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Imagine running a typical two-alternative forced choice 
(AFC) experiment in which a human participant is pre-
sented with two sensory stimuli on every trial, one con-
taining a signal with some added noise, the other one con-
taining noise alone. The observer is required to choose 
the stimulus containing the signal, and the task is repeated 
for 100 trials. The two noise samples presented on indi-
vidual trials are different on every one of these 100 trials, 
and the intensity of the signal is similar to the intensity 
of the noise. We end up with a sequence of 100 binary 
responses. We then run a second experiment in which we 
show the same exact 100 trials to this participant. This 
means that on each trial, the noise samples are identical to 
those used in the previous experiment, the signal to be de-
tected is added to the same stimulus, and everything that 
is shown to the observer is identical to what was shown 
during the previous experiment. We end up with a second 
sequence of 100 binary responses. We then ask the ques-
tion: Out of 100 trials, how many times did the participant 
give the same response during Experiment 1 and during 
Experiment 2?

It is perhaps surprising that in a typical experiment, the 
same response happens only on roughly three out of four 
trials (Burgess & Colborne, 1988; Green, 1964). Consid-
ering that it is expected to happen on one out of two trials 
simply by chance (i.e., even if the participant pressed but-
tons randomly), three out of four may strike one as a rather 
poor degree of agreement between the participant and 
himself /herself. The stimulus is exactly the same: From 
the point of view of the sensory information that is deliv-
ered to the participant and the task that he/she is required 

to perform, the question is exactly the same. Yet, the par-
ticipant cannot agree with himself /herself on more than 
three out of four trials. We must conclude that the specific 
choice generated by a human participant on a given trial 
is not a deterministic function of what is happening on 
the monitor but also depends, to a large extent, on a loud 
source of variability that is not under direct experimental 
control: internal noise (Barlow, 1956; Pelli, 1990). The 
importance of this source of variability was first empha-
sized by Green. Over the decades that followed, some 
important studies (e.g., Burgess & Colborne, 1988) have 
added relevant knowledge, but there has been no attempt 
to provide a more comprehensive view of this phenom-
enon. Our motivation here is to sketch such a view, given 
current knowledge. In this sense, the present article can be 
intended as an update to Green’s original contribution.

We are not concerned here with the exact source of this 
variability. The participant may respond differently on a 
repeated trial because he or she sneezed the second time, 
or blinked, or inadvertently pressed a button other than 
the one that he or she meant to press. More interestingly, 
he or she may respond differently because, just like the 
whole participant, each neuron in the participant’s brain 
also responds in a slightly different way to repetitions of 
the same stimulus (Faisal, Selen, & Wolpert, 2008). The 
participant presumably relies on a large number of these 
neurons, many of which may not be useful for the task at 
hand; the summed neural noise may be sizable—perhaps 
sizable enough that it leads the participant to respond 
differently the second time around. All of these and po-
tentially other factors may contribute; we do not attempt 
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pends on these values alone—an assumption sometimes 
termed the decision variable assumption (Pelli, 1985). 
The adoption of this framework allowed us to estimate and 
compare internal noise for a vast range of tasks, stimuli, 
and conditions. We found that the value of internal noise 
is log-normally distributed across this range, and that it is 
generally higher than reported previously. This high degree 
of response variability has some interesting implications, 
which we take up in the Discussion section.

MetHod

origin of data Sets
The data sets used to compute the estimates reported in Fig-

ure 1 come from 20 different projects investigating different as-
pects of sensory processing, all involving a clearly defined signal 

to tease apart their different roles here. Our interest is in 
modeling and estimating their contribution as a whole.

It is impossible to tackle this problem quantitatively 
without some model of how the decisional process that 
leads to the participant’s choice operates. In line with pre-
vious treatments of this topic (Burgess & Colborne, 1988), 
we rely here on the standard signal detection theory (SDT) 
approach (Green & Swets, 1966). This framework is par-
ticularly useful for our purposes because it bypasses the 
specifics of individual stimuli and experimental protocols: 
Both signal1noise and noise-alone stimuli are assumed to 
map to a scalar value with a Gaussian distribution, regard-
less of whether they are visual, auditory, in 3-D, moving 
or static, or of other characteristics. The final decision as 
to whether the signal is in Stimulus 1 or Stimulus 2 de-
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Figure 1. Sensitivity (d ′) versus internal noise (abscissa) for a wide range of stimulus 
conditions and experimental protocols (see the Method section and table 1 for details). 
Note: Color is rendered only in the electronic version of this article. Red symbols refer to 
auditory data sets (1–3); the corresponding red oval is tilted to align with the best-fit line, 
positioned at center of mass, with parallel-to-line and orthogonal-to-line widths equal to 
standard deviations of the data across the two axes. For visual data sets (4–20), black sym-
bols refer to static low-level stimuli, magenta to higher level stimuli (data Sets 14 and 20), 
blue to moving, green to stereoscopic; corresponding linear-fit ovals are similarly color 
coded. Symbol size scales with number of forced choice alternatives (2, 4, and 8AFC); 
square symbols refer to yes–no protocols. open symbols refer to experiments that are 
comparable to those performed by Burgess and Colborne (1988). the corresponding 
oval is shown in gray color, whereas the internal noise range estimated by these authors 
is indicated by the light-gray shaded rectangular region. the range (6SEM) estimated 
by Levi et al. (2008) is indicated by the horizontal bar near the x-axis (top); the range 
estimated by Gold et al. (1999) for high external noise is indicated by the light-magenta 
shaded rectangular region. Solid vertical and horizontal lines mark unity. dashed verti-
cal lines mark the range outside which estimates were rejected (see the Method section). 
top histogram shows distribution for internal noise with associated Gaussian fit (gray 
smooth line), right histograms for sensitivity (d ′ immediately next to the axis, d ′in [see 
the Method section for definition] is farther to the right). Arrows indicate mean values. 
Note that both quantities are plotted to log axes. Colored histograms near the top x-axis 
plot internal noise distributions (flipped upside-down) for the corresponding subsets 
(detailed above). error bars on individual estimates are not shown, to avoid clutter.



804    neri

and a clearly defined external noise source. Both signal and noise 
were well above visibility/audibility threshold in all experiments. 
We are not able to qualify this statement more accurately because 
we did not carry out systematic detection threshold experiments; 
however, all of the data reported in the present article constituted 
parts of larger projects that employed noise image classification 
(Ahumada, 2002) as the main tool. We were able to retrieve clear 
classification images for all projects, which is a valid indication 
that external noise was a limiting factor for performance. Double-
pass results from less than one third of these projects have been 
published; however, the focus in these previous publications was 
not on data from double-pass experiments (which in some cases 
were not even reported, because they were irrelevant to the general 
interest of the publication). Table 1 provides a summary of relevant 
details for each data set. Data sets were treated as separate whenever 
there were significant differences between the two studies (e.g., 
although Data Sets 4 and 12 both involved moving dots, stimulus/
target–signal/task were substantially different). In all experiments, 
the double pass was performed within the same 100-trial block: The 
last 50 trials were double passes of the first 50 trials in randomly 
permuted order, and observers were not aware of this manipulation 
(they did not notice any difference between double-pass and non-
double-pass blocks).

Internal Noise estimation
We adopted a procedure similar to the one described by Burgess 

and Colborne (1988). For an n-AFC task, we assumed that the inter-
nal response before the addition of internal noise followed a normal 
distribution for each of n21 stimuli, and a normal distribution with 
mean d ′in for the stimulus containing the target. Each response was 
added to a Gaussian noise source with standard deviation σi; only 
this noise source differs for repeated presentations and represents in-
ternal noise. On each trial, the model selects the stimulus associated 
with the largest response. Different d ′in and σi values correspond to 
different percentages of correct responses ρ and percentages of same 
response to repeated presentations α. We selected the two values for 
d ′in and σi that minimized the mean-square error between the pre-
dicted and the observed values for ρ and α. σi estimates outside the 
0.2–5 range are not plotted in Figure 1 and were not used for subse-
quent analysis because they are not robust (see also Burgess & Col-
borne, 1988); these amounted to ~11% of the whole data set. This 
relatively high exclusion rate does not necessarily reflect a failure 
of the methodology per se, since it is at least in part attributable to 
a lack of sufficient data: The number of trials per estimate collected 
for excluded estimates (~400 on average) was significantly smaller 
(at p , .02, unpaired t test) than the number of trials collected for 
retained estimates (~570). More importantly, this exclusion criterion 
is not critical to our conclusions, but, if anything, reduces the size of 
the effect we report for the following reasons: (1) including values 
outside the 0.2–5 range raises the estimated mean level of internal 
noise to 1.8; (2) if we restrict analysis to estimates within the bot-
tom 20th percentile for the number of trials and compare it with the 
top 20th percentile, although we find that (as expected) the latter 
returns fewer estimates outside the 0.2–5 range, they both return 
high and similar values for mean internal noise at ~1.7 and ~1.9, 
respectively. The latter observation indicates that adding more trials 
per estimate leads to fewer outliers (i.e., it increases the chance of 
obtaining estimates within a reasonable range), but does not sub-
stantially alter the mean estimate over several different attempts. 
We therefore apply the exclusion criterion detailed previously as a 
conservative measure: Had we not applied it, our conclusions would 
have been mostly unchanged or stronger (i.e., higher levels of esti-
mated internal noise). After exclusion, our data set consisted of 419 
estimates total. The d ′ value plotted on the abscissa in Figure 1 is not 
d ′in but d ′, as customarily defined in the literature (Green & Swets, 
1966) (i.e., associated with output performance after the addition 
of internal noise); Figure 1 includes an additional distribution plot 
(rightmost histogram) for d ′in.

ReSuLtS

Figure 1 plots internal noise (in units of external noise, 
as customary) on the abscissa versus sensitivity (d ′) on the 
ordinate (Green & Swets, 1966). Sensitivity is narrowly 
distributed around 1 (0.97 6 0.39 standard deviation 
[SD]; see arrow near right-hand axis); this is expected, 
because the stimulus signal-to-noise ratio (SNR) was 
selected in all experiments so that observers responded 
correctly on roughly three out of four trials, apart from a 
limited number of instances in which we explicitly tested 
SNRs below (½3) and above (23) threshold (see the 
Discussion section). Internal noise is broadly distributed 
around 1.3 (1.3560.75 SD) and conforms well to a log-
normal distribution (gray fit in upper distribution plot). 
There was no significant correlation (at p . .05) between 
d ′ and internal noise, neither across the whole data set 
( p 5 .43) or within each of the six subclasses in which 
we subdivided it in Figure 1 (indicated by different colors 
and associated oval fits; see the Discussion section for 
more details).

We performed a variety of comparisons across different 
aspects of this data set. In the present article, we report 
only those of particular interest. We did not observe sig-
nificant differences across AFC protocols: Values were 
1.360.7 SD (2AFC); 1.260.8 SD (4AFC); 1.460.4 SD 
(8AFC). Our estimate was lower (at ~0.8) for a series of 
yes/no experiments (Data Set 13 in Table 1), but this re-
sult was related to the specific nature of the stimuli used 
in those experiments: When we restricted our analysis to 
2AFC tasks involving similar stimuli, we obtained an al-
most identical estimate (see the Discussion section for de-
tails and a comparison with previous estimates). Internal 
noise was significantly higher for auditory (1.760.7 SD) 
versus visual (1.360.7 SD) experiments (unpaired t test 
p , .005), despite no significant difference in sensitivity 
between the two modalities ( p . .05). This difference, 
however, was not exclusive to intermodality comparisons. 
We observed, for example, that visual experiments in-
volving stereoscopic stimuli (diamond symbols) returned 
a higher internal noise estimate (1.961.2 SD) than did 
those not involving stereoscopic stimulation ( p , .01), 
and again, this result was not associated with sensitivity 
differences ( p 5 .6).

dISCuSSIoN

The double-pass methodology adopted in the present 
article was previously used (among others) in Burgess 
and Colborne (1988). They estimated internal noise for 
a simple visual detection task. They reported a value of 
0.7560.1, almost half of our estimate. Does this mean 
that our data disagree with theirs? To the contrary, our re-
sults are in excellent agreement with those previously re-
ported by these authors. We reach this conclusion by first 
recognizing that the data sets used in the present study 
come from wildly different experimental conditions. To 
provide just one example, some were collected while 
participants were attempting to detect auditory bursts de-
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resolve this level of detail; however, the overall result in 
Figure 1 indicates that, despite potentially measurable dif-
ferences between individual conditions, at a macroscopic 
level, the quantity we are examining is likely to be the 
same: a late source of additive internal noise (this is how 
we modeled it in order to estimate it in the first place; see 
the Method section). Because our overall data set is more 
representative of human sensory processing than is the 
restricted data set used by Burgess and Colborne (1988), 
we conclude that if we accept the possibility that a state-
ment such as “human internal noise is in general ~X,” the 
value for X is 30%–60% larger than is typically assumed 
in the sensory literature. Our average estimate is slightly 
smaller (~1.2, range 0.7–1.9) if we compute the mean in 
log space. As already discussed by Burgess and Colborne 
(see also Klein & Levi, 2009, and later in the Discussion 
section), all of the estimates obtained using the method-
ology exploited in the present article refer primarily to 
internal noise induced by visible external noise perturba-
tions, which differs from the quantity measured by the 
equivalent internal noise methodology (Pelli, 1990).

What are some of the implications of high internal 
response variability? Consider, for example, efforts in 
the literature that fall under the general term molecular 
psychophysics (Green, 1964; Hirsh & Watson, 1996; Li, 
Klein, & Levi, 2006; Neri, 2009), whereby the desired 
goal is to be able to predict not just on what overall per-
centage of trials the participant responded correctly, but 
on which exact trials he/she responded correctly or incor-
rectly. The ability to carry out trial-by-trial prediction is 
heavily affected by internal noise, because this source of 
variability is not under direct experimental control: We 
can attempt to provide a statistical description such as the 
log-normal distribution in Figure 1, but apart from the ex-
ternal noise applied via the monitor or the headphones, we 
do not know what configuration internal noise may take 
on each trial. However, we can ask the following question: 
Given a certain statistical distribution for internal noise, 
what is the upper limit on trial-by-trial predictability? In 
previous work, we have shown that this question can be 
answered in general terms by establishing a range within 
which the upper limit for trial-by-trial predictability must 
lie (Neri, 2009; Neri & Levi, 2006); the exact value within 
this range depends on the details of the experiment, and it 
is not possible to determine it without restrictive assump-
tions, but we can state that it cannot lie outside the speci-
fied range in the absence of virtually any assumption at all 
(Neri & Levi, 2006). More specifically, suppose we run a 
double-pass experiment and find that a participant gives 
the same response to repeated presentations on fraction α 
of the trials (probability of agreement). We can then state 
that if we are able to construct the best possible model of 
the participant’s decisional process, our ability to predict 
the participant’s response may be as low as α or as high as 
{1 1 √1 1 n[α(n21) 2 1]}/n (for nAFC), depending on 
the statistical structure of the external stimuli and the in-
ternal noise source (Neri & Levi, 2006). The correspond-
ing range for the probability of agreement we measured 
across our whole data set was 0.7–0.84: This is (on aver-

livered through headphones, whereas others came from 
experiments in which they were asked to discriminate 
local details of natural scenes displayed on a monitor (see 
Table 1). We do not wish to claim that internal noise is 
the same across such different conditions, or that it may 
not depend on other experimental manipulations such as 
attention, adaptation, and/or task specification. More spe-
cifically, in relation to the Burgess and Colborne study, a 
meaningful comparison requires that we isolate compara-
ble conditions for the experiments included in our data set. 
We were able to do this for three data sets (5, 13, and part 
of 16 in Table 1) that involved low-level static luminance-
defined targets; the corresponding average estimates for 
internal noise were 0.83, 0.8, and 0.9 (see light-gray oval 
in Figure 1). These figures are in excellent agreement with 
Burgess and Colborne’s overall estimate mostly around 
0.8 (see, e.g., their Figure 6) indicated by the light-gray 
shaded region in Figure 1 (note the overlap with the gray 
oval). They also agree with the figures reported by Levi 
and collaborators (Klein & Levi, 2009; Levi, Klein, & 
Chen, 2008; the corresponding range is indicated by the 
top horizontal bar in Figure 1).

Larger values have occasionally been reported: Green 
(1964) gave an estimate of 1, and Burgess and Colborne 
(1988) reported ~1.3 at low SNR. In a more recent study 
looking at face processing in contrast noise, Gold, Ben-
nett, and Sekuler (1999) reported percent correct and per-
cent agreement values for a 10AFC task (see their Fig-
ure 4) corresponding to an internal noise estimate of ~1.1 
(high external noise). In order to isolate comparable con-
ditions to those of Gold et al. (1999) from our database, 
we restricted the analysis to Data Sets 14 and 20 (which 
involved natural scenes including faces; see Table 1). The 
corresponding scatter region is indicated by the magenta 
oval in Figure 1, which overlaps with the range for Gold 
et al. (1999) detailed above (indicated by light-magenta 
shaded region in Figure 1). It is tempting to speculate 
that higher level processing involves more internal noise 
than does low-level processing, because the overall range 
spanned by Gold et al.’s (1999) estimates (and our own 
for natural scenes) seems higher than that associated with 
low-level stimuli (see previous paragraph). However, we 
report high internal noise estimates for stereoscopic pro-
cessing of stimuli that would not customarily be classed as 
high level (Data Sets 7 and 8; green symbols in Figure 1), 
indicating that factors besides the low-level/high-level 
distinction (as understood in the literature) are likely to 
play a potential role.

Notwithstanding the caveats detailed above relating to 
the role played by specific experimental conditions, we 
do report that when we plotted our entire population of 
estimates across all the experimental conditions we tested, 
its distribution conformed very well to log-normal (Fig-
ure 1, top histogram with associated Gaussian fit). It is 
conceivable that the precise nature of the distribution 
may differ for different modalities, stimulus types, and 
other parameters: For example, it is possible that, when 
restricted to stereoscopic processing, the distribution may 
not be log-normal. We do not have sufficient data here to 
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some authors to refer to different types of internal noise 
sources, both additive. Additive noise means that the noise 
intensity does not depend on the intensity of the signal to 
which the noise is added. Multiplicative noise means that 
noise intensity scales multiplicatively with the intensity 
of the signal to which the noise is added (e.g., Klein & 
Levi, 2009). A significant difficulty with these terms is 
that there is no general agreement over terminology in the 
field; indeed, other authors have used other terms, such as 
contrast-dependent versus contrast- independent (Gold, 
Sekuler, & Bennett, 2004). For our purposes, these dis-
tinctions are only marginally relevant, in that we estimate 
the total amount of internal noise that we model as ad-
ditive in the sense defined above. In line with previous 
authors (Burgess & Colborne, 1988), we think that this 
framework is adequate (at least as a macroscopic descrip-
tion of the underlying process within the broad context 
afforded by our data set) mainly for two reasons.

First, as was already noted, the resulting estimates fall 
within a well-distributed population. Although this result 
in itself does not validate the adopted methodology, it does 
suggest that it is a sensible approach for the type of data 
and application used here. Second, we have demonstrated 
in previous work that, for a given participant, the estimated 
amount of internal noise is invariant with respect to the in-
tensity of the target signal over a twofold range (½3 and 
23 threshold), despite the large variations in sensitivity 
and probability of agreement associated with this manipu-
lation (Neri, 2010). A similar result was reported by Gold 
et al. (1999) and Burgess and Colborne (1988) (although 
the latter authors also found that in some experimental 
conditions [see their Figure 4B] internal noise showed a 
mild [inverse] dependence on SNR). In other words, it 
appears that internal noise (as estimated using the meth-
odology adopted here) does not depend very much on tar-
get intensity, as may be expected of a gain-modulating 
multiplicative noise source. Instead, it appears to remain 
constant in units of external noise intensity. Although this 
result in itself does not validate the SDT framework used 
to derive it in the first place, it does indicate that the model 
provides a sensible, robust, and stable description of the 
underlying mechanism. It is, of course, possible that this 
final outcome arises from the interaction of multiple dif-
ferent noise sources with different neural characteristics, 
not necessarily all additive. We are not in a position to 
address this issue in the present article.
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age) as high as we can expect to be able to predict human 
responses at threshold in a 2AFC experiment.

A second implication is that the efficiency of human 
sensory processing is expected to sit around 40%. Suppose 
humans behave like noisy ideal detectors: They process the 
incoming stimulus ideally, convert it into a decisional vari-
able ideally, add internal noise, and generate a response. 
By definition, this is as efficiently as they can behave: If 
their internal noise were 0, their efficiency would be 1. 
But we know that on average, we expect internal noise 
to hover around 1.3; this can be easily converted [using  
 1/(1 1 x2)] into an efficiency value of ~0.4, with a range 
between ~0.2 and ~0.7. These values are broadly consistent 
with those reported in the literature (e.g., Barlow, 1978, 
1980; Barlow & Tripathy, 1997; Burgess & Colborne, 
1988; Tjan, Braje, Legge, & Kersten, 1995), indicating 
that the inefficient ideal observer model can often provide 
a reasonable approximation to the human observer (Cohn 
& Lasley, 1986). It should be noted, however, that there is 
extensive evidence documenting inefficiencies not related 
to internal noise (De Valois & De Valois, 1990); therefore, 
modeling human observers as noisy ideal detectors may 
not be appropriate/useful for a number of applications. 
The suitability of this model (or lack thereof ) must be 
evaluated on a case-by-case basis, possibly resorting to 
additional tools beyond standard detectability metrics (see 
Murray, Bennett, & Sekuler, 2005).

A third implication relates to methodologies whose va-
lidity depends at least indirectly on the assumed level of 
internal noise. Consider, for example, certain applications 
of psychophysical reverse correlation, such as covariance 
analysis (Neri, 2004b, 2009) or generalized linear mod-
eling (Knoblauch & Maloney, 2008). The former tech-
nique partly relies (at least theoretically) on the degree 
of smoothness of the decisional transducer function (the 
function that maps the internal decisional variable into a 
probability of responding correctly or incorrectly) because 
sharp transducers (e.g., a step function) introduce artifacts 
within the estimated sensory kernels (Neri, 2004b). If the 
underlying distribution is smooth and unimodal (as we 
report in Figure 1), internal noise renders the transducer 
function smoother, lending support to the analytical treat-
ment that underlies nonlinear kernel estimation using co-
variance analysis (Neri, 2004b). Internal noise is, however, 
unwelcome for the application of generalized linear mod-
eling (GLM) to kernel estimation, because Knoblauch and 
Maloney showed that this approach is ineffective (i.e., no 
more effective than standard methods; Ahumada, 2002) for 
internal noise values greater than ~0.5. Less than 5% of our 
estimates fall below this value, making the GLM approach 
of very limited utility in realistic applications.

All estimates reported in the present article were ob-
tained under the assumption that the underlying process is 
well captured by a standard signal detection theory model 
with late additive internal noise source (see the Method 
section). It is important to be clear about what we mean 
here by additive: It is simply that noise is added to, rather 
than multiplying (gain-modulating), the incoming signal. 
The terms additive and multiplicative have been used by 
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