one hand, and 
d  plots on the other, were consistent with a statistical per-
sonal assessment over the normative difference in means. 
Despite the nonstatistical nature of the task, judgments 
followed CR more closely than they did . An informal 
inspection of the behavior of N and  in accounting 
for residue remaining after CR or  showed N and 

 regression weightings, with  as the main factor 
tested, but showed opposite weightings—and smaller 
 coefficients—with CR as the main factor. Thus, whereas 
CR provided a more accurate description over , too 
much weight was accorded to N and  by the actual 
computation of CR; its computation should be adjusted a 
little in the direction of . Both Legge et al. (1989) and 
Sorkin et al. (1991) came to the same conclusion about 
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Figure 5. Raw responses from 1 participant sorted into 0.5-unit-
wide critical ratio (CR) bins, averaged, and fitted to up to three 
line segments. Participant 29 illustrates median performance, as 
she ranked 14th best fit of n  28. Dashed lines represent inter-
polated CRs corresponding to a judgment of “Possibly Taller” on 
the left (at ordinate  1) or right ( 1).
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NOTE

1. Since inferences to parent populations were not requested of the 
participants, the z distribution, as the software’s display engine, would 
have been more in keeping with the task than was the t distribution. But 
because this was just a mechanism to ensure that larger differences were 
frequently displayed, we decided that it would make no difference to the 
participants’ judgments whether t or z drove the relative frequencies of 
displayed differences.
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ates averages and differences in averages is effective at 
seeing through display noise. 

Snap judgments about differences in average size 
thus seem to depend on an imperfect statistical process. 
It is statistical because of its sensitivity to number and 
variance. It is imperfect for two reasons: The perceptual 
magnitude does not grow in precise measure with the 
square root of the number of elements, nor does it shrink 
in ideal correspondence to standard error; and it tends to 
confound greater number with greater size. Neverthe-
less, the process is described better by CR, and almost 
equally well by t, than it is by . Is this statistical pro-
cess sensory, perceptual, or cognitive? In their review of 
statistical reasoning about verbally presented problems, 
Sedlmeier and Gigerenzer (1997) concluded that people 
accurately integrate the law of large numbers in making 
an intuitive assessment about the probable value of one 
sample, but that they are inaccurate when it comes to as-
sessing the sampling fluctuations of an average. Failure to 
make use of sample size and variance continues to be seen 
when verbal reasoning is probed (Obrecht, Chapman, & 
Gelman, 2007). The fidelity to CR demonstrated by judg-
ments of group differences in our data show that sampling 
dispersion is inherently understood by the mechanisms 
underlying these visual assessments. Rosenholtz (2000) 
has recently modeled the detection of boundaries between 
different visual textures using statistical algorithms. Her 
simulations seem adept at locating transitions in pattern 
in quilt-like visual stimuli. Perhaps statistical algorithms 
are employed widely in early stages of perceptual process-
ing; it will be interesting to extend the present findings 
to other visual judgments, and to other sensory channels 
as well. For now, we take the view that the accurate use 
of statistical methods takes place early in the sensory–
perceptual–cognitive chain, yielding statistical summaries 
that percolate up to later stages.

What does it take to get a person to declare a possible 
difference? The analysis illustrated in Figure 5, in which 
CR was interpolated using response criteria of 1 (possibly 
left) and 1 (possibly right), yielded 95% confidence limits 
of 1.5 to 1.7 around CR, corresponding to a one-tailed prob-
ability of .04 to .08. In guiding the decision about magni-
tude judgments in the face of noisy information, the visual 
system evidently uses a criterion that matches the minimal 
level (i.e., p  .05) customarily used in psychological re-
search. It is not quite tempting enough to wonder whether 
this is more than an amusing coincidence.
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