
What affects response bias? How can response bias 
be separated from discriminability? An answer to these 
questions is usually provided by signal detection theory: 
Response bias is separated from discriminability on the 
basis of the observed hit and false alarm rates, and the re-
sponse bias parameter is assumed to be influenced by the 
prior probability of the signal, as well as by the payoffs 
for each type of error (Green & Swets, 1966; Swets, Tan-
ner, & Birdsall, 1961; see Maddox, 2002, for a review of 
numerous tests of these assumptions). A major limitation 
of the classic signal detection model is that it provides 
a static (fixed-sample) description of the decision pro-
cess, and is therefore unable to simultaneously account 
for choice and response time (RT). Sequential-sampling 
models (e.g., Laming, 1968; Link & Heath, 1975; Rat-
cliff, 1978) provide a dynamic extension of signal de-
tection theory that elegantly accounts for the systematic 
relations between choice and RT. Like the classic signal 
detection model, sequential-sampling models make a dis-
tinction between discriminability and response bias, but 
they can account for speed–accuracy trade-offs as well. 
Yet whereas the effects of prior probability on response 
bias have been examined (see, e.g., Green, Smith, & von 
Gierke, 1983), the effects of payoffs have rarely been 

studied within the sequential-sampling framework. Only 
recently did Diederich and Busemeyer (2006) investigate 
how payoffs affect response bias in sequential-sampling 
models of perceptual decision making. They showed how 
three different hypotheses incorporate response biases 
into a sequential-sampling decision process. These three 
hypotheses are as follows.

The bound-change hypothesis states that payoffs af-
fect the distance of the starting position of the decision 
process to each decision bound. This idea goes back to 
Edwards (1965; see also Rapoport & Burkheimer, 1971), 
who derived the optimal stopping rule for the sequential-
 sampling model—that is, the stopping rule that maximizes 
expected payoff. According to this rule, the payoffs bias 
the decision bounds. When larger losses are produced by 
incorrectly choosing one option, say A, more evidence is 
required to stop and choose Option A as compared with 
another option, say B. That is, the criterion for choosing 
Option A is larger than the one for choosing Option B. The 
same is true for Option B, as well. Changing the decision 
bounds in response to payoff biases can therefore guar-
antee an optimal decision rule for sequential-sampling 
models. This assumption was also incorporated into the 
models of Link and Heath (1975) and Ratcliff (1978).
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stant, and three payoff matrices were randomized within 
one block of trials; in the second presentation mode, the 
payoff matrix was held constant, and four time limits were 
randomized within one block of trials.

2. Do participants sometimes neglect payoffs and some-
times neglect stimulus information? On some trials, they 
might pay attention to payoffs and ignore the stimulus in-
formation altogether, whereas on other trials, they might 
process the perceptual stimulus information and ignore the 
payoffs. That is, choice probability differences may merely 
be due to different strategies. This idea is captured by a new 
hypothesis, called the mixture-of-processes hypothesis.

In the following sections, I present a within-subjects 
perceptual discrimination experiment, and then I outline 
the underlying process model and the specific hypotheses 
and their predictions. Finally, a fit of the models to the 
data is provided to help decide how payoffs affect percep-
tual decision tasks.

EXPERIMENT

Method
Materials. A same/different line judgment task was performed 

with the sensitivity measure held fixed at a moderate level. The stim-
uli were presented on a 21-in. monitor with a resolution of 640  
480 pixels. They consisted of two white lines 2 pixels in width and 
at least 100 pixels in length, presented horizontally on the black 
computer screen, always 160 pixels (96 mm) apart. For each trial, the 
entire display of both lines shifted horizontally across the screen in a 
random fashion but remained the same vertically.1 In same stimuli, 
the constituent lines were either 100 pixels (60 mm) or 112 pixels 
(67.2 mm) long, whereas in different stimuli, one line was 100 and 
the other was 112 pixels long. The payoff matrix was displayed as 
follows. The top row indicated the possible responses for “same” 
(two white lines of the same length, one on top of the other) and “dif-
ferent” (an oblique line through two white lines of the same length). 
Both symbols were surrounded by boxes in order to parallel the dis-
play on the response box. Below this row, the left column of the 
display showed labels for the stimuli. The top label referred to same 
stimuli, symbolized by two white lines of the same length on top of 
each other. The bottom label showed two lines of different lengths, 
one on top of the other, and referred to different stimuli. The payoff 
values to elicit response bias were arranged in the matrix formed by 
the labels. Three levels of bias (larger losses for incorrectly choos-
ing the “same” response, symmetric payoffs, and larger losses for 
incorrectly choosing the “different” response) were included. The 
specific payoff values are found in Table 1.

Payoffs for a correct response appeared in blue with a plus sign, and 
payoffs for an incorrect response appeared in red with a minus sign.

In this study, four levels of deadline time limits—450, 600, 750, 
or 900 msec—were imposed on the participant. The allowed time in 
milliseconds for a particular trial appeared below the display of the 
payoff matrix. In addition to the time limit displayed before each 
trial, three stress beeps (equidistant rectangular signals, 65 dB SPL) 

The drift-rate-change hypothesis states that payoffs 
affect the drift rate of the decision process, or in other 
words, the way that evidence is encoded. If the payoffs 
favor Option A, the increments of evidence for that op-
tion are larger than those for unbiased payoffs. If the pay-
offs favor Option B, however, the increments of evidence 
for Option A are smaller than those for unbiased payoffs. 
That is, the payoffs affect the accumulation rate of the 
 sequential-sampling process. This idea was brought for-
ward by Ashby (1983) and Ratcliff (1981).

The two-stage-processing hypothesis assumes two pro-
cesses, one for processing payoffs and another for pro-
cessing stimulus information. This idea, proposed by Die-
derich (1997), states that the decision maker views the 
task as a multiattribute decision problem. The two primary 
attributes to consider are the payoffs and the stimulus evi-
dence. According to this model, the decision maker begins 
the sequential-sampling process by evaluating one of the 
attributes (e.g., the payoffs), and then switches to process-
ing the second attribute (e.g., the evidence). That is, two 
accumulation processes take place, one operating for a 
period of time during the processing of the first attribute 
(payoffs), and the second operating later, when process-
ing the second attribute (stimulus evidence). The payoffs 
determine the drift rate during the first stage of process-
ing, and stimulus information influences drift rate in the 
second stage of processing.

These hypotheses were tested in a perceptual same/dif-
ferent task, and in order to investigate in depth the dynam-
ics of the approaches, the task had to be completed within 
three different time limits. The main results of the Die-
derich and Busemeyer (2006) study were as follows: The 
drift-rate-change hypothesis produced the poorest account 
of the results, because incorporating the bias into the drift 
rate predicts increasing error rates with increasing time 
limits. Since the error rates in the data decreased with in-
creasing time limits, this hypothesis was not considered 
any further. The bound-change hypothesis produced a 
slightly better fit in terms of choice probability patterns, 
but it did worse than the drift-rate-change hypothesis in 
terms of the root-mean squared errors. Overall, the two-
stage-processing hypothesis provided the most accurate 
account.

Two questions remained open and will be addressed 
here.

1. Does the experimental setting affect the decision? In 
order to make payoff information very salient to the deci-
sion maker, Diederich and Busemeyer (2006) varied the 
payoff condition randomly from one trial to the next, forc-
ing the decision maker to pay attention to the new payoff 
information at the beginning of each trial. Alternatively, 
if payoff information were held constant over a block of 
trials, this might affect the processing of the payoffs, and 
consequently the relative fits of the models. For example, 
in this case the payoffs might be less important, and the 
bound-change hypothesis would thus be a more adequate 
model to describe the data. Since no such data have been 
collected yet, a comprehensive experiment with different 
presentation modes was conducted to answer this question. 
In one presentation mode, the time limit was held con-

Table 1 
Three Types of Payoff Conditions

Same Different Neutral

Response  same  different  same  different  same  different

“Same” 5 1 1 5 1 1
“Different” 5 1 1 5 1 1

Note—These conditions are assumed to induce a bias for saying “same” 
(payoff matrix Same) or “different” (payoff matrix Different), or to in-
duce no response bias (payoff matrix Neutral).
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presentation mode in their experiments, forcing the decision maker 
to pay attention to the payoff matrix before each trial, and thus pos-
sibly making payoffs very salient. If, on the other hand, time limits 
change from trial to trial, it can be expected that payoffs become 
less salient.

The two different presentation modes were combined with the two 
stimulus conditions (same or different), the three payoff matrices 
(see Table 1), and the four time limits listed above, to form a 2  2  
3  4 factorial design with 48 experimental conditions. This com-
plex design was necessary to test the hypotheses rigorously. For con-
venience, all factors and their abbreviations are listed in Table 2.

Four blocks of different presentation modes (randomized) were 
presented in one experimental session (about 1 h). For the time-
blocked mode, each of the 24 stimulus combinations (same/different 
stimuli, three payoff matrices, four time limits) was presented 60 
times; for the payoff-blocked mode, each stimulus combination was 
presented 64 times, summing to a total of 1,440  1,536  2,976 
experimental trials per participant.

Participants. A total of 10 volunteers participated in this experi-
ment (4 female, 6 male). They had normal or corrected-to-normal 
vision. The participants received €5 per experimental session, plus 
the amount of money (one point was equivalent to €0.25) they 
earned during each session. Each participant was involved in the 
experiment for about 7 h, including one training and six experimen-
tal sessions.

Results
For 9 of the 10 participants, payoffs and deadlines af-

fected choice proportions and choice RTs. For 1 partici-
pant (male), choice proportions were about .5 for all time 
limits and payoff conditions. These data were excluded 
from the analysis. Diederich and Busemeyer (2006) found 
that patterns of individual choice probabilities seemed 
to fall into two categories: They varied as a function of 
(1) the imposed time limit and the payoff matrix or (2) the 
imposed time limit but not the payoff matrix. A cluster 
analysis confirmed the existence of two groups. At first 
inspection, the present study basically replicated this pat-
tern—though in less extreme form—even under slightly 
different stimulus conditions and longer time limit condi-
tions. Unlike in the previous study, however, none of the 
participants ignored the payoffs under all deadline condi-
tions. In particular, some participants seemed to incor-
porate payoffs mainly under the shortest deadline but to 
ignore them for longer deadlines. I will keep the distinc-
tion of two groups to ease comparison with the previous 

were presented within the respective time interval to facilitate a bet-
ter time estimate and to encourage participants to utilize the allotted 
time duration.2 That is, the succession of beeps—very rapid for the 
shortest time limit, slow for the longer time limits—indicated the 
available time for making a decision. An example of the display can 
be found in Figure 1, first screen. The display was explained to the 
participant.

Procedure. The participant was sitting in a darkened room using 
a chinrest facing the screen. The chinrest was mounted on a table 
500 mm from the screen so that the participant’s eyes were directed 
toward the midpoint of the screen. The response device was a box 
with two buttons, one to indicate a “same” response (left button), 
and the other to indicate a “different” response (right button). In ad-
dition, two lines of equal length and two lines of equal length with a 
third crossing them were depicted above the respective buttons. The 
box lay freely movable on the table. Most participants used their left 
and right thumbs to press the buttons.

For all experimental conditions, the participant was required 
to make a “same” or “different” response within the given time 
limit. Feedback was given after each trial by displaying “Correct,” 
“Wrong,” or “Too slow” message on the screen. Violating the dead-
line limit was punished by subtracting the sum of the two possible 
losses from the points earned so far. After a pause of 1,500 msec, the 
next trial started in the same way. At the end of a block, the points 
earned were displayed on the screen. The time course of one trial is 
presented in Figure 1.

Two different presentation modes were applied. In the first, here-
after called time-blocked, the time limit was the same within one 
block of trials, but randomized across blocks, and the payoff ma-
trices were randomized within one block of trials. In the second, 
hereafter called payoff-blocked, the payoff matrix was the same for a 
given block of trials, but randomized across blocks, and the time lim-
its within a block varied randomly. This was done for the following 
reason: Diederich and Busemeyer (2006) applied the time-blocked 

feedback

Time (msec)

+1 –1

–5 +5

900 msec

Figure 1. Time course of one trial. The lines were presented for 
450, 600, 750, or 900 msec. The feedback was “Correct,” “Wrong,” 
or “Too slow.” The first screen displays payoff matrix Different 
with time limit 900 msec.

Table 2 
A 2  2  3  4 Factorial Design, 

Forming 48 Experimental Conditions

Presentation
Mode  Stimulus  Payoff  Time Limits

Time-blocked same Same 450 msec
Different
Neutral

different Same 600 msec
Different
Neutral

Payoff-blocked same Same 750 msec
Different
Neutral

different Same 900 msec
Different
Neutral

Note—All time limits apply to all combinations of the other factors.
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The error proportion at the shortest deadline (450 msec) is 
less than .4 under all experimental conditions and levels 
off at around .2 for longer time limits. Note that for the 
shortest deadline, the choice proportions of both groups 
seem to be affected to the same extent when presented with 
biased payoff matrices. That is, the difference in choice 
proportions between the nonbiased and biased conditions 
is about .3 for both groups.

Choice RTs. Figures 3 and 4 show mean choice RTs 
for errors (dashed lines) and correct responses (solid lines) 
with same (left) and different (right) stimuli, for Groups 1 
and 2, respectively.

Mean choice RTs for Group 1 are considerably shorter 
than those for Group 2, ranging from 240 to 573 msec and 
from 330 to 642 msec, respectively. Presentation mode has 
a significant main effect for Group 2 but not for Group 1. 
The results of an ANOVA can be found in the tables of 
Appendix A.

Choice patterns. The mean RT pattern for correct and 
incorrect decisions within a given condition is complex 
and differs for the two groups. That is, faster responses to 
the more frequently chosen alternative could be observed, 
as well as faster responses to the less frequently chosen 
alternative.3 In particular, participants in Group 1 were 
faster for less frequently chosen alternatives in 9 out of 24 
mean RT pairs, most notably when payoff matrix Neutral 
was presented (viz., for 6 of the 8 cases; see Table B1, 
fourth column, in Appendix B). Participants in Group 2 
were faster for less frequently chosen alternatives in 11 
out of 24 mean RT pairs, almost always (with one excep-
tion) when same stimuli were presented (see Table B2, 
third column, in Appendix B).

Summary
Participants in Group 1 were, on average, faster than 

those in Group 2 (Figures 3 and 4). Also, error propor-
tions were higher for Group 1 than for Group 2; that is, 
participants in Group 2 were more accurate in discrimi-
nating line lengths (i.e., a speed–accuracy trade-off; see 
Table A4). The choice proportions of Group 1 seem to 
have been more affected by payoffs than those of Group 2 
(Figure 2). However, under the shortest deadline, the ef-
fect of payoffs, measured as the difference in choice prob-
abilities between the biased and nonbiased payoff matri-
ces, was about the same for both groups. Finally, choice 
proportions of Group 2 seem to have been more affected 
by time limits than were those of Group 1 (Figure 2).

With respect to the first question raised in this study—
“Does the experimental setting affect the decision?”—
the answer is “no” when considering choice probabilities 
(Table A3, Appendix A). However, the setting may affect 
mean RTs, as the results for Group 2 suggest.

For convenience, I will label the participants of Group 1 
as the fast group and those of Group 2 as the slow group 
from now on, keeping in mind that the participants in the 
fast group were less accurate, on average, than those in 
the slow group.

The second question asked here was whether partici-
pants incorporate payoffs when performing a perceptual 
decision task. In some trials, they may pay attention to 

results. Furthermore, the hypotheses differed with respect 
to these choice patterns.

Generally, it was harder to account for the data of the 
first choice pattern—that is, when choice proportions var-
ied as a function of payoffs and time limits. Therefore, a 
cluster analysis was performed on choice proportions in 
order to determine similarities in choice patterns among 
participants. The data from the participants were com-
bined (averaged) within the two main clusters. The follow-
ing data analysis and model fits refer to these two groups. 
Group 1 consists of 5 participants, 2 of them women. For 
them, choice proportions varied as a function of time lim-
its and payoffs. Group 2 consists of 4 participants, 2 of 
them women. Here, choice proportions varied mainly as a 
function of imposed time limits.

The hypotheses should account for these different 
choice patterns, but before I turn to this discussion the 
data pattern will be described in more detail. Statisti-
cal tests for choice proportion differences are found in 
Appendix A.

Choice proportions. Figure 2 shows the proportions 
of error responses for the same (solid lines) and different 
(dashed lines) stimuli as a function of time limits, payoffs, 
and presentation modes (circles indicate the time-blocked 
presentation mode, triangles the payoff-blocked presenta-
tion mode) for both groups. Consider Group 1 (left pan-
els) first. When presented with payoff matrix Same, the 
participants predominantly responded “same,” whereas 
when presented with Different, they predominantly re-
sponded “different,” regardless of the presented stimulus. 
With different stimuli (dashed lines), for both presenta-
tion modes the error proportion decreases with increasing 
time limits for payoff matrix Same (top left panel) and is 
about constant with increasing time limit for payoff matrix 
Different (middle left panel). The opposite is true for the 
same stimuli (solid lines): The error proportions are about 
the same with increasing time limits for the Same ma-
trix and decrease with increasing time limits for the Dif-
ferent matrix. For the Neutral payoff matrix, the results 
are similar for both same and different stimuli. Under the 
shortest time limit, the error proportion is about .5, and it 
decreases to around .35 as a function of time limits.

For Group 2, when presented with payoff matrix Same, 
the participants responded predominantly with “same,” 
whereas when presented with Different, they responded 
predominantly with “different,” regardless of the presented 
stimulus. However, choice proportions were most affected 
by payoffs at the shortest deadline (450 msec). Again, con-
sider different stimuli (dashed lines) first. For both presenta-
tion modes, the error proportions decrease with increasing 
time limits for payoff matrix Same (top right panel) but, un-
like with Group 1, also decrease with increasing time limit 
for payoff matrix Different (middle right panel). For same 
stimuli (solid lines), the error proportions decrease with in-
creasing time limits for the Same matrix and also decrease 
with increasing time limits for the Different matrix.

A comparison of the choice proportions for both groups 
under the Neutral payoff matrix shows that participants 
in Group 2 were more accurate when discriminating line 
lengths (see also the d  results in Table A4 of Appendix A). 
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right panels). The payoff matrix is written in each panel. Dashed lines refer to the different stimuli and solid lines to the 
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lying process for all hypotheses. At time t  0, the process 
begins with an initial state of evidence, denoted X(0), and, 
without loss of generality, X(0)  0 represents an initial 
state favoring A, X(0)  0 represents an initial state favor-
ing B, and X(0)  0 is the neutral state. Note that instead of 
assuming a fixed state as the starting position, we can as-
sume a probability distribution over starting positions, as we 
will see below. The increment of evidence sampled at any 
moment in time is denoted V(t), where V(t)  0 indicates an 
increment favoring A and V(t)  0 indicates an increment 
favoring B. The evidence is accumulated from one moment 
in time, t, to the next moment in time, t  h, by summing 
the current state with the new increment: X(t  h)  X(t)  
V(t  h). The mean of the increments,   h  E[V(t)], is 
called the drift rate, and the variance of the increments, 2  
h  Var[V(t)], is called the diffusion rate. The mean divided 
by the standard deviation, E[V(t)]/SD[V(t)], is a measure of 
discriminability closely related to d  in the classic signal de-
tection model. Intuitively, the drift rate reflects the tendency 
to approach one choice alternative over the other. In our 
example, a positive drift rate,   0, reflects the tendency 
to make an “A” response, whereas a negative drift,   0, 
favors a “B” response. The diffusion rate reflects the noisi-
ness of the accumulation process. Without loss of general-
ity, let Option A refer to a same stimulus and Option B to a 
different stimulus.

Boundary Conditions
The accumulation process continues until the magnitude 

of the cumulative evidence exceeds a criterion bound. The 
process stops and a “same” response is initiated as soon 
as X(t)  s  , or it stops and a “different” response is 
initiated as soon as X(t)  d  . The decision criteria 
(absorbing boundaries, in mathematical terms) are set by 
the decision maker prior to the decision task and, among 
other things, depend on the time available for making a 
decision. Specifically, the criterion boundary is assumed 
to be an increasing function of the time limit. That is, 
with short time limits the boundaries are assumed to be 
narrow and the time to reach one to initiate a response 
short, but with long or no time limits the boundaries are 
farther apart, and it takes longer to reach them to initiate 
a response. In the present study, four different time limits 
were applied—450, 600, 750, and 900 msec—and, there-
fore, four evidence-based decision criteria are assumed, 
with | 450|  | 600|  | 750|  | 900|.

Alternatively, the process may terminate in a differ-
ent manner. Diederich and Busemeyer (2006) included 
a further, qualitatively different decision criterion. Under 
short-deadline conditions, the decision maker may em-
ploy an additional strategy by using internal deadlines 
as well as the decision bounds. That is, a decision may 
also be initiated when an internal deadline, tid, is met. A 
“same” response is initiated at time tid if X(tid)  0, and 
a “different” response is initiated if X(tid)  0. Therefore, 
the accumulation process may be terminated either by a 
decision bound based on evidence, as described above, or 
by an internal deadline. Both of these criteria to initiate a 
response are obviously quite different. The former oper-
ates in the evidence space, whereas the latter is based on a 

payoffs and ignore the stimulus information altogether, 
whereas in other trials they may process the perceptual 
stimulus information and ignore the payoffs. This ques-
tion is investigated in the following sections. A fit of all 
three hypotheses to the data is provided to help decide 
how payoffs affect perceptual decision tasks. In particular, 
three quantities will be evaluated: choice probabilities, 
mean choice RTs, and choice probability/RT patterns.

MODEL, HYPOTHESES, AND 
THEIR PREDICTIONS

First, I introduce the general underlying stochastic se-
quential process model describing the decision process. To 
facilitate comparisons between the competing hypotheses, 
the process is assumed to be the same for all hypotheses—
specifically, a Wiener process. Next, I describe how the pro-
cess incorporates deadline assumptions. Finally, I outline 
the specific assumptions and predictions for each model 
with respect to time constraints and payoff processing.

For a binary choice between A and B, sequential-
 sampling models assume that the decision process begins 
with an initial state of evidence. This initial state may favor 
either Option A or B, or it may be neutral with respect to 
A and B. For simplicity, assume that a positive-sign ini-
tial state favors Option A and a negative-sign state favors 
Option B. Upon presentation of the stimulus, the decision 
maker sequentially samples information from the stimu-
lus display over time. The small increments of information 
sampled at any moment in time are such that they either 
favor Option A or Option B. Again, assume that a positive 
increment favors Option A and a negative increment favors 
Option B. The evidence is accumulated from one moment 
in time to the next by summing the current state with the 
new increment. The rate of accumulation is determined by 
stimulus properties—for instance, by how well the lines 
can be discriminated: The easier the task, the higher the 
rate, and therefore the faster the process approaches the 
criterion. Or, as in the present study, a drift rate can pos-
sibly be determined by experimental conditions such as 
payoffs. This process continues until the magnitude of the 
cumulative evidence exceeds a criterion bound. In other 
words, the process stops and a response for Option A is 
initiated as soon as the accumulated evidence reaches a 
criterion value for A, or it stops and an Option B response 
is initiated as soon as the accumulated evidence reaches a 
criterion value for B.

Thus, the probability of choosing A over B is deter-
mined by the accumulation process reaching the threshold 
for A before reaching the threshold for B. The decision 
criteria can be adjusted by the decision maker and are set 
prior to the decision task: Increasing the boundary allows 
for more evidence to be accumulated and may lead to a 
more accurate response, but simultaneously it increases 
the time to initiate a response.

Mathematically, this process can be described as a sto-
chastic process with two absorbing boundaries. For sim-
plicity, I assume a Wiener process, X(t), with  parameters 
as absorbing boundaries (see, e.g., Diederich & Busemeyer, 
2003; Karlin & Taylor, 1975; Tuckwell, 1995) as the under-
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limits, and the L boundaries to decision criteria due to 
longer deadlines. The information accumulation process 
for a given trial is represented by a trajectory; here, four 
hypothetical trials were presented. For this example, the 
tendency to make a “same” rather than a “different” re-
sponse is stronger, expressed in a positive drift rate.

With long deadlines, the accumulation processes for 
Trial 1 and Trial 4 reach the decision criteria for same 
and different, respectively; that is, for Trial 1 there was 
enough evidence at time t1 to initiate a “same” response, 
and for Trial 4 there was enough evidence at time t2 to ini-
tiate a “different” response. Under shorter deadlines, these 
two processes would have reached the criteria earlier and 
therefore, the RTs would have been shorter. In addition, 
on Trials 2 and 3 the lower (short-deadline) boundary is 
reached, and a “different” response is initiated. Panel B 
also shows evidence-based decision criteria, with the 
addition of an internal deadline. Except for Trial 1, the 
accumulation processes hit the internal deadline tid be-
fore reaching an evidence bound and, depending on the 
magnitude of the accumulated evidence at that time ( 0 
or 0), favor a “same” or “different” response; that is, 
on Trials 2 and 3 a “same” response is initiated, and on 
Trial 4 a “different” response is initiated. Note that both 
the evidence-based decision bounds and the internal dead-
line are controlled by the participant and are assumed to 
depend on the externally set time limits (see above).

Figure 6 shows RT distributions with evidence-based 
boundaries only (upper left panel) and with evidence and 
different internal deadline boundaries tid (remaining pan-
els). Note that, given a fixed internal deadline, the typical 
density function for RT is truncated at tid, and the remain-
ing probability mass is assigned to the time tid  h.

As mentioned before, the model described above is 
taken as the basic underlying process for all three hypoth-
eses, and therefore these properties apply to all of them. I 
will now turn to the specific assumptions and predictions 
of each hypothesis.

Before introducing the mixture-of-processes hypoth-
esis, I will first describe the bound-change and two-stage-
processing hypotheses, because the new hypothesis has 
features of both.

Bound-Change Hypothesis
The unbiased Wiener process described above has sym-

metric boundaries around the starting position. That is, 
with  for a “same” response and  for a “different” 
response, the process starts at time t  0 at X(0)  0. 
The Wiener process with bias does not start halfway be-
tween the decision boundaries, but closer to one or the 
other (see also Link & Heath, 1975). Prior to stimulus 
processing, a bias for a “same” or “different” response is 
induced, depending on the specific payoffs. When biased 
for a “same” response, the starting position of the process 
at time t  0 is X(0)  s  0, whereas when biased for a 
“different” response the process starts at X(0)  d  0. 
The drift rate , influenced by stimulus properties, is the 
same for a particular stimulus, regardless of the specific 
payoffs. That is, information accumulation processing for 
the stimulus itself is not influenced by the payoffs; the 

set time. Under short experimenter-set deadlines, the de-
cision maker may be inclined to use an internal deadline, 
and with increasing time allotted to the task, the decision 
maker could shift to the criterion bound. Again, the in-
ternal deadline is set by the decision maker and increases 
with the experimenter-set deadline. Note that these ideas 
are related to the deadline model, in which the RT is deter-
mined either by the time needed to complete a task (e.g., 
a discrimination process) or by the arrival of a predeter-
mined deadline, whichever comes first (e.g., Ruthruff, 
1996; Swensson, 1972; Yellott, 1971, for a test of the 
model; see also Ratcliff & Rouder, 2000). For a recent 
application of the deadline model for modeling response 
signal data, see Ratcliff (2006).

These ideas are illustrated in Figure 5. Panel A shows 
two different evidence-based decision criteria: The S 
boundaries refer to decision criteria due to shorter time 
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Figure 5. Information accumulation process. Each of the four 
trajectories represents a hypothetical accumulation process for 
a single trial. Panel A shows different evidence-based bounds 
(decision criteria): “L”s represent decision criteria for longer 
deadlines, whereas “S”s represent decision criteria for shorter 
deadlines. Panel B shows two evidence-based bounds, “L,” as well 
as an internal deadline, tid. See the text for details.
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a faster response for the more frequently chosen alternative 
(see Luce, 1986; Townsend & Ashby, 1983, for reviews 
and discussions of the model and the empirical results). 
One way to account for this is to assume that the drift rates 
themselves are random variables, usually normally distrib-
uted (Ratcliff, 1978), which I have done here.

Figure 7 depicts the case for same stimuli. Despite dif-
ferent biases induced by particular payoffs and manifested 
in different starting positions of the process, the drift rates 
are the same, as indicated by their common slope. The 
bell-shaped forms symbolize that the drift rates are drawn 
from a Gaussian distribution, and the rectangles indicate 
uniform distributions over starting positions.

The parameters for this model include the following: 
the drift rates for same and different stimuli are Gaussian 
distributed with means s and d, respectively, and vari-
ance 2. For simplicity, variances are assumed to be the 
same for both distributions. The bias for a “same” response 
induced by payoff matrix Same and the bias for a “dif-
ferent” response induced by payoff matrix Different have 
uniform distributions with means s and d, respectively, 
and a common range ; for the no-bias situation (payoff 
matrix Neutral), we assume a uniform distribution with 
mean 0 and range . Again, for simplicity, the ranges are 
assumed to be the same for the three distributions. Alto-

starting position of the process, however, is. Furthermore, 
the bias is independent of the stimulus presented. Whether 
presenting same or different stimuli, the bias for a “same” 
response given same stimuli is the same as for a “same” 
response given different stimuli. This makes intuitive 
sense, since the bias is induced prior to stimulus presenta-
tion. As described so far, the bias is a fixed value—that is, 
the process starts with probability of 1 either at s, d, or 0. 
However, we may assume that each bias parameter follows 
a probability distribution. This assumption is particularly 
important in that it can account for a specific RT/propor-
tion pattern—that is, when the less frequently chosen 
response is, on average, faster than the more frequently 
chosen response alternative (see, e.g., Laming, 1968). As 
mentioned above, this pattern could be observed in 9 of 
24 experimental conditions for the fast group, and in 11 
of the conditions for the slow group. Therefore, we as-
sume that the bias parameter has a probability distribution 
rather than a fixed value. Ratcliff and Rouder (2000), for 
instance, assume a uniform distribution for the starting 
position, and I have adopted the same assumption here.

The unbiased Wiener process (here, the one that accounts 
for neutral payoffs) predicts the same RT for both the more 
frequently and less frequently chosen alternatives, regard-
less of the drift. However, RT and accuracy data often show 
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Figure 6. Probability distributions. Panel A shows the distribution when only evidence bounds are assumed. The remain-
ing panels show distributions with both evidence bounds and internal deadline bounds (tid) of different magnitudes.
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(see Diederich, 2003a, 2003b, for an application to multi-
attribute decision making). The entire process consists of 
two subprocesses, and the drift rate of the Wiener process 
changes within a single trial (see, e.g., Diederich, 1995, 
1997; see also Heath, 1981, 1992; Ratcliff, 1980). There 
are various possibilities of how the subprocesses relate to 
each other (Diederich, 1997), but in its simplest version, 
which is pursued here, the process starts with a probability 
of 1 when processing the payoff matrix (attribute i) and 
then may switch to processing the stimulus properties (at-
tribute j) with probability wij. At any particular time point, 
the process may be operating on the process for the pay-
offs. In the next moment, it either continues to operate on 
the process for the payoffs with probability w11, or atten-
tion switches with probability w12  1  w11 to operate on 
the process for the stimuli. That is, the process is a mixture 
of two subprocesses within one trial, and the attributes are 
processed in a serial manner. The size of w12 determines 
when a switch to the next process occurs. A relatively 
higher w12 indicates an early switch to the second process, 
and a relatively smaller w12 indicates a late switch to the 
second process. The two-stage-processing model accounts 
for choice probability/choice RT patterns as follows. If the 
first stage of the process bears more evidence for choos-
ing an alternative than does the second stage (i.e., 1  

2), the model predicts faster RTs for the more frequently 
chosen alternative. If the first stage of the process pro-
vides less evidence for choosing an alternative than does 
the second stage (i.e., 1  2), the model predicts faster 

gether, there are six model-specific parameters: s, d, 2, 
s, d, and .
Predictions. The quantitative predictions of this hy-

pothesis with respect to choice probabilities are illustrated 
in Figure 8. For ease of demonstration, I do not assume 
variability in starting position at the moment. The solid 
line indicates the choice probability as a function of time 
limit (arbitrary units) when no response bias is assumed. 
The dashed lines refer to choice probabilities with posi-
tive (upper lines) and negative (lower lines) bias toward a 
choice alternative. As decision time increases, all predicted 
probabilities converge to the choice probabilities under the 
no-bias condition, regardless of the a priori bias. That is, 
for positive biases, the predicted probabilities decrease to 
the ones for the no-bias condition, and for negative biases, 
the predicted probabilities increase to those for the no-bias 
situation. To summarize: The bound-change model predicts 
that errors will decline as the processing time is extended 
and that the effect of payoffs disappears over time.

The bound-change model predicts a complex pattern of 
choice RTs that depends on various sources of variability. 
For the unbiased choice situation, it predicts faster RTs 
for the more frequently chosen alternative if the drift rate 
itself is a random variable—that is, with variability in drift 
(Ratcliff, 1978). The model also predicts faster RTs for 
the less frequently chosen alternative if the initial state is 
a random variable rather than a fixed state—that is, with 
variability in starting position (see, e.g., Laming, 1968; 
Ratcliff & Rouder, 2000).

Two-Stage-Processing Hypothesis
The two-stage-processing hypothesis assumes that both 

payoff and stimulus processing have a time dimension. 
The task can be seen as a multiattribute decision problem 
with payoffs and stimulus evidence as primary attributes 
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Figure 8. Predicted choice probabilities of the bound-change 
model as a function of decision time. Here, the drift rate for a same 
stimulus is set to s  .02; three positive biases to 1, 2, and 3; and 
three negative biases to 1, 2, and 3. The solid line refers to the 
no-bias condition, and the remaining lines to predictions assum-
ing the different biases. The larger the (absolute) bias, the more 
extreme the choice probabilities under short times. Assuming no 
response bias, the probability of a “same” response is about .55 
for very short deadlines and increases with increasing time limit. 
With increasing positive biases the initial probability of a “same” 
response increases to about .65, .74, and .83; with decreasing nega-
tive biases, it is reduced to .45, then .34, and finally .23.
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Figure 7. Bound-change model. The payoff matrix induces an 
a priori bias. The slope of the mean drift rate is always the same, 
regardless of the payoffs. Note that each drift rate comes from a 
Gaussian distribution, indicated by a bell curve. The rectangle 
around the value for each bias indicates variability in starting 
position according to a uniform distribution.
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processing model and the bound-change model are very 
similar (Figure 10A). However, if switching from the first 
stage to the second happens later in time, so that a decision is 
frequently reached in the first part of the two-stage process, 
then the hypotheses for the two models make quantitatively 
different predictions (Figure 10B). The solid lines indicate 
the choice probability as a function of time limits (arbitrary 
units) when no response bias is assumed. The dashed lines 
refer to choice probabilities with positive (upper) and nega-
tive (lower) bias toward a choice alternative.

RTs for the less frequently chosen alternative. That is, dif-
ferent orders in which the attributes are attended predict 
different choice probability/choice RTs patterns.

Obviously, the two-stage-processing model can be ex-
tended in several ways. For example, we might assume a 
probability distribution for which attribute is considered 
first, or we may allow switching back and forth between 
attributes, or we may allow a distribution for the switching 
probabilities, and so on. For details, see Diederich (1997) 
and also Busemeyer and Diederich (2002).

Figure 9 presents the model for same stimuli. The slope 
of the first subprocess depends on the specific payoff ma-
trix, and the slope of the second subprocess reflects the 
stimulus properties and is the same regardless of which 
payoff matrix is presented. Note that for negative response 
biases, the mean drift can take two different directions.

The parameters are the following: 
s
 is the drift rate for 

processing payoff matrix Same and 
d
 the drift rate for 

processing payoff matrix Different, whereas the drift rate 
for processing matrix Neutral (no bias) is set to 0. s is the 
drift rate for processing same stimuli, and d the drift rate 
for different stimuli. w12 refers to the probability of switch-
ing from the first to the second attribute—that is, from pay-
offs to stimulus evidence. Altogether, there are five model-
specific parameters: 

s
, 

d
, s, d, and w12.

Predictions. The predictions of this hypothesis with re-
spect to choice probabilities are presented in Figure 10. I 
consider there a same stimulus with the same drift rate as in 
Figure 9. The drift rates for the payoff matrices are chosen 
such that the probabilities under the shortest deadline are 
very similar to those for the bound-change hypothesis. The 
reason for this is that if switching from the first stage to the 
second happens early, so that a decision is hardly ever reached 
during the first part of the two-stage process, the two-stage-

Two-Stage-Processing Hypothesis, Early Switch

Two-Stage-Processing Hypothesis, Late Switch
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Figure 10. Predicted choice probabilities of the two-stage-
 processing model as a function of decision time. Here, the drift 
rate for a same stimulus is again set to s  .02. The solid line 
refers to the no-bias condition, and the remaining lines to predic-
tions for different biases. Panel A shows an early switch from pro-
cessing of payoffs to stimulus evidence, and panel B a late switch, 
expressed by different switching probabilities. In particular, for 
an early switch (in this example, w12  .1), the drift rates for posi-
tive payoff matrices, s, are .1, .3, and .8; those for negative pay-
offs, d, are .1, .3, and .8. For a late switch (here w12  .01), 
the parameters are .1, .2, and .4 for positive payoffs and .1, .2, 
and .4 for negative payoffs.
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Figure 9. Two-stage-processing model. The entire process con-
sists of two subprocesses, the first for processing payoffs, the second 
for processing stimulus properties. The space between the two sets 
of lines, representing the drift rates for payoffs and for stimulus 
evidence, indicate that attention switches from the first process to 
the second with a certain probability, and not at a particular time. 
Note that no variability in starting position or drift is assumed.
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on which payoffs or stimulus information is considered is 
p or 1 – p, respectively. Altogether, there are seven model-
specific parameters: 

s
, 

d
, s, d, 2, , and p.

The predictions of the mixture-of-processes model with 
respect to choice probabilities are shown in Figure 12. The 
three panels refer to three different mixture proportions. 
Note that in a given trial, either the payoffs or the stimu-
lus information is considered, never both. The solid lines 
indicate the choice probability as a function of time (ar-
bitrary units) when no response bias is assumed, and they 
are the same for all three panels. The dashed lines refer 
to choice probabilities with positive (upper) and negative 
(lower) bias toward a choice alternative.

To summarize: The two-stage-processing hypothesis 
predicts that the effect of payoffs disappears over time. 
That is, the error due to the bias declines as processing 
time is extended. This is similar to the bound-change hy-
pothesis. However, the models differ when many trials ter-
minate within the first stage of the two-stage-processing 
model. For the bound-change hypothesis, the bias induced 
by different payoff matrices varies over a priori states and 
has no time dimension, but for the two-stage-processing 
hypothesis, the bias may vary over state and time. Further-
more, the rates of convergence toward the choice prob-
abilities of the nonbiased process may differ.

The two-stage-processing model predicts a complex 
pattern of choice RTs depending on the drift rates of the 
first and second subprocesses (Diederich, 1997). If the 
drift rate of the first subprocess is larger than that of the 
second, the model predicts faster responses for the more 
frequently chosen alternative. If the drift rate of the first 
subprocess is smaller than that of the second, however, the 
model predicts faster responses for the less frequently cho-
sen alternative. In any case, for the present study, the main 
concern is how choice probabilities are affected by payoff 
matrices and deadlines. Choice RT patterns of the different 
models will be considered elsewhere in more detail.

Mixture-of-Processes Hypothesis
The new proposed hypothesis also assumes two sepa-

rate processes, one for the payoffs and one for the stimuli. 
However, on a given trial either of the two processes may 
operate, so that either payoffs or stimuli will be processed. 
The processes never operate on one and the same trial. That 
is, when processing the payoff, subsequent stimulus infor-
mation is irrelevant, and when processing the stimuli, the 
payoffs do not influence the decision. Prior to a trial, the de-
cision maker decides to process one or the other type of in-
formation, never both, and the proportion of trials in which 
payoffs or stimulus information is processed is under the 
control of the decision maker. Mathematically, a mixture of 
these two independent processes is employed. In contrast 
to the two-stage-processing hypothesis, the mixture-of-
 processes hypothesis does not allow for payoffs and stimu-
lus information to be considered on the same trial.

Are these plausible assumptions—that is, is this a plau-
sible hypothesis? Choice frequencies are obtained over a 
large number of trials, and it could well be that partici-
pants have strategies such as this one. A model can help to 
decide whether such a strategy can be ruled out.

Figure 11 presents the model for same stimuli. Panel A 
shows the process for the various payoff matrices, and 
panel B the process for stimulus evidence. The drift rates 
for processing the payoff matrices Same, Different, and 
Neutral are Gaussian distributed with means 

s
, 

d
, and 

0, respectively, and variance 2. Similarly, the drift rates for 
same and different stimuli are Gaussian distributed with 
means s and d, respectively, and variance 2. For simplic-
ity, variances are assumed to be the same for all five distribu-
tions. As before, variability in starting position is assumed 
for all conditions, with mean 0 and range . Note that, taken 
alone, each process is identical to the process in the unbiased 
bound-change hypothesis. Finally, the proportion of trials 
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Figure 11. Mixture-of-processes model, which assumes two in-
dependent, separate processes. The first process is for payoffs, 
with different response biases represented by different mean 
drift rates (panel A), and the second is for stimulus properties 
(panel B). Variability in both drift and starting position is added 
to each process, here indicated by the bell curves (Gaussian dis-
tribution) and the rectangles (uniform distribution), respectively. 
Note that on a given trial, either the process shown in the upper 
panel or the one shown in the lower panel operates.
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necessarily converge to 0 or 1. Given a long enough process-
ing time, they converge to values symmetric around the unbi-
ased choice probabilities. The effect of a bias depends (1) on 
the values of the drift rates for payoffs and stimulus evidence 
and (2) on the proportion of trials in which each process is 
considered. For example, when the drift rate for the payoffs is 
relatively large (absolute value) in comparison with the drift 
rate for the stimulus and, in addition, payoffs are considered 
in most trials, the payoff effect is more profound than in other 
conditions, as is shown in Figure 12C.

For a biased binary choice, the bound-change hypothe-
sis predicts different mean RTs for the more frequently and 
less frequently chosen alternatives. The unbiased Wiener 
process, on the other hand, predicts the same choice RTs 
for binary choices. For this reason, Ratcliff (1978) added 

Panel A shows the model predictions when the mixture 
parameter is p  .5. That is, the decision maker consid-
ers payoffs and stimulus evidence equally often across all 
trials. Panel B shows the predictions when the decision 
maker attends to the payoffs in .25 of all trials and ignores 
the stimulus information in these trials, whereas in .75 of 
all trials only the stimulus information is considered and 
the payoffs are ignored. For panel C, the payoffs are consid-
ered in .75 and stimulus evidence only in .25 of all trials.

Predictions. As does the drift-rate-change hypothesis (see 
Diederich & Busemeyer, 2006), the mixture-of- processes 
model predicts that the effect of payoffs persists over time 
and that errors may actually grow over processing time under 
a biased payoff condition. Unlike the drift-rate-change hy-
pothesis, however, probabilities for biased choices do not 

Mixture-of-Processes Hypothesis, p = .5 Mixture-of-Processes Hypothesis, p = .25

Mixture-of-Processes Hypothesis, p = .75
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Figure 12. Predicted choice probabilities of the mixture-of-processes model as a function of decision time. The solid lines refer to 
the no-bias condition (with the drift rate for a same stimulus set to s  .02) and are the same in all three panels. The remaining lines 
pre sent the predictions for different biases. For each panel, different mixture parameters ( p) are assumed. In panels A and B, the drift 
rates for positive biases, 

s
, are .05, .1, and .2, and the drift rates for negative biases, 

d
, are .05, .1, and .2. For panel C, the drift 

rates from top to bottom are .2, .1, .05, .02, .01, .01, .02, .05, .1, and .2. Note the longer time scale in panel C, used to demon-
strate the convergence of the predictions. See the text for details.
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duce them. For the account based on a mixture of the two 
processes, both statistical mechanisms and psychological 
concepts are invoked to account for slower and faster re-
sponses to the more frequently chosen alternative versus 
the less frequently chosen alternative. A thorough analy-
sis of the RT patterns of various models will be discussed 
elsewhere.

Table 3 summarizes the hypotheses-specific parameters 
for the approaches. Note that the s for the bound-change 
and mixture-of-processes hypotheses refer to the means 
of the drift rates, or mean drifts, whereas the two-stage-
processing hypothesis refers to the drift rate or one mean 
drift—that is, in the latter hypothesis, no distribution of 
drift rates is assumed.

In addition to these specific parameters, the following 
parameters are common to the different approaches: 450, 

600, 750, and 900 refer to the evidence-based decision 
boundaries, and tid to the internal deadlines for the short-
est time limit conditions (450 msec). Diederich and Buse-
meyer (2006) showed that adding internal deadlines to the 
various conditions gave only a slightly better fit, at the 
expense of the additional parameters. Since the deadlines 
in the present experiment were considerably longer than 
those in the previous study (200, 350, and 500 msec), only 
one internal deadline tid, for the shortest time limit condi-
tion (450 msec), was included for parsimony of param-
eters. Moreover, none of the probability distributions for 
longer deadlines indicated a distribution that resembled 
the ones shown in Figures 6B–6D.

For all approaches, the mean RT is assumed to be lin-
early related to the processing time DT predicted by the 
model RT  s  DT  R, where s is a time unit scale factor 
and R is the residual, nondecisional time component (e.g., 
encoding time and motor response time). For simplicity, 
R is assumed to be a constant.

Altogether, we have seven parameters common to all 
hypotheses: four evidence-based boundaries— 450, 600, 

750, and 900—the internal deadline, tid, the time unit 
scale factor, s, and the residual time, R.

FITS TO THE DATA

For each approach, the parameters listed in Table 3 
and the seven common parameters were estimated from 
72 data points [6 probabilities and 12 mean RTs—corre-
sponding to the 2 (i  “same,” “different”) responses to 
the K  3 payoff matrices (Same, Different, and Neutral) 

variability in drift to the standard process (see the discus-
sion above). The mixture-of-processes hypothesis always 
predicts the same RTs for binary choices, regardless of the 
drift rates of the first and second processes and the mixture 
of probabilities. Therefore, for the mixture-of-processes 
hypothesis, it is essential to include the mechanism of vari-
ability in drift for biased and unbiased choice situations. In 
addition to that, if the mean drift rates for both the payoffs 
and the stimulus information are in the same direction—
that is, either both toward the same criterion or both toward 
the different criterion—then the model predicts faster mean 
RTs for the more frequently chosen alternative. If the mean 
drift rates are in opposite directions, the model predicts 
faster mean RTs for the less frequently chosen alternative.

Summary: Predictions and Parameters 
of the Hypotheses

All three hypotheses predict that choice probabilities 
are influenced by both payoffs and time limits. For the 
 mixture-of-processes hypothesis, the bias induced by pay-
offs persists over time, whereas for the bound-change hy-
pothesis and the two-stage-processing hypothesis the bias 
disappears over time. All three hypotheses predict longer 
mean RTs with increasing time limits and can account for 
various probability/RT patterns. The bound-change hy-
pothesis utilizes basic statistical properties (variability in 
drift, variability in starting positions) to produce certain 
patterns, whereas the two-stage-processing hypothesis re-
lies on psychological concepts such as attention switching 
between processes and the saliency of attributes to pro-

Table 3 
Hypothesis-Specific Parameters

Bound Change  Two-Stage Processing  Mixture of Processes

s s s
d d d
s s s

d d d
2 w12

2

p

Note— s refers to the mean drift rate for processing same stimuli, and 
d to the mean drift rate for processing different stimuli. Boldface s 

indicate that the mean drift itself is a random variable. s refers to a bias 
induced by payoff matrix Same, and d to a bias induced by payoff ma-
trix Different. 2 is the parameter for variability in mean drift, and  for 
variability in starting position. w12 denotes the probability of switching 
from one subprocess to the other. p indicates the mixture parameter.

Table 4 
Pearson 2 Statistics As Measures of Goodness of Fit

2
prob

2
error

2
correct

Group  Hypothesis  All  T-B  P-B  All  T-B  P-B  All  T-B  P-B

Fast Bound change 253 204  85 460 350 272 725 881 666
Two-stage processing  84  63  31 263 186 293 174 160 313
Mixture of processing 601 381 287 437 437 202 258 1,807 1,051

Slow Bound change 386 216 190 519 268 264 414 252 259
Two-stage processing  32  12  42 130  91  90 181 132 72
Mixture of processing 175  75 144 106  92  62 416 206 165

Note—The last column shows the overall 2 for one model [ 2(60)  74.4, p  .10]. T-B, time-blocked 
presentation; P-B, payoff-blocked presentation.
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more responsive to time limits and less to payoffs under 
longer time limits. It seems that, in general, the hypotheses 
account more easily for differences in choice probabilities 
as a function of time limits than as a function of payoffs.

As it did with the fast group, the two-stage-processing 
hypothesis gave the account closest to the data (see also 

2
prob in Table 4).

Choice RTs and Choice Patterns
Figures 15–18 show the fits of the three hypotheses to 

the mean RTs for the fast and slow groups, respectively, 
for same and different stimuli. First consider the results 
for the fast group (Figures 15 and 16). Each panel refers to 
error (left panels) or correct (right panels) responses as a 
function of time limits for a specific stimulus/payoff ma-
trix combination. All hypotheses predict increasing mean 
RTs as a function of time limits for a given combination of 
stimulus and payoff matrix, and for a given stimulus and 
payoff matrix they all give a more or less satisfying account 
of mean RTs as a function of time limits. However, as can 
be seen from the figures and the 2 values in Table 4 ( 2

error 
and 2

correct), the two-stage-processing hypothesis gives the 
closest account of the mean RTs among the fast group. In-
terestingly, the hypotheses differ considerably with respect 
to the predicted relation between the mean RTs of correct 
and error responses. That is, faster responses could be ob-
served in the data to both the more frequently and less fre-
quently chosen alternatives. The bound-change hypothesis 
predicts the correct relation between the mean RT for cor-
rect and incorrect responses in 11 of the 24 pairs; the two-
stage-processing hypothesis predicts the correct relations 
in 21 of 24 pairs; and the mixture-of-processes hypothesis 
only predicts 4 of the 24 cases correctly. A summary of all 
the results is provided in Table B1 in Appendix B.

For the slow group, the patterns of the predicted choice 
RTs are very similar for all three hypotheses, which all give 
a good account of the observed data. The models predict in-
creasing mean RTs as a function of time limits, and none of 
the models over- or underestimate mean RT in a dramatic 
way. This is also reflected in the 2 values in Table 4, which 
are smaller than those for the fast group. Inspecting the 
relation between mean RTs for correct and error responses 
gives the following results. The bound-change hypothesis 
predicts the observed relation in 11 of the 24 pairs, the two-
stage-processing model in 15 of the pairs, and the mixture-
of-processes hypothesis in 11 of the pairs. A summary of 
the results is provided in Table B2 in Appendix B.

SUMMARY AND DISCUSSION

Diederich and Busemeyer (2006) investigated how pay-
offs affect response bias in sequential-sampling models. 
They formulated three hypotheses as particular versions 
of these models: the bound-change, drift-rate-change, and 
two-stage-processing hypotheses. In order to probe the 
dynamics of the process in depth, they conducted a line 
length discrimination task involving three payoff matrices 
and three different time limits within which the task had 
to be completed. The present article addresses two issues 
related to their study.

and the 2 ( j  same, different) stimulus conditions—for 
each of the N  4 time limits] by minimizing the Pearson 

2 statistic,
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using the FMINSEARCH routine of MATLAB. Here –
Tij(k, n) and T̂ij(k, n) are, respectively, the observed and fit-
ted values of the mean time to make a response i to stimu-
lus j with payoff matrix k and time limit n; Pjj(k, n) and 
P̂jj(k, n) are the observed and fitted values of the probabil-
ity of a correct response to stimulus j with payoff matrix k 
and time limit n; and –

Tij(k,n) and Pii(k,n) are the respective 
standard errors.

Although the observed choice proportions were not 
statistically different with respect to presentation modes 
(Table A3), parameters were estimated for each presentation 
mode separately as well as for the combined data, in order 
to investigate whether the hypotheses could discover differ-
ences that the statistical test could not. The 2 values can be 
found in Table 4, separately for the choice proportions, error 
RTs, and correct RTs for the combined data (All) and for 
the time-blocked (T-B) and payoff-blocked (P-B) presenta-
tion modes. The 2 values serve as descriptive measures to 
compare the relative fits of the hypotheses.

The estimated parameters for the fast and slow groups 
are found in Tables C1 and C2 in Appendix C.

Choice Probabilities
In discussing the predicted choice probabilities, I will 

begin with those for the fast group. As can be seen in Fig-
ure 13, some qualitative differences emerge with respect to 
the predicted patterns. The hypotheses predict all kinds of 
choice probability patterns as a function of time limits for 
different payoff matrices: The bound-change model pre-
dicts both increasing and decreasing probabilities, but the 
mixture-of-processes and the two-stage-processing models 
predict decreasing probabilities. There is no systematic un-
derestimation or overestimation for any of the hypotheses.

Overall, the two-stage-processing hypothesis gave the 
best account of the choice proportions for the fast group, 
reflected also in terms of the 2

prob in Table 4.
Figure 14 shows the results for the slow group. The hy-

potheses predict a drastic decrease in probability from the 
shortest deadline (450 msec) to the next (600 msec), and 
then the decrease becomes smaller, a pattern that describes 
the data appropriately. All hypotheses thus give a good ac-
count of the choice frequencies. Note, however, that only 
the two-stage-processing hypothesis predicts choice proba-
bilities both above and below .5 for a given payoff condition 
as a function of time limits. Recall that participants in the 
fast group seemed to be more responsive to different pay-
off matrices and, under some conditions, less responsive to 
time limit conditions, whereas those in the slow group were 
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Figure 13. The fast group (Group 1): Probabilities of a “different” response given a same stimulus (left panels) 
and of a “same” response given a different stimulus (right panels). Each row refers to one of the payoff matrices—
Same, Different, and Neutral. The three hypotheses (lines) were fitted to the data (diamonds): B, bound-change 
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246    DIEDERICH

.1

.2

.3
S

S

B

B

M

M

.1

.2

.3

.4

.5
S

S

B

B

M

M

.1

.2

.3

.4

.5

.6

S

S

B

B

M

M .1

.2

.3

.4

S

S

B

B

M

M

.1

.2

.3

.4
S

S

B

B

M

M

.1

.2

.3

.4

S

B

M

 Probability of 
“Different” Given  Same 

 Probability of 
“Same” Given  Different 

450 600 750 900

Time Limit (msec)

450 600 750 900

Time Limit (msec)

A B

C D

E F

Same Same

Different Different

Neutral Neutral

Figure 14. The slow group (Group 2): Probabilities of a “different” response given a same stimulus (left panels) 
and of a “same” response given a different stimulus (right panels). Each row refers to one of the payoff matrices—
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Figure 15. The fast group (Group 1): Mean RTs for incorrect (left panels) and correct (right panels) responses when 
a same stimulus was presented. Each row refers to one of the payoff matrices—Same, Different, and Neutral. The three 
hypotheses (lines) were fitted to the data (diamonds): B, bound-change model; M, mixture-of-processes model; S, two-
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Figure 16. The fast group (Group 1): Mean RTs for incorrect (left panels) and correct (right panels) responses when 
a different stimulus was presented. Each row refers to one of the payoff matrices—Same, Different, and Neutral. The 
three hypotheses (lines) were fitted to the data (diamonds): B, bound-change model; M, mixture-of-processes model; S, 
two-stage-processing model. See the text for details.
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Figure 17. The slow group (Group 2): Mean RTs for incorrect (left panels) and correct (right panels) responses when 
a same stimulus was presented. Each row refers to one of the payoff matrices—Same, Different, and Neutral. The three 
hypotheses (lines) were fitted to the data (diamonds): B, bound-change model; M, mixture-of-processes model; S, two-
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Figure 18. The slow group (Group 2): Mean RTs for incorrect (left panels) and correct (right panels) responses when 
a different stimulus was presented. Each row refers to one of the payoff matrices—Same, Different, and Neutral. The 
three hypotheses (lines) were fitted to the data (diamonds): B, bound-change model; M, mixture-of-processes model; S, 
two-stage-processing model. See the text for details.



SEQUENTIAL-SAMPLING MODEL ACCOUNT FOR PAYOFF EFFECTS    251

models for payoff effects in a perceptual decision task. 
The bound-change hypothesis states that payoffs affect the 
distance of the starting position from each bound. The two-
stage-processing hypothesis assumes that payoffs deter-
mine the drift rate during the first stage of processing and 
that stimulus information influences the second stage.4

All of these hypotheses belong to the class of 
 sequential-sampling models, providing an extension of 
the static signal detection model through their ability to 
account for speed–accuracy trade-offs as well as by pro-
viding measures of discriminability and response bias. The 
three hypotheses were evaluated by their respective fits to 
72 observed data points (24 choice probabilities  48 con-
ditional mean RTs). Note that for testing the hypotheses it 
is essential to include different time constraints, because 
they predict different choice probabilities as a function of 
time limits. Considering only one time condition is not 
sufficient, even if the entire distribution is considered. The 
main results of this study are as follows.

Using the 2 values in Table 4 as a descriptive measure of 
goodness of fit, it was more difficult for all three hypotheses 
to account for data from the fast group than from the slow 
group. That is, the 2 values for the former group tended 
to be smaller for all hypotheses, both for choice frequen-
cies and choice RTs and under all presentation modes. The 
two-stage-processing hypothesis gave the best account for 
both groups under almost all these conditions. The bound-
change hypothesis gave a better account of the data for the 
fast group than did the mixture-of-processes hypothesis, 
but it did a worse job for the slow group. Recall that the fast 
group seemed to be more affected by payoffs, whereas the 
slow group seemed more affected by time limits.

Moreover, all of the hypotheses differed with respect 
to producing observed mean RT patterns within a choice 
pair—that is, a slower or faster mean RT for the less 
frequently chosen alternative. Whereas the two-stage-
processing model predicted the correct relation in 21 of 
the 24 pairs for the fast group, the mixture-of-processes 
model only accounted for it in 4 of the cases, and the 
bound-change hypothesis in only 11 of the pairs.

Overall, the two-stage-processing hypothesis gave the best 
account with respect to all of the factors considered here.

This is consistent with the results observed in Diederich 
and Busemeyer (2006). It suggests that individuals first 
process the payoff information for a period of time and 
later switch to processing the stimulus information. While 
processing the payoff information, they may occasionally 
cross a threshold and make a choice before the stimulus 
is even considered. If an early decision does not occur, 
they start from the state determined by the payoff and then 
process the stimulus until a threshold is reached. That is, 
a bias induced by different payoff matrices has a state and 
time dimension, not just a state dimension, as suggested 
by the bound-change hypothesis. Furthermore, stimulus 
information can be ignored, as proposed by the mixture-
of-processes hypothesis and is also possible within the 
two-stage-processing hypothesis. However, when stimulus 
information is considered, processing is influenced by the 
payoffs, as assumed by the two-stage-processing hypoth-
esis but denied by the mixture-of-processes hypothesis.

1. Do different experimental setups influence choice pro-
portions? In one experimental condition, the time limit was 
constant within one block of trials and the payoff matrix 
varied randomly, whereas in another, the payoff matrix was 
held constant and the time limit varied randomly within a 
block of trials. That is, an experiment was conducted that 
factorially manipulated stimulus information (two types of 
stimuli), payoffs (three types of payoff matrices), time limits 
(four), and presentation modes (two), to produce a total of 
48 conditions. The results were as follows. First of all, the 
patterns of data by Diederich and Busemeyer (2006) could 
be replicated even with longer time limits and slightly dif-
ferent stimulus displays. Second, the presentation modes—
that is, constant time limit and varying payoffs from trial to 
trial (labeled time-blocked) or constant payoffs and varying 
time limits from trial to trial within a given block of trials 
(labeled payoff-blocked)—had no effect on choice propor-
tions. Therefore, we can rule out that the experimental setup 
is crucial in producing the observed choice proportion pat-
terns. However, the experimental design affected the choice 
RTs for some of the participants. Third, two groups of par-
ticipants could be determined: One group were, on average, 
considerably faster and had higher error proportions than the 
other group. These groups were dubbed the fast group and 
the slow group, respectively. Choice proportions of the fast 
group were more affected by payoffs, overall, than those of 
the slow group. However, under the shortest deadline, the ef-
fects of payoffs were about the same for both groups. Finally, 
choice probabilities of the slow group were more affected by 
time limits than were those of the fast group. Interestingly, 
both groups earned about the same amount of points: 2,560 
and 2,569, respectively (across all conditions and averaged 
over participants). Maddox and colleagues (e.g., Bohil & 
Maddox, 2003; Maddox & Bohil, 2004; Maddox & Dodd, 
2001) proposed and tested a model in which the placement 
of the decision criterion results from a competition between 
reward and accuracy maximization (COBRA). Their model 
assumes that the decision criterion used by the observer on 
any given trial is determined by a weighted combination of 
the observer’s estimate of the reward-maximizing decision 
criterion and the accuracy-maximizing criterion, and that 
the observer attempts to maximize expected reward but also 
places importance on accuracy maximization. The results 
from the fast group seem to violate this prediction: Mem-
bers of this group did not try hard to be accurate for payoff 
matrices Same and Different, and in particular not for short 
deadlines, as is reflected in their d . Results from the slow 
group, on the other hand, do suggest that members tried to 
maximize the number of correct responses, in particular 
for longer deadlines, and to maximize the overall rewards, 
providing support for COBRA. A similar result could be 
observed in Diederich and Busemeyer (2006).

2. Do participants process either payoff information or 
stimulus information on a given trial? To test this idea, the 
new mixture-of-processes hypothesis was introduced. It 
states that payoffs and stimulus information are processed 
by two separate, independent processes. On a given trial, 
exactly one of the processes operates, never both. The 
qualitative and quantitative predictions of the mixture-
of-processes hypothesis were compared to two existing 
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NOTES

1. In the study by Diederich and Busemeyer (2006), the lines always 
appeared at the same horizontal and vertical position. Thus, the partici-
pant knew where to expect the lines and could start the first eye move-
ment before the stimulus appeared. Here, the participant was forced to 
look at the fixation cross before the stimulus appeared and then to make 
the eye movement. Therefore, longer deadline times (see below) were 
required than in the previous study.

2. A pilot study revealed that participants did not exploit the allotted 
time, in particular when time limits varied randomly from one trial to the 
next; that is, the RTs did not increase as a function of time limits.

3. This is sometimes called a fast error, but this terminology is mis-
leading in the present context, since in our study the more frequently cho-
sen responses are often incorrect, and we thus try to avoid this notion.

4. The drift-rate-change hypothesis states that payoffs affect the drift 
rate of the decision process, or in other words, the way that evidence is 
encoded. However, this hypothesis predicts increasing error rates as a 
function of increasing time limits, which was contradicted by the data; 
therefore, we do not consider this hypothesis here any further.

And one final remark: Note that the two-stage- processing 
model had the fewest parameters (12, rather than 13 for 
the bound-change hypothesis and 14 for the mixture-of-
 processes hypothesis) but gave the best account of the data. 
As is well known (see, e.g., Navarro, Pitt, & Myung, 2004; 
Wagenmakers, Ratcliff, Gomez, & Iverson, 2004), the num-
ber of parameters is not the only criterion for model com-
parison. In principle, one hypothesis or model might well 
be more flexible than others, and therefore fitting the model 
to data would be easier for that model than for the others. A 
more thorough test would have to include entire distribu-
tions, in addition to mean RTs and choice probabilities, as 
functions of the experimental manipulations. Solving this 
model comparison problem goes beyond the scope of this 
study and will be pursued elsewhere.
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APPENDIX A

Statistical Tests for Proportion Differences
According to the v-test statistic for m samples (e.g., number of conditions) with r categories (e.g., number of 

response alternatives),
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is 2 distributed (see, e.g., Pfanzagl, 1978) with (m – 1)(r – 1) degrees of freedom, where n is the number of 
observations and h denotes the respective frequencies within the given condition and category. Specific values 
of m and r are given in the notes to the tables below.

Effect of Payoffs
Testing the null model of equal proportions across different payoff and stimulus combinations for a given 

time limit gave the results found in Table A1. The model for equal proportions within a given time limit could be 
rejected for all but one case: Group 2 (the slow group) with a time limit of 900 msec. That is, payoffs do affect 
choice frequencies under almost all time limit conditions.

Interpreting the size of the v-test statistic values as an indicator of the degree by which choice probabilities 
are influenced by payoffs shows that Group 1 (the fast group) seems more responsive to payoffs than is Group 2 
under all time limit conditions.

Table A2 
v-Test Statistics Across Time Limits, 

Separated for Each Stimulus and Payoff Matrix (Equation 2)

 Stimulus  Payoff Matrix  Group 1  Group 2  

same Same 3.7  27
Different 103 176
Neutral 36  72

different Same 138 179
Different 0.7  35
Neutral 25.4  69

Note—Here, m  4 for four time limits, and r  2 for binary choices. The 
level of significance,   .05, was adjusted for six tests ( adj  .0085). If 
v  2(3)  11, the hypothesis that the m  4 random variables have the 
same distribution is rejected. This was found in 10 of the 12 cases.

Table A1 
v-Test Statistics Across Payoff Matrices, 

Separated for Each Time Limit (Equation 2)

 Time Limit  Group 1  Group 2  

450 msec 785 163
600 msec 519 22.3
750 msec 334 15.8
900 msec 211 14.7

Note—Here, m  6 for two stimuli (same/different) and three payoff 
combinations, and r  2 for binary choices. The level of significance, 

  .05, was adjusted for four tests ( adj  .0127). If v  2(5)  15, the 
hypothesis that the m  6 random variables have the same distribution is 
rejected. This was found in seven of the eight cases.

Effect of Time Limits
Testing the null hypothesis of equal proportions across time limits for a given payoff matrix and stimulus 

(same or different) gave the results shown in Table A2. The hypothesis could be rejected for all but two cases: 
Group 1 with either same stimuli and the Same payoff matrix or different stimuli and the Different payoff ma-
trix. That is, time limits do affect choice frequencies under almost all payoff and stimulus conditions.

Interpreting the size of the v-test statistic values as an indicator of the degree by which choice probabilities are 
influenced by time limits shows that choice probabilities for Group 2 are more affected than those of Group 1 
for all conditions.

(Continued on next page)
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APPENDIX A (Continued)

Effect of Presentation Modes
Finally, the hypothesis of equal proportions for the presentation modes was tested, and the results can be found 

in Table A3. Surprisingly, none of the results are significant; that is, presentation mode has no effect on choice 
probabilities.

Line Length Discrimination Accuracy
These results can be seen in Table A4.

Statistical Test for Mean RTs
A 3  4  2  2 ANOVA with the factors payoff (3 levels), time limit (4 levels), stimulus (2 levels), and 

presentation mode (2 levels) gave the following results. (1) Group 1: Except for the factor presentation mode, 
the main effects were significant at the p  .001 level for payoffs and time limits and at p  .04 for the stimulus. 
Of the six two-way interactions, all were significant at the p  .05 level, except for the interactions time limit  
payoff and stimulus  presentation mode. The three-way interactions and the four-way interaction were not 
significant. (2) Group 2: Except for the factor stimulus, all remaining main effects were significant at the p  
.001 level. Two two-way interactions (payoff presentation mode and time limit  presentation mode) were 
significant at the p  .001 level. All remaining two- and three-way interactions and the four-way interaction 
were not significant.

Table A3 
v-Test Statistics Across Presentation Modes, 

Separated for Each Time Limit and Payoff Matrix (Equation 2)

Payoff Time Limit (msec)

  Matrix  450  600  750  900

Group 1 Same 0.15 0.01 3.03 0.02
Different 0.46 0.06 0.56 0.01
Neutral 1.72 0.05 0.24 4.51

Group 2 Same 3.47 1.23 0.24 2.37
Different 0.22 1.22 0.59 0.44
Neutral 1.35 0 0.07 0.19

Note—Here, m  2 for two presentation modes. The level of signifi-
cance,   .05, was adjusted for 12 tests ( adj  .0043). If v  2(1)  8, 
the hypothesis that the m  2 random variables (for the two presentation 
modes) have the same distribution is rejected.

Table A4 
d  Conditioned on Payoff Matrices and 

Time Limits for Both Groups

Time Limit Payoff
 (msec)  Matrix  Group 1  Group 2  

450 Same 0.03 0.64
Different 0 0.42
Neutral 0.06 0.71

600 Same 0.33 1.44
Different 0.28 1.31
Neutral 0.29 1.30

750 Same 0.63 1.72
Different 0.52 1.58
Neutral 0.53 1.99

900 Same 0.80 2.25
Different 0.73 2.07

   Neutral  0.51  2.02  
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Table B1 
The Fast Group (Group 1): Observed and Predicted Relations Between Mean 

Response Times (RTs) for Correct and Incorrect Responses

Payoff Time Limit Observed Bound Two-Stage Mixture of
Stimulus  Matrix  (msec)  Relation  Change  Processing  Processes

same Same 450 s
600 s
750 f
900 f

Different 450 s
600 s
750 s
900 s

Neutral 450 s
600 f
750 f
900 f

different Same 450 s
600 s
750 s
900 f

Different 450 s
600 s 0
750 s 0
900 s 0

Neutral 450 s
600 f
750 f
900 f

Note—An “f ” means faster mean RTs for the less frequently chosen alternative, whereas “s” 
means slower mean RTs for the less frequently chosen alternative. A “ ” or “ ” sign indi-
cates whether the model predicted the pattern or not, and a “0” means the model predicted the 
same mean RT for correct and incorrect responses.

Table B2 
The Slow Group (Group 2): Observed and Predicted Relations Between Mean 

Response Times (RTs) for Correct and Incorrect Responses

Payoff Time Limit Observed Bound Two-Stage Mixture of
Stimulus  Matrix  (msec)  Relation  Change  Processing  Processes

same Same 450 f
600 f
750 f
900 s

Different 450 s
600 f
750 f 0
900 f

Neutral 450 f
600 f
750 f
900 f

different Same 450 s
600 s
750 s
900 s

Different 450 s
600 s
750 s
900 s

Neutral 450 f
600 s
750 s
900 s

Note—An “f ” means faster mean RTs for the less frequently chosen alternative, whereas “s” 
means slower mean RTs for the less frequently chosen alternative. A “ ” or “ ” sign indi-
cates whether the model predicted the pattern or not, and a “0” means that the model predicted 
the same mean RT for correct and incorrect responses.

APPENDIX B
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APPENDIX C

Table C1 
The Fast Group (Group 1): 

Estimated Parameters for All Four Models

Bound Change  Two-Stage Processing  Mixture of Processes

s  6.5
s
  .196

s
  .450

d  2.49
d
  .161

d
  .010

s  .014 s  .022 s  .020
d  .010 d .026 d  .015
2  .016 w12  .029 2  .02
  1.38 –   0.06

– – p  .43
450  5 450  7 450  7
600  10 600  11 600  14
750  14 750  14 750  19
900  16 900  16 900  23

tid  40 tid  366 tid  104
s  0.001 s  0.001 s  0.001
R  251 R  240 R  255

Note—Predicted mean response time and predicted choice probability 
were determined via a matrix approach (see, e.g., Diederich & Buse-
meyer, 2003). The s determine the matrix size. For example, for   5, 
the matrix size, m, is 2  5  1  11 with the neutral state at 0.  
indicates the range around the biases rather than the variance—that is, 
bias  . If the bias   is larger than the boundary, as for the shortest 
time limit in the bound-change model, the program rescales the bias 
value. That is, it allows for a smaller bias for this particular condition 
without adding an additional parameter. tid for the two-stage-processing 
model is so high that it doesn’t make a difference whether it is included 
in the model or not; that is, removing it reduces the number of parameters 
to be estimated by one. Obviously, the hypothesis-nonspecific parame-
ters—the s, s, and R—are very similar for all hypotheses.

Table C2 
The Slow Group (Group 2): 

Estimated Parameters for All Four Models

Bound Change  Two-Stage Processing  Mixture of Processes

s  0.10
s
  .963

s
  .202

d  2.49
d
  –.861

d
  .039

s  .0291 s  .045 s  .042
d  .0520 d  .048 d  .023
2  .003 w12  .399 2  .01
  4.34 –   6.69

– – p  .05
450  6 450  5 450  11
600  16 600  12 600  14
750  19 750  15 750  18
900  22 900  18 900  20

tid  62 tid  66 tid  66
s  0.001 s  0.001 s  0.001
R  337 R  337 R  300

Note—Predicted mean response time and predicted choice probability 
were determined via a matrix approach (see, e.g., Diederich & Buse-
meyer, 2003). The s determine the matrix size. For example, for   5, 
the matrix size, m, is 2  5  1  11 with the neutral state at 0.  indicates 
the range around the biases rather than the variance—that is, bias  . 
If the bias   is larger than the boundary, as for the shortest time limit 
in the bound-change model, the program rescales the bias value. That is, 
it allows for a smaller bias for this particular condition without adding 
an additional parameter. Obviously, the hypothesis-nonspecific parame-
ters—the s, tid, s, and R—are very similar for all hypotheses.
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