
Multinomial processing tree (MPT) modeling is a sta-
tistical methodology for measuring latent cognitive ca-
pacities in selected experimental paradigms (Batchelder 
& Riefer, 1986, 1990, 1999; Chechile, 2004; Erdfelder 
et al., 2009; Hu & Batchelder, 1994; Riefer & Batchelder, 
1988, 1991, 1995; Riefer, Hu, & Batchelder, 1994). The 
data structure requires that participants performing a cog-
nitive task make categorical responses to a series of test 
items. An MPT model parameterizes a subset of probabil-
ity distributions over the response categories by specify-
ing a processing tree designed to represent hypothesized 
cognitive steps, such as memory encoding, storage, dis-
crimination, inference, guessing, and retrieval.

Since its introduction in the 1980s, MPT models have 
been successfully applied to modeling performance in a 
wide range of cognitive tasks, including associative re-
call, source monitoring, eyewitness memory, hindsight 
bias, object perception, speech perception, propositional 
reasoning, social networks, and cultural consensus. 
Batchelder and Riefer (1999) listed over 80 applications 
of MPT models in various areas of cognitive and social 
psychology. MPT models have also been applied to esti-
mate cognitive deficits in special populations (Batchelder 
& Riefer, 2007; Chechile, 2007; see Erdfelder et al., 
2009, for a review of such applications). The use of MPT 

models to assess special populations is often referred 
to as cognitive psychometrics, representing the fact that 
theoretically motivated models are employed as measure-
ment tools of cognitive functioning (Batchelder, 2009; 
Batchelder & Riefer, 2007; Riefer, Knapp, Batchelder, 
Bamber, & Manifold, 2002). In all of these applications, 
MPT models were intended to offer researchers more 
instructive and informative interpretations of data than 
those based on the traditional data analytic approaches, 
such as the ANOVA.

In the present study, we are concerned with the logic 
of selecting the best MPT model from a set of scientifi-
cally plausible MPT models that are available to account 
for a given data set. A researcher may entertain multiple 
scientific hypotheses about the underlying processes, each 
formulated as a distinct MPT model,1 and may wish to 
determine which one of these models best describes the 
observed data in some defined sense; this is the problem 
of model selection (Myung & Pitt, 1997). By selecting 
among theoretically motivated models, the researcher is 
able to identify from alternative theories the one best sup-
ported by empirical observations. To illustrate, consider 
the question of how the different languages of bilingual 
people are cognitively represented. Several theories ad-
dressing this issue differ as to whether information pre-
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modeling (e.g., Lee, 2001; Lee & Pope, 2006; Myung, 
Pitt, & Navarro, 2007; Navarro & Lee, 2004; Pitt, Myung, 
& Zhang, 2002) but is entirely absent in MPT modeling, 
with the exception of our own work (Wu et al., 2010). To 
help researchers not familiar with numerical computing, 
in this article we make available a general-purpose com-
puter program that implements MDL-based model selec-
tion for virtually all types of MPT models.

The rest of the article is organized as follows: We first 
begin with a formal definition of MPT models. We then 
briefly review the extant methods of model selection, such 
as LRT, AIC, and BIC, before introducing MDL, the focus 
of the present work. The discussion then turns to the com-
puter program, and we provide detailed instruction of how 
to use it in a given situation of MPT modeling. Finally, 
two application examples of MDL-based model selection 
with real data sets are presented before we conclude the 
article.

MPT Models
MPT models assume that the observed categorical re-

sponses in an experiment follow from a series of latent 
cognitive events. These events are represented by a tree 
structure, in which nonterminating nodes represent the 
events; branches that follow from a node represent all 
possible outcomes of the event, with the probabilities of 
these outcomes being either parameters in the model or 
known constants; and leaves (terminating nodes) of the 
tree structure represent the observed responses from par-
ticipants. Because different sequences of events may lead 
to the same response, a response category may include 
more than one leaf in the tree.

To illustrate how an MPT model works, consider the 
one-high-threshold model (1HTM) for source- monitoring 
experiments as it is depicted in Figure 1. In a source-
 monitoring experiment, participants first study a list of 
items from two sources, A and B, and are then asked to 
judge the source of test items as from A, from B, or new (N; 
i.e., a new item from neither source). The 1HTM for such 
experiments consists of three distinct trees (Batchelder 
& Riefer, 1990), each modeling hypothetical processes 
assumed to be involved in responding to a given type 
of items. A distinguishing feature of this model is that 
it assumes that old items can be correctly detected with 
probabilities D1 and D2 for items from Sources A and B, 
respectively. If an old item is correctly detected as old, a 
discriminating decision on its source is made, with suc-
cess probabilities d1 and d2 for the two sources, respec-
tively. If any of the two processes fails, guessing processes 
follow. For new items, however, the model assumes no 
detection process, and instead, response selection is gov-
erned by guessing processes only. The model postulates 
three types of guessing processes, represented by param-
eters b, g, and a (see Figure 1 for details). By putting vari-
ous constraints on the model parameters, a hierarchy of 
submodels can be derived from the model, which is shown 
in Figure 2. For instance, the equality constraints of D1  
D2 and d1  d2, which amount to saying that the detection 
and discrimination probabilities both stay the same across 
items from different sources, result in 1HTM 5A. On the 

sented in a particular language retains a language-specific 
tag. Source-monitoring experiments were conducted to 
differentiate these theories (e.g., Rose, Rose, King, & 
Perez, 1975; Saegert, Hamayan, & Ahmar, 1975), and 
these theories, as represented by their corresponding 
source-monitoring MPT models (to be elaborated on in 
the next section) that assume different treatment effects 
on their parameters, can be compared by model selection 
(Batchelder & Riefer, 1990). Similarly, other theoretical 
issues in cognitive psychology, such as sequential versus 
nonsequential processes and automatic versus control pro-
cesses, can also be addressed by comparing MPT models 
with different tree structures (e.g., Bishara & Payne, 2008; 
Schweickert, 1993).

In addition to evaluating multiple scientific theories 
behind different MPT models, model selection can also 
be employed as a tool for examining the validity of an 
MPT model. The validity of an MPT model concerns 
whether it is warranted to interpret a parameter in the 
model as representing the underlying cognitive process 
that it is explicitly postulated to represent (see, e.g., 
Batchelder & Riefer, 1999; Riefer et al., 2002; Schweick-
ert & Chen, 2008). To establish validity, it is necessary 
to apply experimental treatments that have predictable 
selective influence on the parameters. For example, if a 
model has a parameter  that is postulated to measure the 
ability to retrieve items from memory, then experimental 
manipulations that should affect levels of retrievability 
should result in predictable changes in  but no change 
in parameters postulated to measure other things. To de-
termine whether the desired selected influence is present 
for a particular MPT model, it is necessary to select from 
among different versions of the model assuming different 
patterns of treatment effects.

Because of its importance in evaluating scientific theo-
ries and establishing the validity of MPT models, model 
selection is of particular interest in MPT modeling. To 
perform model selection, one must account for the effect 
of model complexity. This is because model complexity 
can affect the predictive capacity or accuracy of a model, 
which is the hallmark of model selection (Myung, 2000; 
Myung & Pitt, 1997). In the case of MPT models, it has 
been shown that they can vary greatly in complexity not 
only in the number of parameters but also, importantly, in 
the functional form of the models, such as tree structure 
and parameter constraints (Wu, Myung, & Batchelder, 
2010). However, as will be discussed later in this article, 
the likelihood ratio test (LRT; Read & Cressie, 1988), 
currently in wide use for MPT modeling, does not select 
models on the basis of their predictive accuracy. Other 
popular selection methods, such as the Akaike informa-
tion criterion (AIC; Akaike, 1973) and the Bayesian in-
formation criterion (BIC; Schwartz, 1978) do not fully 
account for all dimensions of model complexity. Given 
these limitations, a model-selection method that fully ac-
counts for model complexity is called for.

In the present article, we introduce such a method for 
MPT modeling: minimum description length (MDL) 
model selection. MDL has been successfully applied to 
addressing various model-selection problems in cognitive 
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the J categories of a model. Let nj be the number of these 
responses that fall into category Cj, n  (n1, n2, . . . , nJ) ,
and N  j nj. Then n is distributed as a multinomial 
probability distribution given by

 f
N

n n
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j

J
j( | )

, . . . ,
( ),n

1 1
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where the multinomial probability pj follows the compu-
tational rules in Equations 2 and 1.

The above mathematical description of BMPT mod-
els with constants aijs, bijs, and cij, although it uniquely 
and sufficiently specifies the distribution of the data, 
can be cumbersome as an input to computer programs. 
For this purpose, Purdy and Batchelder (2009) devised a 
much more concise and elegant representation of BMPT 
models. Their string representation scheme exploits the 
recursive properties of the tree structure and includes 
only branching probabilities and categories in the model. 
To illustrate, the string representation of a coin-flipping 
Bernoulli model is given by pHT, where H and T are 
outcomes of the process and p is the probability of ob-
taining the outcome H. To obtain the string representa-
tion for a more complex BMPT model, one begins with a 
representation of the decision process at the root node and 
then replaces the two outcomes with the representations 
of the decision processes that follow those outcomes. To 
illustrate, take the tree of Source A items in the 1HTM 
in Figure 1. We first represent the item- detection process 
with D1(detected)(undetected). We then replace the out-
come detected with the representation of the discrimina-
tion process d1A(source unidentified) and the outcome 
undetected with that of the guessing process b(guess as 
 old ) N. Now we get D1d1A(source unidentified)b(guess as 
old) N. We continue the replacement until the string con-
tains only branching probabilities and response categories. 
The string representation of the tree is  D1d1AaABbgABN. 
This representation makes the input to computer programs 

other hand, if we assume that only the source discrimina-
tion probabilities are the same for both sources (d1  d2), 
not the detection probabilities (D1   D2), 1HTM 6B, in 
which 1HTM 5A is nested, is obtained instead.

Speaking in formal terms, an MPT model parameter-
izes a subset of multinomial probability distributions over 
response categories. Because every MPT model can be 
reparameterized into a binary MPT (BMPT) model, in 
which every decision node has only two processing possi-
bilities (Hu & Batchelder, 1994), we will only discuss the 
mathematical formulation of BMPT models. Suppose a 
BMPT model has S parameters [ ( 1, 2, . . . , S) ]  and 
J categories (C1, C2, . . . , CJ), and category Cj includes 
leaves Bij (i  1, 2, . . . , Ij; j  1, 2, . . . , J ). Because of its 
binary nature, nonconstant probabilities on the branches 
must be of the form s or 1  s. The probability of taking 
the decision path to a leaf Bij is given by the product of all 
probabilities along this path:

 p cij ij s

a

s

S

s

bijs ijs( ) ,
1

1  (1)

where aijs and bijs are, respectively, the number of times s 
and 1  s appear on the path to Bij, and cij is the product 
of all constant probabilities along the same path or set to 
unity if there is no constant probability along this path. 
The probability of category Cj is the sum of the probabili-
ties of all leaves it includes; that is,

 p pj i j
i

Ij

( ) ( ).
1

 (2)

For example, each tree in 1HTM discussed above is a 
BMPT model. The probability for a subject to respond 
Source A given a stimulus from Source A is given by 
D1d1  D1(1  d1)a  (1  D1)bg.

Now let us assume that several participants make cate-
gorical responses to the same set of items and that their re-
sponses are independently and identically distributed into 
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Figure 1. The one-high-threshold multinomial processing tree model of source monitoring. The parameters are defined as follows: 
D1, detectability of Source A items; D2, detectability of Source B items; d1, source discriminability of Source A items; d2, source discrim-
inability of Source B items; a, guessing that a detected but nondiscriminated item belongs to Source A; b, guessing old to a nondetected 
item; g, guessing that a nondetected item biased as old belongs to a Source A category. From “Multinomial Processing Models of Source 
Monitoring,” by W. H. Batchelder & D. M. Riefer, 1990, Psychological Review, 97, p. 551. Copyright 1990 by the American Psychologi-
cal Association. Adapted with permission.
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the degrees of freedom equal to the difference in numbers 
of parameters between the models, provided that certain 
regularity conditions are satisfied (e.g., Read & Cressie, 
1988). If the value of G2 is large enough to fall in the rejec-
tion region of the sampling distribution, the null hypoth-
esis is rejected, and the full model is chosen. Otherwise, 
the reduced model is chosen over the full model.

The G2-based LRT is generally a useful method of 
model evaluation but has several limitations in its use 
as a model-selection method for MPT models. First, the 
method can only be used for comparing pairs of nested 
models, one pair at a time. This effectively excludes its ap-
plication to the situation in which multiple models with or 
without nesting relationships are compared. Second, the 
regularity conditions of the test require that the maximum 
likelihood estimate (MLE) under either model should not 
be on the boundary of the parameter space (see Shapiro, 
1988, for an alternative procedure). This implies that LRT 
is not able to take into account inequality constraints in 
the models. To see this, because the inclusion of inequal-
ity constraints does not change the degrees of freedom 
of the LRT, it changes the result of the test only when 
parameters of either model are estimated on the bound-
ary defined by those constraints, but that would violate 
the regularity conditions mentioned above and would ren-
der the test invalid. For the same reason, LRT cannot be 
employed to compare two nested models with the same 
number of parameters but different functional forms, such 
as 1HTMs 6A and 6B in Figure 2.

Besides the above issues, note that the goal of LRT is 
to assess the descriptive adequacy of a given null model 
in the null hypothesis significance test framework, not to 
choose from a set of candidate models the one that best 
captures the regularities underlying the data (Myung & 
Pitt, 1997). As such, LRT does not necessarily help iden-
tify the best-approximating model, which is what model 
selection is about. This latter criterion is known as gen-
eralizability in statistics (e.g., Myung, 2000; Myung & 
Pitt, 1997). In the rest of this section, we discuss various 
model-selection criteria proposed as generalizability mea-
sures and the importance of model complexity in deter-
mining a model’s generalizability.

Generalizability and model complexity. The gen-
eralizability of a model refers to how well the conclusion 
from the current observed data can be applied to future, not 
yet observed data (Myung, 2000). By definition, the model 
with best generalizability gives the closest approximation 
to the underlying mechanism of the data and should there-
fore be preferred in model selection. Models that general-
ize well should first provide a good fit to the present data; 
however, generalizability is more than goodness of fit and 
is significantly affected by model complexity.

Model complexity or flexibility has to do with a mod-
el’s intrinsic capability to fit a wide range of data patterns. 
Generally speaking, a model with many parameters is 
more complex than a model with fewer parameters. Fur-
thermore, models with the same number of parameters but 
different equation forms can also differ in complexity. This 
is called the functional form dimension of model complex-

much easier and will be exploited in our MATLAB pro-
gram described later in the present article.

Methods of Model Selection
As was mentioned in the introduction, model selec-

tion is a necessary and crucial step in the application of 
MPT models. Various model-selection methods have been 
proposed in the past for this purpose. In the following, 
we review some of these methods, including the MDL 
method.

LRT. The G2-based LRT is the most commonly 
used method of inference in MPT modeling (e.g., Hu 
& Batchelder, 1994; Hu & Phillips, 1999; Riefer & 
Batchelder, 1988). At the center of this approach is the 
likelihood-ratio-based test statistic by which the adequacy 
of a model is evaluated in the null hypothesis significance 
testing framework. Specifically, LRT requires the setting 
of two models, full and reduced, such that the reduced 
model is nested in the full model with a reduction in the 
number of parameters. The G2 test statistic is then defined 
as G2  2 ln LR, where LR is the ratio of the maximum 
likelihood of the reduced model to that of the full model. 
Under the null hypothesis that the reduced model is cor-
rect, when the sample size N is large enough, the sampling 
distribution of G2 is shown to follow a 2 distribution, with 
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Figure 2. The hierarchy of eight versions of the 1HTM in Fig-
ure 1, created by imposing successive constraints on the param-
eters. In this figure, parameters in each model are listed and a 
directed arrow from one model to another indicates that the sec-
ond model is nested in the first. Note that this figure combines 
the nesting relationships shown in Figures 2 and 3 of Batchelder 
and Riefer (1990), and some of the nesting relationships are not 
explicit from the parameter constraints.



MULTINOMIAL PROCESSING TREE MODELS    279

The principle of MDL originates from algorithmic 
coding theory in computer science. According to this 
principle, statistical modeling is viewed as data com-
pression, and the best model is the one that compresses 
the data as tightly as possible. A model’s ability to com-
press the data is measured by the shortest code length 
with which the data can be coded with the help of the 
model. The resulting code length is related to generaliz-
ability such that the shorter the code length is, the better 
the model generalizes (Grünwald, 2000, 2007; Grün-
wald, Myung, & Pitt, 2005; Myung, Navarro, & Pitt, 
2006).

The Fisher information approximation (FIA; Rissanen, 
1996) represents a formal implementation of the MDL 
principle for model selection. It gives the shortest code 
length with which a model can code the data.3 This crite-
rion is defined as

 FIA  LML  CFIA, (6)

with

 C S N dFIA 2 2
ln ln | ( ) | ,I  (7)

where I( ) is the Fisher information matrix (e.g., Casella & 
Berger, 2001) of sample size 1 with its elements given by

 I E
f x

i j
i j

( )
ln |

.
2

1 4  

A smaller criterion value indicates better generalization, 
and thus, the model that minimizes the criterion should 
be chosen.

There are several observations that one can make about 
FIA. First, in this selection criterion, generalizability is 
measured as a trade-off between goodness of fit (LML) 
and complexity (CFIA). Second, regarding the complex-
ity measure of FIA, CFIA, its first term captures the ef-
fects of the number of parameters (S), and its second term 
captures the functional form effects through the Fisher 
information matrix [I( )]. Note, especially, that the func-
tional form complexity in CFIA is expressed as an integral 
over the parameter space. As such, it would therefore be 
straightforward to represent inequality constraints on pa-
rameters in CFIA, because the constraints simply reduce 
the size of the parameter space. Third, FIA is related to 
BIC in that both criteria can be viewed mathematically as 
approximations to 2 times the log marginal likelihood in 
Bayesian statistics when Jeffreys’s prior ( ) | I( ) | is 
assumed, but FIA gives a better approximation than BIC 
(Grünwald, 2007, chap. 8).

To summarize, FIA overcomes the practical and theo-
retical shortcomings of LRT in that the former is based 
on generalizability and can be applied to multiple nested 
or nonnested models. Furthermore, the ability of MDL to 
capture functional form complexity and also to account 
for the effects of parametric inequality constraints provide 
MDL with unique advantages over LRT, as well as over 
AIC and BIC. Given the great variability in functional 
form complexity among MPT models, MDL is ideally 
suited for model selection among these models.

ity (Myung & Pitt, 1997). To give an example, two psy-
chophysics models, y  axb   and y  a log(x  b)  
, with   N(0, 2), may differ in complexity, despite the 

fact that they both have two parameters. Because of their 
flexibility, complex models tend to overfit the current 
data, thereby generalizing poorly to future observations, 
and should therefore be penalized in model selection.

In the case of MPT models, differences in complexity 
due to functional form can arise in a variety of ways: from 
different tree structures, different parametric constraints, 
and/or different category assignments to the leaves of 
a tree. For example, consider 1HTMs 5A, 5B, and 5C, 
shown in Figure 2, each of which imposes a distinct set 
of equality constraints on the parameters of the largest 
model, 1HTM 7. Although all three models have five pa-
rameters, their complexity may be quite different from 
one another. This is in fact what Wu et al. (2010) found. 
Their results showed that the difference in complexity 
between 1HTMs 5A and 5B is larger than that between 
1HTMs 5B and 4. An implication is that the complexity 
difference due to functional form of MPT models can be 
even greater than that due to the number of parameters. 
Findings such as these point to the importance of account-
ing for the functional form dimension of complexity—in 
particular, in model selection with MPT models.

MDL. Various model-selection methods that estimate a 
model’s generalizability have been proposed in statistics.2 

Among them, AIC (Akaike, 1973) and BIC (Schwartz, 
1978) have been used in MPT modeling, although MDL 
(Grünwald, 2007; Rissanen, 1996, 2001) has not, to our 
knowledge. In what follows, we briefly review AIC and 
BIC before turning our discussion to MDL.

Unlike LRT, AIC (Akaike, 1973) and BIC (Raftery, 
1999; Schwartz, 1978; Wagenmakers, 2007; Weakliem, 
1999) can be used to compare multiple nested or non-
nested models. They are defined as

 AIC  2LML  2S, (4)

 BIC  2LML  S ln N, (5)

where LML{  ln f [x | (x)]} denotes the natural loga-
rithm of the maximized likelihood, x is the current data, 
S is the number of parameters, and N is the sample size. 
For both model-selection criteria, among a set of compet-
ing models, the model with the smallest criterion value is 
judged to best generalize and is thus preferred. We can see 
that in both equations, the first term is related to the fit of 
the model, while the second term represents a complex-
ity penalty, thereby formalizing Occam’s razor (Myung & 
Pitt, 1997). However, both AIC and BIC penalize complex 
models only by their number of parameters, neglecting 
their functional form complexity. Consequently, neither 
criterion is appropriate for selecting among models with 
inequality constraints.

In what follows, we discuss MDL-based model se-
lection, which presents itself as an attractive alternative 
method, because it overcomes all of the aforementioned 
problems of LRT, AIC, and BIC and is particularly appro-
priate for MPT model selection, given its ability to fully 
capture model complexity.
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the string s. Its length should be the same as the number 
of “p”s in s, and its elements correspond to the “p”s ac-
cording to their order in s. Positive integer elements in 
parameters assign parameters to the corresponding 
“p”s, with the same integer denoting the same parameter. 
Constants are assigned to the “p”s using the negation of 
their values. For Model 5C with multinomial probabilities 
.25, .25, and .5 for Sources A and B and new items, re-
spectively, this input argument should be parameters  
[ .5, .5, 1, 3, 5, 4, 5, 2, 3, 5, 4, 5, 4, 5]. In this vector, 
the five parameters (D1, D2, d, b, g) are coded using the 
integers 1 to 5, respectively, and the first two elements of 
the vector (the .5s) are the probability constants that we 
used to join the three trees into a single tree.

The third input argument, ineq0, assigns inequality 
constraints imposed on the parameters. It is a matrix with 
two columns. Each element denotes a parameter coded 
in the same way as in parameters. For each row, the 
parameter on the left column is constrained to be smaller 
than that on the right column. The number of rows is de-
termined by the total number of simple inequality con-
straints of the form 1  2 in the model. For example, if 
we were to impose an inequality constraint D1  D2 for 
Model 5C, the matrix would be set to ineq0 [2,1]. 
If no inequality constraints are assumed, we set it to an 
empty matrix, ineq0 [].

The fourth input argument, category, assigns cate-
gories to the “C”s in the string s in the same way in which 
parameters assigns branching probabilities, except 
that only positive consecutive integers from 1 to J, the 
total number of categories, are allowed. For model 1HTM, 
this argument should be set to category  [1, 1, 2, 1, 
2, 3, 5, 4, 5, 4, 5, 6, 7, 8, 9]. Note that with three different 
responses in each of the three conditions, there are nine 
different categories in total.

Finally, the fifth input argument, N, specifies the total 
sample size, and the last input argument, Sample, speci-
fies the number of random samples to be drawn in the 
Monte Carlo algorithm.

The first output argument, CFIA, gives CFIA. Given the 
stochastic nature of the Monte Carlo algorithm, the output 
value CFIA changes from one run of the program to an-
other. The second output argument, CI, gives the Monte 
Carlo confidence interval for CFIA. The remaining four 
output arguments are optional. They are described in de-
tail in the program file.

MDL Model Selection of MPT Models
A computer program for CFIA computation. Ap-

plying the FIA criterion to MPT models requires the com-
putation of CFIA in Equation 7. As no analytic solution is 
available in general for the integral in the expression of 
CFIA, the solution must be sought by numerical integration, 
which may be too cumbersome for most researchers who 
are interested in applying FIA. To help ease some of the 
computational burden, we have written a computer program 
that can be used to compute the complexity measure.

The general-purpose MATLAB program for comput-
ing the quantity CFIA for BMPT models is available for 
download as a supplement from the Psychonomic Bulletin 
& Review Web site (http://pbr.psychonomic- journals.org/
content/supplemental). The program evaluates the integral 
using a Monte Carlo algorithm. The technical details of 
this numerical integration algorithm are described in Wu 
et al. (2010). The scope of the program is general enough 
to compute the complexity of any BMPT model. Given 
that every MPT model can be reparameterized into an 
equivalent BMPT model, the program is applicable to all 
MPT models. The program can also incorporate inequal-
ity constraints on parameters insofar as the constrains are 
of the form i  j or its combinations.5

The program assumes that the BMPT model has a sin-
gle tree structure. When K trees are present in one model, 
these trees should be combined into a single tree with mul-
tinomial probabilities pk  Nk/N, where Nk is the sample 
size for tree k in the experimental design, and N is the total 
sample size. To illustrate how this is done, consider model 
1HTM, shown in Figure 1, and suppose that the sample 
sizes for items from Sources A and B and new items are 
250, 250, and 500, respectively. The three trees should 
then be joined to form a single tree with numerical prob-
abilities pA  pB  .25 and pN  .5. Although all three 
trees in 1HTM are BMPT models, the new tree that we 
obtained by joining them is not, because there are three 
branches from the root node. It needs to be turned into a 
BMPT model through reparameterization. To reparam-
eterize, one first joins the two trees for Sources A and B to 
a single node with branching probability .5, and then joins 
the resulting binary tree with the tree for new items with 
branching probability .5. This is shown in Figure 3.

The MATLAB program involves a function,  BMPTFIA, 
with six input arguments and six output arguments: 
function [CFIA,CI,lnInt,CI1,lnconst, 
C I2]  BMPTFIA(s,parameters,ineq0,cate
gory,N,Sample). The input and output arguments are 
described below.

The first input argument, s, is related to the string 
representation of the BMPT model, as was discussed 
earlier. It can be obtained by replacing all categories 
in the string by the capital letter “C” and all branching 
probabilities, including parameters and fixed constants, 
by the lowercase letter “p.” For example, for model 
1HTM shown in Figure 1, this argument should be s  
“ppppCpCCppCCCppCpCCppCCCppCCC.”

The second input argument, parameters, is a row 
vector that assigns parameters or constants to the “p”s in 

.5

.5 The processing tree for Source A items

.5 The processing tree for Source B items

.5 The processing tree for new items

Figure 3. Example of combining the three processing trees in 
the 1HTM (shown in Figure 1) into one BMPT model. The sam-
ple sizes are assumed to be 250, 250, and 500 for Source A items, 
Source B items, and new items, respectively.
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relationship among the sentences makes them semantically 
less distinguishable, language source memory would be 
poorer for related sentences than for unrelated sentences.

On the basis of an ANOVA of the data, Rose et al. 
(1975) concluded that there was no significant differ-
ence between the two treatment conditions. Batchelder 
and Riefer (1990, Tables 7 and 8) reanalyzed the same 
data with model 1HTM 4, shown in Figure 2, which can 
distinguish the effect of item detection from that of source 
discrimination. Their LRT results suggested that recogni-
tion memory (D) was significantly poorer for related than 
for unrelated sentences, but there was no significant dif-
ference in source monitoring (d). On the basis of this find-
ing, Batchelder and Riefer (1990) concluded that contex-
tual relationships are detrimental to item detection but not 
to source discrimination, indicating that language source 
information is not available at the semantic level.

We reanalyze the data from Batchelder and Riefer (1990, 
Table 7) in a model-selection framework using MDL, as 
well as AIC and BIC. The results are shown in Table 1. The 
first model, M0, has eight parameters, four (D, d, b, g) for 
each treatment condition, without any equality constraints. 
A total of 15 additional MPT models were created by im-
posing various equality constraints on the parameters. For 
the rest of the models, a subscript notation is used to indi-
cate how the parameters are constrained to be equal across 
the two treatment conditions, related and unrelated. For ex-
ample, in MDd, D and d are set as equal across the two con-
ditions, whereas b and g are allowed to vary across the con-
ditions. In addition to such equality constraints, inequality 
constraints are also considered for models where either of 
the two parameters, D or d, is allowed to differ between the 
two conditions, because theories underlying those models 
predict a particular direction of difference: Both parameters 

We now provide an example of the application of the 
computer program. Consider again 1HTM 5C in Figure 2 
with an inequality constraint of D1  D2 and sample sizes 
250, 250, and 500 for the three kinds of stimuli. In a Monte 
Carlo run with Sample  200,000, we obtained CFIA  
12.6182, CI  [12.6113, 12.6251].

The MATLAB program described above gives only the 
complexity term, CFIA. As is shown in Equation 6, to ob-
tain the value of FIA for a given MPT model, one must 
also compute the goodness of fit term, LML. This term 
can be obtained from a user-friendly program called GPT 
.EXE (Hu & Phillips, 1999), which is available for free 
download from www.xiangenhu.info. This program per-
forms maximum likelihood estimation and outputs best-
fit parameter values and the value of LML for any MPT 
model with and without inequality constraints.

In what follows, we demonstrate the use of the  MATLAB 
program for model selection of MPT models in two differ-
ent experimental paradigms: source monitoring and pair 
clustering.

Modeling source-monitoring data. Our first example 
concerns the source-monitoring experiment of Rose et al. 
(1975, Experiment 1). The purpose of their study was to ex-
amine whether accurate source memory of language could 
occur at the semantic level of language processing. In their 
experiment, participants studied a mixed list of English and 
Spanish sentences before being tested on recognition and 
source memory performance. Contextual relationships be-
tween the sentences were manipulated in the experiment 
such that in one condition, the sentences were semantically 
related to a common topic, whereas in the other condition, 
all of the sentences were semantically unrelated. Rose et al. 
reasoned that if language source information is available 
at the semantic level of processing, because the contextual 

Table 1 
Summary of Model-Selection Results for Source-Monitoring Data  

From Rose et al. (1975, Experiment 1)

Model  S  LML  CAIC  AIC  CBIC  BIC  CFIA  FIA  CFIA  FIA

M0 8 36.17 8 44.17 30.24 66.41 22.2 58.4 20.9 57.1
Mg 7 36.61 7 43.61 26.46 63.07 19.7 56.3 18.4 55.0
Mb 7 38.23 7 45.23 26.46 64.69 19.4 57.6 18.0 56.2
Md 7 36.18 7 43.18 26.46 62.64 20.7 56.9 20.0 56.2
MD 7 41.16 7 48.16 26.46 67.62 20.4 61.6 19.7 60.9
Mbg 6 38.66 6 44.66 22.68 61.34 16.9 55.6 15.5 54.2
Mdg 6 36.61 6 42.61 22.68 59.29 18.2 54.8 17.5 54.1
MDg 6 41.60 6 47.60 22.68 64.28 17.8 59.4 17.1 58.7
Mdb 6 38.30 6 44.30 22.68 60.98 17.8 56.1 17.1 55.4
MDb 6 41.84 6 47.84 22.68 64.52 17.3 59.1 16.6 58.4
MDd 6 41.55 6 47.55 22.68 64.23 18.5 60.1 18.5 60.1
Mdbg 5 38.73 5 43.73 18.90 57.63 15.1 53.8 14.4 53.1
MDbg 5 42.28 5 47.28 18.90 61.18 14.6 56.9 13.9 56.2
MDdg 5 41.98 5 46.98 18.90 60.88 15.8 57.8 15.8 57.8
MDdb 5 42.31 5 47.31 18.90 61.21 15.3 57.6 15.3 57.6
MDdbg 4 42.74 4 46.74 15.12 57.86 12.5 55.2 12.5 55.2

Note—The data can be found in Batchelder and Riefer (1990, Table 7). The total sample size is 
N  1,920. See the main text for the description of the models. Inequality constraints apply only 
to parameters D and d (not to b or g) when the corresponding equality constraints are not present. 
The FIA   column shows Fisher information approximation (FIA) values if inequality constraints 
are taken into account, and the FIA column gives FIA values if those constraints are neglected. S, 
the number of parameters; LML, the natural logarithm of the maximized likelihood; C, complex-
ity; AIC, Akaike information criterion; BIC, Bayesian information criterion. The minimum value 
for each of the selection criteria is shown in bold.
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implication of this conclusion is that semantic information 
is useful in the recognition task but does not include any 
information about language source.

Essentially the same conclusion as ours was reached by 
both Rose et al. (1975) and Batchelder and Riefer (1990). 
Although this particular example may be somewhat disap-
pointing, one should note that generally speaking, FIA-based 
model-selection analysis allows one to entertain and evalu-
ate all types of theoretical hypotheses of interest and that the 
effort is in turn likely to generate much richer and deeper in-
sights into the underlying cognitive processes than analyses 
based on traditional methods such as LRT and ANOVA.

Modeling pair-clustering data. Our second exam-
ple demonstrating the application of FIA-based model 
selection is related to the pair-clustering experiment of 
Batchelder and Riefer (1980, Experiment 1A). The pur-
pose of that experiment was to examine the effects of 
within-category spacing on recall performance. They hy-
pothesized that a small lag between a pair of categorically 
related words facilitates the formation and storage of a 
pair cluster, whereas a large lag facilitates the retrieval 
process. In the experiment, participants first studied a 
word list that consisted of both paired words and single-
tons and were then tested in a free recall task. The paired 
words were two words that were categorically related. In 
the word list, each pair of words occupied positions that 
were separated by J  0, 4, 12, or 24 words unrelated to 
the pair. This study–recall cycle was repeated for five tri-
als. The data set that we reanalyze in this article was from 
Batchelder and Riefer (1986, Table 1).

Batchelder and Riefer (1986) used LRTs to analyze the 
data with the pair-clustering MPT model. The original 
version of this model is shown in Figure 4. The model as-
sumes three parameters: c, the probability of pairs being 
clustered and stored in memory; r, the (conditional) prob-
ability of a stored pair being retrieved from memory; 
and u, the probability of a single item being stored and 
retrieved from memory for either pairs or singletons. Ac-
cordingly, response category E1 indicates recalling adja-
cently both items of a studied pair; E2 indicates nonadja-
cently recalling both items of a pair; E3 indicates recalling 
only one item; E4 indicates recalling neither item in a pair; 
and finally, F1 and F2 indicate successful and unsuccess-
ful recall of a singleton, respectively. Because there were 
four conditions for category pairs in the experiment, the 
MPT model for each trial consists of four trees for cat-
egory pairs, one for each lag condition, and another tree 
for singletons. If the parameter u is assumed to be differ-
ent for pairs and singletons and for different lag condi-
tions, there will be 13 parameters for each trial, with 12 
for category pairs and 1 for singletons, and 65 parameters 
for the five trials. A typical pair-clustering model assumes 
a single u, thereby reducing the number of parameters to 
9 for each trial and 45 for the entire data set.

The results from separate LRTs for the five trials per-
formed by Batchelder and Riefer (1986) showed that pa-
rameter c was significantly different across lag conditions 
for the data from all five trials. However, r was significant 
for Trials 1 and 3, but not for the other trials. Another LRT 
with data from all five trials combined revealed that c was 

are expected to be smaller for related sentences than for un-
related sentences. No inequality constraints on the guessing 
parameters, b and g, are imposed, even if they are allowed 
to differ across the two conditions. Because parameter es-
timates do not violate these inequality constraints in the 
data, incorporating inequality constraints does not change 
the values of LML, AIC, and BIC. In contrast, inequality 
constraints do change the value of CFIA and thus the value 
of FIA. In Table 1, the latter two values obtained under in-
equality constraints are denoted by CFIA and FIA .

From Table 1, we can observe that as the number of 
parameters decreases, LML increases, whereas CFIA 
decreases, as expected, exhibiting a trade-off between 
goodness of fit and complexity. Of particular interest is 
the observation that among models with the same number 
of parameters, CFIA varies greatly, indicating the effects 
of functional form on complexity. The difference in com-
plexity due to functional form between two models can 
sometimes be even greater than the difference in good-
ness of fit. The case in point is the comparison between 
Md and Mg. In terms of LML, Md fits the data better 
than Mg (36.18 vs. 36.61) but is more complex (CFIA  
20.7 vs. 19.7), thus yielding an overall larger FIA value 
than Mg (56.9 vs. 56.3). As a result, Mg is preferred to 
Md under FIA, although the latter would be selected if we 
were to treat the two models as equally complex, as we 
could in AIC and BIC. On the same token, inequality con-
straints can have similar effects on model complexity. For 
example, MDdbg (FIA  55.2) is preferred to Mbg (FIA  
55.6) if no inequality constraints in Mbg are considered, 
but the preference is reversed if the constraints are con-
sidered (FIA    54.2 for Mbg).

Turning the discussion to model selection, we first con-
sider the results in Table 1 obtained when no inequality 
constraints are considered. FIA selects Mdbg with FIA  
53.8 as the best model among the 16 models under consid-
eration; so does BIC. On the other hand, AIC selects Mdg, 
a model with one additional parameter. Now let us con-
sider the inequality constraints. Obviously, there would be 
no changes in the conclusion for AIC and BIC, because in-
equality constraints do not change the fit of the models for 
this data set, and the complexity measures in both criteria 
are blind to inequality constraints. FIA still favors Mdbg 
with inequality constraints. In summary, from among a 
total of 32 models compared, including the ones with in-
equality constraints, we conclude that Mdbg with inequal-
ity constraints is the best generalizing model of all.

The model-selection analysis discussed so far is con-
ducted for models obtained by considering all possible com-
binations of constraints, equality and inequality, on the four 
parameters (D, d, b, g). In addressing the theoretical issue 
raised in Rose et al. (1975) and Batchelder and Riefer (1990), 
however, one only needs to consider the two parameters of 
main interest, D and d. Under this more focused scope, there 
are four relevant models to compare: M0, MD, Md, and MDd, 
along with their inequality constraints. Among these four, 
Md is favored under all three criteria, AIC, BIC, and FIA. 
According to this best- generalizing model, the two treat-
ment conditions with related and unrelated sentences differ 
in item recognition (D) but not in source monitoring (d). An 
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rJ 4  rJ 12  rJ 24, or both, to embody the theoreti-
cal hypotheses concerning the order of those parameters. 
Such constraints do not change the number of parame-
ters in the model, but they may lead to a larger LML 
value, because the maximum likelihood is searched over 
the restricted and thus smaller parameter space. This is 
indeed observed in Table 2 for all three pairs of models. 
For the same reason, inequality constraints reduce model 
complexity.

From Table 2, one can observe the trade-off between 
goodness of fit and model complexity; the smallest LML 
value (141.3) is achieved by the most complex model M0 
with CFIA  137.0. At the other end of the complexity 
spectrum, Mucr, with the least number of parameters (15), 
gives the largest LML value (206.2) and the smallest 
CFIA value (43.9). We also note that models with the same 
number of parameters can differ greatly in their complex-
ity. For example, the four models Muc, Muc, Mur, and Mur 
all have 30 parameters, but their CFIA complexity varies 
from the smallest (59.9) to the largest (79.5), due to the 
combination of tree structure and inequality constraints 
on parameters. Such complexity difference between two 
models with the same number of parameters can be larger 

significantly different across lag conditions, but r was only 
marginally significant. These results, taken together, sup-
port the hypothesis that small lag between category pairs 
facilitates the formation and storage of pair clusters, but 
offer only marginal support for the hypothesis that long 
lag facilitates the retrieval of pairs. Furthermore, given 
that boundary maximum likelihood estimates have been 
obtained from the inequality constraints when fitting the 
model, the LRTs’ results would be uninterpretable.

Now we reanalyze the data by FIA-based model se-
lection. Table 2 summarizes the results. There are eight 
models to be compared. M0 is the model with 65 param-
eters described above. Mu, with 45 parameters, assumes a 
single u for each trial, as in typical pair-clustering models. 
From this model, various equality constraints on c and r 
are applied to form the rest of the models. Models Mur 
and Muc assume the same r and c, respectively, across the 
four conditions. In Mucr, both c and r are assumed to be 
the same throughout the lag conditions. The three primed 
models, Mu, Mur, and Muc, differ from the unprimed ones 
in that in the former, additional inequality constraints are 
imposed on the relevant parameters across the four lag 
conditions, such as cJ 0  cJ 4  cJ 12 cJ 24, rJ 0  
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Figure 4. Batchelder and Riefer’s (1980, 1986) MPT model of pair clustering.

Table 2 
Summary of Model-Selection Results for Pair-Clustering Data  

From Batchelder and Riefer (1980, Experiment 1A)

Model  S  LML  CAIC  AIC  CBIC  BIC  CFIA  FIA

M0 65 141.3 65 206.3 262.51 403.8 137.0 278.3
Mu 45 155.2 45 200.2 181.74 337.0 106.1 261.3
Mu 45 157.7 45 202.7 181.74 339.5  73.7 231.4
Muc 30 196.5 30 226.5 121.16 317.6  75.8 272.3
Muc 30 200.5 30 230.5 121.16 321.7  59.9 260.4
Mur 30 168.0 30 198.0 121.16 289.1  79.5 247.5
Mur 30 169.5 30 199.5 121.16 290.7  63.6 233.1
Mucr 15 206.2 15 221.2  60.58 266.7  43.9 250.1

Note—The data can be found in Batchelder and Riefer (1986, Table 1). The total 
sample size is N  3,220. See the main text for the description of the models. S, the 
number of parameters; LML, the natural logarithm of the maximized likelihood; C, 
complexity; AIC, Akaike information criterion; BIC, Bayesian information crite-
rion; FIA, Fisher information approximation. The minimum value for each of the 
selection criteria is shown in bold.



284    WU, MYUNG, AND BATCHELDER

MDL’s flexibility of application to a wide range of 
model comparison situations that may arise in MPT mod-
eling makes it an attractive alternative to traditional meth-
ods, such as LRT, AIC, and BIC. First, instead of using a 
series of null hypothesis significance tests such as LRTs, 
MDL represents a model-selection approach in which 
the models in contention are ranked by their generaliz-
ability, or, equivalently, predictive accuracy, which is the 
hallmark of model selection. Also, unlike AIC and BIC, 
MDL considers not only the effects of the number of pa-
rameters and sample size on model complexity but also, 
importantly, the effect of functional form, which alone 
can significantly contribute to complexity and sometimes 
even more so than the number of parameters. As a result, 
another advantage of MDL over the other three methods is 
that MDL allows one to incorporate inequality constraints 
on model parameters. Last but not least, with the freely 
available MATLAB program, FIA is now entirely within 
the reach of everyday practitioners.

As is usually the case with any new methodology, MDL 
as presented in this article is not without shortcomings. 
For example, it does not address the issues of model mis-
specification and individual differences. To allow for 
model misspecification, exact equality constraints should 
be replaced by fuzzy equality constraints, as was done in 
an elegant sampling-based method known as population-
 parameter mapping proposed by Chechile (1998). Re-
garding individual differences, one way of incorporating 
this important factor is through hierarchical modeling in 
which parameter values corresponding to different indi-
viduals are assumed to be sampled from a common dis-
tribution (see, e.g., Klauer, 2010; Smith & Batchelder, 
2010). Although it is possible in theory to address these 
issues within the MDL framework, it is beyond the scope 
of the present work.

In conclusion, model selection lies at the core of the 
scientific inference process. Accordingly, a theoretically 
well-justified and widely applicable methodology can 
help advance science. We believe that MDL represents 
such a methodology and that it provides versatile yet pow-
erful tools for assessing the validity of MPT models in a 
way that goes beyond the shortcomings of current meth-
ods such as LRT, AIC, and BIC.

One final note: Statistical model-selection techniques 
alone, however sophisticated, are not a panacea for all in-
ference problems. Other, nonstatistical means of model 
evaluation, such as plausibility, interpretability, and ex-
planatory adequacy, are equally—if not more— important. 
Instead of automatic tools implemented in software, statis-
tical model-selection methods can be most useful if they 
are combined with the judicious use of sound subjective 
but scientific judgment.
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than the difference in LML, thus affecting model- selection 
results. Such a pattern of result is indeed observed in the 
table. That is, among the same four models with 30 param-
eters, both AIC and BIC select Mur, whereas FIA picks 
Mur.6 This is because although Mur fits the data better than 
Mur ( LML  168.0 vs. 169.5), the model is more com-
plex (CFIA  79.5 vs. 63.6) and thus yields a larger FIA 
than its counterpart (FIA  247.5 vs. 233.1).

Turning the discussion to model selection, among the 
eight models7 compared, AIC favors the 30-parameter Mur, 
and BIC favors the most restrictive model, Mucr, whereas 
FIA selects Mu. Note that the model Mu imposes inequal-
ity constraints on both c and r in the directions consistent 
with the experimental hypotheses of Batchelder and Riefer 
(1980). In other words, our FIA-based reanalysis of the 
data supports the hypotheses in their ordered form. As was 
discussed earlier, the LRT results by Batchelder and Riefer 
(1986) indicated that the hypothesized within-pairs spac-
ing effect on parameter r was inconclusive, whereas the hy-
pothesized effect on parameter c was supported. The spe-
cific order relationships among the hypotheses were not, 
however, examined. Model Mur

  embodies this interpreta-
tion of the data and, interestingly, turns out to be the second 
best model after Mu. Especially if the inequality constraints 
were not considered in model selection, FIA would choose 
Mur, leading to a different conclusion. This shows that the 
hypothesized order relationship of parameters, which may 
restrict the parameter space and reduce the complexity of 
the model, can lead to different model-selection conclu-
sions and, as such, should not be neglected.

To summarize, we demonstrated the application of the 
FIA-based model-selection approach for selecting among 
MPT models of pair clustering for the Batchelder and 
Riefer (1980) data set. The flexibility of the approach al-
lowed us to construct and test a variety of MPT models, 
including models with inequality constraints on parame-
ters. We compared the results from our analysis with those 
from the LRT-based analysis of the same data reported in 
Batchelder and Riefer (1986). By and large, the same scien-
tific conclusions were drawn from either analysis, although 
our FIA-based analysis provides more definitive support 
for the hypotheses in their ordered form originally formu-
lated and tested in Batchelder and Riefer (1980, 1986).

Conclusion
MPT modeling represents a theoretically motivated and 

statistically justified methodology for evaluating cognitive 
capacities for various experimental paradigms. Selecting 
among different MPT models is especially important, both 
in addressing theoretical issues and in validating an MPT 
model in a particular experimental paradigm. In this ar-
ticle, we have introduced the MDL-based model-selection 
method to the practitioners of MPT modeling. Especially 
to facilitate the use of this new methodology, we provide a 
general purpose computer program in MATLAB that can 
be exploited to compute FIA for any MPT model. Two ex-
ample applications of MDL model selection with real data 
sets selected from different experimental paradigms were 
also discussed.
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NOTES

1. In this article, an MPT model may refer either to a model for a par-
ticular experimental paradigm (e.g., source monitoring, with three trees) 
or to a set of such models, each representing a different experimental 
condition in an experiment.

2. The interested reader is directed to two recent Journal of Math-
ematical Psychology special issues on model selection for discussion 
and example applications of these and other methods of model selection 
(Myung, Forster, & Browne, 2000; Wagenmakers & Waldorp, 2006).

3. More precisely, it is a large-sample approximation to normalized 
maximum likelihood (NML; Myung et al., 2006; Rissanen, 2001), which 
can be considered the shortest code length that a model can achieve in 
coding the current data in the worst case of its true distribution. NML can 
be computationally intensive and will not be discussed in this article.

4. It should be noted that Equation 7 is valid only when the model is 
globally identified (i.e., if different parameter values generate different 


