
It is generally accepted that people’s concepts include 
not only the features and attributes of the entity being rep-
resented, but also the ways in which those features are 
related to one another. For example, we know that hor-
mones can alter a person’s behavior, that chemical struc-
ture can affect a substance’s hardness, and that processor 
speed can limit a computer’s responsiveness. Relational 
knowledge like this has been shown to affect what people 
remember, how people reason, and how people use and 
learn categories of objects. For example, one sort of rela-
tional knowledge—causal relations—has been shown to 
affect a variety of category-related tasks, including how 
categories are learned (Waldmann, Holyoak, & Fratianne, 
1995), to what extent novel properties are generalized to 
all category members (Heit, 2000; Rehder, 2007; Rips, 
2001), and how missing features are inferred (Rehder & 
Burnett, 2005). In this article, we consider how the infer-
ences licensed by causal knowledge affect the core judg-
ment involving categories—classification itself.

There is an extensive literature documenting how judg-
ments of category membership are affected by the causal 
relations that link the features that one observes in objects. 
The causal status effect is the phenomenon in which more 
causal features (features that appear earlier in a category’s 
causal network of features) are more important to category 
membership than less causal features. For example, hold-
ing other factors (like perceptual salience and cue validity) 
constant, the feature has wings should be more diagnostic 
of birds than the feature flies, because flying is a causal con-
sequence of having wings rather than the other way round 
(Ahn, 1998; Ahn, Kim, Lassaline, & Dennis, 2000; Kim & 
Ahn, 2002a; Rehder, 2003b; Sloman, Love, & Ahn, 1998). 
The multiple cause effect shows that the causal status ef-
fect can be overturned when an effect feature has multiple 
causes. For example, flying may become more important 

than wings if flying has additional causes (e.g., having the 
right body size relative to wing span; Rehder, 2003b; Reh-
der & Hastie, 2001; Rehder & Kim, 2006). Finally, the co-
herence effect is the phenomenon in which causal relations 
make objects exhibiting certain combinations of features 
better category members—namely, those that manifest the 
interfeature correlations expected to be generated by causal 
links (e.g., causes and effects either both present or both ab-
sent). For example, although atypical, an ostrich is a coher-
ent bird, because it makes sense in light of the causal rela-
tions that link features (its large size prevents flying despite 
the presence of wings) (Marsh & Ahn, 2006; Rehder, 2003a, 
2003b; Rehder & Hastie, 2001; Rehder & Kim, 2006).

However, an important omission of these studies is that 
the causal links investigated have generally been limited to 
those between observable features (e.g., wings, body size, 
flying). For example, in the typical study, participants are 
taught the relations between a small set of three to six fea-
tures and are then asked to judge the category membership 
of items in which the presence or absence of each feature is 
positively affirmed. However, everyday classification typ-
ically involves objects in which information about many, 
if not most, of their features is unavailable. We classify our 
colleagues into political parties after snippets of conversa-
tion, animals from vantage points in which many features 
are occluded, cars as Toyotas and Fords without looking 
under the hood, and people as men and women without 
conducting medical exams. Furthermore, many important 
properties (DNA, chemical structure) are unobservable 
without special equipment and training. Indeed, observed 
features are often just the tip of the iceberg, sitting on top 
of the rich network of hidden attributes, structures, and 
processes associated with many kinds.

Of course, the very fact that such features are unob-
served provides good reason to think that they play no role 
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mations by virtue of their causal links to observable features 
(Medin & Ortony, 1989). In the following experiments, 
adults were taught a pair of novel categories and then asked 
to choose which category a particular object was more likely 
to belong to. Novel categories were used to control which 
features were unobservable and which observable features 
were causally generated by the unobservable ones. For ex-
ample, some participants learned about two species of ants, 
Kehoe ants and Argentine ants (Table 1). For Kehoe ants, 
the underlying feature was blood high in iron sulfate and 
the two observable features might be hyperactive immune 
system and thick blood. For Argentine ants, the underlying 
feature was blood high in metallic sodium and the two ob-
servable features might be fast digestion and short life span. 
Features were observable because they were displayed, in 
various combinations, by the objects that the participants 
subsequently classified, whereas no explicit information re-
garding the presence of the underlying features in those ob-
jects was provided. Importantly, one or more of the observ-
able features were described as being causally generated by 
the underlying one. For Kehoe ants, the participants might 
be told that “blood high in iron sulfate causes a hyperactive 
immune system” and about the causal mechanism linking 
those two features: “The iron sulfate molecules are detected 
as foreign by the immune system, and the immune system 
is highly active as a result.” Examples of causal relations 
relating underlying and observable features are presented 
in Table 1 for Kehoe and Argentine ants. Five other pairs of 
categories besides ants were tested.

Our central hypothesis is that observable features become 
more diagnostic of category membership by virtue of the 
causal relations that link them to an underlying feature, be-
cause from observable features (e.g., hyperactive immune 
system) one can reason causally to an underlying feature 
(e.g., blood high in iron sulfate) and then to category mem-
bership (e.g., Kehoe ants). To instantiate the strong relation-
ship between underlying features and category membership 
established by Keil (1989), Rips (1989), Gelman (2003), 
and others, the diagnosticity of those properties was maxi-
mized by stipulating them to be defining features—that is, 
to covary perfectly with their category. For example, blood 
high in iron sulfate was stipulated as defining of Kehoe ants 
by stating that it was present in all Kehoe ants and in no other 
species of ants. However, it is not our view that diagnostic 
reasoning in the service of classification is limited to defin-

in everyday acts of classification. The brain might simply 
make do with whatever features are perceptually available, 
using the evidence that they provide to assign an object to 
its most likely category. Counter to this view, however, we 
will argue that unobserved features can play a role in class-
ification, albeit an indirect one, by virtue of the causal re-
lations that link them to the observable ones. For example, 
wings may be important for identifying birds not because 
they enable flying, but rather because morphological fea-
tures like wings are diagnostic of internal structures and 
processes that are unique to birds. This article tests the 
hypothesis that classifiers can engage in a kind of two-step 
inferential process in which they first reason backward 
from observable features to the unobserved properties or 
structures and then from those underlying properties to 
category membership. Following this view, one diagnoses 
category membership in the same way that one diagnoses 
the presence of a disease from the presence of the symp-
toms that it causes. We will refer to this proposal as the 
classification as diagnostic reasoning view.

There is good reason to suspect that the presence of un-
derlying structures implied by observable features can affect 
classification, because research has shown that those struc-
tures are uniquely associated with category membership. 
For example, in Keil’s (1989) well-known transformation 
experiments, second graders were told about doctors who 
dyed a raccoon’s fur black, bleached a white stripe down its 
back, and put a sac of odor in its body. The children judged 
that the transformed animal was still a raccoon, despite 
its now looking like a skunk, reflecting the importance of 
the animal’s internal versus external properties (see Rips, 
1989, and Hampton, Estes, & Simmons, 2007, for related 
findings with adults). In fact, evidence that the internal 
structure of animals is more important than the outside has 
been found with children as young as 3 years old (Gelman 
& Wellman, 1991; also see Diesendruck, 2001, Gelman, 
2003, and Hirschfeld, 1996). But although these studies 
established the strong relationship between unobserved in-
ternal properties and category membership, it may be that 
classifiers make use of this knowledge only in unusual hy-
pothetical situations involving transformations. Whether 
they also do so in the acts of classification that people per-
form every day is an open question.

In this article, we ask whether underlying features can af-
fect categorization even in situations not involving transfor-

Table 1 
Example of Experimental Materials

 
Category

 Underlying  
Feature

 Observable 
Features

  
Causal Relations

Kehoe ants Blood high in 
iron sulfate

Hyperactive 
immune system

Blood high in iron sulfate causes a hyperactive immune system. The iron sulfate  
molecules are detected as foreign by the immune system, and the immune system is 
highly active as a result.

Thick blood Blood high in iron sulfate causes thick blood. Iron sulfate provides the extra iron that 
the ant uses to produce extra red blood cells. The extra red blood cells thicken the blood.

Argentine ants Blood high in 
metallic sodium

Fast digestion Blood high in metallic sodium causes fast digestion. Because metallic sodium is a  
digestive enzyme that facilitates nutrition extraction, high levels of metallic sodium 
result in fast digestion.

    Short life span  Blood high in metallic sodium causes a short life span. Because metallic sodium  
gradually corrodes the valves in the ant’s heart, its life span is shorter. 
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observable feature (short life span) but not its first ( fast 
digestion). As was previously mentioned, UA and UB were 
defining because they were described as occurring in all 
members of their respective category and in no nonmem-
bers. Observable features were associated with their cat-
egory by stating that they occurred in 75% of the category 
members. To eliminate the possibility that any effects are 
due to the particular features and causal relationships in-
volved, the assignment of Kehoe ants and Argentine ants to 
the roles of Category A or B in Figure 1 was reversed for 
the other half of the participants. Five other category pairs 
besides ants were tested.

After learning about the two categories, the participants 
performed classification tests in which they were shown two 
features, one from each category, and asked which category 
the object belonged to. For example, a test item might have 
features A1 and B1, which we predict will be classified as 
belonging to Category A, because, from A1, one can reason 
to UA via the causal link that connects them, but one can-
not so reason from B1 to UB. For a similar reason, an item 
with features A2 and B2 should be classified as belonging to 
Category B. We refer to those test items with features whose 
presence is affirmed as positive items. We also presented 
negative items with features that were stipulated as absent. 
For example, an ant might have a normal rather than a hyper-
active immune system (which we denote as ~A1) and a nor-
mal rather than fast digestion (~B1). In this case, we predict 
that the item will be classified as belonging to Category B, 
because, from ~A1, one can reason that UA is likely to be 
absent. The test items and predictions are listed in Table 2.

Method
Materials. Six pairs of categories were tested: Kehoe and Argen-

tine ants; Lake Victoria and Madagascar river shrimp; myastars and 
terastars; meteoric sodium carbonate and terrestrial sodium carbon-
ate; Romanian Rogos and Bulgarian Bentos (types of automobiles); 
and Neptune personal computers and Martian notebook computers. 
Note that, for generality, these pairs include both artifacts and natural 
kinds that were both biological and nonliving. Each category had three 
features, where one was unobserved and two were observable, and the 
observable features could be causally related to the underlying one 
(see Table 1 for an example). The features and causal relationships for 
all categories are available, on request, from the authors.

Design. Each participant learned one of the six pairs of catego-
ries. In addition, there were two between-subjects counterbalancing 
factors. First, which members of a category pair played the roles of 
Category A and B was balanced. For example, of those participants as-
signed to the two ant categories, Categories A and B were instantiated 
by Kehoe ants and Argentine ants, respectively, for half of the partici-

ing features. Rather, any underlying feature inferred from 
observable ones can affect classification so long as it pro-
vides reasonably strong evidence of category membership.

The following experiments provide direct tests of the 
claims of the classification as diagnostic reasoning view. 
Experiment 1 confirms that a feature is indeed more diag-
nostic when it is perceived as being caused by its category’s 
underlying properties. Experiments 2 and 3 rule out an alter-
native interpretation that this effect is due to the additional 
salience that a feature accrues by being involved in causal 
relations. Experiments 3 and 4 directly demonstrate that the 
increase in diagnosticity is due to the reasoning from observ-
able to unobservable features. Finally, Experiment 5 demon-
strates that this reasoning is causal in nature by exhibiting 
the asymmetries that are inherent in causal relations.

Besides being important in their own right, the present 
experiments also provide tests of a number of competing 
accounts of how causal knowledge affects classifications. 
For example, according to Sloman et al.’s (1998) depen-
dency model, features vary in diagnosticity as a function 
of the number of dependents (i.e., effects) that they have. 
According to Rehder and Murphy’s (2003) knowledge–
resonance (KRES) model, unobserved features can affect 
classification via a constraint satisfaction process in which 
they are activated by observed features. Finally, Rehder’s 
(2003a, 2003b; Rehder & Kim, 2006) generative model 
predicts that features are diagnostic of category member-
ship to the extent that are generated or produced by a cat-
egory’s causal model. In the General Discussion section, 
we will consider the implications of our results for these 
models after we present our empirical findings.

EXPERIMENT 1

To conduct an initial test of the proposal that features are 
more diagnostic when they are causally related to an under-
lying feature, the participants in Experiment 1 were taught 
the two novel categories shown in Figure 1. Category A had 
three features, one underlying feature (UA) and two observ-
able features (A1 and A2). The first observable feature (A1) 
was described as being caused by UA, but the second (A2) 
was not. Likewise, Category B had one underlying feature 
(UB) that caused the second observable feature (B2) but not 
the first (B1). For example, of the participants who learned 
the two species of ants, half were told that Kehoe ants’ un-
derlying feature (blood high in iron sulfate) caused its first 
observable feature (hyperactive immune system) but not its 
second (thick blood), and that Argentine ants’ underlying 
feature (blood high in metallic sodium) caused its second 

Category A

A1

A2

UA

Category B

B1

B2

UB

Figure 1. Category structures tested in Experiment 1.

Table 2 
Test Items and Results From Experiment 1

P(Predicted Signed

Predicted Category) Confidence

Test Item Type  Test Item  Category  M  SE  M  SE

Positive A1B1 A .84** .05 50** 5
A2B2 B

Negative ~A1~B1 B .68** .06 21* 6
~A2~B2 A

Note—Proportion of predicted category responses and signed con-
fidence ratings were tested against .50 and 0, respectively. *p  
.05. **p  .01.
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Table 2 indicates that, as was predicted, features were 
more diagnostic of category membership when they were 
causally related to an underlying feature. Positive items 
A1B1 and A2B2 were classified significantly more often 
(.84) into Categories A and B, respectively, apparently be-
cause A1 implies UA and B2 implies UB. The signed con-
fidence ratings for the positive items (50) were also sig-
nificantly greater than 0. The predictions of the diagnostic 
reasoning account were also confirmed in the negative 
items ~A1~B1 and ~A2~B2. An item should not be classi-
fied into a category (e.g., Category A) whose underlying 
defining feature can be inferred to be absent (e.g., ~A1 
implies ~UA). In fact, the choice probability for the nega-
tive items (.68) also differed significantly from .5, and the 
signed confidence ratings (21) were significantly higher 
than 0, in accord with this prediction.1

Discussion
As was predicted, a feature was more diagnostic of 

category membership when it was causally related to an 
underlying feature. Moreover, the explicit absence of that 
feature counted for stronger evidence against category 
membership. According to the diagnostic reasoning ac-
count, these results arose because classifiers reasoned 
causally from the presence (or absence) of an observed 
feature to the presence (or absence) of the underlying one 
and then to category membership.

EXPERIMENT 2

Experiment 1 showed that when a feature is causally 
related to an underlying feature, it becomes more diagnos-
tic of category membership. Although our interpretation 
of this result is that classifiers reasoned from observed to 
unobserved features (and then to category membership), 
an alternative explanation is that the causally related ob-
servable features merely became more salient because of 
their participation in the causal link (Ahn & Kim, 2001). 
This may have been the case because, for example, the 
causally related features were mentioned and asked about 
more often in the self-paced learning and the multiple-
choice test, and this repetition alone may have resulted in 
those features being treated as more important.

In Experiment 2, we addressed this alternative explana-
tion by testing the categories in Figure 2. In Category A, 
UA caused A1 (as it did in Experiment 1), but in addition, 
A1 itself caused A2. In contrast, B1 caused B2 in Cate-
gory B, but neither observable feature was causally related 
to UB. When presented with test item A1B1, we of course 
predict that the item will be classified as a member of Cat-
egory A, because A1 implies the presence of UA. However, 
the critical test item in Experiment 2 was A2B2. According 
to the diagnostic reasoning account, A2B2 should be clas-
sified as a member of Category A, because, whereas from 
A2, one can infer A1 and then UA, B2 implies B1 but not UB 
(because of the lack of a causal link between B1 and UB). 
In contrast, the alternative salience account predicts that 
participants should be agnostic regarding A2B2, because 
both A2 and B2 are involved in exactly one causal link (and 
were thus mentioned an equal number of times during the 

pants and this assignment was reversed for the other half. As a result 
of this balancing, the results of the classification test averaged over 
the effects of the physical features involved (e.g., hyperactive immune 
system vs. fast digestion). Second, half of the participants learned Cat-
egory A then Category B and vice versa for the other half.

Participants. Twenty-four New York University undergraduates 
participated for course credit. They were randomly assigned in equal 
numbers to one of the six category pairs, to one of the two category 
orders, and to one of the two assignments of the two physical catego-
ries to roles of Category A or B.

Procedure. The experiment was conducted by computer with 
intermittent spoken instructions. The participants first learned the 
two categories, one after the other. For each, they studied several 
screens of information about the category, including a cover story, 
information on features and causal relations, and a summary dia-
gram of causal relations much like Figure 1 (with category and fea-
ture descriptions substituted for the abstract labels). When ready, the 
participants took a multiple-choice test of 11 questions. While tak-
ing the test, the participants were free to return to the study screens; 
however, doing this obligated the participant to retake the test. The 
only way to pass the test and proceed to subsequent phases was to 
complete it without errors and without returning to the initial study 
screens for help.

After learning the two categories, the participants proceeded to 
the classification test. During the test, they were allowed to refer to 
printed diagrams of the two categories’ features and causal relations. 
The test items consisted of pairs of observable features, one from 
each category (e.g., A1B1). Each test item was presented as two lines 
of text (e.g., hyperactive immune system and fast digestion), one 
below the other in random order. After classifying each item into 
one of the two categories, the participants also provided confidence 
ratings by positioning a slider on a scale whose left and right ends 
were labeled very uncertain and very certain. The slider could be set 
to 21 distinct positions, and the responses were scaled to range from 
0 to 100. The classification test consisted of two blocks of four test 
items (A1B1, A2B2, ~A1~B1, and ~A2~B2). The items were presented 
in a different random order within each block. The experimental ses-
sions lasted approximately 30 min.

Results
Initial analyses revealed no effects of category pair, 

the order of category presentation, or the assignment of 
pairs to Category A or B, and the results are therefore 
presented in Table 2 collapsed over these factors. Note 
that because of counterbalancing, the two positive items 
(A1B1, A2B2) are logically identical to one another, as 
are the two negative items (~A1~B1, ~A2~B2), and so 
the results are collapsed over these items as well. Table 2 
pre sents the proportion of categorization decisions con-
sistent with the predicted category (e.g., Category A for 
A1B1, Category B for A2B2, etc.). It also presents the 
mean signed confidence ratings for each item type. For 
each trial, the signed confidence rating was set equal to 
the participants’ confidence ratings (0–100) if they clas-
sified the item into the predicted category, and to the ne-
gated confidence rating if the item was classified into the 
other category. Signed confidence ratings thus provide 
a secondary measure of the participants’ categorization 
preferences, with positive numbers indicating a prefer-
ence for the predicted category and negative numbers a 
preference for the other category (and 0 indicating no 
preference). Finally, Table 2 also includes, for each item 
type, the results of t tests of whether the participants’ cat-
egorization decisions differed from .5 and whether their 
signed confidence ratings differed from 0.
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Discussion
Experiment 1 showed that features causally related to 

an underlying property were more heavily weighed than 
unrelated features. The results of Experiment 2 rule out the 
possibility that this effect was merely due to the features’ 
involvement in just any kind of causal relation. Although 
A2 and B2 were both involved in a single causal relation-
ship, only A2 implied the presence of its respective underly-
ing feature, and, in fact, A2 served as stronger evidence for 
Category A than B2 did for Category B. Apparently, clas-
sifiers can reason from observable features to underlying 
ones, and decide category membership on that basis.

EXPERIMENT 3

Experiment 3 provides another test of the feature sa-
lience account by manipulating the reliability of the causal 
processes that generate observable features. According to 
the diagnostic reasoning account, classifiers reason back-
ward from observable to unobservable features (and then 
to category membership). Thus, this reasoning should be 
made more confidently when those features are related by 
a more reliable causal process. This prediction was tested 
in Experiment 3 by use of the category structures seen in 
Figure 3. Whereas in Experiments 1 and 2, no information 
about the reliability of the causal processes was provided, in 
Experiment 3 the reliability of the causal processes between 
UA and A1 and that between UA and A2 were described as 
90% and 60%, respectively, and those between UB and B1 
and between UB and B2 were described as 60% and 90%, 
respectively. For example, when Kehoe ants instantiated 
Category A, the causal link between blood high in iron sul-
fate and a hyperactive immune system was described with 
the additional sentence “Whenever a Kehoe ant has blood 
high in iron sulfate, it will cause that ant to have a hyperac-
tive immune system with probability 90%.”

We predicted that the test item A1B1 would be classified 
as a member of Category A, because A1 is produced more 
reliably by UA than B1 is produced by UB (and, thus, the 

self-paced learning). Analogously, the diagnostic reason-
ing account predicts that both negative items should be 
classified as members of Category B, whereas the salience 
account predicts no preference for item ~A2~B2. The four 
test items and predictions of the diagnostic reasoning ac-
count are listed in Table 3.

Method
The materials and procedure in Experiment 2 were identical to 

those in Experiment 1, except for the different causal relationships 
required by the networks in Figure 2. Twenty-four New York Univer-
sity undergraduates participated for course credit. They were ran-
domly assigned in equal numbers to one of the six category pairs, to 
one of the two category orders, and to one of the two assignments of 
physical to logical categories.

Results
Initial analyses again revealed no effect of category pair 

or of the two counterbalancing factors, and, therefore, col-
lapsed results are presented in Table 3. The proportion of 
categorization choices and signed confidence ratings were 
computed in the same ways as were those in Experiment 1.

Table 3 shows that all choice proportions were signifi-
cantly higher than .5, supporting the diagnostic reasoning 
account. Consistent with the results of Experiment 1, item 
A1B1 was typically classified as a member of Category A 
(because A1 implies the presence of UA), and its nega-
tive counterpart, ~A1~B1, was classified more often as a 
member of Category B (because ~A1 implies ~UA). The 
critical test items, however, were A2B2 and ~A2~B2, be-
cause, whereas the alternative salience account predicts 
no preference, the diagnostic reasoning account predicts 
that they should be classified as members of Category A 
and Category B, respectively. In fact, A2B2 was classified 
more often as a member of Category A, indicating that A2 
provided stronger evidence for Category A than B2 did 
for Category B. Conversely, ~A2~B2 was classified more 
often as a member of Category B. The signed confidence 
ratings for the two items were also higher than 0.

Another notable aspect of the results was that A1B1 was 
classified more decisively as a member of Category A than 
was A2B2, and ~A1~B1 was classified more decisively as a 
member of Category B than was ~A2~B2. Indeed, a 2  2 
repeated measures ANOVA of the choice proportions in 
Table 3 with dimension (1 vs. 2) and item type (positive 
vs. negative) as factors revealed an effect of dimension 
[F(1,23)  6.82, MSe  .086, p  .05] but no effect of 
item type and no interaction (Fs  1). Our interpreta-
tion of this result is that A1 provides stronger evidence in 
favor of Category A than A2, because one infers UA from 
A1 over one link, whereas the inference from A2 is over 
two links, and multilink inferences are less certain when 
causal relations are probabilistic.

Category A

A1 A2UA

Category B

B1 B2UB

Figure 2. Category structures tested in Experiment 2.

Table 3 
Test Items and Results From Experiment 2

P(Predicted Signed

Predicted Category) Confidence

 Test Item  Category  M  SE  M  SE  

A1B1 A .81** .06 36** 7
A2B2 A .67* .07 16† 9
~A1~B1 B .83** .06 36** 9
~A2~B2 B .67* .07 18* 8

Note—Proportion of predicted category responses and signed con-
fidence ratings were tested against .50 and 0, respectively. †p  
.10. *p  .05. **p  .01.
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Discussion
According the diagnostic reasoning view, the infer-

ences from observable to underlying features should be 
more certain when the causal processes that related those 
features are more reliable. The present results provide sup-
port for this claim, because the features that were gener-
ated with 90% reliability had more influence on classifi-
cation than features generated with 60% reliability.

The present findings also augment those of Experi-
ment 2, which demonstrated that features are more heav-
ily weighed not merely because they are involved in some 
kind of causal relationship. For example, although features 
A1 and B1 were both involved in a causal relationship, it 
was A1—the feature that was more reliably generated by 
its respective underlying property—that had the greater 
impact on classification.

EXPERIMENT 4

According to our account, classification can involve a 
two-step process in which one first reasons from observed 
to unobserved features and then from unobserved features 
to category membership. In Experiments 2 and 3, we tested 
the first part of this claim by disrupting the causal linkage 
between observed and unobserved features (Experiment 2) 
and by varying the strengths of those links (Experiment 3). 
In Experiment 4, we tested the second part by varying the 
degree to which the underlying feature is diagnostic of cat-
egory membership. The participants were instructed on the 
two categories shown in Figure 4. In both categories, the 
two observed features were caused by the underlying one. 
However, whereas UA was described as occurring in all Cat-
egory A members (and in no nonmembers) just as in Ex-
periments 1–3, UB was described as occurring in only 75% 
of Category B members (and no statement was made about 
other categories). That is, UB is no longer a defining feature.

Our predictions are that, whereas the observable features 
of both categories provide equal evidence for UA and UB, 
respectively, those of Category A should be more diagnos-
tic, because UA itself is. For example, the positive test items 
A1B1 and A2B2 should be classified as a belonging to Cat-
egory A, because UA is more diagnostic than UB. For the 
converse reason, the negative test items ~A1~B1 and ~A2~B2 
should be classified as members of Category B. In addition 
to the two-feature test items tested in Experiments 1–3, the 
four-feature items A1A2B1B2 and ~A1~A2~B1~B2 were also 
tested. The predictions are summarized in Table 5.

inference from A1 to UA is more certain than the inference 
from B1 to UB). Likewise, the test item ~A1~B1 should be 
classified as a member of Category B, because ~A1 counts 
as greater evidence against UA than ~B1 does against 
UB. The four test items and predictions are presented in 
Table 4. If obtained, these predicted results will confirm 
the importance of the reliability of causal processes asso-
ciated with a category and will provide further evidence 
that the results from Experiment 1 were not merely due to 
involvement in a causal relationship (e.g., A1 and B1 were 
both involved in one relationship) or to how often they are 
mentioned in the instructions.

Method
Materials. The causal relationships in Experiment 3 were the 

same as those in the first two experiments, except for the informa-
tion about the reliability of the cause mechanisms. In addition, the 
diagrams of the causal links presented during the initial tutorial and 
the classification test were annotated with “90%” and “60%” on the 
appropriate links. Whereas in Experiments 1 and 2, each feature was 
described as occurring in 75% of category members, in the present 
experiment they were described as occurring in “most” members of 
the category, in order to avoid any apparent contradiction between 
features’ base rates and the reliability of the causal links.

Participants. Twenty-four New York University undergradu-
ates participated for course credit. They were randomly assigned 
in equal numbers to one of the six category pairs, to one of the two 
category orders, and to one of the two assignments of physical to 
logical categories.

Procedure. The procedure was identical to those of Experi-
ments 1 and 2.

Results
As in the first two experiments, initial analyses revealed 

no effect of category pair or the counterbalancing factors, 
and, thus, the results were collapsed over these factors. In 
addition, because the two positive (A1B1, A2B2) and nega-
tive (~A1~B1, ~A2~B2) items were logically identical, the 
results were also collapsed over these items.

Table 4 indicates that all choice proportions were con-
sistent with the categories predicted by the diagnostic rea-
soning account. The positive items, A1B1 and A2B2, were 
classified more often into Categories A and B, respectively. 
Apparently, the greater reliability of the causal processes 
that connected A1 with UA and B2 with UB meant that those 
features were weighed more heavily than features gener-
ated with less reliability (A2 and B1). This interpretation 
is also supported by the fact that negative items, ~A1~B1 
and ~A2~B2, were classified more often into Categories B 
and A, respectively. Signed confidence ratings for all of the 
test items were significantly greater than 0.

Category A

A1

A2

UA

Category B

B1

B2

UB

90%

60%

60%

90%

Figure 3. Category structures tested in Experiment 3.

Table 4 
Test Items and Results From Experiment 3

P(Predicted Signed

Predicted Category) Confidence

Test Item Type  Test Item  Category  M  SE  M  SE

Positive A1B1 A .88** .05 51** 4
A2B2 B

Negative ~A1~B1 B .96** .06 57*  4
~A2~B2 A

Note—Proportion of predicted category responses and signed con-
fidence ratings were tested against .50 and 0, respectively. *p  
.05. **p  .01.
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membership. Importantly, this experiment provides the 
most direct evidence so far that classifiers infer unob-
servables in the service of categorization, because Cat-
egories A and B only differed on properties (UA and UB) 
that were themselves never observed during classifica-
tion. Apparently, the participants inferred the likely pres-
ence (or absence) of these underlying causes and made 
their judgments on the basis of the cause that was more 
firmly associated with its respective category.

EXPERIMENT 5

Experiments 1–4 established that people can reason from 
observed features to underlying ones when deciding cat-
egory membership. However, we have yet to demonstrate 
that that reasoning is specifically causal in nature. To ac-
complish this, the participants in Experiment 5 were taught 
the two categories shown in Figure 5. In each category, the 
two observable features were caused by the underlying one. 
However, unlike in the previous experiments, the partici-
pants were given explicit information about the possibility 
of alternative causes of the observable features; specifi-
cally, they were told that one feature had alternative causes, 
whereas the other had none. For example, when Kehoe ants 
played the role of Category A, the participants were told that 
feature A1 (a hyperactive immune system) had an alterna-
tive cause or causes: “Besides blood high in iron sulfate, 
there are also one or more unknown causes of hyperactive 
immune system. Because of this, a hyperactive immune sys-
tem occurs in 50% of ants that don’t have blood high in iron 
sulfate.” They would also be told that A2 (thick blood) had 
no other causes: “Because there are no other causes of thick 
blood, ants that don’t have blood high in iron sulfate never 
have thick blood.” In the contrast category (e.g., Argentine 
ants), feature B2 had alternative causes and B1 had none.

Our prediction is that features are more diagnostic of 
their category when they do not have alternative causes. For 
example, test item A1B1 should be classified as a member 
of Category B, because B1 provides decisive evidence of UB 
(because it has no other causes). In contrast, because it might 
have been caused by something else, A1 provides relatively 
weaker evidence for UA. That is, inferences from A1 exhibit 
a hallmark of causal reasoning known as discounting, in 
which the potential presence of one cause (in this case, A1’s 
background causes) reduces the likely presence of another 
(UA). A2B2 should be classified as a member of Category A 

Method
The materials and procedure were the same as those in the first 

three experiments, except for the 75% base rate for UB. As in Ex-
periments 1 and 2, no information about the reliability of the causal 
processes was presented, and observable features were described 
as occurring in 75% of category members. Twenty-four New York 
University undergraduates participated for course credit. They were 
randomly assigned in equal numbers to one of the six category pairs, 
to one of the two category orders, and to one of the two assignments 
of physical to logical categories.

Results
Once again, initial analyses revealed no effect of category 

pair or the counterbalancing factors, and, therefore, the re-
sults were collapsed over these factors and also over the 
two positive (A1B1, A2B2) and negative (~A1~B1, ~A2~B2) 
items. Table 5 indicates that all choice proportions were con-
sistent with the predictions. Both the two- and four-feature 
positive items were classified more often into Category A, 
apparently because the evidence in favor of Category A pro-
vided by UA (whose presence is implied by A1 and A2) is 
greater than the evidence in favor of Category B provided 
by UB (whose presence is implied by B1 and B2). This is the 
case because, whereas UA is essential to Category A, UB 
is only probabilistically associated with Category B. Con-
versely, the negative items were judged more often to be in 
Category B, because the inferred absence of UA provides 
stronger evidence against Category A than the absence of 
UB provides against Category B. Signed confidence ratings 
for all test items were also significantly higher than 0.

Discussion
As was predicted, a feature is more diagnostic when its 

underlying cause appears in all category members (and 
in no nonmembers) than when it appears just in most cat-
egory members—that is, when it is defining of category 

Category A

A1

A2

UA

Category B

B1

B2

UB

100% 75%

Figure 4. Category structures tested in Experiment 4.

Table 5 
Test Items and Results From Experiment 4

P(Predicted Signed

Predicted Category) Confidence

Test Item Type  Test Item  Category  M  SE  M  SE

Positive/two features A1B1 A .68* .07 20** 7
A2B2 A

Negative/two features ~A1~B1 B .66* .06 21** 6
~A2~B2 B

Positive/four features A1A2B1B2 A .67* .08 20* 8

Negative/four features ~A1~A2~B1~B2 B .77** .07 31** 6

Note—Proportion of predicted category responses and signed confidence ratings were 
tested against .50 and 0, respectively. *p  .05. **p  .01.
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sults also rule out the alternative hypothesis, first raised in 
Experiment 1, that features become more diagnostic merely 
when they are involved in more causal relations, because, 
in this experiment, features A1 and B2 were less diagnostic 
even though they were involved in more causal relations.

Discounting has been observed in other situations in 
which one uses causal knowledge to predict the presence 
of an unobserved category feature. For example, Rehder 
and Burnett (2005) found that the presence of a cause of 
a common effect was judged as less certain when other 
causes were present. The present results extend those find-
ings to situations in which the inference is to a defining 
feature and in which the participants are asked to judge 
category membership. In addition, of course, discounting 
has been observed in the causal attribution literature in 
social psychology (see McClure, 1998, for a review).

Additional experiments in our lab have established the 
role of causal reasoning in classification by demonstrating 
the asymmetries inherent in such reasoning. For example, 
we have instructed participants on categories whose features 
were either caused by an underlying property (as in Experi-
ments 1–5) or were the cause of that property. Two-feature 
test items consisting of a cause feature from Category A 
and an effect feature from Category B were classified as 
members of Category A, indicating that the inference to 
an underlying feature was stronger in the forward (cause-
to-effect) than in the backward (effect-to-cause) direction, 
consistent with the well-known result that people reason 
more confidently from causes to effects than they do vice 
versa (Tversky & Kahneman, 1980). In the General Discus-
sion section, we will review additional evidence of causal 
processing in a variety of category-based judgments.

GENERAL DISCUSSION

In this article, we have asked how classification is af-
fected when underlying properties are causally linked to 
observable ones. In the following sections, we will discuss 
our findings regarding the role of causally generated fea-
tures in categorization and the ability of current models of 
causal-based categorization to account for those results.

The Diagnosticity of Causally Generated Features
Since the inception of the probabilistic view of categori-

zation, an ongoing research goal has been to identify how 

for a similar reason. This prediction reflects causal reason-
ing, because it exhibits the asymmetries inherent in such 
reasoning: If the direction of causal links in Figure 5 were 
reversed, A1 would provide as much evidence for UA as B1 
provides for UB (Kelley, 1973; Morris & Larrick, 1995).

Unlike Experiments 1–4, this experiment yielded no 
definite predictions for the negative test items, because 
performance on those items depended on participants’ as-
sumption about the alternative causes of A1 and B2. On 
one hand, if the participants assumed that these alterna-
tive causes were uncorrelated with either Category A or 
Category B, they should be at chance on both negative test 
items. For example, the absence of A1 implies the absence 
of UA as strongly as the absence of B1 implies the absence 
of UB, and, thus, the participants should be at chance for 
test item ~A1~B1. On the other hand, if the participants 
assumed that the alternative cause of A1 was in fact Cat-
egory B (e.g., UB), ~A1~B1 should be classified as a mem-
ber of Category A, because, whereas the evidence against 
UA consists of ~A1 alone, the evidence against UB consists 
of both ~A1 and ~B1. (Item ~A2~B2 should be classified as 
a member of Category B for a similar reason.) Our predic-
tions for Experiment 5 are summarized in Table 6.2

Method
The materials and procedure were the same as those in Experi-

ments 1–4. The observed features were described as occurring in 
“most” of their respective category members. Twenty-four New York 
University undergraduates were randomly assigned in equal numbers 
to one of the six category pairs, to one of the two category orders, 
and to one of the two assignments of physical to logical categories.

Results
There was no effect of category pair or the counterbal-

ancing factors, and, therefore, the results were collapsed 
over these factors in Table 6. The table indicates that the 
choice proportions of the positive test items were consis-
tent with our predictions. Item A1B1 was classified as a 
member of Category B, because B1 provided decisive evi-
dence of UB, and item A2B2 was classified as a member 
of Category A, because A2 provided decisive evidence of 
UA. The participants were at chance for the negative items, 
suggesting that the alternative causes of A1 and B2 were 
viewed as uncorrelated with either Category A or B.

Discussion
As was predicted, in this experiment, the participants 

exhibited causal reasoning by discounting—that is, by in-
ferring underlying features less strongly when they were 
described as having alternative causes.3 Note that these re-
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Figure 5. Category structures tested in Experiment 5.

Table 6 
Test Items and Results From Experiment 5

P(Predicted Signed

Predicted Category) Confidence

Test Item Type  Test Item  Category  M  SE  M  SE

Positive A1B1 B .73** .08 42**  1
A2B2 A

Negative ~A1~B1 – .46a .07 10a  7
~A2~B2 – .48a .09 1a 10

Note—Proportion of predicted category responses and signed confi-
dence ratings were tested against .50 and 0, respectively. aBecause 
there is no predicted category for the negative items, choice proportions 
and signed confidence ratings for these items are reported relative to 
Category A. **p  .01.
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those features were caused by the underlying properties of 
other categories). Again, this sort of understanding appears 
to apply naturally to many real-world categories. Because 
we know that flying is generated by the causal mechanisms 
of birds with less than perfect reliability, not all birds fly 
(e.g., ostriches, penguins); because we know that flying is 
generated by the causal mechanisms of other categories, 
not all nonbirds fail to fly (e.g., mosquitoes, airplanes). 
In this manner, the probabilistic information provided by 
causal knowledge combines with the probabilistic infor-
mation that we gather from firsthand observations to de-
termine the degree of evidence that features provide for 
category membership (McNorgan, Kotack, Meehan, & 
McRae, 2007).

Our diagnostic reasoning account is related to the view 
of conceptual structure known as psychological essential-
ism. On this account, people view categories as having un-
derlying properties and structures that are essential—that 
is, that make an object the kind of thing that it is (Gelman, 
2003; Medin & Ortony, 1989). Like the underlying fea-
tures in Experiments 1–5, essences are defining (present 
in all category members and in no nonmembers) and they 
constrain, or generate, the features of objects that can be 
observed. However, unlike our underlying features, truly 
essential features are also viewed as immutable and hav-
ing innate origins; indeed, essential properties are ones 
that are present in all category members that could exist 
(Gelman, 2003). And, although adults may have concrete 
beliefs about essences (e.g., DNA functions as the essence 
for biological kinds for many Western-educated adults), 
preschool children’s knowledge about animals’ essential 
properties is less specific, perhaps consisting of only a 
placeholder—that is, a commitment to the existence of in-
ternal biological mechanisms without any notion of what 
those mechanisms might be (Gelman & Wellman, 1991; 
Johnson & Solomon, 1997; Medin & Ortony, 1989). But 
despite these differences, we suggest that an underlying 
feature that is inferred from observable ones can affect 
classification regardless of whether it is defining, truly 
essential, or only strongly associated with the category.

This fact is important, because not all categories may 
be essentialized to the same degree or at all. For example, 
although underlying causal properties might be impor-
tant for complex artifacts (e.g., automobiles, comput-
ers), simple artifacts like pencils and wastepaper baskets 
appear to be defined more in terms of their perceptual 
 and/ or functional properties (Chaigneau, Barsalou, & Slo-
man, 2004; Malt, 1994; Malt & Johnson, 1992, 1998; cf. 
Bloom, 1998; Matan & Carey, 2001; Rips, 1989). Even 
for biological kinds, people may believe that individual 
animals can vary in the degree to which they participate 
in their kinds’ essential properties and processes (Gelman 
& Hirschfeld, 1999). Consistent with this interpretation, 
Hampton (1995) demonstrated that even when a biologi-
cal category’s so-called essential properties are unambigu-
ously present (or absent) in an individual, its characteristic 
features continue to exert an influence on judgments of 
category membership (also see Braisby, Franks, & Hamp-
ton, 1996; Kalish, 1995). But because the diagnostic 
reasoning view only requires that underlying features be 

classifiers use an object’s features to determine its category 
membership. Well-known past findings include that fea-
ture diagnosticity is affected by empirical information—
that is, how often features appear in category members and 
in nonmembers (Hampton, 1979; Medin & Schaffer, 1978; 
Rosch & Mervis, 1975), how features are used in category-
based inferences (Ross, 1996, 1997, 1999), and perceptual 
salience (Sloman et al., 1998). More recent studies have 
documented a number of effects indicating how diagnos-
ticity is affected by causal relations between observable 
features (e.g., Ahn et al., 2000; Rehder & Hastie, 2001). 
The contribution of this research is that it establishes how 
features’ diagnosticity is also determined by the causal rela-
tions linking them to underlying features.

The importance of causally generated features would 
seem to characterize our understanding of many real-
world categories. For example, although most adults 
believe that gender is defined by underlying biological 
properties (e.g., chromosomes), to perform the everyday 
act of identifying individuals as men and women, they 
must rely on observable properties. But we recognize that 
not all observable properties are equal, because, whereas 
some are causally linked to underlying biology (e.g., body 
shape, voice pitch), others are more determined by cul-
tural conventions (e.g., hair length, clothing style). Thus, 
even though both sorts of features contribute to categori-
zations, we recognize that the former are—all else being 
equal—more reliable cues than the latter.

Our participants’ sensitivity to the specific properties of 
the causal links relating underlying and observable features 
indicated that they were engaged in a process of causal 
inference in which they reasoned from observable fea-
tures to unobservable ones and then to category member-
ship. In Experiment 3, we showed that observable features 
were more diagnostic for stronger than for weaker causal 
links. This result is consistent with classifiers’ reasoning 
from observable to unobservable features, given that such 
inferences will be made with greater certainty for more 
reliable causal processes. Similarly, in Experiment 2, we 
found that those inferences were less certain when another 
feature intervened between the observable and unobserv-
able features, consistent with the idea that inferences over 
many variables will be viewed as less reliable than those 
over fewer. Finally, Experiment 5 showed that features are 
more diagnostic of their category when they have no al-
ternative causes, consistent with a discounting effect in 
which the presence of one potential cause is made less 
likely by the presence of alternative causes.

The presence of diagnostic reasoning in classification is 
important, because it suggests that causal knowledge con-
tributes to the many documented cases of “fuzziness” in 
natural categories (Hampton, 1979; McCloskey & Glucks-
berg, 1978). According to the traditional view, these effects 
arise because features are observed to be only probabilisti-
cally associated with their category. But according to our 
account, it also arises from the inferential uncertainty that 
results from classifiers’ beliefs about features’ involvement 
in causal relations: The evidence that those features provide 
for underlying properties and structures varies depending 
on the strength of the causal links (and the probability that 
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the state of internal causal structures and processes and 
decided category membership on that basis.

Other studies provide indirect evidence for the presence 
of diagnostic reasoning during classification. For example, 
recall that the causal status effect is the phenomenon in 
which features earlier in a causal chain are weighed more 
heavily than later features. On one hand, Ahn and her col-
leagues have frequently attributed this effect to the fact that 
the early features have more dependents (i.e., effects, fea-
tures that depend on them; Ahn & Kim, 2001; Ahn et al., 
2000; Kim & Ahn, 2002a, 2002b; Sloman et al., 1998). 
However, the causal status effect has also been attributed to 
essentialism (Ahn & Kim, 2001; Ahn et al., 2000; Rehder, 
2003b). For example, Rehder (2003b) proposed that, when 
category features X, Y, and Z are related in a causal chain 
and the category is assumed to be essentialized, classifiers 
will assume that the category’s causal model consists of 
the following chain: essence  X  Y  Z. Under these 
circumstances, the participants were likely to have reasoned 
backward from observable features to the essential proper-
ties, and, of course, features closer (in a causal sense) to the 
essence (e.g., X) were taken to be more diagnostic of that 
disease than more remote features (e.g., Z). Consistent with 
this interpretation, Rehder and Kim (2009) found a stronger 
causal status effect when observable features were given an 
explicit underlying cause (also see Rehder, 2003b). And, 
Ahn and her colleagues found that expert clinicians both 
view mental disorders as less essentialized than laypersons 
(Ahn, Flanagan, Marsh, & Sanislow, 2006) and exhibit only 
a weak causal status effect (Ahn, Levin, & Marsh, 2005), 
consistent with the idea that the causal status effect depends 
on diagnostic reasoning from observable features to under-
lying properties that are strongly associated with category 
membership.

Finally, in this article, we have emphasized the diag-
nostic reasoning from observed to underlying features. 
However, the causal reasoning that often underlies catego-
rization can also be prospective, from the causes of an un-
derlying feature, as when a physician diagnoses a disease 
on the basis of its potential causes. Evidence that people 
will reason causally either prospectively or diagnostically 
in an appropriate manner when deciding category mem-
bership is provided by studies in which the direction of 
the causal links relating observable features to underlying 
ones has been directly manipulated. For example, Rehder 
(2007) showed that an object’s degree of category mem-
bership increased nonlinearly with its number of observ-
able features when those features were effects (a result 
related to Experiment 5’s discounting effect) as compared 
with the linear increase that obtained when those features 
were causes, results consistent with a normative account 
of causal reasoning (see also Chaigneau et al., 2004). As 
was previously mentioned, our lab has shown stronger 
inferences to an underlying feature in the forward (cause-
to-effect) direction than in the backward (effect-to-cause) 
direction (Tversky & Kahneman, 1980). The distinction 
between diagnostic and prospective classification also af-
fects how categories are learned. For example, Waldmann 
and his colleagues found that the standard blocking ef-
fect, in which initially learned cues inhibit the learning 

strongly associated with, rather than essential to, category 
membership, it applies to even these cases in which fully 
essential features may be absent.

The diagnostic reasoning view provides a framework 
in which to understand the mixed results obtained across 
transformation studies. As was previously mentioned, 
well-known studies such as those by Keil (1989) and Rips 
(1989) have shown that animals that undergo transforma-
tions so that they look like another species are usually 
judged to have not undergone a change in category mem-
berships. On one hand, these results suggest that, although 
observable features can serve as evidence for underlying 
ones under normal conditions, people know that such 
causal inferences may be unjustified when those features 
are transformed through external intervention (Strevens, 
2007). Even though gender cues such as body shape and 
voice pitch are biologically determined, they can be ma-
nipulated (transformed) by external interventions such as 
surgery and the ingestion of hormones; even though rac-
coons normally have gray, mottled fur, these properties can 
be modified by nefarious veterinarians. In such circum-
stances, people may simply rely on the underlying (and 
perhaps essential) properties whose presence was inferred 
before the transformation to determine that category mem-
bership remains unchanged, despite new appearances.

But more recent evidence suggests that people reason 
diagnostically to category membership even for cases in-
volving transformations. In a replication of Rips (1989), 
Hampton et al. (2007) found that whether a transformed 
animal was judged to have changed category member-
ship often depended on what the participants could infer 
about underlying causal processes and structures. The 
participants in these studies were told a story about, for 
example, a bird that had normal bird-like features (it had 
feathered wings, ate seeds, lived in a nest in a tree, etc.) 
until it was exposed to hazardous chemicals, after which 
it mutated to take on insect-like properties (a brittle outer 
shell, transparent membranes for wings, etc.). As in Rips’s 
study, a (small) majority of participants in Hampton et al. 
judged the transformed animal to still be a bird, whereas 
a (large) minority judged that it was now an insect. But 
although the judgments of the latter group (dubbed the 
phenomenalists by Hampton et al.) would seem to be 
based on the animals’ appearance, the justifications that 
they provided for their choices indicated instead that many 
used the animals’ new properties to infer deeper changes. 
For example, the participants assumed that a giraffe that 
lost its long neck also exhibited new behaviors that were 
driven by internal changes (e.g., to its nervous system), 
which in turn signaled a change in category membership 
(to a camel). Conversely, those participants who judged 
that the transformed animal’s category was unchanged 
(the essentialists) often appealed to the fact that it pro-
duced offspring from its original category, from which 
they inferred the absence of important internal changes 
(e.g., the animal’s DNA was unchanged). In other words, 
rather than the (so-called) phenomenalists’ using only ob-
servable features, and rather than the essentialists’ rely-
ing just on the presence of previously inferred underlying 
properties, both groups used observable features to infer 
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both artifacts (e.g., chairs, guitars) and biological kinds 
(e.g., apples, robins), Sloman et al. (1998) found positive 
correlations between features’ number of dependents and 
their importance to category membership. On the other 
hand, Rehder and Kim (2006) systematically manipulated 
features’ number of dependents and found no evidence 
that more dependents led to greater categorization weight. 
And, Rehder and Kim (2009) found a stronger causal status 
effect (1) when categories were essentialized and (2) when 
interfeature causal links were probabilistic versus deter-
ministic, results that are both at odds with the predictions 
of the dependency model. Thus, we must look beyond the 
dependency model for a comprehensive account of the 
effect of causal knowledge on categorization.

The KRES model. Rehder and Murphy (2003) pro-
posed the KRES recurrent connectionist model, which 
incorporates knowledge in the form of preexisting excit-
atory links between features. As a learning model, KRES 
accounts for a number of known effects of prior knowledge 
on category learning (Rehder & Murphy, 2003; Harris & 
Rehder, 2006). In addition, because excitatory links allow 
features to activate one another, KRES can model how ob-
served features might activate unobservable ones that in 
turn activate the category label. For example, Rehder and 
Murphy demonstrated how KRES accounts for Murphy 
and Allopenna’s (1994) finding that participants were able 
to correctly classify features that they had rarely seen before 
on the basis of relations between them and frequently ob-
served features. It does so because the rare features activate 
the frequent ones that in turn activate the correct category 
label (see also Heit & Bott, 2000).

Unfortunately, however, because KRES only represents 
knowledge in the form of symmetrical excitatory links, it 
is unable to account for the numerous causal asymmetries 
that we have described, including the discounting effect 
observed in Experiment 5. For example, for that experi-
ment, KRES would predict that A1 should activate UA as 
strongly as B1 activates UB, and thus classification of test 
item A1B1 should be at chance.

Causal-model theory and the generative model. 
Another approach to addressing the effect of interfeature 
causal relations in categorization is the general framework 
known as causal-model theory (Sloman, 2005; Waldmann, 
Hagmeyer, & Blaisdell, 2006; Waldmann & Holyoak, 
1992). A causal model—a system of causally interrelated 
variables—exhibits the properties of causal graphical 
models, which specify how one should learn, reason with, 
and act on those variables (Glymour, 1998; Jordan, 1999; 
Pearl, 1988, 2000). Applying the causal model approach 
to classification, Rehder (2003a, 2003b; Rehder & Kim, 
2006) proposed a generative model of classification in 
which features of a category are treated as variables in a 
causal model. Although causal graphical models them-
selves make no assumptions regarding the details of the 
causal relationships, the generative model assumes that 
interfeature causal links are represented as probabilistic 
causal mechanisms and that classifiers consider whether 
an object is likely to have been produced or generated by 
those causal mechanisms. Objects likely to have been gen-
erated by a category’s causal model are considered to be 

of subsequent cues, arises only when category features 
are construed as causes rather than effects (Waldmann, 
2000; Waldmann & Holyoak, 1992) and that learning is 
facilitated to the extent that observable features exhibit 
the pattern of correlations that one would expect given 
the direction of the causal arrow (Waldmann et al., 1995). 
Of course, this evidence for diagnostic versus prospec-
tive classification adds to the already large body of evi-
dence documenting the causal reasoning processes that 
constitute many category-based judgments. For example, 
asymmetries characteristic of causal reasoning have been 
established in category-based induction, both when fea-
tures are inferred in individual category members (Rehder 
& Burnett, 2005) and when they are projected to a whole 
class of objects (Medin, Coley, Storms, & Hayes, 2003; 
Rehder, 2006, 2009; Rehder & Hastie, 2004).

In summary, an enduring problem in the field of catego-
rization has been to account for the undisputed facts that ev-
eryday categorization is based on observable properties and 
that many categories appear to have an underlying reality 
that establishes category membership. Although previous 
demonstrations of the importance of underlying properties 
and structures to classification have involved objects that 
have undergone hypothetical transformations, they provide 
no reason to think that those beliefs play any role in acts of 
classifications involving objects displaying their normal fea-
tures. To our knowledge, the present study is the first to di-
rectly demonstrate how beliefs about underlying properties 
can influence the classification of untransformed objects.

Implications for Computational Models
The evidence that categorization can involve probabi-

listic causal inference has several implications for models 
of theory-based effects in the psychology of concepts. In 
this section, we consider several theoretical models as ac-
counts of these findings.

The dependency model. One model relevant to the 
present findings is the dependency model proposed by 
Sloman et al. (1998). The dependency model character-
izes the theoretical knowledge that classifiers have about 
categories in terms of a network of dependency rela-
tions among category features, where a causal relation 
is one type of dependency relation (an effect depends on 
its causes). Given a category’s network, the dependency 
model predicts that features will be weighed more heavily 
to the extent that they have more dependents (i.e., effects). 
This includes the features that they cause directly as well 
as those that they cause indirectly through other features.

Unfortunately, the dependency model’s reliance on a 
feature’s dependents makes it unable to account for the 
present results showing that feature importance varied 
with the presence of an extra cause. For example, given 
the category structures in Experiment 1 (Figure 1), the de-
pendency model predicts that features A1 and B1 should be 
equally diagnostic of their respective categories (because 
they have an equal number of dependents—viz., zero), 
but, as we have seen, A1’s additional cause made it more 
diagnostic than B1. This incorrect prediction adds to the 
dependency model’s generally mixed record of empirical 
support. On one hand, testing natural categories including 
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ber of homeless people in the U.S. and an intuition about 
why homelessness occurs (e.g., lack of ambition), but if 
you were to learn that there are many additional causes of 
homelessness (e.g., poor education, mental health prob-
lems), you are likely to realize that homelessness is more 
prevalent than you previously thought. Similarly, if you 
learn that an observed category feature is causally related 
to an underlying property, you are likely to assume that 
the feature is more prevalent among category members. 
In terms used in the categorization literature, the feature’s 
category validity (the probability of the feature given the 
category) has increased, and it is well known that higher 
category validity results in a feature’s being more diagnos-
tic (Rosch & Mervis, 1975). In the Appendix, we demon-
strate how the generative view and its assumption regard-
ing increased category validity for causally related features 
provides an account of each of the our experiments.

Of course, there are conditions under which a known 
cause might not lead to an increase in category validity. 
For example, you might have high confidence in your 
current estimate of homelessness, in which case, learning 
about additional causes might either lower the strength of 
the causes that you already knew about or be interpreted 
as the background causes about which you were previ-
ously ignorant (and, thus, the introduction of new causes 
might be accompanied for by a reduction in bi in Equa-
tion 1). However, previous research provides good reason 
to expect that an explicit cause is likely to increase the 
subjective frequency of an event. For example, according 
to Tversky and Koehler’s (1994) support theory, the sub-
jective probability of an event increases when supporting 
evidence is enumerated (death due to cancer, heart dis-
ease, or some other natural cause) rather than summarized 
(death due to natural cause; see also Fischoff, Slovic, & 
Lichtenstein, 1978). And, Rehder and Milovanovic (2007) 
found that an event was rated as more probable as its num-
ber of causes increased (from 1 to 2 to 3). Consistent with 
this greater subjective probability, Rehder and Kim (2006) 
found that features with three causes were more diagnos-
tic of their category than those with only one cause (also 
see Rehder, 2003a, and Rehder & Hastie, 2001). Finally, 
Rehder and Kim (2009) directly demonstrated that experi-
mental manipulations that affected features’ diagnosticity 
were accompanied by changes in their subjective category 
validity, further suggesting that changes in the former are 
mediated by the latter.

Additional research will be required to determine 
whether the greater diagnosticity of causally generated 
features arises from the explicit causal inferences that they 
support or their greater perceived category validity (or 
both). Note that these two accounts correspond to alterna-
tive views of what features constitute the models of our ex-
perimental categories. On the causal reasoning account, the 
causal models consist solely of the underlying features UA 
and UB, and participants reason explicitly from variables 
that are external to those models (the observable features) 
to the underlying ones. On the second account, the model 
includes both underlying and observable features (and 
the model generates the observable features with greater 
probability when they are linked to the underlying ones). 

good category members, and those unlikely to be gener-
ated are poor category members. An object is classified 
into the category that is most likely to have generated it 
(taking into account the categories’ base rates).

There are two ways that the generative model can ac-
count for the result that observed features caused by un-
derlying properties are more diagnostic of category mem-
bership. The first approach corresponds to the explicit 
causal reasoning account that we have described in this 
article. As a type of a causal graphical model, a category’s 
network of interfeature causal links supports the elemen-
tary causal inferences required to account for the results 
in Experiments 1–5. Indeed, Rehder and Burnett (2005) 
confirmed that people are more likely to infer the pres-
ence of a cause feature when its effect was present (and 
vice versa). And, as was previously mentioned, they also 
exhibited the kind of discounting observed in the pres-
ent Experiment 5: The presence of an effect’s cause was 
rated as less certain when an alternative cause was pres-
ent. Although Rehder and Burnett also observed some dis-
crepancies from normative reasoning, current evidence 
indicates that people can readily engage in the causal rea-
soning from observed to unobserved features suggested 
by these experiments (also see Sloman & Lagnado, 2005; 
Waldmann & Hagmayer, 2005).

A second way that the generative model can account 
for the present results is that observed features caused by 
underlying properties are likely to be perceived as more 
prevalent among category members than other features, 
because they are more likely to be generated by the cat-
egory’s causal model. Suppose that category feature Ai is 
caused by feature Aj—specifically, that Aj produces Ai via 
some causal mechanism that operates with probability mji 
when Aj is present (and has no effect on Ai when Aj is ab-
sent). Under these assumptions, Rehder (2003b) derived 
Ai’s probability among Category A members, P(Ai  |CA):

 P(Ai | CA)  mjiP(Aj | CA)  bi  mjibiP(Aj |  CA), (1)

where bi is the probability that Ai is brought about by 
alternative (background) causes associated with the cat-
egory. In other words, the probability of feature Ai in some 
category member is the probability that it is either brought 
about by the causal mechanism [which is the probabil-
ity that Aj is present times the probability that the causal 
mechanism operates, mjiP(Aj | CA)] or brought about by 
the background causes bi.4 When the cause Aj is a defin-
ing feature, P(Aj | CA)  1 and Equation 1 reduces to

 P(Ai | CA)  mji  bi  mjibi. (2)

Equation 2 illustrates how the presence of a causal rela-
tionship between an underlying and an observable feature 
can make the underlying feature more prevalent in cat-
egory members. For example, when bi  .75 and there is 
no causal link between Ai and Aj (mji  0), P(Ai | CA)  
.75. But when, say, mji  .75, P(Ai | CA) increases to .94. 
The introduction of additional causes would make Ai even 
more probable [e.g., if Ai was independently caused by 
another defining feature, Ak, via a causal mechanism with 
mki  .75, P(Ai | CA) would increase to .98]. A simple ex-
ample follows: You may have a rough estimate of the num-
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Although these two applications of the generative model 
are each sufficient to account for the present results, they 
are associated with distinct mental processes, and there are 
experimental designs that can distinguish between them.

Summary
We have demonstrated how features become more diag-

nostic of category membership to the extent that they are 
viewed as causally generated by underlying properties or 
structures. We characterized these effects as acts of causal 
reasoning in which classifiers reason causally from observ-
able to unobserved internal features. We also demonstrated 
how the results can be accounted for by assuming that caus-
ally generated features are viewed as being more prevalent 
among category members than are other features.
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APPENDIX

Table A1 presents an example of the generative model’s quantitative predictions for Experiments 1–5, assuming that the 
effect of causal links is to make features more prevalent in category members. For each experiment, the table presents the 
probability of each feature and each test item in each category and the probability of classifying a test item into Category A. 
To compute each feature’s probability within a category (i.e., its category validity), the following assumptions are made (unless 
otherwise stated in a specific experiment): (1) If not involved in a causal relationship, a feature appears in category members 
with probability .75 and in members of the contrast category with probability .10. (2) When causal links are present, they 
operate with probability .75 (m  .75), and the probability of the background cause operating is .25 (b  .25), and the effect 
feature’s category validity is given by Equation 1. Note that although these assumptions are necessary to provide a quantative 
example, the generative model’s qualitative predictions regarding each test item’s category membership hold for all parameter 
values so long as a feature has a higher category validty when it is caused by an underlying feature (and that certain boundary 
conditions involving probabilities of 0 and 1 are avoided; for example, the choice probabilities for some test items become 
undefined if the probability of a feature in the other category is defined as 0 or 1).

The probability of a test item AiBj within Category Ck is computed by multiplying the category validities of the individual 
features—that is, P(AiBj | Ck)  P(Ai | Ck)P (Bj | Ck). Finally, the probability of a test item’s being a member of Category A, 
P(CA| AiBj), is computed from P(AiBj  | CA) and P(AiBj  | CB), according to Bayes’s law,

 P(CA | AiBj)  P(AiBj | CA)P(CA)/[P(AiBj | CA)P(CA)  P(AiBj | CB)P(CB)]. (A1)

We assume that the prior probabilities of the categories are equal—that is, P(CA)  P(CB)  .5.
Table A1 indicates that the generative model reproduces the qualitative results of all five experiments. For Experiment 1, it 

predicts that causally generated features A1 and B2 have higher category validity than the unrelated features A2 and B1 (.813 vs. 
.750). Because test item A1B1 thus provides stronger evidence for Category A than for Category B, it is classified as a member 
of Category A; because A2B2 provides stronger evidence for Category B than for Category A, it is classified as a member 
of Category B. In Experiment 2, because of its indirect to link to UA, A2 is generated more reliably by Category A than B2 is 
by Category B (.707 vs. .673); thus, the crucial test item, A2B2, is classified as a member of Category A. The predictions for 
Experiment 3 were generated assuming that m  .90 for A1 and B2 and m  .60 for A2 and B1, with the result that A1 and B2 
have higher category validity than A2 and B1 (.925 vs. .700) (and, thus, A1B1 is classified as a member of Category A and A2B2 
is classified as a member of Category B). The predictions for Experiment 4 were generated from Equation 1, assuming that 
P(UA| CA)  1 and P(UB| CB)  .75; the result is greater category validity for A1 and A2 than for B1 and B2 (.813 vs. .672), 
and, thus, both test items are classified as members of Category A. Finally, the predictions for Experiment 5 were generated 
from Equation 2, assuming b  .5 for A1 and B2 and b  0 for A2 and B1. Moreover, the base rates of A1 and B2 in the oppos-
ing categories (B and A) are .5 and those of A2 and B1 are 0. The result is that test item A1B1 is a more probable member of 
Category B than of Category A (.375 vs. 0), whereas the reverse is true for A2B2. Consistent with the results of Experiment 5, 
no difference is predicted for the negative items.
 

Table A1 
Predictions of the Generative Model for Experiments 1–5

Experiment

1 2 3 4 5

  Category 
A

 Category 
B

 Category 
A

 Category 
B

 Category 
A

 Category 
B

 Category 
A

 Category 
B

 Category 
A

 Category 
B

Probability of the Feature Given the Category (Category Validity)

A1 .813 .100 .813 .100 .925 .100 .813 .100 .875 .500
A2 .750 .100 .707 .100 .700 .100 .813 .100 .750 0
B1 .100 .750 .100 .750 .100 .700 .100 .672 0 .750
B2 .100 .813 .100 .673 .100 .925 .100 .672 .500 .875

Probability of the Test Item Given the Category

A1B1 .081 .075 .081 .075 .093 .070 .081 .067 0 .375
A2B2 .075 .081 .071 .067 .070 .093 .081 .067 .375 0
~A1~B1 .169 .225 .169 .225 .068 .270 .169 .295 .125 .125
~A2~B2 .225 .169 .264 .295 .270 .068 .169 .295 .125 .125

Probability That Test Item Is a Member of Category A

A1B1 .520 (A) .520 (A) .569 (A) .547 (A) 0 (B)
A2B2 .480 (B) .513 (A) .431 (B) .547 (A) 1 (A)
~A1~B1 .429 (B) .429 (B) .200 (B) .364 (B) .500
~A2~B2 .571 (A) .472 (B) .800 (A) .364 (B) .500

Note—The participants’ category choices are presented in parentheses.

(Manuscript received October 25, 2008; 
revision accepted for publication February 18, 2009.)


