
Recognition of episodic memories divides naturally 
into two parts: recognition that a test item has been en-
countered previously, and assessment of the source of that 
memory. The importance of source memory is obvious 
in many applications: The familiarity of a crime suspect 
has very different implications, depending on whether the 
memory arose from a crime scene or a chance encounter 
in a store; the potency of a memory of childhood abuse 
depends on whether the source is an early event or later 
discussions of the possibility of such an event.

Typical item and source experiments are parallel in 
structure. In item recognition, subjects study a list (of 
words, pictures, etc.) and are then tested with probes that 
may be targets (from the study list) or lures (unstudied). 
Each test probe is identified as “old” or “new,” and con-
fidence ratings may be added. In source recognition, sub-
jects study two (or more) lists and are tested with probes 
that may be from either list. Each test item is identified as 
coming from List 1 or List 2, and confidence ratings may 
again be added.

Item and source recognition have both been studied 
using signal detection theory (SDT) techniques and mod-
els. Insight into the memory representation and decision 
processes can be obtained from receiver operating char-
acteristic (ROC) curves, constructed by treating confi-
dence ratings as different levels of response bias. In item 
recognition, correct responses to targets, called hits, are 
plotted against incorrect responses to lures, called false 

alarms. In source recognition, correct responses to items 
from one list, considered to be hits, are plotted against in-
correct responses to items from the other list, considered 
to be false alarms.

In this article, we first summarize ROC data drawn 
from both item and source recognition. On the basis of the 
quite different ROC shapes these two tasks generate, theo-
rists have inferred distinct underlying processes for each 
of them. We argue that such separatist modeling distorts 
conclusions and that a unified model of item and source 
recognition is needed. Two such models, both based on 
two-dimensional SDT, have been proposed, but these do 
not provide a good description of the existing data. We 
build stepwise on these models, adding likelihood-based 
criteria, source guessing for unrecognized items, and a 
degree of inattention. The final model provides an excel-
lent fit to three canonical data sets.

MODELS OF SOURCE MEMORY ALONE

Form of Item and Source ROCs
To appreciate the distinctive characteristics of source 

ROCs, it is helpful to contrast them with their item rec-
ognition (old–new) counterparts. A representative item 
ROC is plotted on both probability and z-transformed co-
ordinates in Figure 1. Many, many studies have replicated 
the result shown here: ROCs are curvilinear in probabil-
ity space and linear in z-space. The slope of the zROC is 
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ings. Taking advantage of this structure in their own and 
Yonelinas’s (1999) study, Slotnick et al. (2000) were able 
to measure source ROCs either pooled across old–new 
confidence levels or contingent on a particular old–new 
rating. The “refined” ROCs based only on the highest-
confidence “old” judgments appeared consistent with 
a Gaussian model, whereas the pooled ROCs were flat-
ter. Slotnick and Dodson (2005) extended this analysis 
by plotting “refined” source ROCs contingent on each 

less than 1, averaging about 0.8. An SDT representation 
consistent with this outcome contains Gaussian target and 
lure distributions, the target distribution having a larger 
variance. Wixted (2007) argued that the unequal variances 
could arise because targets receive additional activation 
(by being presented on the study list) that varies across 
items. The continuous distributions imply a continuous 
strength variable on which decisions are based.

Source recognition ROCs are different. The first source 
ROCs were published by Yonelinas (1999), who collected 
the data to test an extension of his dual-process model 
of memory. In this model, source memory depends on 
both familiarity (a Gaussian process) and recollection 
(a high-threshold process). If sources are equated in fa-
miliarity, only recollection supports source memory, and 
the predicted ROC is linear; if familiarity makes a minor 
contribution, the ROC exhibits slight curvature. ROCs 
from three experiments that attempted to equate familiar-
ity were slightly curved, confirming this prediction; the 
data from Experiment 2 are shown in Figure 2A. In a final 
experiment, all stimuli from one source were presented 
before stimuli from the other source, so that familiarity 
also clearly distinguished them. In that case, the ROC 
reverted to a curvilinear form consistent with either the 
dual-process model or the standard unequal-variance SDT 
model described earlier.

That source ROCs are not always linear, even when 
the role of familiarity is minimized, was demonstrated by 
Qin, Raye, Johnson, and Mitchell (2001). Their stimuli 
were statements by one of two people viewed on vid-
eotape. The resulting ROCs were curvilinear (as shown 
in Figure 2B), and although no fits were evaluated, the 
zROCs were roughly linear, as would be expected if the 
underlying distributions were Gaussian. Qin et al. argued 
that this result was consistent with the source monitoring 
framework (SMF; Johnson, Hashtroudi, & Lindsay, 1993), 
a generalization of Johnson and Raye’s (1981) theory of 
reality monitoring that has guided much of the research 
in this area. According to the SMF, multiple features de-
fine a source, and different subsets of these features may 
determine source decisions; the complex stimuli of Qin 
et al. presumably provided many types of information 
about their sources. Yonelinas (1999) speculated that in 
his experiments a single detail distinguished the sources, 
whereas for Qin et al. the aggregation of items, even if 
discrete, led to effectively continuous distributions.

Slotnick, Klein, Dodson, and Shimamura (2000), also 
seeking to choose between continuous and threshold mod-
els by examining the curvatures of ROCs, used a standard 
male–female voice source paradigm. Their ROCs, al-
though curved, were less so than a Gaussian model would 
predict; this third pattern to account for is illustrated in 
Figure 2C. Hilford, Glanzer, Kim, and DeCarlo (2002) 
replicated this result, as did Wong (2002) and DeCarlo 
(2003a). For ease of reference, we call this pattern a “flat-
tened” ROC—that is, a curve more nearly linear than a 
pure SDT curve would be. Flattened ROCs turn out to 
have important theoretical implications.

Some insight into this range of results can be found in 
studies that have collected both old–new and source rat-
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Figure 1. ROCs for the standard signal detection model are 
curved in probability space (A) and linear in z-space (B). The 
 z-slope (typically 0.8 in old–new recognition) is interpreted as the 
ratio of the standard deviations of the underlying distributions.
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confidence decreased. The intermediate level of curvature 
in the pooled ROCs noted by Slotnick et al., and repli-
cated by Slotnick and Dodson, can thus be understood as 

level of old–new confidence. At the higher levels of 
“old” confidence, the refined ROCs were consistent with 
a Gaussian model, but they became increasingly flat as 
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Figure 2. (A) ROC for source memory reported by Yonelinas (1999, Figure 4). Fits are for the dual-process model; notice that this 
model predicts a linear ROC for source memory. Adapted from “The Contribution of Recollection and Familiarity to Recognition 
and Source-Memory Judgments: A Formal Dual-Process Model and an Analysis of Receiver Operating Characteristics,” by A. P. Yone-   
linas, 1999, Journal of Experimental Psychology: Learning, Memory, & Cognition, 25, p. 1425. Copyright 1999 by the American Psy-
chological Association. (B) ROC for source memory reported by Qin et al. (2001, Figure 3), with points estimated using DataThief. 
Adapted from “Source ROCs Are (Typically) Curvilinear: Comment on Yonelinas (1999),” by J. Qin, C. L. Raye, M. K. Johnson, & 
K. J. Mitchell, 2001, Journal of Experimental Psychology: Learning, Memory, & Cognition, 27, p. 1113. Copyright 2001 by the American 
Psychological Association. (C) ROC for source memory reported by Slotnick et al. (2000, Figure 5). Fits are for the threshold and con-
tinuous (signal detection) models. Adapted from “An Analysis of Signal Detection and Threshold Models of Source Memory,” by S. D. 
Slotnick, S. A. Klein, C. S. Dodson, & A. P. Shimamura, 2000, Journal of Experimental Psychology: Learning, Memory, & Cognition, 26, 
p. 1506. Copyright 2000 by the American Psychological Association.
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& Kim, 2004) have fit quadratic functions to the data, 
rejecting the linearity hypothesis if the quadratic term is 
reliably greater than 0. Thus, for example, SDT theorists 
point to significant curvature in the source ROC and a 
lack of curvature in the zROC for item recognition (Hil-
ford et al., 2002; Wixted, 2007). Weaknesses in this ap-
proach, acknowledged even by some of those who use it 
(Slotnick & Dodson, 2005), are that no model predicts a 
quadratic form for the ROC and that not all curvatures 
are equivalent. An example of the pluses and minuses of 
linearity analysis can be found in a recent article by Parks 
and Yonelinas (2007), who examined 59 ROCs from the 
source, associative- recognition, and plurals paradigms. Of 
the source zROCs, 27 of 30 were fit best by quadratics 
with coefficients nominally greater than 0. This finding 
is contradictory to a simple SDT model, as they note, but 
contrary to their claim, it does not specifically support 
a dual-process theory: Nonlinear source zROCs are also 
predicted by all of the new models to be tested in this ar-
ticle, and none of them include a threshold component.

The second statistical method, used in this article, is to 
compare goodness-of-fit measures for the models’ abil-
ity to describe the entire set of data. The most common 
index of fit, the sum of squared errors, is inappropriate 
(since both axes in ROC space are variable and successive 
operating points are not independent), but 2 evaluation of 
maximum-likelihood estimation (MLE) fits is sometimes 
performed (Slotnick et al., 2000). We will ourselves use 
MLE and related methods in the evaluation of our models. 
Relying on goodness of fit has its own shortcomings: A 
model may achieve good absolute fits simply because it 
is highly flexible and complex (see, e.g., Cohen, Rotello, 
& Macmillan, 2008). Where possible, we reduce this con-
cern in what follows by comparing nested models; we also 
report Akaike information criterion (AIC; Akaike, 1973) 
and Bayesian information criterion (BIC; Schwarz, 1978) 
measures that allow comparisons of nonnested models 
with different numbers of parameters. The AIC and BIC 
control one aspect of model complexity, the number of 
free parameters, but do not equate the models’ functional 
forms (see Pitt, Myung, & Zhang, 2002). This concern is 
somewhat alleviated if the parameter estimates make sub-
stantive sense, because complex models that overfit the 
data (i.e., “fit noise”) may require unrealistic parameter 
values to succeed.

MIXTURE MODELS

What could account for ROCs that are consistent nei-
ther with Gaussian models nor with those with threshold 
components? One possibility is that the underlying dis-
tributions have a different shape entirely, but in that case, 
the finding that the old–new ROCs collected in source ex-
periments are well-described by Gaussian models would 
require explanation. Another explanation lies in the pos-
sibility that Gaussian strength distributions are consulted 
on most, but not all, trials; on the remaining trials, a dif-
ferent Gaussian distribution could be consulted. On this 
view, the responses reflect a mixture of these underlying 
distributions.

the result of averaging the source ROC data across high 
and low confidence that the items were studied. Slotnick 
and Dodson suggested that flatness of the refined source 
ROCs at low old–new confidence resulted from the addi-
tion of noise to the judgment. To determine which refined 
curves were contaminated by noise in this way, they cal-
culated source d  values for each ROC and argued that 
cases in which d  was not significantly greater than 0 must 
have reflected the noise process. Reanalyzing the data of 
Yonelinas (1999), they found that the lowest four (out of 
six) ratings contributed noise by this definition. Slotnick 
and Dodson’s own experiments manipulated exposure 
time; this variable had no effect on the form of the source 
ROC, but the model fits supported their noise model over 
multinomial and dual-process models.

The shift in ROC shape with old–new ratings provides 
another potential explanation of the discrepant ROC shapes 
reported by Yonelinas (1999) and Qin et al. (2001): Perfor-
mance in the latter study was better (d  averaged 1.56, vs. 
1.05 for Yonelinas, 1999), and accuracy levels were pre-
sumably related to confidence. Had old–new confidence 
judgments been taken, perhaps the Qin et al. curves would 
have reflected high-confidence refined curves, whereas 
the Yonelinas (1999) curves would have reflected low 
confidence. However, Qin et al. examined the shapes of 
ROCs for individual subjects and found curvature across 
all levels of performance. They did not report whether the 
ROCs were well-fit by SDT or had a lesser (or greater) 
degree of curvature.1

Research Strategies: A Limited Menu  
of Models and Analyses

The common attitude toward the data revealed in these 
studies is that the investigator’s task is to choose between 
standard decision models. The titles of the articles sum-
marized so far illustrate this implicit demand characteris-
tic: “A Formal Dual-Process Model” (Yonelinas, 1999), 
“Signal Detection and Threshold Models” (Slotnick et al., 
2000), and “A Continuous (Single-Process) Model” (Slot-
nick & Dodson, 2005). Published comments related to 
multinomial modeling (Kinchla, 1994) and dual- process 
modeling (Qin et al., 2001) have also contrasted off-the-
shelf threshold and SDT models. These limited-menu 
decisions sometimes oblige authors to decide in favor of 
different models for different experiments. For example, 
Slotnick et al. (2000) concluded that “the results from Ex-
periment 1 and Experiment 3 showed evidence in favor 
of the two-high threshold model and against the continu-
ous model, whereas results from Experiment 2 showed 
evidence in favor of the continuous model and against the 
two-high threshold model” (p. 1513). If a single model is 
to account for all of the data we have described, it there-
fore will not be from the short list considered so far.

It is worth contrasting two statistical methods used to 
evaluate these models. First, each model predicts linear-
ity in some form (the threshold model for ROCs in prob-
ability space, the SDT model for zROCs) and nonlinear-
ity in another (the SDT model for ROCs in probability 
space, the threshold model for zROCs). To test these 
predictions, some investigators (e.g., Glanzer, Hilford, 
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and Dodson’s “added noise” proposal can also be seen as 
an interpretation of the mixture process.2 Mixture models 
broaden the range of ROC shapes that can be accounted 
for, provided that they can be incorporated in a model de-
tailed enough to describe all of the data. The next step is 
to develop a framework for such a model.

DeCarlo (2002) proposed a “mixture distribution” ex-
tension of SDT, focusing on applications in recognition 
memory. Figure 3A illustrates the basic premise: Test-
ing an item that was presented leads to a sample from 
one of two memory distributions, A or A , that differ in 
means but not in variance. In one interpretation, the al-
ternative distributions arise from intermittent attention: 
The A distribution reflects cases for which the studied 
item was attended; A  reflects cases for which it was not. 
The A  distribution may or may not have a mean equal to 
that of the lure distribution. For many parameter values, 
this mixture model predicts ROCs consistent with the 
standard unequal-variance SDT model, because the mix-
ture of the two target distributions with different means 
and the same variance has a greater variance than either 
of them alone. The resulting zROC, which is approxi-
mately linear, has a slope less than 1 because mixing 
occurs only for target trials. DeCarlo (2002) fit classic 
data from recognition experiments in which word fre-
quency and exposure duration (which presumably affects 
attention) were manipulated; he applied both the mixture 
and unequal-variance SDT models. These models were 
about equally successful with the group ROC data, but 
the mixture model was better able to fit a variety of un-
usual ROC shapes produced by the individual subjects. 
In addition, DeCarlo (2002) argued that interpreting the 
A  distribution as inattention provides a rationale for the 
model more satisfactory than any that has been proposed 
for the unequal-variance model.

In the source memory domain, the mixture model is in-
tuitively compelling: Subjects with limited attention may 
encode features relevant to item content that do not serve 
to identify the source. DeCarlo (2003a) then extended the 
model to source judgments; a version in which only stud-
ied items are tested is illustrated in Figure 3B. The unat-
tended distribution (U ) now lies almost midway between 
the two target distributions, so judgments of items from 
sources A and B are both based on the mixture distribu-
tions A-or-U and B-or-U. Because both source strengths 
are mixtures and no lures are tested, the resulting zROC is 
generally concave-upward and the ROC is flattened, con-
sistent with empirical observations. Like its item recogni-
tion cousin, however, the source mixture model is flexible, 
generating zROCs with a variety of shapes, depending on 
subjects’ sensitivity and attention to the two sources. De-
Carlo (2003a) showed that the model quantitatively fits 
the source data of Yonelinas (1999), as well as those of 
Hilford et al. (2002); it is also at least qualitatively consis-
tent with the data of Slotnick et al. (2000).

Slotnick and Dodson’s (2005) account of source ROC 
shapes can be understood in terms of a mixture model. 
Items receiving high-confidence “old” judgments are 
those that were fully attended: For those items, the prob-
ability of sampling a strength from the U distribution 
would be essentially 0. As a result, the distributions de-
termining the refined ROC are Gaussian, and the ROC 
is SDT-like. In contrast, items receiving lower ratings are 
those that were attended on a fraction of trials, have distri-
butions underlying their refined ROCs that are mixtures, 
and have ROCs with lesser degrees of curvature. Slotnick 
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Figure 3. DeCarlo’s (2002) mixture model. (A) Recognition: On 
lure trials, a sample from the “Lure” distribution is presented. 
On target trials, a sample from A occurs with probability , and 
a sample from A  occurs with probability 1  . Three criteria 
divide the decision axis into regions that correspond to differ-
ent levels of confidence. Adapted from “Signal Detection Theory 
With Finite Mixture Distributions: Theoretical Developments 
With Applications to Recognition Memory,” by L. T. DeCarlo, 
2002, Psychological Review, 109, Figure 1, p. 711. Copyright 2002 
by the American Psychological Association. (B) Source memory: 
A sample from either source A or source B is presented. With 
probability , a sample is drawn from the relevant distribution 
A or B, but on a proportion 1   of trials, the subject is inatten-
tive, and the sample is drawn instead from U. The effective dis-
tributions for both stimulus classes are mixtures. Adapted from 
“An Application of Signal Detection Theory With Finite Mixture 
Distributions to Source Discrimination,” by L. T. DeCarlo, 2003, 
Journal of Experimental Psychology: Learning, Memory, & Cogni-
tion, 29, Figure 1, p. 768. Copyright 2003 by the American Psycho-
logical Association.
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posite directions, source d  would be 1.13  1.14  2.27. 
Neither possibility was supported: The source d  equaled 
1.10. Glanzer et al.’s other four experiments showed the 
same pattern.

One experiment has seemed to show support for a 
one-dimensional model. In Hoffman’s (1997) reality-
 monitoring study, subjects either saw or imagined items in 
sessions 2 days apart, receiving a source (“real” or “imag-
ined”) test following the second study list. More accurate 
recognition judgments were obtained for whichever type 
of item was encountered more recently, and source judg-
ments were fit by a one-dimensional SDT model with 
apparent success. This finding appears not to be general, 
however. Bink, Marsh, and Hicks (1999) replicated Hoff-
man’s experiment but strengthened the Day 1 items so as 
to equate performance on the two sources. The predicted 
source accuracy (d   0) was not obtained; rather, the pro-
portion correct for those judgments was about .90.

These findings are likely to be unsurprising to many. 
The one-dimensional model is in conflict with the SMF 
perspective that multiple features (possibly reflecting in-
dependent types of information) contribute to source dis-
crimination, and with the intuition that the dimension on 
which sources differ is qualitatively different from mem-
ory strength. The remainder of this article considers only 
models in which separate dimensions of item and source 
information are made explicit.

The Banks (2000) Model: Uncorrelated 
Distributions and Linear Bounds

A natural improvement over the one-dimensional 
model locates the means of the three distributions in a 
two- dimensional space. Banks (2000) adapted a per-
ceptual model by Tanner (1956) to the source memory 
problem. In his experiments, the stimuli were words and 
proper names, and the sources were visual and auditory 
presentation. He conducted item and source memory tests 
and found a pattern of sensitivities similar to that in the 
Glanzer et al. (2004) data discussed earlier. The data thus 
were poorly fit by a one-dimensional model, but they 
were well-described by a two-dimensional decision space, 
shown in simplified form in Figure 5. The dimensions are 
interpreted as overall strength (the vertical axis in the 
figure) and relative source strength (the horizontal axis). 
Each stimulus class generates a bivariate normal distri-
bution in the space; circles in the figure are contours of 
equal likelihood for those distributions. Banks proposed 
that the two axes serve as the bases for recognition and 
source decisions: A horizontal line divides the space into 
regions corresponding to “old” and “new” responses, and 
a vertical line determines the source judgment.

The DeCarlo (2003b) Model: Correlated 
Distributions and Linear Bounds

Banks’s (2000) model appears to predict SDT-like 
ROC curves. It requires modification to account for the 
ROC data we have discussed, particularly the changes in 
ROC shape and source accuracy as a function of old–new 
confidence found by Slotnick and Dodson (2005). De-
Carlo (2003b) proposed that the distributions in the Banks 

MODELS THAT INCLUDE BOTH ITEM  
AND SOURCE RECOGNITION

In some experiments and real-life situations, the only 
decision to make is one of source, but there are probably 
more circumstances in which both item and source judg-
ments are required. “Have you seen this person before?” 
(item recognition), asks the prosecutor, and “What was the 
occasion?” (source judgment). So far we have been mod-
eling one decision at a time, but this approach is logically 
inconsistent if (as we assume) subjects are building a rep-
resentation during study, aspects of which are used at test 
to support both item and source judgments. In this view, 
a decision space from which item and source judgments 
both arise is necessary, and the remainder of this article 
considers models on the basis of such representations.

The simplest SDT model for three stimulus classes is 
one-dimensional. Figure 4 illustrates an arrangement in 
which each of the two sources has greater average strength 
than the lures. Source d  is predicted to equal the differ-
ence between the two old–new recognition d  values. 
A second possibility, not shown, is that items from one 
source average greater strength than the lures, but those 
from the other source average less strength. In that case, 
source d  is predicted to equal the sum of the two item d  
values. Empirically, however, observed source d  usually 
falls between these two possibilities. For example, Glan-
zer et al. (2004) estimated both item d  and source d  in 
five experiments, all of which employed lists of words 
as stimuli. In Experiment 1, the item d  values were 1.13 
and 1.14, so a representation like Figure 4 would imply 
source d   1.14  1.13  0.01. On the other hand, if 
items from different sources differed from the lures in op-

Lure
Source B

Source A

Figure 4. An implausible signal detection model for item and 
source recognition in which a single strength variable mediates all 
judgments. Source discrimination (between A and B) is poor as 
compared with item detection (between A and lures or between 
B and lures). If, on the other hand, the strength of A is imagined 
to be systematically lower than the strength of the lures, source 
discrimination is very high. In most data, source discrimination 
is similar in magnitude to item recognition, contrary to both ver-
sions of the single-strength model.
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can be described with 19 parameters: the vertical distances 
of the source distributions (A and B) from the origin, the 
horizontal distance between the means of the source dis-
tributions, two standard deviations and a correlation for 
each of the source distributions, and five old–new and five 
source rating criterion locations.3 Because Slotnick et al. 
(2000) used seven rating categories instead of six for both 
old–new and source decisions, two additional criterion 
location parameters are required to model their data.

DeCarlo (2003b) calculated such fits for the data of 
Yonelinas (1999, Experiment 2) and Slotnick et al. (2000, 
Experiments 2 and 3). We have generally followed De Carlo’s 
(2003b) strategy for the models proposed in the present ar-
ticle, so here we describe his methods in some detail. Fit-
ting was accomplished by MLE, with no constraints placed 
on the parameters. Negative log likelihood was minimized 
using the downhill simplex method; the algorithm was re-
started a number of times with different parameters in an ef-
fort to avoid local minima. We calculated two goodness-of-
fit statistics: The first was G2  2 Oln(O/Ê), where O and 
Ê are the observed and expected frequencies in each cell of 
the contingency table, and the sum is over all cells. G2 is 
asymptotically distributed as 2, with degrees of freedom 
(dfs) in the present context equal to 3(CONCS  1)  Np,  
where CON and CS are the numbers of old–new and source 
rating categories, respectively, and Np is the number of free 
parameters in the model.

Complementary information is provided by the root 
mean square error of approximation (RMSEA). DeCarlo 
(2003b) reported this measure for the models that he fit-

(2000) model should have nonzero bivariate correlations, 
as shown in Figure 6. The correlations arise because some 
of the same information contributes to both source and 
old–new decisions: Subjects whose source judgments 
are highly accurate when item strengths are high show 
poorer source accuracy on test items that they are not even 
sure they studied. In DeCarlo’s (2003b) proposal, as for 
Banks, the item and source decision boundaries between 
responses are linear and orthogonal to each other.

DeCarlo (2003b) pointed out that if this model is cor-
rect, the standard analyses, which treat source and item 
information separately, provide biased estimates of source 
memory: Accuracy appears to be higher when source judg-
ments are only requested for “old” responses (reflecting 
greater memory strength) than when they are requested 
even for items the subject has claimed are “new” (reflect-
ing lower strength). Valid measures of recognition and 
source sensitivity and other parameters can be obtained 
only by fitting a complete multidimensional model to the 
full set of data. Such a model must describe ROC curves 
of four types: pooled ROCs for item and for source recog-
nition; refined ROCs for source judgments, contingent on 
old–new rating; and refined ROCs for item recognition, 
contingent on source rating. The data of Yonelinas (1999) 
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the other task. The left pair illustrates the old–new pooled 
ROC and zROC, and the model provides a good fit. The 
right pair of panels shows the pooled source data, and 
here the model systematically fails. The predicted zROCs 
are linear (because of the normal distributions and lin-
ear bounds), whereas the data display curvature. The two 
larger panels (bottom) illustrate the refined old–new and 
source ROCs. There are six refined ROCs of each type, 
one for each level of confidence on the other task; for 
example, the six source ROCs are obtained from the six 
levels of old–new confidence.

There are two major observable patterns in the refined-
ROC data. First, for the old–new ROCs, maximum sen-
sitivity (as measured by the area under the curve) occurs 
for the extreme source ratings (“sure source A” and “sure 
source B”), and lower sensitivity is found for intermediate 
source ratings. Second, for the source ROCs, sensitivity is 
at a maximum for the most confident old–new rating and 
drops away rapidly for lower levels of confidence. The re-
fined curves exhibit substantial discrepancies between the 
data and the model: The predicted old–new ROCs are too 

ted, and the appendix to his article provides an introduc-
tion to it. In general, RMSEA  .05 indicates close fit, 
.05  RMSEA  .08 acceptable fit, and RMSEA  .10 
poor fit (Browne & Cudeck, 1993).

Our implementation of DeCarlo’s (2003b) model dif-
fered slightly from his, so we repeated his calculations.4 In 
Table 1, the rows labeled “DeCarlo” contain the parameter 
estimates, which were generally reasonable.5 In particular, 
the bivariate correlations of the target distributions were 
between .4 and .6 in absolute value and (as in Figure 6) op-
posite in sign. Like DeCarlo (2003b), we found the fit of 
the model to all of the data sets to be poor. For purposes of 
allowing comparison with our own models, we calculated 
G2 for each experiment, given the best-fitting DeCarlo 
(2003b) model. These values, reported in Table 2, differ 
only slightly from those reported by DeCarlo (2003b, 
Table 1), indicating that the different parameterization of 
the model we adopted had little effect on goodness of fit.

The model’s ROC predictions are compared graphically 
with Yonelinas’s (1999) data in Figure 7. The four smaller 
panels (top) display ROCs pooled across all ratings on 

Table 1 
Parameters of Models

Model  dA  dB  dAB  2(xA)   2( yA)  2(xB)  2( yB)  rA  rB  dxN  dyN  2(xN )  2( yN )  p

Yonelinas (1999, Experiment 2)
DeCarlo 1.41 1.34 1.45 1.82 1.49 1.77 1.46 .43 .48
Model 1 1.39 1.30 0.83 1.06 1.47 1.07 1.47 .23 .32
Model 2 1.42 1.36 0.61 1.06 1.47 1.07 1.46 .41 .47
Model 3 3.75 3.76 1.23 1.12 2.23 1.07 2.50 .42 .36  0.32 0.90 0.92 1.06 .46

Slotnick et al. (2000, Experiment 2)
DeCarlo 2.78 2.78 4.67 3.35 1.90 3.39 2.00 .50 .60
Model 1 3.08 3.10 2.25 1.92 2.24 1.67 2.12 .50 .23
Model 2 2.70 2.83 1.75 1.67 1.83 1.54 2.01 .58 .38
Model 3 5.25 5.41 3.99 2.81 2.72 2.71 2.91 .51 .38  0.00 1.30 2.45 2.26 .18

Slotnick et al. (2000, Experiment 3)
DeCarlo 2.02 2.03 2.90 2.87 1.49 2.92 1.49 .51 .52
Model 1 2.11 2.12 1.58 1.57 1.59 1.56 1.62 .26 .32
Model 2 1.85 1.86 1.01 1.39 1.34 1.16 1.32 .56 .23
Model 3 2.91 2.92 1.70 1.49 1.48 1.39 1.42 .44 .34 0.18 1.02 1.18 1.12 .25

Note—“DeCarlo” indicates the DeCarlo (2003b) model. A and B are the two source distributions, and N is the noise distribution. 2 is variance 
on the x- and y-axes; dA and dB are the vertical distances between the target and lure distributions; dxN and dyN are the distances in the x and y 
directions, respectively, of the noise distribution mean from the origin; dAB is source accuracy; and p is the proportion of nonattended trials.

Table 2 
Fits of Four Models to Three Data Sets

Yonelinas 
(1999, Experiment 2)

Slotnick et al. 
(2000, Experiment 2)

Slotnick et al. 
(2000, Experiment 3)

Model  p/df  G2  G2  RMSEA  p/df  G2  G2  RMSEA  p/df  G2  G2  RMSEA

DeCarlo (2003b)a: Linear source  
 bounds

 
19/86

 
2,418

 
0.119

 
21/123

 
1,582

 
0.117

 
21/123

 
3,765

 
0.124

Model 1: LR source bounds 19/86 951 0.072 21/123  620 0.068 21/123 1,186 0.067
Model 2: LR source bounds  
 for “old” responses, guessing  
 for “new” responses

 
 

24/81

 
 

213

 
 

0.029

 
 

27/117

 
 

 199

 
 

0.029

 
 

27/117

 
 

 212

 
 

0.021
Model 3: Model 2 plus arbitrary  
 inattentive noise

 
29/76

 
178

 
35

 
0.026

 
32/112

 
 173

 
26

 
0.025

 
32/112

 
 193

 
19

 
0.019

Note—p/df, number of parameters/degrees of freedom, not corrected for empty cells. Some researchers advocate removing one df for each empty 
cell; for consistency with past work, we have followed DeCarlo (2003b) in not adjusting the dfs in that way. G2, statistic for goodness of fit (smaller 
numbers indicate better fit); G2 provides a 2 test of nested Models 2 and 3, with 5 df. RMSEA, a measure of approximate fit (RMSEA  .05, 
close fit; .05  RMSEA  .08, acceptable fit; RMSEA  .10, poor fit). LR, likelihood ratio. aThe DeCarlo model is slightly modified for this 
study, so our values do not perfectly match.
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ity, the particular experiments we examined are the same 
as those analyzed by DeCarlo (2003b).

APPROXIMATIONS TO A COMPLETE 
RECOGNITION/SOURCE MODEL

The failure of DeCarlo’s (2003b) model encouraged us 
to look at its assumptions more carefully. The models we 
consider here are all detection-theoretic variations on the 
DeCarlo (2003b) theme. They assume that the distribu-
tions for the lures and both targets are bivariate normal 
and that decisions are made by partitioning the space with 
fixed boundaries. In the modified models proposed below, 
three assumptions are relaxed: the linearity of the decision 
bounds, the assumption that subjects attend completely to 
items presented for study, and the assumption that source 
judgments are made in the same way following “new” and 
“old” recognition responses. The literature summarized 
earlier has provided the building blocks for a complete 
decision model for source memory data that provides an 

compressed, and the refined source ROCs are too spread 
out. The two Slotnick et al. (2000) data sets met similar 
fates with this model (see Table 2).

To our knowledge, refined old–new ROCs have not 
previously been plotted for these (or any other) data, but 
they contain information that is just as valuable as refined 
source ROCs. For the present data sets, old–new ROCs 
display above-chance performance for all levels of source 
rating, whereas refined source ROCs fall rapidly to near 
chance when old–new confidence is less than maximal. 
This new way of representing the data allows additional 
insight into the discrepancies between the predicted and 
observed curves.

In the remainder of the article, we gradually improve 
this model, seeking a detailed picture of how old–new and 
source judgments are combined. Like DeCarlo (2003b), 
we examined the Yonelinas (1999) and Slotnick et al. 
(2000) data sets, which to our knowledge are still the only 
ones published with rating response frequencies for both 
old–new and source judgments.6 For the sake of continu-
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and a relatively good fit to the pooled source data. In par-
ticular, it predicts a flattened source ROC in probability 
coordinates and a curvilinear zROC. These patterns are 
found in the data, but the flattening effect is not as great 
as the data require. The refined source ROCs capture the 
major patterns in the data—lower performance and flatter 
ROCs as old–new confidence declines—but the fits are 
not convincing.

Perhaps the most surprising outcome is the ability of the 
model to predict source ROCs that are curved upward in z-
space. Such curvature has long been a signature prediction 
of threshold or mixture models, and has been considered 
inconsistent with SDT. For example, Yonelinas and Parks 
(2007) wrote, “The U-shaped zROCs that are consistently 
observed in relational recognition studies [such as source 
experiments] cannot be accounted for by a pure signal de-
tection model” (p. 819). This statement is clearly incorrect 
for Model 1, which is “a pure signal detection model,” 
albeit in two dimensions.

We also analyzed Experiments 2 and 3 of Slotnick et al. 
(2000), with similar results. One difference between their 
experiments and those of Yonelinas (1999), previously 
mentioned by DeCarlo (2003b), is the greater preponder-
ance of 0s in the data matrices. This pattern results from 
the higher sensitivities in those experiments: Table 1 re-
veals that target d  values averaged 3.09 (Experiment 2) 
and 2.12 (Experiment 3), whereas in Yonelinas’s (1999) 
experiment they averaged 1.35. Statistical parsing of 
Slotnick et al.’s (2000) data is thus more difficult. We do 
not present here figures for their experiments analogous 
to Figure 8, but do comment below when their findings 

excellent description of the data. By moving stepwise 
away from the DeCarlo (2003b) starting point, some in-
sight into the processes underlying source memory can 
be obtained.

Model 1: Likelihood-Ratio Source Bounds
An important restriction of the DeCarlo (2003b) model, 

as illustrated in Figure 6, is that all decision boundaries 
are straight lines. In general recognition theory (Ashby & 
Townsend, 1986), such straight-line bounds parallel to the 
strength axes are said to display decisional separability, 
which might be viewed as a cognitively simple rule. For 
the criteria that determine the old–new judgment, linearity 
is a reasonable assumption. The effective decision axis be-
comes a line from the lure toward the target distributions, 
as proposed by Banks (2000; see Figure 5), and the model 
for this judgment reduces to a simple one-dimensional 
Gaussian one. The predicted old–new zROC is a straight 
line, consistent with most findings in the literature.

By the same line of reasoning, however, DeCarlo’s 
(2003b) proposed source criteria are much less plausible. 
If these were indeed linear, source ROCs would have the 
same Gaussian-based shape as those for item recognition, 
and we have seen that this is rarely true. A look back at the 
fits of DeCarlo’s (2003b) model (Figure 7) illuminates the 
consequences of the linearity assumption. The predicted 
refined source ROCs for old–new ratings of 1 and 2 are 
clearly below chance. This oddity results from the bivari-
ate correlations, which guarantee that the two source dis-
tributions will gradually merge and then cross as old–new 
ratings decrease. In the lower region of the decision space 
(see Figure 6), the linear bounds force decisions that are 
exactly the opposite of the correct ones.

In Model 1, we replaced linear source bounds with rules 
based on likelihood ratio (LR), the relative likelihoods of 
the two events being discriminated. LR bounds are linear 
when only two stimulus classes are to be discriminated, 
and the resulting bivariate distributions have identical co-
variance matrices. LR bounds can be strongly nonlinear, 
however, when variances are unequal or the distributions 
contain unequal bivariate correlations, as in the DeCarlo 
(2003b) model. Curved LR bounds for the Yonelinas 
(1999) data are illustrated in Figure 8. Each is composed 
of two parts; for example, the highest rating in favor of the 
A source is given for observations in the upper-left region 
of the space, which is unsurprising, but also for those in 
the extreme lower-right region. The second component 
is due to the crossing of the two source distributions that 
arises from the bivariate correlations. The numbers in the 
diagram indicate regions for which ratings 6 through 1 are 
appropriate.7

The LR model accounts for the data better than the 
linear- criterion model; Table 2 shows that G2 is smaller 
for all three data sets. Because the two models have the 
same number of dfs—with criterion locations along the 
axes replaced by values of likelihood ratio—this direct 
comparison of G2s is appropriate.8 The successes and 
failures of the model can be seen in Figure 9, where the 
LR model is fitted to Yonelinas’s (1999) ROC data. The 
model provides a good fit to the pooled old–new data, 
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responses (ratings 1, 2, and 3 for the Yonelinas, 1999, data 
and 1–4 for the Slotnick et al., 2000, data9). Five guess-
ing parameters were therefore required for the Yonelinas 
(1999) data set, and six for Slotnick et al. (2000). As 
Table 2 shows, the guessing assumption improved the fit 
substantially over Model 1 for all three data sets. RMSEA 
is reduced by a factor of more than 2, and G2 by a factor of 
more than 3, for all data sets. Because Model 2 has more 
parameters than Model 1, AIC and BIC values were cal-
culated; smaller values of either measure indicate a better 
fit. As shown in Table 3, Model 2 is superior to Model 1 
by either standard for all data sets.

Figure 10 shows the ROCs for the Yonelinas (1999) 
data, together with fits of the new model. The refined 
ROCs (especially the old–new curves) fall closer to the 
points than for Model 1, and the predicted locations 
of points along each curve are also more accurate. For 
Model 1, even points at the correct level of sensitivity 
were far from the predicted values (indicated by s on 
the graphs), but Model 2 gets it right. Apparently, Model 1 
had difficulty with this aspect of the data because of its 
unrealistic assumption that LR bounds were in use in the 
“new” region.10

lead to conclusions discrepant from those of the Yoneli-
nas (1999) study. In addition, complete information about 
the Slotnick et al. (2000) experiments is available online 
(www.psychonomic.org/archive).

Model 2: Likelihood-Ratio Bounds  
and Guessing After “New” Responses

The dual-rating task used by Yonelinas (1999) and Slot-
nick et al. (2000) has a feature that renders Model 1 coun-
terintuitive: No matter what level of old–new confidence is 
assigned to an item, the subject must provide a confidence 
judgment concerning the source. The assumptions of con-
tinuous distributions and likelihood-based decision bound-
aries force the prediction that source judgments following 
“new” decisions were not driven by chance: Subjects must 
have responded “female” at different rates to items pre-
sented in a female or a male voice. A plausible alternative 
hypothesis is that subjects viewed source judgments follow-
ing “new” responses as meaningless, and therefore simply 
guessed rather than consulting decision boundaries.

To implement this idea, we let the probabilities of 
guessing particular source levels take on arbitrary values, 
but required that these values be the same for all “new” 
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is tested, its strength is sampled from the appropriate tar-
get distribution on some (attended) trials, but from the U 
distribution on other (reduced-attention) trials. A given 
source judgment no longer depends simply on the relevant 
source distribution, but rather on a mixture of that distri-
bution and U. We saw earlier that mixture models of this 
type degrade source discrimination (DeCarlo, 2003a). For 
our combined old–new/source model, this degradation is 
increasingly severe at lower levels of old–new confidence, 
because those ratings are more likely to arise on unat-
tended (U ) trials. There is little degradation for confident 
“old” judgments.

We therefore modified the model to include a noise 
distribution, a change that required five additional pa-
rameters: a mean and variance on both dimensions, and 
the fraction of test trials on which the distribution was in-
voked.11 (The bivariate correlation of the noise distribu-
tion was assumed to be 0.) The resulting parameter esti-
mates are again given in Table 1. For the Yonelinas (1999) 
data, the best fit implied a noise distribution with mean 
0.90 units above and 0.32 units to the right of the lure dis-
tribution, suggesting that the added noise interfered more 
with old–new decisions than with source judgments. The 
variance parameters (as compared with the lure distribu-
tion variance of 1) were 2

x  0.92 and 2
y  1.06. In Slot-

nick et al.’s (2000) Experiment 2, the noise means were 
x  0.0 and y  1.30, and the variances were 2

x  2.45 
and 2

y  2.26; again, the noise affected old–new judg-
ments more than source decisions. Experiment 3 showed 
a similar pattern: x  0.18, y  1.02, 2

x  1.18, 
2
y  1.12. The proportions of unattended trials were .46 

for the Yonelinas (1999) data set, and .18 and .25 for the 
two Slotnick et al. (2000) data sets. The lower propor-
tions of inattention estimated from the Slotnick data are 
consistent with the higher levels of sensitivity obtained in 
their experiments.

In Figure 11, which shows the fit to the Yonelinas 
(1999) data, the curvature in the pooled recognition 
zROC data is now reflected in the model, and the spacing 
of the refined curves more nearly captures the data than 
was the case with the previous models. The addition of 
the noise component improved the fits to all three data 
sets, as can be seen in Table 2. Because Model 2 is nested 
within Model 3, the reliability of the improvement can 
be evaluated: The difference in G2 values between condi-
tions is approximately distributed like a 2 with dfs equal 

In a recent article relevant to the guessing question, 
Starns, Hicks, Brown, and Martin (2008) studied source 
identification of unrecognized items. In three experiments, 
they found performance to be above chance, provided that 
the old–new response criterion was conservative (high). 
Their conservative criteria (obtained by informing sub-
jects that only 25% of the test items had been studied) 
were nearer to the mean of the target distributions than to 
that of the lure distribution, and thus correspond to ratings 
in the “old” category on our scale. For their liberal condi-
tion (in which subjects were told that 75% of test items 
had been studied), source identification was at chance. 
Old–new criteria in those conditions were nearer to the 
lure distribution mean, and thus correspond to the “new” 
ratings on our scale. Thus Starns et al.’s findings support 
the assumption that the subjects in the experiments we are 
analyzing, unable to reach above-chance source perfor-
mance for probes they believed to be “new,” fell back on 
source guessing for those items.

Model 3: Likelihood-Ratio Bounds,  
Guessing After “New” Responses,  
and Reduced-Attention Noise

Model 2 does quite well, but there is room for improve-
ment. One possible weakness was noted by DeCarlo 
(2003b), who speculated that the poor fit of his correlated-
 distributions model to the Yonelinas (1999) and Slotnick 
et al. (2000) data sets might lie in “violations of distribu-
tional assumptions” (De Carlo, 2003b, p. 295). In particu-
lar, he conjectured that his own attentional model (DeCarlo, 
2003a), in which the effective target distributions are mix-
tures of two normal distributions, might improve the fit. 
Slotnick and Dodson’s (2005) “added noise” concept, a 
variant of the mixture model assumption, allowed them to 
account for changes in accuracy and in ROC shape with 
old–new confidence. However, their analyses were still 
univariate: Even refined ROCs model only one dimension 
(source rating), factoring out (rather than averaging over) 
the other dimension (old–new rating). Model 2 accounts 
well for the pooled ROCs but not for the refined curves, 
especially the lower ones. Incomplete attention might ac-
count for these discrepancies; our next model incorporates 
the conjecture that a mixture of full and reduced attention 
underlies the data sets we have been considering.

To the decision space represented in Figure 8, we added 
a noise distribution (U ). When a previously studied item 

Table 3 
AIC and BIC Values

Yonelinas 
(1999)

Slotnick et al. 
(2000, Experiment 2)

Slotnick et al. 
(2000, Experiment 3)

Model  AIC  BIC  AIC  BIC  AIC  BIC

DeCarlo (2003b) 2,456 2,507 1,624 1,687 3,807 3,870
LR bounds 989 1,040 662 725 1,228 1,291
LR  guessing 261 326 382 462 432 512
LR, guessing, and inattention 236 314 310 406 427 523

Note—The values were found from the G2 values in Table 2 by adding penalties for the number (k) 
of free parameters: 2k for AIC and kln(n) for BIC, where n is the number of cells in the data matrix. 
Calculations based on log likelihoods yielded an identical pattern. AIC, Akaike information crite-
rion; BIC, Bayesian information criterion.
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rather than to shift some of the mass from the correct dis-
tribution to the erroneous one.

DISCUSSION

We have described a set of decision models for source 
memory experiments that include item recognition judg-
ments. The best of these models is successful at its task. 
But how do the processes postulated by these models fit 
into broader theorizing about source judgments? In this 
final section, we first summarize what we take to be the 
most important characteristics of the models and briefly 
consider the implications of these features for further re-
search. We then contrast our approach with two alterna-
tives that have dominated the literature.

Aspects of the Models: (Two-Dimensional) 
Strength, Likelihood-Ratio Bounds, and 
Nonoptimal Components

According to the models explored in this article, source 
judgments are made by comparing the strength of a probe 
with the distributions resulting from the encoding of items 
in memory. Two kinds of strength mediate these decisions: 

to the difference in dfs between the models (in this case, 
df  5). For the three data sets, G2  35, 26, and 19; all 

of these values are highly reliable ( p  .005), indicating 
that the addition of the U distribution has indeed improved 
our ability to describe the data. Values of RMSEA in the 
three data sets are also reduced, in all cases by 10% or 
more. The AIC and BIC statistics (Table 3) support this 
conclusion for two of the three studies, but for Slotnick 
et al.’s (2000) Experiment 3, the AIC difference is small, 
and the BIC actually favors Model 2.

Another recent model in which noise not equivalent to 
that of the lures has been postulated is the “misattribution” 
proposal of Dodson, Bawa, and Slotnick (2007). In their 
(one-dimensional) representation, the distribution result-
ing from items spoken in a male voice was a mixture of 
the true distribution and one that was equivalent to that 
produced by the female voice. One distinction between 
their model and Model 3 is that the location of the added 
distribution was postulated by Dodson et al. but is deter-
mined by parameter search in our approach. Our modeling 
located the U distribution an average of only 0.05 units 
from 0 across the three data sets. This result suggests that 
the effect of inattention is to reduce sensitivity overall, 
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Figure 10. Model 2 fit to the Yonelinas (1999, Experiment 2) ROC data, arranged analogously to Figure 7.
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instead on LR. Such bounds may seem more complicated 
than the linear ones in DeCarlo’s (2003b) model, but 
they are “simple” in the sense of being optimal (Green 
& Swets, 1966, ch. 1, give several criteria for optimality 
of binary decisions that are satisfied by LR). An unex-
pected payoff of employing LR bounds was the finding 
that the resulting source zROCs were concave upward, 
an empirical result that had been difficult to account for 
in signal detection terms. In fact, this finding has repeat-
edly been cited as evidence for a threshold component in 
source recognition (see, e.g., Yonelinas & Parks, 2007). 
Yet, the fits provided by Model 1 show that a pure signal 
detection model, albeit in two dimensions, can produce 
the effect.

Adding two nonoptimal processes, in Models 2 and 3, 
led to increasingly better descriptions of the data (except 
that Model 3 provided no incremental improvement for 
the Slotnick et al., 2000, Experiment 3 data). These two 
processes have somewhat different status. The assumption 
that subjects guess the source of an item when they have 
just denied recognizing it may not be technically optimal, 
but surely it is cognitively defensible. Incomplete atten-
tion (Model 3), on the other hand, can only be counted as 

the strength of the probe item, which distinguishes old and 
new test probes, and the relative strengths attributable to 
the two sources. The source decision and the confidence 
with which it is made are functions of LR, or the relative 
probability that the observation resulted from one of the 
two sources. Although the old–new decision is based on 
pure strength rather than LR, each judgment depends on 
the relative strengths that support two hypotheses.

Strength models are a natural starting place in memory 
research, and Hoffman’s (1997) model of source judg-
ments represents the simplest possible model of this type. 
Because subjects’ accuracies in source and item recog-
nition tasks tend to be of similar magnitudes, a strength 
dimension that underlies source judgments must not be 
the same as the dimension that supports old–new deci-
sions. This insight led Banks (2000) and DeCarlo (2003b) 
to propose the two-dimensional representations that were 
the starting point for our enterprise. Because these models 
were explicit about representation and decision rules, their 
failure to provide good fits was informative, and our mod-
els have built in natural ways on this foundation.

The greatest improvement in our series of models 
came from replacing linear bounds with bounds based 
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models capable of capturing item and source recognition 
phenomena are natural extensions of fundamental SDT 
principles (using such elements as continuous representa-
tion and LR decision rules) and cannot be evaluated by 
testing the predictions of restricted models.

Models with explicit recollection processes. In the 
literature, source monitoring is typically conceived of as 
depending on qualitative stimulus characteristics that are 
“diagnostic” of a particular source (Johnson et al., 1993). 
For example, in reality monitoring, a high degree of per-
ceptual detail evoked by a probe may serve to identify that 
item as having been seen rather than imagined. In one com-
mon elaboration of this idea, source judgments are driven 
by a recollective process (Yonelinas, 1999), and the most 
striking aspect of the present models for many readers is 
likely to be the complete absence of such a construct.

In their recent review of ROCs in recognition mem-
ory, Yonelinas and Parks (2007) concluded that “single-
 component models of recognition memory are inad-
equate” (p. 829). The success of the present models of 
source identification might be taken to support this view, 
depending on whether the second dimension in Figure 8 
is taken to be a second “component.” For many research-
ers, however, the required renovation of simple models is 
the inclusion of a separate “recollection” process. A view 
popular with both dual-process and SMF theorists is that 
the ability to assign a source to a memory is an indication 
that recollection, rather than mere familiarity, accounts for 
recognition (Hicks, Marsh, & Ritschel, 2002; Yonelinas, 
1999). Indeed, accurate source judgments are sometimes 
taken as evidence for the use of recollection (Chan & Mc-
Dermott, 2007; Yonelinas, 2002).

Without specifying the characteristics of recollection, 
this view cannot be distinguished from our signal detec-
tion models, because the dimension that distinguishes 
the sources could simply be renamed recollection. In 
fact, Wixted (2007; Wixted & Stretch, 2004) has argued 
that recollection may combine with familiarity to gener-
ate a single item-strength decision variable, so that each 
old–new judgment depends on a sum of the two. Rotello, 
Macmillan, and Reeder (2004) proposed a similar deci-
sion rule. What makes the dual-process view of recollec-
tion special is the assumption that it is a high-threshold 
process.

Wixted (2007) recently argued that the pattern of 
refined- ROC shapes is strongly inconsistent with the 
threshold-generated predictions of dual-process theory, 
and specifically with linear source ROCs (Yonelinas, 
1999). Because the dual-process model asserts that rec-
ollection generates the highest-confidence responses, it 
predicts that the shape of refined ROCs should change 
from linear at a high level of old–new confidence to 
SDT-like at low confidence, exactly the opposite of what 
is observed (Slotnick & Dodson, 2005). In reply, Parks 
and Yonelinas (2007) argued that at high levels of confi-
dence, the familiarity process would exhibit high sensi-
tivity, accounting for the observed pattern. This effect is 
not explicitly predicted by the dual-process model, and is 
contrary to the spirit of Yonelinas’s (1999) initial investi-
gation of source ROCs.

flawed encoding. Nonetheless, support for mixture models 
of this type has been found repeatedly in source memory 
experiments (DeCarlo, 2003a; Hilford et al., 2002).

This set of models allows us to ask questions about the 
effects of payoffs, presentation probabilities, and other ex-
perimental manipulations designed to influence “response 
bias.” Such biasing variables can be applied to either the 
old–new or the source judgment. Because all bounds are 
expected to shift to higher or lower values of LR, the form 
of the various ROCs should be unaffected. More inter-
estingly, what changes would be expected according to 
Model 3? For example, if two thirds of the items were 
from source A, the distribution due to inattention (U ) 
might shift along the source axis.12

Alternative Approaches
One-dimensional signal detection analyses. The 

two-dimensional framework can be contrasted, to its ad-
vantage, with the popular one-dimensional approach to 
modeling source memory. In the introduction, we noted 
the controversy over the “shape” of the source ROC and 
its theoretical basis. As different shapes have been discov-
ered, corresponding models have been proposed to ac-
count for them. Aspects of shape have been considered 
to be diagnostic of the models; for example, upwardly 
curved zROCs were viewed as support for threshold mod-
els. Until source judgments and the resulting ROCs were 
studied together with old–new judgments, models that re-
flected different aspects of a larger phenomenon appeared 
to be in conflict.

This search for signature predictions of particular mod-
els has two other shortcomings. First, focusing attention 
on one particular aspect of the data necessarily short-
changes other elements, which are implicitly understood 
to be of lesser importance. Second, because such predic-
tions refer to only part of the data, they encourage the use 
of restricted designs (e.g., studies of source memory that 
do not include old–new judgments). Restricted designs 
run the risk of providing a restricted view that supports 
conclusions of limited generality.

A particular strategy that has been used in conjunction 
with one-dimensional SDT analyses illustrates another ad-
vantage of our approach. Dual-process, signal detection, 
and mixture SDT models all predict ROCs and zROCs 
with particular types of curvature, and the presence of 
such curvature has been measured by the magnitude of 
quadratic terms in polynomial fits (Parks & Yonelinas, 
2007). But none of these models predict curvature of a 
quadratic form. Our models provide good descriptions 
of the multiple types of curvature that are observed, and 
these models can be used to infer the processes that influ-
ence ROC shape.

A final consequence of limited modeling is that large 
frameworks such as SDT may be rejected on the basis of 
very limited subcases, even though a fuller consideration 
of the data strongly supports that same framework. The 
introduction mentioned the many articles that have con-
trasted threshold and signal detection views, but in all of 
these, only one-dimensional SDT was considered. We hope 
to have shown that two-dimensional detection- theoretic 
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NOTES

1. Examination of Figure 2B reveals a systematic discrepancy between 
the data and the Gaussian model, so in spite of the presence of “curva-
ture,” the Qin et al. (2001) data support that model only weakly.

2. Dodson, Bawa, and Slotnick (2007) proposed an alternative mixture 
model in which inattention is replaced by “misattribution.” We comment 
on this proposal later.

3. For simplicity, Figure 6 shows only two criteria of each type.
4. DeCarlo (2003b) allowed the bivariate correlation of the lure dis-

tribution to vary, but in our fits the obtained value was always near 0, so 
we fixed it at that value. Also, DeCarlo (2003b) used four parameters to 
specify the x and y locations of the target distributions, but we reduced 
this number to three (without loss of generality) by forcing the x locations 
of the target distributions to be the same magnitude but opposite in sign.

5. The locations of the decision criteria are omitted.
6. The complete data matrices for Experiment 2 of Yonelinas (1999) 

and Experiments 2 and 3 of Slotnick et al. (2000) were published by 
Slotnick and Dodson (2005).

Furthermore, and finally, consider how well the data are 
described by the models presented here. The contribution 
that might be made by adding threshold components is 
limited to the small fraction of the variance not already 
explained. We conclude that there is nothing in the classic 
data sets we have modeled that can be taken as support for 
a separate, threshold-based recollection process. Signal 
detection processes that depend on two aspects of memory 
strength are enough.
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ing assumption) and found that leaving the means and variances as free 
parameters produced a reliably better fit. Furthermore, the estimated 
parameters of this distribution have a natural interpretation, reducing the 
risk that we are simply accounting for random variation in the data.

12. We thank an anonymous reviewer for pointing out this avenue of 
investigation.
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7. For consistency, the old–new decision bounds should also be based 
on LR, but we did not fit such bounds. We made this choice in part 
because the difference between linear and LR old–new bounds is not as 
great as the difference for source bounds, but our primary motivation 
was that finding the best-fitting values of LR for both sets of bounds 
simultaneously proved intractable.

8. Like the DeCarlo (2003b) model, Model 1 has 19 parameters for the 
Yonelinas (1999) data and 21 for Slotnick et al. (2000). Criterion values 
account for 10 (Yonelinas) or 12 (Slotnick) of these. Although this seems 
like a large number, almost as many parameters are required by the con-
ventional one-dimensional approach (if both old–new judgments and 
source recognition are measured), and that strategy is unable to model 
interactions between the two subtasks.

9. We also considered treating just responses of “1”–“3” in the Slot-
nick data in this way. However, the data appear more consistent with 
guessing following “4” responses as well, and modifying the model to 
assume guessing only after “1”–“3” produced a poorer fit.

10. An alternative to the guessing hypothesis, pointed out by a re-
viewer, is that the underlying distributions may be something other than 
bivariate normal. The below-chance predictions of Model 1 for refined 
source ROCs arise because two normal distributions with correlation 
terms of opposite sign necessarily cross over, but the actual evidence 
distributions need not follow this mathematical prescription. Since we 
have no intuitions to guide the choice of alternative distribution shapes, 
we do not pursue this possibility.

11. It might seem that such a distribution would necessarily have the 
same properties as the lure distribution. We did compare a model of 
this type with a version of Model 3 (in both cases, without the guess-
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