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On the origin of the
“cumulative semantic inhibition” effect
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We investigated whether the cumulative semantic inhibition effect found by Howard, Nickels, Coltheart, and
Cole-Virtue (2006) provides information about semantic representations. By applying more sensitive statistical
analyses to the original data set, we found a significant variation in the magnitude of the effect across categories.
This variation cannot be explained by the naming speed of each category. In addition, using a subsample of
the data, a second cumulative effect arouse for newly defined supracategories, over and above the effect of the
original ones. We discuss these findings in terms of the representations that drive lexical access and show that

they favor featural or distributed hypotheses.

In a recent article, Howard, Nickels, Coltheart, and
Cole-Virtue (2006) reported a remarkable observation
concerning lexical access during speech production.
They asked speakers to name pictures of common objects
presented in a continuous series of trials. The sequence
of trials had an underlying structure; the members of a
given category were separated by a variable, yet care-
fully controlled, number of trials. Such a design allowed
a comparison between effects driven by the ordinal po-
sition of every response within its category and effects
driven by the distance (in trials) between related items.!
The remarkable observation was that the ordinal position
within the category had a very systematic effect, whereas
the distance of the previous related item (measured in
trials) did not affect performance. The relationship be-
tween ordinal position and average naming latency was
reported to be linear. A unit increase in ordinal position
led to an average increase of 30 msec in naming latency
(95% CI = £8.2 msec). As is shown in their Figure 1,
the average latency data, plotted against ordinal position,
are remarkably aligned.

In the theoretical discussion of this phenomenon, How-
ard et al. (2006) focused on the cumulative property of
the effect. They rightly highlighted that none of the cur-
rent models of lexical access in language production pre-
dicts this observation. They then constructed a working
model of word selection involving a process of priming
and competitive selection, which simulates the observed
cumulative effect. The purpose of the present article is
not to address the cumulative nature of this effect (for
a modelization of these findings that builds on error-
driven learning, see Oppenheim, Dell, & Schwartz, 2007,
2009; see also Navarrete, Mahon, & Caramazza, 2008).
Rather, we focus on the relatively undiscussed structure
of the semantic representations.2 Howard et al.’s compu-

tational model includes nondecomposed localist semantic
representations for each item. A model variant including
decomposed semantic features was also tested. These al-
ternative semantic representations are motivated by a pre-
vious general hypothesis adopted in models of language
production and are not explored in detail. The analysis
Howard et al. presented suggests that both the localist and
the distributed models are equally supported by the ex-
perimental data.

Our main question is whether the cumulative inhibition
effect can be used to constrain theories of semantic repre-
sentation. As we will show, the data reported by Howard
et al. (2006) are in fact inconsistent with localist categori-
cal representations. Our analysis also shows how this ef-
fect could be used to assess the structure of distributed
representations.

Howard et al. (2006) used a total of 24 categories (listed
in their Appendix). The use of such a large number of cat-
egories ensured a high statistical power for the analysis, in
which the ordinal position and distance parameters were
contrasted. It also led to considerable diversity in the defi-
nitions, with categories ranging from rather general sets
(e.g., buildings or furniture) to more specific ensembles
(e.g., computer equipment or farm animals). Despite
this diversity in the definition of categories, the reported
semantic cumulative effect is remarkably strong in the
analysis of categories, suggesting that it is not driven by a
subset of the materials.

In our investigation, we paid special attention to the role
played by these categories in the observation of the effect.
We will proceed in two steps, in which we will answer the
following related questions: (1) Is the magnitude of the
effect similar across the 24 categories, or does it show a
systematic variability? (2) Is the effect better understood
in terms of categorical representations of these particular
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categories or in terms of a by-product of some other rep-
resentational structure?

To answer the first question, we reanalyzed Howard et al.’s
(2006) original data set using a more sensitive technique. To
answer the second question, we extended this analysis with
newly defined categories replacing the original ones. Our
analyses were based on the mixed-effect modeling meth-
odology (Bates, 2005) recently introduced in psycholin-
guistics (Baayen, 2008; Baayen, Davidson, & Bates, 2008).
This technique relies on single-trial data, rather than on
averages over participants, categories, or ordinal positions.
This methodological choice yields two distinct benefits.
First, it avoids an important shortcoming of the statistical
analyses reported in Howard et al. As they acknowledged,
there is a potential confound between ordinal position in the
category and trial position in the experiment. The analysis
performed to address this issue runs a risk of circularity.
The effect of trial position was estimated on the data set and
reinjected as a corrective parameter in the same data set.
This procedure may have distorted the results. Second, the
additional benefit of the new method is that it allows one to
explicitly model the fixed versus random nature of the dif-
ferent effects under consideration. As is shown below, this
enables more detailed and robust analyses than are possible
with the traditional analysis techniques.

VARIABILITY OF THE CUMULATIVE
INHIBITION EFFECT ACROSS
CATEGORIES

By focusing on single-trial data, we were able to test, in
a single analysis, the potential contributions of the differ-
ent order and distance parameters that characterize every
trial of the experiment. Furthermore, this analysis enabled
the investigation of a question that was not addressed in
the original study—namely, possible systematic variations
in the magnitude of the cumulative inhibition effect across
categories.

Linear Analysis of the Data Set

We obtained the data set used in the original study. This
data set comprised a total of 2,568 trials (after the exclu-
sion of filler trials, errors, and responses identified as
outliers). The individual naming latencies were log trans-
formed using the natural logarithm to reduce skewness
and to approach a normal distribution, then were fitted to
three linear models with different combinations of fixed,
random, and mixed effects. The predictors were added se-

quentially into these three models in the order in which
they are mentioned below.

The first model, referred to as Hh-model 1 (for How-
ard’s hypothesis modeling), was intended to test the same
hypothesis as did Howard et al. (2006)—namely, that
there is a main linear effect of ordinal position in the cat-
egory, independent of the lag between related trials and of
the position of the trials in the experiment. We defined as
fixed effects the factors of theoretical interest—namely,
the ordinal position in the category, the lag between the
current trial and the previous trial from the same category,
and trial number (i.e., the ordinal position in the experi-
ment). In addition, to be able to handle trial-level data,
participant and item identity were explicitly included as
random effects in the model. As can be seen in Table 1,
ordinal position had a significant inhibitory effect, and no
evidence was found for influences of lag or trial number.
In Hh-model 2, the effect of trial number was allowed to
vary between participants (see Howard et al., 2006). This
was done by including an interaction between the fixed
effect of trial number and the random effect of participants
(i.e., amixed effect). A formal comparison of Hh-models 1
and 2—namely, a log-likelihood test—shows a significant
improvement in the model’s fit [x%(1) = 13.6, p = .001],
whereas the estimates for the theoretically relevant predic-
tors remain largely unaffected. Together, these results are
fully concordant with those of Howard et al.

More interesting, in the third model (Hh-model 3), we
further estimated the cross-categorical variability of the
linear cumulative semantic inhibition effect. To do so, we
included categories as an additional random effect, on top
of participants and items. This new random effect had 24
levels under which the items were nested. We computed
its main random effect, as well as its interaction with the
inhibitory fixed effect of ordinal position (i.e., a mixed
effect). The main effect indicates possible systematic con-
tributions of the categories over and above the items that
compose them. The interaction with ordinal position pro-
vides an estimate of the systematic variation in the amount
of cumulative semantic inhibition produced specifically
by each category.

The comparison of the models’ estimates in Table 1 in-
dicates that the magnitude and significance of the main
linear semantic effect was largely unaffected by the inclu-
sion of this new random factor. A formal comparison be-
tween models by means of a log-likelihood test shows a
significant improvement of the model’s fit, both from the
inclusion of a variable intercept across categories [x2(1) =

Table 1
Comparison of the Fixed Effects in Linear Mixed-Effects Models of the Log-Transformed Naming Latency
in the Full Data Set (2,568 Observations From 24 Participants Naming 120 Items in 24 Categories)

Hh-Model
1 2 3
Fixed Effect B t P t P B t P
Ordinal position ~ 3.81-10-2 722  <.001 3.80-10-2 725 <.001 3.87-10"2 551 <.001
Lag 518-1074  0.20 84 659-107%  0.26 80  7.16-107% 0.8 78
Trial number 226-10~4 155 12 217-1074 097 33 209-1074 0.94 35

Note—Hh-model, Howard’s hypothesis modeling. £ is in log scale, and df = 2564 for al ¢ tests.
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13.0, p < .001] and from a variable ordinal-position effect
across categories [¥2(1) = 16.5, p < .001]. This indicates
that, although it is true that there was a main inhibitory ef-
fect of the ordinal position within the category, valid on av-
erage for all categories, two additional factors not reported
by Howard et al. (2006) need to be considered. On one
hand, there was a significant random effect of category,
meaning that items in some categories were systematically
faster than items in other categories. On the other hand,
the amount of inhibition provided by each occurrence of
an item within a category showed significant systematic
variation across individual categories: Some categories
produced consistently more inhibition than did others.

To clarify this finding, the main random effect of catego-
ries and its interaction with ordinal positions are plotted in
Figure 1A. Three findings are noteworthy. First, the overall
speed for each category presented a considerable degree of
variability, which was estimated to be over and above item
variability. Second, although all of the coefficients were
positive, there was also significant variability in the mag-
nitude of the linear cumulative effect across categories.
This indicates that every single category contributed to the
cumulative inhibition effect (with the possible exception
of Category 8, body parts). Finally, the main speed of a
category was unrelated to its contribution to the semantic
cumulative effect, with no evidence for a correlation be-
tween the two estimates [ = .15, #(22) = 0.69, p = .49].

Discussion

The results of the analysis that we performed over the
original data set provides a confirmation of the observa-
tions made by Howard et al. (2006) on the basis of data

averaged over participants, items, and categories. The
results also show that the linear cumulative semantic in-
hibition effect was present for all of the categories that
were tested (with one possible exception). In other words,
the cumulative semantic inhibition effect was in no way
a consequence of the trial positions of successive mem-
bers of a category or a consequence of averaging across a
heterogeneous data set. In addition, two new issues have
arisen from our analyses. First, there was a systematic
variation in the overall speeds of items belonging to dif-
ferent categories. Second, and more important, there was
also systematic variation in the strength of the cumulative
semantic inhibition across categories. Finally, the overall
speed with which the members of a category were named
was unrelated to the strength of the cumulative inhibition
shown by that category. Therefore, we cannot conclude
that the variability in the size of the cumulative effect was
a mere consequence of variations in naming speed. One
possible origin of the variation in the cumulative inhi-
bition effect across categories may be the relationships
among the items that compose the categories. The theo-
retical interpretation of these findings will be addressed
in more detail in the General Discussion section. For now,
these observations set the stage for a deeper exploration
of the effect on a subset of the data.

CONTRASTIVE HYPOTHESISABOUT THE
CUMULATIVE INHIBITION EFFECT

In the second analysis that we report, we investigated
the representational status of some of the categories used
in Howard et al. (2006). Our first analysis showed that all
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Figure 1. Estimates of the random intercept of category (x-axis) and the mixed interaction between category and ordinal position
(y-axis) for each of the original categories. Larger values in the x-axis indicate slower categories. Larger values in the y-axis indicate
stronger coefficients for the linear semantic effect (i.e., stronger inhibition). Each data point is a category (see the Appendix for details).
(A) Complete data set (Hh-model 2). (B) Subset used in the second analysis (N-model 1). The magnitudes and relative orderings of these
random effect estimates have been validated using a bootstrapping technique (V= 100; Efron, 1979).
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of the categories produced a sizable cumulative inhibition
effect. Does this mean that the categories should be under-
stood, in any strong sense, as representational categories
in the speakers’ cognitive system? Although a positive an-
swer to that question would be rather surprising (e.g., zoo
and farm animals were distinguished; white goods was a
category in itself), the question is a useful anchor point
for our rationale.

An inspection of the list of materials shows that at least
10 categories allow a natural regrouping in pairs of co-
categories under a supracategory (see Table 2). This prop-
erty allows manipulation of the structure of the categories
used to analyze the data, and, hence, it provides answers
to the question above. If two cocategories are representa-
tionally independent, naming the members of one of them
should not affect how the members of the other are named
any more than would having named any other items. For
example, the speed of naming farm animals should be
independent of whether zoo animals (or buildings) were
named before. By contrast, if the items of cocategories
share part of their representation, such influence should be
apparent in the naming performance. In the latter case, the
relative contributions of supra- and cocategory groupings
might be clarified.

We report a series of analyses on a subset of the data
from Howard at al. (2006), in which only the materials
listed in Table 2 were included. We proceed in three steps.
First, we show that the original effect of interest is simi-
larly present in the restricted data set. Second, we show
that having named the cocategory earlier in the experi-
ment affects naming latencies in a systematic fashion. Fi-
nally, we contrast two assumptions about the underlying
representations that may cause the influence of cocatego-
ries on one another.

Step 1: Is the Cumulative Inhibition Effect
Present in the Restricted Data Set?

The data from the 10 categories in Table 2 were entered
in a linear regression model very similar3 to Hh-model 3.
This model is summarized under N-model 1 (for new hy-
pothesis modeling) in Table 3. The linear inhibition effect
driven by ordinal position was also present in this restricted
data set, with an estimated size of the same order of mag-

nitude as that in the complete data set. This conclusion is
strengthened by an inspection of Figures 1A and 1B, which
show that individual estimates of the inhibition effect for
each of the categories in the restricted data set (Figure 1B)
are very similar to those obtained previously from the com-
plete data set (Figure 1A). Here, again, there was a signifi-
cant improvement of the model’s fit with the inclusion of
a variable intercept across categories [x2(1) = 5.99,p =
.014] and a variable ordinal position effect [x2(1) = 5.08,
p = .025]. The estimate of N-model 1 for the ordinal posi-
tion effect is plotted in Figure 2A.

In contrast to the full-data-set analyses, trial position
produced a significant effect in the restricted data set of
N-model 1. This result will be discussed below in relation
to the manipulations concerning the relative positions of
cocategories. For the rest, the restricted data set provides
a robust and safe testing ground for the hypotheses stated
above about the mutual influence of cocategories on the
cumulative inhibition effect.

Step 2: Is There a Dependency
Between Cocategories?

The pairs of cocategories summarized in Table 2 may or
may not be subserved by common representations. If two
cocategories are independent, naming the items of one of
them should be independent of whether the members of
the cocategory have been named before. By contrast, if
two cocategories have a common underlying representa-
tion, responses to the category that is presented second
should be slowed down by the previous naming of a mem-
ber of'its cocategory. We tested this prediction by differen-
tiating cocategories on the basis of the order in which they
were named in the experiment. For this test to be possible,
two precautions needed to be taken.

First, the order in which the categories were presented
across participants had to be checked. The last column
of Table 2 summarizes the relative position of each of
the two cocategories. The order in which they were pre-
sented in the experimental lists is relatively well balanced
across participants. Furthermore, in most cases, the two
cocategories did not overlap in the stimulus sequence.
Any effect observed for cocategories presented second
can therefore be attributed to their position in the experi-

Table 2
Regrouping of a Subset of the Original Items in Supracategories
Cocategories Members Supracategory Motivation Number
Farm animals cow, donkey, horse, pig, sheep Mammals All are mammals 10
Zoo animals gorilla, monkey, hippo, tiger, elephant 14
Clothes bra, jacket, pajamas, skirt, sock Clothing All items are worn 11
Headgear beret, cap, crown, hat, helmet 13
Fish eel, goldfish, shark, stingray, swordfish Sea creatures All live in the sea 14
Shellfish crab, lobster, mussel, oyster, prawn 10
Computer equipment computer, joystick, keyboard, mouse, printer  Electronic equipment ~ We watch TV on computers, 13
Audio-visual equipment  headphones, microphone, radio, speaker, TV and we browse networks on TVs 11
Fruits apple, banana, lemon, pear, orange Fruits and vegetables ~ Never dissociated in patients? 14
Vegetables broccoli, carrot, cauliflower, onion, potato 10

Note—Number, the number of participants (N = 24) who named each category before its cocategory.

(2003).

aCapitani, Laiacona, Mahon, and Caramazza
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Figure 2. Estimated performance, with standard errors, for the members of two cocategories (A and B, shown on the x-axis) in
different models instantiating different hypotheses. A rationale for choosing among models is described in the General Discussion
section. (A) Both cocategories are independent; their ordinal positions produce independent significant effects (N-model 1). (B) The
cocategories depend on one another; both the ordinal position in the original categories and in the supracategory produce independent
significant effects (N-model 5). (C) The cocategories are in fact a single supracategory; ordinal position only within the supracategory

produces a significant effect (model not reported).

mental list, rather than to the specifics of the items that
compose them.

Second, the absolute position of each cocategory within
each experimental list had to be controlled. Obviously, the
second cocategory was always presented later in the ex-
periment. If there is a systematic variation of performance
with trial position (see, e.g., the suggestive effect of trial
position in N-model 1 in Table 3), it should be taken into
account when interpreting relative category position. This
was done by considering three related predictors. The first
one, used previously, was the position of the trials in the

list. The second predictor was the absolute position of the
category within the experimental list. It was defined as a
constant number for all the members of a cocategory—
namely, the trial number of the first item of the category.
Finally, we introduced the critical predictor of the relative
position of two cocategories, with values 1 (vs. 0) when
the cocategory had (vs. had not) been named before. We
also included the predictor of theoretical interest: ordinal
position within the cocategory.

N-model 2 in Table 3 shows that the effect of ordinal
position within the category was significant. More impor-
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Table 3
Comparison of Estimated Parameters in Various Linear Regression
Models of the Log-Transformed Naming Latency in the Restricted
Data Set (1,056 Observations From 24 Participants
Naming 50 Items in 10 Categories)

Fixed Effects

N-model 1 (Step 1)

Position of trial

Position of start of category

Position of cocategory

Ordinal position within category
Ordinal position within supracategory

N-model 2 (Step 2)

Position of trial

Position of start of category

Position of cocategory

Ordinal position within category
Ordinal position within supracategory

N-model 3 (Step 2)

Position of trial

Position of start of category

Position of cocategory

Ordinal position within category
Ordinal position within supracategory

N-model 4 (Step 3)

Position of trial

Position of start of category

Position of cocategory

Ordinal position within category
Ordinal position within supracategory

N-model 5 (Step 3)

Position of trial

Position of start of category

Position of cocategory

Ordinal position within category
Ordinal position within supracategory

B t )4
5.88-1074 2.48 013
4281072 4.13 <.001
-122-1074  —0.05 96

228104 0.10 92
6.47 - 1072 256 <.01
4731072 307 <.01
7.00 - 102 356 <.001
4.68 1072 449 <001
7.68 105 0.25 80
3.07-1072 2.61 <.01
1.38 - 102 2.54 01
3.02- 1072 2.61 <.001
1.47 - 102 3.55 <.001

Note—N-model, new hypothesis modeling. S is in log scale.

tant, the relative position of the cocategory had a strong
and significant effect, whereas neither the absolute posi-
tion of the trial nor the absolute position of the category
was significant. This result indicates that the relative po-
sition of the cocategory was indeed the best predictor of
naming latencies—better than trial position or category
position. A secondary analysis clarified that this result
was not due to trial position being a less efficient predictor
than a category’s relative position. We re-paired the cocat-
egories randomly in five pairs 2,000 times. Of those, 257
sample lists contained only unrelated cocategory pairs.
For these 257 samples, we estimated the effects of trial
position and relative position given the new pairings. Trial
position produced a significant effect (r > 1.65, p < .05)
for 73% of the samples; an unrelated category’s relative
position was significant for only 7.4% of the samples, and
in all cases the estimated relative position effect went in
the opposite direction (second category faster) to what we
observed in N-model 2 with properly related pairs (see
Table 3).

This finding also clarifies why trial position may have
been significant in the restricted data set (N-model 1)
and not in the complete data set (e.g., Hh-model 2). The
restricted data set included only categories whose sec-

ond occurrence was slowed down by their previously
presented cocategory. By contrast, the complete data set
included many categories that did not have a cocategory
named earlier.

Summing up, this second analysis reveals a clear depen-
dency between cocategories that is not due to the absolute
position of the trials in the experiment and that is observed
over and above the effect of ordinal position within a cat-
egory. This is summarized in N-model 3 in Table 3, where
only significant variables were included. The occurrence
of the second cocategory was slower than the first one,
by an order of magnitude that was similar to the effect of
ordinal position within a category. The variable magnitude
of the cumulative inhibition effect did not reach signifi-
cance in these two models. Whether this result is a mere
consequence of the reduction in power of the analysis or
a reflection of a theoretically meaningful observation re-
mains an open question.

A very simple explanation for the dependency between
cocategories would be that cocategories are in fact a single
category—namely, the supracategory listed in Table 2. In
this view, going from the end of one cocategory (e.g., the
fifth farm animal) to the beginning of its cocategory (e.g.,
the first zoo animal) is equivalent to increasing by one
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the ordinal position of the item in the corresponding su-
pracategory. If this were an appropriate description of the
data, the cumulative inhibition effect should make trials at
the beginning of the second cocategory slower than trials
at the end of the first cocategory. A quick approximating
test of this hypothesis (data set size = 215 trials) shows,
if anything, the opposite pattern. The first trial of the sec-
ond cocategory was faster than the fifth trial of the first
cocategory [£(212) = —2.15, p = .033], irrespective of
their intertrial lag [#(212) < 1]. This finding suggests that
the effect of the relative positions of cocategories may be
more than a simple accumulation of inhibition within a
supracategory.

Step 3: Are Cocategories Better Described
As a Single Encompassing Category?

In this third step, we tested more formally whether the
two cocategories could be functionally reduced to a sin-
gle supracategory. This account makes a clear prediction.
Ordinal position within the supracategory (range: 1-10)
should produce a significant effect that should absorb the
effect of ordinal position within the (original) category
(range: 1-5). A representation of the prediction of such
a model is plotted in Figure 2C. Alternatively, the slow-
ing down of the cocategory occurring second may not
be because of the items’ belonging to a single category.
The underlying representation of items that share a single
feature or property within and across cocategories may
be responsible for the effect. An example of such a fea-
ture for the cocategories farm and zoo animals could be
Sfour-limbed animal or mammal. This alternative account
also makes a clear prediction. Ordinal position within the
supracategory (range: 1-10) should produce a significant
effect in addition to the previously reported effect of ordi-
nal position within the (original) category (range: 1-5).

These alternative predictions were tested in N-models 4
and 5, reported in Table 3. The estimates of N-model 4
show that both the ordinal position within the supracat-
egory and the ordinal position within the original category
have independent significant inhibitory effects. The effect
of supracategory position cannot be ascribed to trial posi-
tion, which was also included in the model. N-model 5 re-
ports the estimates when only the significant variables are
considered in the model.# The combined estimated effects
of ordinal position within the cocategory and ordinal posi-
tions within the supracategory are plotted in Figure 2B. In
summary, this third step establishes that the ordinal posi-
tion within the supracategory has a significant inhibitory
effect over and above a significant effect of ordinal posi-
tion within the (original) category.

Discussion

The analysis of single-trial data using linear mixed-
effects models has equipped us with sufficient statistical
power to analyze a subset of the original data from How-
ard et al. (2006) with models similar to those used for the
complete data set. These analyses are based on the plausi-
ble pairings of the categories summarized in Table 2. They
indicate that, at least for the items under consideration,

the semantic cumulative inhibition effect is not restricted
within categories.

The plots in Figures 2A and 2C illustrate the cumulative
inhibition effect for models that consider a single level of
category (respectively, when only the cocategory or only
the supracategory level is considered). Figure 2B plots the
model where the dependency between cocategories is cap-
tured by both predictors. Our analyses enable us to discard
both single-category models in terms of their predictive
accuracy. The predictions are significantly better when
both representational levels are considered.

Note that statistics alone are not sufficient to disen-
tangle the two models where cocategories depend on one
another (namely, the second and third steps in Table 3),
since they both produce equally good predictions for this
data set. One way to resolve this issue would be to con-
sider a hypothetical experiment where cocategories would
be intermixed. The definition and predictions of the model
with two ordinal factors at the two levels are straightfor-
ward, and our interpretation of the results described above
leads to a distinct prediction. Figure 3B should be the bet-
ter description of the results, over and above Figures 3A
and 3C. The prediction depicted in Figure 3B is an ordinal
inhibition effect between items of any cocategory plus an
ordinal inhibition effect of a different magnitude between
successive trials belonging to two different cocategories.
In contrast, defining which cocategory comes first when
cocategories are intermixed in the experiment would re-
quire additional assumptions. For this reason, the model
with two ordinal factors may be preferred. Pending fur-
ther evidence, however, we will simply draw the important
conclusion that the dependency between cocategories is
not reducible to the supracategory.

GENERAL DISCUSSION

The cumulative inhibition effect reported by Howard
et al. (20006) is present across categories. This confirms
the robustness of their finding when random variation is
explicitly taken into account and when the relative contri-
butions of ordinal position in the category and trial posi-
tion in the experiment are considered simultaneously. On
top of this, our analyses have added some facts that were
not previously considered. We found a significant varia-
tion in the magnitude of the cumulative effect. This varia-
tion is independent of the variation in overall speed across
categories. In the restricted data set, a further cumulative
effect was found for newly defined supracategories, over
and above the original ordinal position effect within co-
categories. These deeper analyses and new findings allow
contrasting theories of semantic representation, so that we
can better understand the involvement of these representa-
tions in lexical access.

From a methodological perspective, our analyses argue
in favor of using single-trial information, instead of aver-
aging performance across levels. This is especially true in
the case at hand, where noncounterbalanceable absolute
and relative positions of individual trials have to be taken
into consideration simultaneously to understand the data.
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550 -+

A1 B1 A2 B2 A3 B3 A4 B4 A5 B5

Ordinal Position Within Categories A and B

B Original Categories and Supracategories

A1 B1 A2 B2 A3 B3 A4 B4 A5 B5

Ordinal Position Within Categories A and B

C Supracategories

800 -

750 A

700 -

650 -

600

Predicted Naming Latency (msec)

550 ~

A1 B1

A2 B2 A3 B3 A4 B4 A5 B5

Ordinal Position Within Categories A and B

Figure 3. Predicted performance, with standard errors, for the members of two cocategories (A and B, shown on the x-axis) inter-
leaved in the experimental lists for different models instantiating different hypotheses. (A) Both cocategories are independent. (B) The
cocategories depend on one another, such that both the ordinal position in the original (Howard et al., 2006) categories and in the
supracategory produce independent significant effects. (C) The cocategories are in fact a single supracategory, such that ordinal po-

sition only within the supracategory produces a significant effect.

Thus, our first conclusion is methodological. We have
shown how the mixed-effect methodology that Baayen
etal. (2008) introduced for language comprehension stud-
ies also provides a powerful tool for language production
studies.

From a theoretical perspective, the results of our anal-
yses enrich the conclusions of Howard et al. (2006) in
several ways. The first important observation is the sig-

nificantly variable inhibition effect across categories. The
fact that it is unrelated to overall speed indicates that this
variation does not reflect a mere performance effect. One
plausible explanation for this variation may come from
some intrinsic property (or properties) of the categories
in question. Our analysis was conducted post hoc; hence,
such properties were not manipulated explicitly. However,
several dimensions come to mind that have been previ-
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ously proposed to differentially characterize the relation-
ships between members of different categories: structural
similarity across the members of a category (Humphreys,
Riddoch, & Quinlan, 1988), degree of correlation of fea-
tures across the category (Caramazza, Hillis, Rapp, &
Romani, 1990; McRae, de Sa, & Seidenberg, 1997; Moss,
Tyler, & Taylor, 2007), semantic distance within and
across categories (Vigliocco, Vinson, Lewis, & Garrett,
2004), and so on. Testing the link between one or several
of these dimensions to the amount of semantic cumula-
tive inhibition would be a useful tool for contrasting these
hypotheses. In previous research, the effect of semantic
distance has been tested with other picture-naming para-
digms. Some authors have reported worse performance
when the target and context words were semantically
closer (Vigliocco, Vinson, Damian, & Levelt, 2002).
Others, however, have observed that reducing semantic
distance (or typicality) had no effect (Lupker, 1979) or
had a facilitatory effect (Mahon, Costa, Peterson, Vargas,
& Caramazza, 2007). Further ad hoc studies in which the
simple picture-naming task employed by Howard et al.
(2006) was used may contribute to the clarification of the
relative contributions of these parameters and their role in
the cumulative inhibition effect.

The second important observation is the fact that more
than one grouping parameter (i.e., category) is needed to
account for the performance. As was shown by our sec-
ond analysis, a categorical representation of the items that
relies solely on one level of abstraction—be it the level
of cocategories or the level of supracategories—would
not capture the whole pattern of cumulative inhibition.
This fact supports a hierarchical representation in which
individual items belong to more than one semantic (or
structural) nesting level. It excludes strict localist hypoth-
eses, such as those implemented in the working model
proposed by Howard et al. (2006) or other versions. It may
not exclude, however, more sophisticated implementa-
tions of localist representations whose connection weights
or numbers code for properties elsewhere termed features
(e.g., Page, 2000). In these cases, the difference between
localist and distributed representations is not straight-
forward. For instance, Moss et al. (2007) and Vigliocco
and Vinson (2007) noted that most proposals now favor
featural or distributed representations in one way or an-
other (Lambon Ralph, McClelland, Patterson, Galton,
& Hodges, 2001; McClelland & Rogers, 2003; McRae
et al., 1997). This being said, the analysis that we report
here was constrained by the categories available in How-
ard et al., yielding only two nesting levels that were sta-
tistically tractable. Yet this was sufficient to indicate that
the cumulative inhibition effect is a useful tool for testing
the structure of the representational network involved in
lexical access. Testing whether more than two levels of
abstraction ultimately modulate performance should con-
tribute to the clarification of the hierarchical organization
of the representations driving lexical access.

One final point should be raised about the nature of
the cumulative inhibition effect. Following Howard et al.
(2006), we have modeled the effect with linear predic-

tors (we did not observe any nonlinear components that
reached significance). The positive correlation between
mean response times and the corresponding variance
across conditions makes it impossible to model the data
as arising from a linear additive model. It is for this reason
that we log transformed the data prior to our analysis. Note
that this transformation implies a nonlinear, nonadditive
effect in the natural scale. This would seem to contrast
with Howard et al.’s original finding of a linear additive
trend. The limited range of variation of the observed values
makes these two alternatives virtually indistinguishable
(the range in the log-transformed data was 5.53-7.58).
However, we would expect to observe deviations from lin-
earity in data sets with wider ranges of ordinal category
positions (i.e., above 5). In other words, a linear effect
with a magnitude of 26 msec may become unrealistic for
item groupings comprising 10 or more items. The appar-
ently linear effect may prove to be nonlinear after all.

In conclusion, we reported an investigation of the cumu-
lative semantic inhibition effect reported by Howard et al.
(2006). Where Howard et al. reported a single regression
line, we showed that a richness of systematic variations
can be observed and—more important—predicted. These
variations are better understood in terms of featural or dis-
tributed representations driving lexical access. Our analy-
sis further shows how these variations and predictions can
be fruitfully used to confront current theories of semantic
representation on a quantitative basis.
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NOTES

1. More specifically, each list comprised 120 items drawn from 24
different categories (i.e., 5 items per category), plus a set of 45 filler
pictures. The items of a given category were separated by two, four, six,
or eight trials; this arrangement was counterbalanced across participants
and categories.

2. For consistency with the terminology used in Howard et al. (2006),
we will refer to the effect as cumulative semantic inhibition. A possible
contribution of visual factors will be mentioned in the General Discus-
sion section.

3. The lag between trials and the lag between cocategories variables
were included in previous versions of the analysis. They never contrib-
uted significantly and, hence, are omitted here for simplicity.

4. As was the case in Step 2, the variable magnitude of the cumulative
inhibition effect did not reach significance in this analysis.

APPENDIX
Names of the Categories in Howard et al. (2006)

1. zoo animals 7. fish 13.
2. birds 8. body parts 14.
3. fruits 9. clothes 15.
4. musical instruments 10. tableware 16.
5. tools 11. furniture 17.
6. transport 12. bugs 18.

house parts

computer equipment
farm animals

shellfish

white goods

reptiles and amphibians

19. vegetables

20. buildings

21. celestial phenomena
22. headgear

23. audio-visual

24. landscape features

Note—The numbers are those used in Figures 1A and 1B. For details on the category members, see Howard

etal. (2006).
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