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Loftus and Masson (1994) proposed a method for computing 
confidence intervals (CIs) in repeated measures (RM) designs 
and later proposed that RM CIs for factorial designs should be 
based on number of observations rather than number of partici-
pants (Masson & Loftus, 2003). However, determining the cor-
rect number of observations for a particular effect can be com-
plicated, given that its value depends on the relation between the 
effect and the overall design. To address this, we recently defined 
a general number-of-observations principle, explained why it 
obtains, and provided step-by-step instructions for constructing 
CIs for various effect types (Jarmasz & Hollands, 2009). In this 
note, we provide a brief summary of our approach.

Confidence intervals (CIs) can be used to draw statisti-
cal inferences about differences between conditions in an 
experiment. Indeed, CIs bear a systematic relationship to 
significance tests. The difference between the means of 
two conditions is significant if it exceeds half the total 
length of the CI (called the margin of error) multiplied by 
a factor of 

–
2 (Loftus & Masson, 1994). A corresponding 

visual rule of thumb states that when the margins of error 
for two means overlap by less than half, the difference is 
significant. Thus, graphing CIs serves as a highly useful 
technique for determining whether the various conditions 
involved in an effect are different from one another.

The procedures for computing CIs for independent 
measures (IMs; also called between-subjects) designs are 
well known (e.g., Kirk, 1982; Loftus & Loftus, 1988). In 
contrast, methods for computing CIs in repeated measures 
(RMs; also called within-subjects) designs have a shorter 
history. For a long time, there were no published meth-
ods for computing RM CIs. However, in 1994, Loftus and 
Masson published a landmark article in Psychonomic Bul-
letin & Review, showing how RM CIs could be computed, 
how they are related to RM significance tests, and how 
they can be used for making inferences about RM effects. 
This article has served as an important reference for the 
large number of experimental psychologists who use RM 
designs on a frequent basis.

In IM designs, a CI can be computed around the mean 
for each condition, and the size of the CI is affected by the 

number of participants contributing to each mean. This 
assumes one observation per participant. For RM designs, 
a participant serves in multiple conditions, thus generat-
ing multiple observations. How does one determine the 
number of observations for a particular effect in an RM 
design? The literature on RM CIs has not provided a com-
prehensive guide to computing the number of observa-
tions for factorial designs. Indeed, as Cumming and Finch 
(2005) noted, it is unclear how well CIs can be effectively 
used by researchers to understand effects within complex 
experimental designs. In RM designs, the number of ob-
servations is affected by the number of participants, the 
nature of the effect, and the overall design of the experi-
ment. Thus, there has been a need to clarify the procedure 
for computing the number of observations for a variety of 
designs and effects.

In a recent article (Jarmasz & Hollands, 2009), we 
have specified the procedures for computing CIs across 
the range of effects found in factorial RM and IM–RM 
designs, following the Loftus and Masson (1994; Masson 
& Loftus, 2003) approach. We reviewed the use of CIs for 
inferential purposes, explained the difficulties in correctly 
obtaining the number of observations, and developed a 
general method for obtaining the number of observa-
tions for various effects, which we coined the number-of-
 observations principle. We also provided examples illus-
trating the use of the principle to compute CIs for various 
effects. The purpose of the present brief note is to provide 
a synopsis of the key implications for the psychological 
researcher.

The Importance of Number of Observations
Loftus and Masson (1994) showed that CIs can be con-

structed for statistical inference involving RM effects by 
using the following formula:

 CI critical
eM t

MS

Ni ,  (1)

where Mi is the sample mean for condition i, tcritical is a 
Student’s t value, MSe is the mean square error for the 
effect in question, and N is the number of participants in 
the experiment. The value of tcritical is determined by the 
degrees of freedom associated with the MSe term and the 
confidence level selected for the CI (typically set to 95%). 
This equation is appropriate for one-way RM designs. 
However, in a factorial RM design, the number of obser-
vations contributing to each mean is not simply the num-
ber of participants. For any given level of a specific factor, 
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contains the number of cells for the effect (9) times the 
number of observations (2) per participant. Thus, com-
puting CIs for this effect involves dividing its MSe by the 
relevant number of observations (twice the number of par-
ticipants), this last value being nine times smaller than the 
full data set. In contrast, if you are interested in computing 
the CI for the main effect having two levels, the number of 
observations per participant will be 18/2  9, or half the 
size of the full data set. Thus, the number of observations 
per participant represents the number of levels of factors 
in the overall design not considered within (collapsed 
across) the effect of interest. It is not the number of levels 
of factors within the effect itself. This is counterintuitive, 
since one might think of the number of observations as the 
number of cells for the effect of interest times the number 
of participants. Thus, multiplying N by the number of cells 
for the effect of interest and using this value as the number 
of observations per participant will yield incorrect CIs. 
Similarly, computing the total number of conditions in the 
design and dividing by the number of nuisance variables 
(variables not involved in the effect of interest) will also 
produce incorrect CIs.

More generally, the number of observations for a partic-
ular effect is determined by the relation of that effect to the 
entire design. The relation of the effect to the larger design 
is important because it is this relation that affects the size 
of the MSe term computed in the ANOVA. The interested 
reader is referred to Jarmasz and Hollands (2009), where 
we have provided a more detailed treatment.

IM Factors in Mixed IM–RM Designs
Multiple IM factors do not have these multiplying 

effects on the size of the MSe. In IM factorial designs, 
there is a single MSe: the mean square within, or MSW. In 
between/ within, or mixed, IM–RM designs, the addition 
of RM factors will inflate the MSW for any IM factor. The 
following formula should be used to compute CIs for an 
IM Factor A in a mixed design:

 CI critical
S/AM t

MS

n Li
i

,  (3)

where Mi is the mean for the relevant level of Factor A, ni 
is the number of participants serving in each level of Fac-
tor A, and L is the product of the number of levels of all 
RM factors in the analysis.

Mixed IM  RM interactions. Following Estes 
(1997), Jarmasz and Hollands (2009) provided a detailed 
treatment on how to compute CIs for mixed IM  RM 
interactions. When comparing levels of the RM factor 
within an IM condition, one starts with the number of 
participants in each condition, ni. The scaling procedures 
required by any RM factors not involved in the interaction 
can then be applied. This leads to the following formula 
for the CIs for this type of interaction:

 CI critical
R SM t

MS

n L
r

i

i

.  (4)

the number of observations is affected by the number of 
levels of all other factors considered in the analysis.

In factorial designs, using the number of participants, 
rather than the number of observations, to construct CIs 
produces CIs that are too big. That is, they do not cor-
respond to the results from a significance test. However, 
until RM CIs were developed, many researchers used the 
number of participants to compute CIs. Perhaps a greater 
familiarity with IM CIs led psychologists to use number 
of participants for the value of N. Indeed, although Mas-
son and Loftus (2003) properly defined N as number of 
observations, some of the CIs for RM factorial designs 
in their example used the number of participants instead. 
This was corrected later (Masson, 2004).

The logic of computing CIs on the basis of number 
of observations extends to IM effects and IM  RM in-
teractions in mixed IM–RM designs. For IM effects, the 
number of observations per participant is determined by 
the number of levels of all RM factors in the analysis. 
For IM  RM interactions, the number of observations 
per participant is determined by the number of levels of 
all RM factors in the analysis not involved in the interac-
tion. Again, our experience has been that this is not well 
understood, and the approach for determining the correct 
number of observations is not being followed when CIs 
are plotted for mixed IM–RM designs.

In general, to obtain the CIs for a given effect (main 
effect or interaction) in a factorial RM design, the MSe 
for that effect must be divided by the number of observa-
tions. The number of observations for a given effect is the 
number of participants multiplied by the product of the 
number of levels of all other RM factors in the design. 
Multiplying the number of participants by the number of 
levels of all RM factors in the design and then dividing the 
result by the number of levels associated with the effect 
produces the same result. Thus, we define an effect’s num-
ber of observations as the number of participants multi-
plied by the product of the number of levels of all factors, 
divided by the number of levels for the effect of interest. 
We can compute CIs for an RM Effect R from a factorial 
RM ANOVA as follows:

 CI critical
R SM t

MS

N L
r

i ,  (2)

where MSR S is the MSe for R, L is the product of the lev-
els of all RM factors in the analysis, and r is the number 
of levels for R. If Effect R is an interaction, then r repre-
sents the product of the number of levels of all the factors 
involved in the interaction.

 Thus, Equation 2 shows that N  (L/r) is the number of 
observations for Effect R. It is only when r  L (as occurs 
for the highest level interaction or a one-way design) that 
the CI will equal the value obtained by dividing by N only.

As an example, if you have a data set organized for a 
2  3  3 RM ANOVA, the data set will contain scores 
for all RM factors; that is, it will contain 2 3 3  18 
observations for each participant. If you are interested in 
computing a CI for the 3  3 interaction, the full data set 
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Second, when there are multiple means associated 
with an effect, the number of possible comparisons also 
increases, leading to alpha inflation and the familywise 
error problem. When multiple comparisons are desired, 
there are, of course, a number of possibilities, such as 
the Bonferroni correction, detailed in most experimental 
design texts (e.g., Kirk, 1982). Using a sequential tech-
nique, the Benjamini–Hochberg procedure has been re-
cently shown to yield greater power than the Bonferroni 
approach (Thissen, Steinberg, & Kuang, 2002). Note that 
the Masson and Loftus (2003) approach to CIs has the 
advantage that it focuses on the pattern of means and does 
not advocate multiple comparisons, circumventing the 
need for them.

Third, the mixed model methodology of Blouin and 
Riopelle (2005) appears to use the same number of ob-
servation values as we propose, at least for the examples 
provided in their article. This implies that if one runs SAS 
MIXED on data from RM or IM–RM designs, one should 
obtain the correctly sized CIs scaled to our number-of-
observations principle, although we have not tested this 
hypothesis empirically.

Fourth, the advantage of the Masson and Loftus (2003) 
approach is that it is simple to apply when one has bal-
anced data without violations of sphericity and that it 
maps in a more straightforward manner to well-known 
ANOVA procedures. The advantage of the Blouin and 
Riopelle (2005) mixed model approach, as we see it, is 
that the statistical model takes into account factors such 
as unequal sample sizes or inherent covariance relations 
among repeated measures. However, the details of the 
mixed model approach are complex and beyond the scope 
of this brief note. Readers are referred to Blouin and Ri-
opelle for a thorough treatment.

Finally, we note that the CI, as discussed in this article, 
is not a credible interval as the term is used in Bayesian 
statistics. It should not be interpreted as such. The credible 
interval incorporates context from the prior distribution, 
whereas CIs are based on the data only (Lee, 1997).

Conclusions
Applying the number-of-observations principle in-

volves determining how many participants contribute to 
the effect (total number of participants for pure RM ef-
fects, number of participants per condition for IM effects 
and IM  RM interactions). Then, number of participants 
is multiplied by the product of the levels of the remaining 
RM factors in the analysis. The appropriate MSe must also 
be selected.

In a reference table, Jarmasz and Hollands (2009, 
Table 4) summarized the key values used to compute CIs 
for each possible effect in each type of factorial design 
involving RM factors. We hope that this will provide re-
searchers with a simple reference tool that they can con-
sult when constructing CIs.

Our aim in this effort was to provide psychological 
researchers with a principle to compute CIs in factorial 
designs involving RM effects. We hope that this makes it 
easier for researchers to plot the CIs associated with any 
particular effect in any design involving RM factors.

Note the use of ni (as opposed to N ); note also that MSR S 
and r still refer to the MSe and the number of levels of the 
related RM effect, respectively.

When levels of the IM factor are compared within an 
RM condition, CIs should be based on a variance estima-
tor called the pooled mean square within cells, a weighted 
average of the MSW for the IM factor and the MSe of the 
RM factor (MSR S; see Estes, 1997). Thus,

 MS
MS r MS

rWC
W R S( )

,
1

 (5)

where MSWC is the pooled mean square within cells. The 
degrees of freedom for MSWC is also a weighted average: 

 df MS
df MS r df MS

rWC
W R S1

. (6)

MSWC then replaces MSR S in Equation 4. The value of 
tcritical is determined using df (MSWC).

An alternative approach has been developed by Mas-
son and Loftus (2003). This approach plots effect sizes 
for main effects and interactions, each with associated CIs 
based on contrasts. Interested readers are encouraged to 
consider both approaches.

Caveats
The Masson and Loftus (2003) approach is one of sev-

eral possible methods for treating CIs in RM designs. 
 Blouin and Riopelle (2005) have described a mixed model 
methodology, which involves the use of the SAS MIXED 
procedure (SAS Institute, 1999). Tryon (2001) has also 
described an inferential CI approach that yields results 
equivalent to standard null hypothesis significance testing 
procedures (although he only considered two- condition 
experiments using t tests). In our view, there is a need to 
consolidate these various approaches. An integrative treat-
ment is beyond the scope of this brief note, but we make a 
few summary points here.

First, it is important to distinguish between CIs used 
for estimating a parameter value and CIs used to draw 
inferences about differences between means. When one 
compares differences, there is a root-2 adjustment of the 
CI value. When one does this, it is easy to draw inferences 
about a pair of means: If the CIs overlap, the means are 
not different; if they do not overlap, they are different. The 
Blouin and Riopelle (2005) and Tryon (2001) approaches 
take this into account, but the Masson and Loftus (2003) 
approach does not. Instead, Masson and Loftus favor an 
approach based on patterns of means, rather than individ-
ual comparisons. They advocate that graphically display-
ing a set of means along with a representation of statistical 
error (CIs) helps the researcher identify how the means in 
a set relate to each other, which is more meaningful than 
making binary decisions about particular pairs of means 
within the set. We cannot resolve this debate here but note 
that the CIs proposed in Jarmasz and Hollands (2009) can 
simply be multiplied by 

–
2 / 2, which should yield results 

similar to those obtained with the approaches favored by 
Tryon or Blouin and Riopelle and allow direct comparison 
of pairs of means. In a sense, this is a graphical representa-
tion of the rule of thumb described earlier.
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