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Theories of categorization treat object representations 
as input and assume that prior processes have extracted 
the relevant properties from the stimulus. However, there 
have been few systematic investigations of this extraction 
process. The purpose of the present article is to investigate 
whether there may be different ways to encode objects in 
categorization, and how they may differ from one another. 
Specifically, we evaluated whether dual-pathway accounts 
of stimulus encoding, one part-based and the other image-
based, could lead to novel insights into how stimulus en-
coding is accomplished in category learning.

Whereas encoding is a central aspect of all categoriza-
tion decisions, certain occasions place greater demands 
on encoding—for example, cases in which people must 
use subtle cues to identify individuals and subcategories 
that require special (i.e., exceptional) responses (cf. Logo-
thetis & Sheinberg, 1996). For example, pet owners must 
be able to recognize their dogs among others of the same 
breed, and expert bird-watchers may spend hours search-
ing for a rare species of finch, say, among more common 
birds with similar appearances.

Category learning paradigms have been used to study 
these types of learning problems in the laboratory. Rule-
plus-exception designs are particularly well suited to study-
ing the processes involved in the encoding, storage, and use 
of exception knowledge (e.g., Palmeri & Nosofsky, 1995; 
Sakamoto & Love, 2004). In these category structures, 
most items can be categorized according to an imperfect 
rule; for example, small items may tend to belong in one 
category, large items in another. The categories used in 
these designs also contain exception items that belong to 
the opposing category. Like the examples above, the excep-

tion items must be stored separately, and require different 
responses from other items that are otherwise very similar 
(e.g., the rule-following stimuli).

Models that can account for human performance in 
these tasks, such as SUSTAIN (Love, Medin, & Gureckis, 
2004) and RULEX (Nosofsky, Palmeri, & McKinley, 
1994), correctly predict enhanced recognition memory 
for the exception items (Palmeri & Nosofsky, 1995; Saka-
moto & Love, 2004) by storing them separately from the 
other items in their respective categories. These models 
tacitly suggest that there is one way in which exception 
items are encoded, although the models differ in their un-
derlying assumptions regarding how this is accomplished. 
For example, SUSTAIN always encodes an exception item 
in its own cluster at a particular location in multidimen-
sional space, whereas RULEX always encodes an excep-
tion by storing a subset of the item’s features.

Another possibility is that different pathways can be 
used to encode items in categorization tasks, depending 
on the properties of the stimulus, knowledge of the ob-
server, cognitive demands of the task, and so on. Although 
multiple-system models are common in the category 
learning literature (e.g., Ashby, Alfonso-Reese, Turken, & 
Waldron, 1998; Erickson & Kruschke, 1998), these mod-
els also assume a common stimulus encoding. Like SUS-
TAIN and RULEX, they do not determine whether there 
are multiple routes to encoding exception items, probably 
because models of category learning have largely side-
stepped the question of how object representations are 
constructed. Whereas models may differ in how they en-
code a stimulus, encoding assumptions have rarely been 
provided as grounds for choosing between models.
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The Image-Based Pathway
One pathway for encoding objects in category learning 

is through the development of image-based representa-
tions, which are often characterized by the development 
of fine-grained templates that support automatic and rapid 
recognition of objects (see Gauthier & Tarr, 2002). These 
templates are often holistic, in that how well an object 
fits can only be assessed for the object as a whole; in-
dividual part matches and mismatches cannot be evalu-
ated (cf. Farah, Wilson, Drain, & Tanaka, 1998). Template 
accounts of expertise correctly predict advantages for 
whole objects and canonical orientations (Diamond & 
Carey, 1986; Gauthier, Williams, Tarr, & Tanaka, 1998). 
However, because these templates are stimulus/domain 
specific and holistic, they are unlikely to be useful for en-
coding different classes of objects. Image-based represen-
tations are acquired following extensive experience, and 
are therefore unlikely to be operable during brief, single-
session category learning experiments.

The Part-Based Pathway
Another pathway for encoding objects in category learn-

ing is the part-based pathway. Part-based encoding involves 
the mapping of a stimulus’s features onto a compositional 
and symbolic vocabulary. In contrast to the image- based 
pathway, this pathway creates representations consisting of 
semantically evaluable parts that can be used in different 
domains (Biederman, 1987; Fodor, 1975).

For part-based encoding to be successful, its users 
must be able to decompose and represent the aspects of 
an object that differentiate it from others; that is, it re-
quires a vocabulary sufficiently rich for the context, as 
well as attentional resources to bind an object’s features 
with symbols. Since these processes are likely analytic 
(Foard & Kemler Nelson, 1984; Regehr & Brooks, 1993), 
and possibly top-down (e.g., Ahissar & Hochstein, 2002), 
part-based encoding should be more time consuming and 
effortful than image-based encoding (see also Hummel & 
Stankiewicz, 1996).

Predictions for Category Learning
Table 1 reviews the characteristics of the part- and image- 

based pathways for object encoding in category learning 
tasks. Considering the characteristics of these two path-

Because of this lack of research into stimulus encoding, 
researchers often use different types of stimuli interchange-
ably. One distinction that tends to be overlooked is the differ-
ence between discrete and continuous-valued stimuli. Most 
category learning models1 make no distinction between these 
types of stimuli, and research using one type is assumed to 
generalize to the other. By contrast, the data presented below 
imply a variety of important differences between these two 
types of stimuli, stemming from the ability of observers to 
encode discrete stimuli in a manner that allows them to stand 
in a fixed relationship to stored stimulus representations. Put 
simply, discrete stimuli can be mapped onto nominal values, 
and this mapping is likely to be stable from one viewing 
to the next. On the other hand, a vast literature on absolute 
judgment suggests that the perception of continuous-valued 
stimuli is heavily influenced by context (for a review, see 
Stewart, Brown, & Chater, 2005).

Another encoding issue that the category learning litera-
ture has largely neglected is the role that a learner’s experi-
ence plays in shaping stimulus encoding (but see Schyns, 
Goldstone, & Thibaut, 1998). Indeed, whether or not a 
stimulus is viewed as discrete or continuous, or whether it 
can be individuated from other perceptually similar items, 
likely depends on specific aspects of the observer’s history 
with the class of stimuli. For example, the ability of experi-
enced carpenters to encode the different sizes of nails may 
be attributable to expert carpenters’ ability to map these 
sizes onto discrete values (e.g., 2¼ in.). In contrast, novices 
are limited to using continuous encoding strategies and 
relative comparisons (e.g., “larger than”).

In contrast to the category learning literature, work 
in object recognition focuses to a larger extent on how 
objects are encoded. Proposals for object representation 
have been diverse, including image-based (e.g., Poggio 
& Edelman, 1990) and symbolic, part-based, structural-
description models (e.g., Biederman, 1987). More recent 
hybrid proposals preserve important aspects of both sym-
bol and template approaches, such as the compositionality 
afforded by symbols and the speed and automaticity in-
herent in template models (Hummel & Stankiewicz, 1996; 
Ullman, Vidal-Naquet, & Sali, 2002; Zhang & Cottrell, 
2005; see Palmeri & Tarr, 2008, for a review).

Given the overlap in topics and methodology between 
work in category learning and object recognition (Palmeri 
& Gauthier, 2004), substantial opportunity exists for 
cross-fertilization. In the following, we import concepts 
from the object recognition literature and evaluate how 
they may be used to make predictions for category learn-
ing tasks. The two-pathway framework for understanding 
how items are encoded in category learning tasks that we 
develop here is motivated by these hybrid approaches to 
encoding from the object recognition literature.

We use the term pathway here to emphasize that we 
are interested in different means (i.e., representations/ 
encoding strategies) that can be used to achieve the same 
ends (i.e., categorization or recognition of an object). After 
a brief discussion of these two pathways, we will use this 
framework to predict how exception items are encoded in 
a series of category learning experiments that use rule-
plus-exception designs.

Table 1 
Pathways to Object Encoding

  Image-Based  Part-Based

Representation Holistic Featural/symbolic

Acquisition Extensive direct experi-
ence

Culture, instruction, 
feature learning

Functional 
role

Permanent and rapid 
object encoding 
capacity

Bootstrapping perfor-
mance in the absence 
of expertise, domain-
general object encod-
ing, etc.

Characteristics 
 
 
 

 
 
 
 

Automatic and domain 
specific 
 
 

 
 
 
 

Algorithmic and com-
positional. Requires 
attentional resources 
and a sufficient featural 
vocabulary.
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framework. Each of these experiments involved training 
subjects on a rule-plus-exception task, and comparing 
whether they were able to recognize exception items at a 
higher rate than they could recognize rule-following items 
matched in terms of frequency of presentation (“frequency-
matched rule-following items”). Enhanced exception rec-
ognition in these tasks suggests that subjects were able to 
individuate the exception items; it is, therefore, evidence 
that subjects were able to successfully encode these items’ 
distinguishing features. The effect on learning and recog-
nition performance of between-subjects manipulations, 
such as the availability of easily encodable item parts (Ex-
periment 1) and training types (Experiments 2 and 3), al-
lows us to infer differences in item representations when 
quantitatively examined via null hypothesis significance 
testing and formal modeling (discussed below).

Experiment 1 was designed to test the hypothesis that 
the availability of part-based encoding strategies is cru-
cial, early in learning, to learning and recognition perfor-
mance. We compared learning and recognition perfor-
mance across conditions in which subjects were briefly 
trained in a task using continuous stimuli with or without 
providing an additional set of verbalizable labels. Consis-
tent with the advantages afforded by part-based encod-
ing, we found that subjects receiving these added discrete 
features were able to recognize the exception items sig-
nificantly better than those who did not receive them. As 
predicted, no difference across conditions was found for 
rule-following items.

Whereas Experiment 1 manipulated the nature of the 
stimuli (discrete vs. continuous), Experiments 2 and 3 
held the stimulus set constant (all stimuli were continuous) 
across conditions and instead examined how training sub-
jects on different encoding strategies affects performance. 
These experiments were an extension of Experiment 1, 
in that they tested whether either encoding pathway can 
be made available under suitable training conditions. Ma-
nipulating the relative task compatibility of the two path-
ways between subjects further allowed us to test some of 
the hypothesized constraints on the two pathways, such as 
differences in encoding speed and ease of transfer to novel 
stimuli. Experiment 2A focused on extended training with 
continuous stimulus sets under conditions emphasizing 
direct task experience (encouraging image-based encod-
ing), or learning a vocabulary of discrete values on which 
to map the continuous stimuli. In both cases, subjects were 
able to learn to recognize and categorize the exception 
items. Further, we provided evidence that subjects using a 
learned vocabulary for part-based encoding require more 
time and resources to be successful (Experiment 2B). In 
Experiment 3, we considered how subjects who received 
category learning training encouraging the use of image- 
or part-based encoding performed in a follow-up category 
learning task involving new categories constructed from 
the same stimulus set. Figure 1 provides a comparison of 
the training and test regimens for Experiments 1–3.

After we report the behavioral results for each set of ex-
periments, we use a nested modeling procedure to extract 
additional information from subjects’ recognition results 
(discussed formally in the next section). This modeling 

ways, we derive several predictions for category learning 
performance in tasks using rule-plus-exception designs.

First, we predict that subjects will need to successfully 
engage one of the two proposed pathways to master excep-
tion items in rule-plus-exception learning tasks. In these 
tasks, exceptions must be individuated from the category 
to which they belong. To successfully encode the excep-
tion items, subjects will require a vocabulary on which 
to map them that is rich enough to represent their distin-
guishing features (i.e., part-based encoding), or they will 
require exception-specific templates (i.e., image-based 
encoding). In contrast, individual rule-following items 
are not as demanding as exceptions, since they can likely 
be massed together at a lower resolution without harming 
performance. Extensive training involving rule-following 
items (encouraging image-based encoding) or having the 
ability to encode items’ individual features via the part-
based pathway should have little to no impact on rule-item 
performance.

Second, in brief category learning tasks, the ability to 
encode exceptions accurately should depend on the avail-
ability of the part-based pathway. This prediction follows 
from the framework and the first prediction; image-based 
representations should not be available for an individual 
item early in learning, because in order to develop them, 
extensive experience is required. Instead, accurate en-
coding of an exception should depend on the ability of a 
subject to map its parts onto a discrete vocabulary. Since 
one difference between continuous and discrete stimuli 
is how well they facilitate mapping onto nominal values, 
the framework suggests that, early in learning, whether 
subjects can successfully encode exceptions depends 
on whether stimuli are constructed from continuous or 
discrete-valued features. (Note that this difference, high-
lighted by the present framework, is not anticipated by the 
categorization literature, which largely treats continuous 
and discrete stimuli as interchangeable.)

Finally, given appropriate training, people should be 
able to develop competence along either pathway, and 
should exhibit behavior consistent with the use of the path-
way for which they were trained. When a task encourages 
part-based encoding, people should be able to acquire a 
feature set that allows them to encode task-relevant differ-
ences between the stimuli (Schyns et al., 1998). Likewise, 
when a task encourages holistic processing, people should 
be able to develop image-based representations for encod-
ing the stimuli.

Important behavioral differences should exist between 
subjects trained to use different pathways. One potential 
difference is that image-based encoding should be rela-
tively rapid and automatic once it has fully developed, 
whereas part-based encoding should be more effortful and 
time consuming. However, following from the composi-
tional nature of symbolic processing, part-based encoding 
should be applicable to a wider range of stimuli when a 
sufficiently rich vocabulary is acquired or provided.

Overview of Experiments
We report the data from three experiments that rigor-

ously tested a number of predictions from the two- pathway 
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in which item i is old, and item k is a new foil, the prob-
ability of correctly choosing item i is given by

 P(correct | ik)  Fi /(Fi  Fk), (1)

and the similarity of an item i to stored exemplar j is given 
by

 sij  exp( k * dij), (2)

where k is a scaling constant and dij is the distance between 
probe item i and stored exemplar j. For all applications 
described herein, distance will be given by the weighted 
city-block metric:

 dij  wm * | xim  xjm |, (3)

where xim is the probe item’s value on dimension m, xjm is 
the value of exemplar j on dimension m, and wm gives the 
attention weight on dimension m. These attention weights 
are constrained to sum to 1, and thus in the present appli-
cations, in which all of the stimuli have two dimensions, 
there will be a single attention weight parameter, Wr, 
which represents the attention to whichever dimension is 
rule-relevant.

Nosofsky and Zaki (2003) developed the HS-GCM be-
cause the GCM could not account for the fact that items 
possessing discrete distinctive features are recognized by 
people at a higher rate than more similar items are. The 
GCM predicts better recognition for items having a high 
rather than a low familiarity. The HS-GCM solves this 
problem by allowing items that possess distinctive fea-
tures to become more self-similar and thus recognized at a 
higher rate. This is accomplished by calculating familiar-
ity as the sum of hybrid similarities given by

 shij  C * D * sij, (4)

approach helps to extend the basic statistical analysis by 
providing more rigorous comparisons of the encoding 
strategies that subjects use. Although our predictions and 
results are largely interpreted within a two-pathway frame-
work, we will evaluate current single-pathway models in 
the General Discussion and consider how these proposals 
can be extended to account for our findings.

Development of a Formal Model
To evaluate the results from our experiments, we fit a hi-

erarchy of nested models inspired by Nosofsky and  Zaki’s 
(2003) hybrid similarity (HS-GCM) extension of the gen-
eralized context model (GCM; Nosofsky, 1986). The best-
fitting parameter values from these models, along with 
the goodness of the overall fit, help us to evaluate whether 
one of the two proposed encoding pathways was engaged 
by subjects in a particular experimental condition. The 
HS-GCM embodies all of the assumptions of the GCM, 
but also incorporates a feature matching process inspired 
by Tversky’s (1977) feature contrast model. This feature 
matching process added to the HS-GCM enables it to ac-
count for exception advantages in recognition memory 
that the GCM cannot address (e.g., Palmeri & Nosofsky, 
1995; Sakamoto & Love, 2004). The feature matching 
processes embodied in the HS-GCM can be used to de-
termine whether subjects are making use of one of the 
two encoding pathways. Our key behavioral measure is 
recognition memory following category learning; thus, 
we focus on how the GCM and HS-GCM account for the 
recognition data.

Recognition memory in the GCM is based on an item’s 
familiarity, F, defined as the item’s summed similarity 
to all exemplars stored in memory. In the case of a two-
 alternative forced choice (2AFC) recognition memory task 

Experiment 1

Experiment 2A

Experiment 2B

Experiment 3

Training Cate
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 Learn
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Figure 1. The various phases of each experiment are shown. In Experiment 1, subjects completed a 
category learning task, followed by recognition testing, with either discrete or continuous-valued stimuli. 
In Experiments 2 and 3, all stimuli were continuous-valued. In Experiments 2 and 3, subjects were given 
training prior to the final round of category learning training and recognition testing. In particular, sub-
jects were either taught to assign labels to the features of the stimuli (i.e., identification learning [ID]), or 
completed additional category learning training. In the follow-up to Experiment 2, subjects from the ID 
condition were trained on a different category rule, and were given additional time on each trial to process 
category learning feedback. Experiment 3 combines the elements of Experiment 2 and Experiment 2’s 
follow-up (i.e., additional feedback time and evaluation on two different category rules).
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it receives a boost in similarity of Cx, and when a probe 
item mismatches the distinctive features of an exception 
in memory, its similarity is reduced by Dx. Likewise, Cr 
and Dr parameters mark whether a probe item matches 
or mismatches the features of a frequency-matched rule-
 following item stored in memory. These additional param-
eters allow the model to account for exception advantages 
in recognition memory when they are present in the data. 
We emphasize that even though these parameters are spe-
cific to item types, we follow Nosofsky and Zaki (2003) 
in interpreting them as weighting the presence/absence 
of feature types. Whereas in the present study items only 
share distinctive features with themselves, it would be pos-
sible to test this interpretation of the parameters, as Nosof-
sky and Zaki did, by including different foil types.

Our nested model hierarchy allows us to quantitatively 
test a variety of the predictions outlined above. First, since 
only exception items should require individuated encod-
ing via one of the two pathways, the only parameters that 
should prove to be useful in accounting for recognition 
data in the following experiments are the ones specific 
to the exceptions; that is, since the rule-following items 
do not require individuated encoding, including Cr and 
Dr parameters should not produce significantly better 
fits than those from nested models that assume Cr and Dr 
are fixed at 1. Further, of the two exception parameters 
(Cx and Dx), the Cx parameter should contribute most 
to the fits for conditions in which subjects successfully 
individuate the exception items, because Cx signifies that 
subjects are using a direct match between the features of 

where C (C  1) is the increase in similarity a probe item 
gets for matching the distinctive features of an exemplar 
in memory, D (0  D  1) is the reduction in similarity 
from mismatching these distinctive features, and sij is the 
spatial similarity metric used in the GCM (Equation 2, 
above).

We use a hierarchy of models inspired by the HS-GCM 
as a measurement tool for assessing whether subjects 
were successful at encoding items, and to determine how 
much weight subjects placed on matching the distinctive 
features of certain types of items (exceptions vs. rule-
 following items) in their recognition memory responses. 
Our approach is to fit a hierarchy of nested models (see 
Figure 2), starting with a two-parameter version of the 
GCM, and building to a full model that includes six pa-
rameters. By definition, models with more parameters 
will fit at least as well as simpler, nested models. Using 
model selection statistics (general linear test), we evaluate 
members of the model family in a manner than both re-
wards improved fit and penalizes increased complexity in 
order to arrive at the most psychologically viable model.

In all experiments, there will be two primary item types: 
exceptions and frequency-matched rule-following (con-
trol) stimuli. Because the framework makes predictions re-
garding when items will be encoded and which items will 
be encoded, the model needs to be expanded to include C 
and D parameters specific to matching the distinctive fea-
tures of either the frequency-matched rule-following or 
exception items. For example, when a probe item matches 
the distinctive features of an exception stored in memory, 

Cx Dr Dx Cr Dx DrCx Dx Cr DrCx Cr

Cx Dx Cr Dr

GCM
Wr K

(all inherit)

Cx Dx
Cr

Cx Cr
Dr

Cx Dx
Dr

Dx Cr
Dr

Cx Dx
Cr  Dr

Figure 2. Hierarchy of nested models used for the model-based analysis of the exper-
iments. At the top of the hierarchy is the GCM, which includes two free parameters, 
an attention weight, Wr, and the scaling parameter K. Each level in the hierarchy adds 
a single hybrid parameter (see text for parameter descriptions). Analysis involves fit-
ting each of these models and using nested model testing to select the best model while 
penalizing for complexity.
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Subjects in the discrete condition followed the same pro-
cedure with identical stimuli, except that the stimuli also 
contained redundant verbal cues, as displayed in Figure 3, 
that were intended to aid part-based encoding.

The verbal cues present in the discrete condition were 
completely redundant, in that all stimulus information 
could, in principle, be encoded in the absence of these 
labels. However, if being able to map the stimuli onto a 
symbolic vocabulary is important for recognizing and 
storing the exceptions individually, subjects in the discrete 
condition should perform better at categorizing and rec-
ognizing exception items. Because rule-following items 
do not require separate encoding, performance for these 
items should be comparable across conditions.

Following presentation of the statistical analysis of the 
results from Experiment 1, we present results from the 
model hierarchy developed above. These fits should sup-
port the statistical analyses of the experimental results. In 
particular, in conditions in which an exception advantage 
is observed, model fits should indicate that subjects suc-
cessfully encoded the distinctive features of the excep-
tion items. In terms of the model hierarchy (see Figure 2), 
models including the Cx parameter should fare better than 
the GCM model. Also, because we predict that subjects 
are not individuating rule-following items, we predict that 
including the Cr and Dr parameters should not signifi-
cantly improve model fit.

Method
Subjects. One hundred three students from the University of 

Texas at Austin participated for course credit. Each subject was ran-
domly assigned to either the continuous or discrete condition.

Materials. Example stimuli for the discrete and continuous con-
ditions are shown in Figure 3. Stimuli were rectangles in which there 
were variations in height and in the position of a vertical line seg-
ment along the lower base of the figure. Each dimension displayed 
six unique values, yielding 36 total stimuli. Neighboring values 

a probe and a stored exception item in their recognition 
memory decisions.

Second, early in learning, subjects should only be able 
to use the distinctive features of the exception items if 
they have a discrete vocabulary with which to translate 
them; we addressed this question in Experiment 1. Fits of 
the nested model hierarchy to Experiment 1 should yield 
higher values of Cx for groups of subjects who receive 
stimuli with additional discrete labels in comparison to 
groups of subjects who receive the continuous stimuli with-
out these aids. This follows from the framework, because 
neither pathway should be able to represent continuous-
 valued stimuli when they are completely novel. Further, in 
the conditions that do not receive the additional discrete 
vocabulary to bolster part-based encoding, the added Cx 
parameter should not produce significantly better fits in 
comparison with the GCM. In contrast, when these dis-
crete labels are provided, the model with the added Cx 
parameter should fit significantly better than the GCM.

Finally, in Experiments 2 and 3, we examined the pre-
diction that subjects should be able to learn to encode the 
distinctive features of the exception items through either 
of the two pathways, if trained appropriately and if the 
conditions for the proper functioning of the pathway are 
met. When a person uses either pathway to encode the 
exception items, the Cx parameter should contribute sig-
nificantly to model fits.

EXPERIMENT 1

Experiment 1 examined whether the ability to use part-
based encoding is important for successful recognition 
of exception items following brief rule-plus-exception 
category training. Subjects in the continuous condition 
received rule-plus-exception training with the continuous-
valued stimuli in Figure 3, followed by a recognition test. 

1 2 3 4 5 6

a

b

c

e

d

f

Figure 3. An example of a discrete (left) and a continuous (right) stimulus from Experiment 1. The height of each 
stimulus varies, as does the position of the line segment along the lower boundary of each stimulus.
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offset from one another by 35–40 mm on the horizontal dimension 
and 10–15 mm on the vertical dimension. The offset for each trial 
was determined randomly by sampling from a uniform distribu-
tion. Along with these two stimuli, the text prompt “Old: Left (q) 
or Right (p)?” was displayed at the center of the screen, and sub-
jects responded by pressing the respective key. After responding, 
the screen was blanked and the text “Thank you” was displayed for 
2,000 msec. This was followed by a blank screen for 500 msec prior 
to the start of the next trial.

Results
Data were analyzed from the final block of category 

learning training and both blocks of the recognition phase. 
The first two category learning blocks are not presented 
because all subjects make a substantial number of errors 
early in training and our focus is on their ability to master 
the category structures under various conditions.

Category learning. Figure 5 displays categorization 
accuracy for the final block of training. A factorial condi-
tion (discrete or continuous)  item type (exception or 
frequency-matched rule item) ANOVA was conducted 
on category learning accuracy. A significant condition  
item type interaction was observed [F(1,101)  22.07, 
MSe  .055, p  .001, 2

p  .179]. Exception item ac-
curacy was significantly higher in the discrete condition 
(.67) than in the continuous condition (.37) [t(101)  
5.55, p  .001], whereas accuracy for the frequency-
matched rule- following items did not differ (discrete  
.88; continuous  .88) across conditions (t  1).

Recognition. Figure 6 displays recognition accuracy. 
A factorial condition (discrete or continuous)  item type 
(exception or frequency-matched rule item) ANOVA was 
conducted on recognition accuracy. The interaction was 

along a dimension were separated by 14 mm (approximately 1.1º 
of visual arc).

Each stimulus dimension was bounded by a fixed-length axis. In 
the discrete condition, these axes contained labels and tick marks at 
each of the six dimension values. This labeling scheme is illustrated 
in Figure 3. Axes in the continuous condition did not have these 
markings.

The primary figure was blue, the axes were purple (including tick 
marks in the discrete condition), all text was black (including labels 
in the discrete condition), and the screen background was white.

Design. Subjects were trained in a category learning task using a 
rule-plus-exception structure, in which they had to place items into 
one of two contrasting categories. This was followed by a 2AFC 
recognition phase.

The category structure (see Figure 4) was designed so that sub-
jects could successfully categorize most stimuli using an imperfect 
rule on one of the dimensions of variation. The dimension that the 
imperfect rule corresponded to was counterbalanced between sub-
jects. The structure used when height was the rule-relevant dimension 
was equivalent to a 90º rotation of that used when the line-segment 
dimension was rule-relevant (shown in Figure 4). Each category 
also included one exception item that did not follow this rule. An 
example category structure is shown in Figure 4. In this figure, the 
rule- relevant dimension is the line-segment position. Each letter in 
the 6  6 grid stands for the location of one stimulus. All of the 
lowercase letters stand for regular rule-following items, the cursive 
letters stand for exceptions, and the capital letters stand for rule-
 following items that matched the exceptions in terms of frequency of 
presentation. The ?s were spaces reserved for foils to be used in the 
recognition phase, and were not shown in the category learning phase 
of the experiment. The placement of these special items (exceptions, 
foils, and frequency-matched rule-following items) was randomized 
between subjects, such that the exception items could appear in one 
of the four locations given by the circles in Figure 4. Once the excep-
tion placement was determined, the placement of the other items was 
determined by the following rule: frequency-matched rule-following 
items were always in the position diagonal to the exception, and the 
remaining two positions were reserved for the foils.

The category learning phase consisted of three training blocks. 
In every training block, each regular item (lowercase in Figure 4) 
appeared once, and each exception and frequency-matched rule-
 following item appeared three times. Foil items (the ?s in Figure 4) 
did not appear during the category learning phase. Thus, each sub-
ject completed 120 category learning trials. The trial order was ran-
domized for each block, for each subject.

Following training, subjects completed the recognition phase. 
On each recognition trial, subjects judged which of two presented 
items appeared during the category learning phase. One item of 
each presented pair was one of the four foils not shown during cat-
egory learning. The other item was either one of the exceptions or 
a frequency-matched rule-following item. Subjects completed two 
blocks of recognition. Each block consisted of all possible pairings 
described above. Thus, each subject completed 32 recognition trials. 
The trial order was randomized for each block for each subject.

Procedure. Directions were displayed on the screen prior to 
both the category learning and recognition phases. Subjects wore 
headphones to deliver auditory feedback and to dampen background 
noise.

On each category learning trial, the stimulus was presented in the 
central area of the screen, along with the prompt “Category A or B.” 
Subjects responded by pressing the A or B key. After responding, 
the stimulus remained on the display. A low- or high-pitched tone 
sounded, depending on whether the subject’s response was correct 
or incorrect. Additionally, the text “Correct” or “Incorrect” and “The 
answer is Category A” or “The answer is Category B” was displayed 
for 2,000 msec after the response. After this feedback period, the 
screen was blanked for 500 msec prior to the start of the next trial.

On each recognition trial, two stimuli were presented side by side 
in the central area of the screen. The locations of the stimuli were 

H
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B a ? ? b A

a a a b b b

? a A B b ?

a a a b b b

a a a b b b

a a a b b b

Position of Line Segment

Figure 4. A sample category structure, with exceptions in cur-
sive and frequency-matched rule items in capital letters. The ?s 
represent foils used in the recognition phase. The center of the 
figure, which separates the two categories, represents the decision 
bound between them.
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(general linear test) to select the best model (trading off 
complexity and goodness of fit). Each model was fit to 
eight data points representing the average probability that 
subjects within a condition2 would correctly recognize 
an old item (frequency-matched rule-following or excep-
tion) when matched with a particular type of foil (see 
Figure 4). We used only pairings with unique similar-
ity relations. These can be found by factorially crossing 
target type (frequency- matched rule vs. exception), foil 
position (matching exception on relevant vs. irrelevant 
dimension), and exception placement (whether the place-
ment of the exception item was on the outside or inside 
of the category distribution; see Experiment 1 Method).3 
For example, four data points would be calculated from 
conditions with exception items placed on the inside of 
the category distribution (as in Figure 4). These would 
be exceptions matched with foils along the rule-relevant 
dimension, exceptions matched with foils along the ir-
relevant dimensions, and likewise for the frequency-
matched rule-following items. The other four data points 
would be calculated using these same target–foil pairings 
from conditions in which the exception items were on the 
outside of the category distribution. We fit the models for 
all of the tasks by minimizing the sum of squared devia-
tions between predicted and observed probabilities, and 
we tested the significance of added parameters using the 
general linear test.

Modeling results. The modeling results for the dis-
crete condition are displayed in Figure 7. Table 2 shows 
the goodness of fit (SSD) for each model. Significant 
changes ( p  .05) in variance accounted for are given by 

significant [F(1,101)  6.043, MSe  .032, p  .016, 
2
p  .056]. Exception items (.78) were recognized at a 

significantly higher rate than were the frequency-matched 
rule-following items (.63) in the discrete condition 
[t(52)  4.09, p  .001], but not in the continuous condi-
tion (.59 and .57, respectively) (t  1). The difference in 
recognition performance between conditions was signifi-
cant for the exception items [t(101)  4.51, p  .05], and 
marginal for the frequency-matched rule-following items 
[t(101)  1.66, p  .10].

Model-Based Analysis
In this section we examine the results of Experiment 1, 

using the model hierarchy described above. By allowing 
us to rigorously test the behavioral profiles of subjects in 
each of the conditions in relation to the predictions of the 
two-pathway framework, this analysis goes beyond the 
results of the null hypothesis significance tests and point 
estimates. The primary goal of the model-based analysis 
is to determine how subjects encoded the different types 
of items, exceptions and rule following. Testing whether 
the hybrid parameters Cx and Dx (exceptions) and Cr and 
Dr (rule following) contributed to the model fits allows us 
to assess both whether the subjects encoded the respective 
items as individuals and the weight that they placed on 
these distinguishing features in recognition decisions.

Fitting procedure. In modeling the present data, we 
fit a hierarchy of nested models involving all possible 
combinations of hybrid parameters (Cx, Dx, Cr, Dr; 
see Figure 2) to the data in the discrete and continuous 
conditions. We used nested model testing procedures 

Cx Dr Dx Cr Dx DrCx Dx Cr DrCx Cr

Cx Dx Cr Dr

GCM
Wr K

(all inherit)

Cx Dx
Cr

Cx Cr
Dr

Cx Dx
Dr

Dx Cr
Dr

Cx Dx
Cr  Dr

Figure 7. Model hierarchy for Experiment 1 discrete condition. Each level of the 
hierarchy adds an additional free parameter from the possible free parameters dis-
cussed in the introduction. Solid connections show significant increases in variance 
accounted for between levels (general linear test).
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items’ distinctive features in the discrete condition than in 
the continuous condition. Together, these two measures 
provide strong evidence that these conditions did differ in 
the extent to which subjects encoded and used information 
about the exception items.

Discussion
The predictions derived from the two-pathway frame-

work were supported by the results of Experiment 1. Fol-
lowing brief training in the category learning task, only 
subjects in the discrete condition displayed robust excep-
tion recognition. For subjects in the discrete condition, the 
redundant verbal cues that enable part-based encoding 
were sufficient to bolster exception recognition. Catego-
rization of the rule-following items did not require them 
to be encoded separately from the rest of the category, so 
performance was equivalent for these items in the discrete 
and continuous conditions. This interpretation is strength-
ened by the modeling results, which illustrate how subjects 
weighted the item features in their recognition decisions. In 
the discrete condition, subjects were able to encode the dis-
tinguishing features of the exception items, as evidenced 
by the model fits and the higher value of the Cx parameter. 
This was not the case in the continuous condition, where 
no model yielded a better fit than the GCM.

One key question is whether subjects in the two condi-
tions represented the stimuli in fundamentally different 
ways. One signature of continuous representation that has 
been studied extensively in the absolute identification 
literature is bow effects (for a review, see Stewart et al., 
2005). Bow effects occur when there is increased accuracy 
for identifying items at the extremes on a dimension of 
variation. Additional analysis of our data revealed bow 
effects for the continuous, not the discrete, condition. In 
particular, subjects in the continuous (but not discrete) 
condition showed better recognition for whichever item 
(frequency-matched rule-following or exception) was far-
ther from the decision bound (i.e., on the extreme edge of 
the rule-relevant dimension; see Figure 4).4

That a bow effect did not occur in the discrete condition 
is evidence that encoding the exception via the provided 
verbal cues involved a change in representation from a 
continuous perceptual space to a symbolic one. The pres-
ence of bow effects in the continuous condition and their 
absence in the discrete condition bolsters the two-pathway 
framework.

A final important aspect of Experiment 1 is its relation-
ship to Nosofsky and Johansen’s (2000) critique of a simi-
lar experiment by Erickson and Kruschke (1998): When 
tick marks and labels are added to stimuli, subjects might 
completely ignore the physical stimulus parts and encode 
only the alphanumeric labels. Whereas Nosofsky and Jo-
hansen did not explicitly offer a dual-pathway model, their 
critique anticipates the need for a theory, such as the one 
we propose here, that incorporates both part- and image-
based encoding. The possibility that some subjects were 
using this strategy is, therefore, consistent with the present 
approach, and would be indicative of a feature matching 
process that relies on the mapping of stimulus features 
onto a discrete vocabulary.

solid connections in the hierarchy, whereas non significant 
changes are dashed. As is clear from Figure 7, in the dis-
crete condition, the Cx parameter is the only parameter 
that contributes significantly to the model fits beyond the 
base GCM parameters (Wr and K). In the continuous con-
dition, no model fit significantly better than the GCM. As 
predicted from the framework, being able to encode the 
exception item’s distinctive features (reflected in the Cx 
parameter) via the provided tick marks and labels was crit-
ical for recognition (see Tables 3 and 4 for the predicted/
observed probabilities from both sets of experiments, and 
the best-fitting parameter values, respectively). Finally, in 
addition to the results of the nested model testing, Cx had 
a smaller obtained value (1.15) in the continuous condi-
tion than did the Cx observed in the discrete condition 
(2.67). This higher value for the Cx parameter in the dis-
crete condition indicates greater weight on the exception 

Table 2 
Fits (SSD) of Each of the HS-GCM Models in the  

Hierarchy to the Recognition Data

Experiment

2A, 2B, and 3
  1 (Discrete)  1 (Continuous)  (Aggregate)

Cx Dx Cr Dr Wr K .01455 .08505 .02063
Cx Cr Dr Wr K .01455 .08772 .02139
Cx Dx Cr Wr K .01504 .08505 .02067
Cx Dx Dr Wr K .01455 .08505 .02063
Dx Cr Dr Wr K .0547 .08570 .24827
Cx Cr Wr K .01504 .08772 .03317
Cx Dx Wr K .01504 .08505 .02067
Cr Dr Wr K .0547 .08837 .24827
Cx Dr Wr K .01455 .08772 .02442
Cr Dx Wr K .0555 .08570 .26450
Dx Dr Wr K .0547 .08510 .24827
Cx Wr K .01504 .08772 .03317
Dx Wr K .0555 .08570 .26450
Cr Wr K .0555 .08837 .27615
Dr Wr K .0547 .08837 .24827
Wr K .0555 .08837 .27615

Note—See Figure 2.

Table 3 
Observed and Predicted (HS-GCM With Only  

Cx Parameter  GCM) Probabilities Correct by Item Type

Predicted 
  Observed  (HS-GCM)

Experiment 1 (Discrete)
 Exception .78 .78
 Rule .64 .64
Experiment 1 (Continuous)
 Exception .59 .59
 Rule .57 .57
Experiments 2 and 3 (Aggregate)
 Exception .90 .90
 Rule  .55  .55

Table 4 
Parameter and R2 Values for the Best-Fitting Models

  Cx  K  Wr  R2

Experiment 1 (Discrete) 2.67 17.00 .98 .74
Experiment 1 (Continuous) 1.15 16.11 .99 .65
Experiments 2 and 3 (Aggregate)  13.38  16.87  .99  .88
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under conditions that encouraged either image- or part-
based encoding. Prior to completing category learning 
training and recognition testing using the same methods 
as in Experiment 1’s continuous condition, subjects com-
pleted an initial training regimen. In the extended category 
learning condition, the initial training regimen consisted 
of extended category learning training. This extensive 
on-task experience should encourage the development of 
fine-grained image-based representations for the excep-
tion items. In the identification condition, subjects also 
completed an extensive initial training regimen. Instead 
of category learning, these subjects engaged in an iden-
tification task that required them to learn to identify the 
stimuli by assigning labels to the individual stimulus parts 
(i.e., height or line segment position), a task that should 
encourage the formation of an internal vocabulary useful 
for encoding the stimulus parts.

The two-pathway account predicts that, following these 
initial training regimens, subjects in both conditions should 
be able to master exception items, albeit via different path-
ways. Such a result would contrast with the failure of sub-
jects in Experiment 1’s continuous condition to master the 
exception item in the absence of external labels.

Method
Subjects. Ten students from the University of Texas at Austin 

participated in Experiment 2. They received monetary reimburse-
ment of $7 per session for four 1-h sessions. In addition, they were 
offered a final day bonus of $23, depending on their performance; 
all subjects earned the bonus. Each subject was randomly assigned 
to either the extended category learning or identification condition.

Materials. Materials for the category learning and recognition 
phases were the same as those used in Experiment 1’s continuous 
condition. The same stimuli were also used during the initial train-
ing regimen in the extended category learning condition. The initial 
training regimen for the identification condition also involved these 
same stimuli, but these stimuli were coupled with an additional grid, 
as shown in Figure 8. This grid was 75  75 mm, with 36 evenly 
spaced cells. As explained below, this grid was used during identi-
fication learning.

Whether part-based encoding is completely reliant on 
the presence of the added features used in Experiment 1 
is addressed in the following experiments, in which these 
features are removed from the stimuli. To foreshadow, 
comparing both the behavioral and modeling results indi-
cates even stronger weighting (higher Cx parameter val-
ues) on matching the exception items’ distinctive features 
when the alphanumeric labels have been removed (Experi-
ments 2 and 3) than when they are present (Experiment 1). 
This suggests that subjects were not relying only on these 
labels to make their decisions.

Overview of Extended-Training Experiments
In Experiment 1, the nature of the stimuli (continuous 

vs. discrete) was manipulated across conditions as tick 
marks and verbal labels were introduced in the discrete 
condition. We hypothesize that these additions facilitated 
the encoding of the exception items via the part-based 
pathway, as evidenced by these subjects’ enhanced abilities 
to categorize and recognize exceptions. In Experiments 2 
and 3, we examined encoding along both pathways with 
stimuli that lack these additions. One key question was 
whether subjects could master exception items in the ab-
sence of this added discrete information. Subjects in the 
continuous condition of Experiment 1 could not master 
the exceptions, but subjects in Experiments 2 and 3 might 
have, with training that encouraged successful encoding 
along either the image-based or part-based pathway.

Most objects in real-world categorization tasks lack the 
external labels present in Experiment 1’s discrete condi-
tion, yet people can often individuate objects. One pos-
sibility is that people encode objects by either generating 
their own internal labels for part-based encoding or by 
developing the capacity to encode objects holistically and 
automatically through the image-based pathway.

In Experiments 2 and 3, we trained subjects on tasks that 
encourage the use of image- or part-based encoding prior 
to testing them on their ability to encode exception items. 
To anticipate the results: We found that subjects trained to 
use either type of encoding were able to encode the excep-
tion items, but that subjects showed critical differences, 
depending on their initial training conditions. In particular, 
when subjects were trained to use part-based encoding, 
they required additional time to encode exception items.

In terms of the model hierarchy, we predict that mod-
els including the Cx parameter (see Figure 2) should fit 
better than the GCM model in any of the conditions in 
which subjects are able to encode the exception items. We 
also predicted that including the Cr and Dr parameters 
should not significantly improve model fit, since indi-
vidual encoding should not be necessary for learning the 
rule- following items. Finally, because these experiments 
involved extensive training on only a few subjects, the 
model is fit to aggregate data from Experiments 2 and 3 
and will be presented after Experiment 3.

EXPERIMENT 2A

Experiment 2A examined the ability of subjects to mas-
ter exception stimuli (that do not include external cues) 

1 2 3 4 5 6

a

b

c

d

e

f

Figure 8. An illustration of identification learning procedure. 
Subjects are queried first on the vertical dimension, at which 
point a black line goes through the grid at the location of their 
response. Next, they are queried on the horizontal dimension and 
a black dot appears with their final answer. If correct, the dot 
turns green during feedback, and if incorrect it turns red and the 
correct answer appears as a green dot.
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the  frequency-matched rule-following items did not differ 
across conditions (.97 for both; t  1).

Recognition. Figure 6 displays recognition accuracy. 
A factorial condition (discrete or continuous)  item type 
(exception or frequency-matched rule item) ANOVA was 
conducted on recognition accuracy. The interaction was 
not significant [F(1,8)  1.763, MSe  .054, p  .22, 

2
p  .181]. However, the main effect for item [F(1,8)  

5.829, MSe  .054, p  .05, 2
p  .421] and the main 

effect for condition [F(1,8)  35.461, MSe  .014, p  
.05, 2

p  .816] were both significant. Despite the failure 
to reach a significant interaction, exception items were 
recognized at a significantly higher rate (.96) than the 
frequency-matched rule-following items (.58) in the ex-
tended category learning [t(4)  3.56, p  .05], but not 
in the identification condition (.51 and .40, respectively; 
t  1). The difference in recognition performance be-
tween conditions was significant for the exception items 
[t(8)  4.97, p  .05], but not for the frequency-matched 
rule-following items [t(8)  1.28, p  .24].

Discussion
In contrast to subjects’ performance in the continuous 

condition in Experiment 1, subjects who experienced the 
same stimulus set in Experiment 2A’s extended category 
learning condition were able to master exception items 
after extensive on-task (i.e., category learning) experi-
ence, which presumably led to the development of the 
fine-grained holistic representations that underlie image-
based encoding. Contrary to the predictions we derived 
from the two-pathway framework, subjects in Experi-
ment 2A’s identification condition did not fully master the 
exceptions, despite excelling in an initial training regimen 
designed to enable part-based encoding.

Nevertheless, this failure to master exception items is 
not necessarily incompatible with the two-pathway frame-
work. One possible explanation is that subjects in the iden-
tification condition did not have sufficient time during 
the category learning trials to properly encode the excep-
tion stimuli. As discussed in the beginning of this article, 
part-based encoding is hypothesized to involve analytic 
processes that require considerable time to complete. If 
this effortful encoding process was initiated after receiv-
ing negative feedback on exception items (full encoding 
is not required for rule-following items), the 2,000-msec 
feedback period might have been insufficient to process 
the feedback and map the exception items onto the trained 
vocabulary. Although these same subjects were successful 
at the identification task in the initial training regimen, the 
identification task was self-paced and the median time 
subjects took to respond to both dimensions in the final 
session was 2,424 msec.

EXPERIMENT 2B

Subjects in Experiment 2A’s identification condi-
tion, unlike those in Experiment 1’s discrete condition, 
had to generate their own labels. One possibility is that 
2,000 msec is not sufficient to process category learning 

Design. Figure 1 provides an overview of Experiment 2’s design. 
The final category learning and recognition phases in Experiment 2 
were the same as those used in the continuous condition in Experi-
ment 1. Where the conditions used in Experiment 2 differed from 
one another was in the initial training regimens. Subjects in the ex-
tended category learning condition received prolonged training in 
the original category learning task used in Experiment 1, whereas 
subjects in the identification condition received training of equal 
duration in an identification task. Both training regimens consisted 
of 14 blocks of training for each of the three training sessions. The 
definition of a block was the same as in Experiment 1 (i.e., one com-
plete pass through the stimulus set in a random order).

In the fourth and final session, subjects in both conditions com-
pleted three additional blocks of their respective training regimens. 
This final training phase was followed by a final category learning 
and recognition phase identical for both conditions and identical 
to those used to assess performance in the continuous condition in 
Experiment 1.

Procedure. The procedures used for the category learning training 
and recognition phases were identical to those used in Experiment 1. 
The initial training regimen for the extended category learning con-
dition also used Experiment 1’s category learning procedure.

The procedure for the identification training required subjects 
to sequentially assign a value to both dimensions on each stimu-
lus. On a given trial, a stimulus would appear on the screen along 
with the grid (see Figure 8). Subjects would be prompted to answer 
the question “What is the vertical position a–f ?” and, immediately 
after ward, the question “What is the horizontal position 1–6?” They 
would answer each prompt by using the keys corresponding to those 
letters and numerals on the keypad. After the horizontal position 
was entered, a black dot would appear in the appropriate cell, and 
the prompt “This is your answer, hit ‘n’ to change, or hit any key 
to continue” appeared. If the subject chose to continue, the dot in 
the grid would change from black to red or green, for incorrect and 
correct answers, respectively. If the response was incorrect, a green 
dot would appear at the correct location. Auditory feedback was 
given using the same tones from Experiment 1, and subjects were in-
formed, “Correct/incorrect. This is the correct answer. Hit ‘enter’ to 
continue.” The subject’s answer, the correct answer, and the stimulus 
remained on the screen during feedback. Everything was self-timed 
and each trial ended with a blank screen for 500 msec.

Results
As in Experiment 1, data from the final block of cat-

egory learning training and both blocks of the recognition 
phase were analyzed.5 Additionally, data from the initial 
training regimen are briefly presented.

Initial training regimen. The purpose of the initial 
training regimen was to encourage part-based or image-
based encoding, and thus is not the main focus of analysis. 
Even so, it is important to verify that subjects in both con-
ditions achieved a high level of performance. As shown in 
Figure 9, subjects in both conditions approached asymp-
tote by the end of the initial training regimen.

Category learning. Figure 5 displays categorization 
accuracy for the final block of training. A factorial con-
dition (identification vs. extended category learning)  
item (exception vs. frequency-matched rule) ANOVA 
was conducted on category learning accuracy. A sig-
nificant condition  item type interaction was observed 
[F(1,8)  5.236, MSe  .038, p  .05, 2

p  .396]. Ex-
ception item accuracy was higher (.93) in the extended 
category learning condition than in the identification con-
dition (.53) [t(8)  2.203, p  .08],6 whereas accuracy for 
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Figure 9. Panels A and B show training performance by block for the extended category learning condition of Experiment 2A 
for rule-following items and exceptions, respectively. Panel C shows training performance by block for the identification condi-
tion. Error bars show bootstrapped 95% between-subjects confidence intervals for the mean performance at each block.
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teraction was marginally significant [F(1,4)  4.3784, 
MSe  .026, p  .105, 2

p  .52]. Exception item accu-
racy was numerically higher in the second session (.87; 
Experiment 2B) relative to the first session (.53; Experi-
ment 2A), but this was not significant [t(4)  1.9069, p  
.129]. Accuracy for the frequency-matched rule-following 
items did not differ across sessions (.97 and 1 for the first 
and second sessions, respectively; t  1).

Recognition. Figure 6 displays accuracy for the rec-
ognition phase. A factorial condition item type (excep-
tion vs. frequency-matched rule item)  session (Experi-
ment 2A vs. 2B) ANOVA was conducted on the accuracy 
for the recognition phase. The interaction was not signifi-
cant [F(1,4)  1.360, MSe  .0198, p  .308, 2

p  .25]; 
however, there were significant main effects for session 
[F(1,4)  14.227, MSe  .03057, p  .05, 2

p  .78] and 
type [F(1,4)  11.272, MSe  .03057, p  .05, 2

p  .74]. 
Despite the failure to reach a significant interaction, ex-
ception items were recognized at a significantly higher 
rate (.90) than the frequency-matched rule-following 
items (.49) in the second session (Experiment 2B) [t(4)  
3.56, p  .05], but not in the first session (Experiment 2A) 
(.51 and .40, respectively; t  1). The difference in recog-
nition performance between sessions was significant for 
the exception items [t(4)  5.17, p  .05], but not for the 
frequency-matched rule-following items (t  1).

Discussion
Whereas subjects in Experiment 2A’s identification 

condition were unable to master the exception items 
when originally tested, these same subjects were able 
to do so with the feedback time increased from 2,000 to 
4,000 msec in Experiment 2B. This result follows from 
the present framework, since part-based encoding is pos-
ited to involve more analytic and effortful processes, and 
subjects in the identification condition were trained in a 
manner designed to encourage this type of encoding.

EXPERIMENT 3

In Experiment 2A, the extended category learning sub-
jects successfully categorized and recognized the excep-
tion items. However, the identification subjects showed 
comparatively impaired performance with the same ex-
ception items. In Experiment 2B, the same subjects from 
the identification condition who were unable to master the 
exception items were able to learn to categorize and recog-
nize these items when they were provided with additional 
time to process the feedback. This suggests that encoding 
a stimulus via part-based encoding is more effortful than 
doing so through image-based encoding.

As a more thorough test of the hypothesis that part-
based encoding can lead to successful recognition and 
categorization of exception items if the feedback dura-
tion is sufficient, Experiment 3 was conducted with a new 
set of subjects. For Experiment 3, subjects in two condi-
tions, extended category learning and identification, were 
trained using the same procedure as in Experiment 2A 
(see Figure 1 for an overview of the procedure). As in Ex-

feedback under these conditions. To test the hypothesis 
that subjects in the identification condition did not have 
enough time to perform part-based encoding, in Experi-
ment 2B we had the subjects from the identification con-
dition return for another testing session that was a slightly 
modified version of the fourth and final session of Experi-
ment 2A. Specifically, these subjects completed category 
learning and recognition tasks identical to the fourth ses-
sion, except that the rule-relevant dimension and excep-
tion placement were switched for each subject, and the 
feedback period of category learning trials was extended 
from 2,000 to 4,000 msec. If insufficient encoding time at 
feedback was the reason for the inability of subjects in the 
identification condition to master the exception items, ex-
tending this time should result in improved performance.

Method
Subjects. The 5 subjects from the identification condition in 

Experiment 2A participated in Experiment 2B. They were given 
monetary reimbursement of $7 for a single 1-h session. In addition, 
they were offered a bonus of $8 depending on their performance; all 
subjects earned the bonus.

Materials. The materials were identical to those used in Experi-
ment 2.

Design. (Consult Figure 1 for an overview of the experiment.) 
Subjects completed six blocks of identification training to serve 
as a refresher. This was followed by a testing phase consisting of a 
category learning and recognition task identical in format to those 
completed in Experiment 2A, except that the category structures 
were adjusted to minimize the impact of the previous testing phase. 
The category structures for this testing phase were constructed for 
each subject using the rule-relevant dimension and exception place-
ment opposite from the one they had received in Experiment 2A. 
Since the category structure used when one dimension was rule 
relevant was a 90º rotation of that used when the other dimension 
was rule relevant (see Experiment 1 design), all of the items that 
were exceptions, foils, or frequency-matched rule-following items 
in Experiment 2A were ensured to be regular rule-following items 
in Experiment 2B.

Procedure. The procedure for all phases was identical to those 
in Experiment 2A, except that in the category learning test phase 
all stimuli remained on the screen with feedback for 4,000 msec 
instead of 2,000 msec. All other timing was identical to that in 
Experiment 2A.

Results
As in Experiments 1 and 2A, data from the final block 

of both category learning phases and both blocks of the 
recognition phase were analyzed. Since the subjects for 
Experiment 2B were repeat subjects from Experiment 2A, 
most of this analysis involved comparing performance 
across sessions. However, any conclusions as to the abil-
ity of subjects in Experiment 2B to encode the exception 
items can be made without relying on these comparisons. 
Data from the identification warm-up blocks were omit-
ted, since their only purpose was to serve as a refresher for 
the previous training.

Category learning. Figure 5 displays categorization 
accuracy for the final block of the category learning phase. 
A factorial item type (exception vs. frequency-matched 
rule)  session (Experiment 2A vs. 2B) ANOVA was con-
ducted on the accuracy for the final block of the category 
learning phase. The condition  item type  session in-
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lower order interactions or main effects. In the first cat-
egory learning phase, there was no difference between 
conditions in exception item accuracy (extended category 
learning  .75; identification  .71) (t  1), nor did accu-
racy for the frequency-matched rule-following items differ 
(1 for both extended category learning and identification) 
across conditions (t  1). In the second category learn-
ing phase, exception item accuracy was numerically lower 
in the extended category learning condition (.63) than in 
the identification condition (.96), but this was not signifi-
cant [t(6)  1.372, p  .22]. Accuracy for the frequency-
matched rule- following items did not differ (.83 and .96 
for extended category learning and identification, respec-
tively) across conditions (t  1).

Recognition. Figure 6 displays recognition accuracy 
for both recognition phases. A factorial condition (iden-
tification vs. extended category learning)  item (excep-
tion vs. frequency-matched rule)  phase (1st vs. 2nd) 
ANOVA was conducted on accuracy for the recognition 
phases. The highest order interaction was not significant 
[F(1,6)  0.0356, MSe  .030884, p  .8566, 2

p  .0007]. 
Only the main effect for type was significant [F(1,6)  
16.5264, MSe  .04846, p  .05, 2

p  .734]. In the first 
recognition phase, exception items were recognized at a 
numerically higher rate than was the frequency-matched 
rule-following items in the extended category learning 
condition (.86 and .61 for exceptions and rule-following, 
respectively), but this was not significant [t(3)  1.41, p  
.25]. This effect was marginally significant in the identi-
fication condition (.94 and .56 for exceptions and rule-
following, respectively) [t(3)  2.48, p  .09]. In the first 
recognition phase, there were no differences between con-
ditions in exception or frequency-matched rule-following 
performance (ts  1). In the second recognition phase, 
exception items were recognized at a significantly higher 
rate (.80) than the frequency-matched rule- following 
items (.56) in the extended category learning condition 
[t(3)  3.64, p  .05]. This effect was marginally signifi-
cant in the identification condition (.91 and .50 for excep-
tions and rule-following, respectively) [t(3)  2.79, p  
.07]. As with the first session, there were no performance 
differences between conditions for either the exception or 
frequency-matched rule-following items (ts  1).

Discussion
In Experiment 3, subjects in both the identification and 

extended category learning conditions learned to catego-
rize and recognize the exception items in each of the test-
ing phases. This is in contrast to Experiment 2A, in which 
subjects in the identification condition were unable to 
master the exception items, but is supportive of the find-
ings from Experiment 2B, which showed that the same 
subjects could successfully encode the exception items if 
given additional time during feedback.

Taken with results from previous experiments, these 
results converge with predictions derived from the present 
two-pathway framework. Both pathways, part- and image-
based encoding, allow subjects to master the exception 
items but differ in how they make it possible for this to 
happen. Both are time consuming and effortful, but image-

periment 2B, during the final session’s category learning 
test, the feedback duration was increased from 2,000 to 
4,000 msec. In addition, all subjects completed a second 
series of category learning and recognition tests using a 
category structure with the rule-relevant dimension and 
exception placement opposite those used in the previous 
category learning phase. These added category learning 
and recognition phases were included to shed light on 
the flexibility of both pathways in their ability to gener-
alize to new contexts. On the basis of results from Ex-
periment 2B, and the notion that the representations used 
by the part-based pathway are compositional, it was ex-
pected that subjects in the identification condition would 
master the exceptions in both tasks. It was less certain 
how subjects in the extended category learning condition 
would perform, since results from the expertise literature 
suggest that some of the new task should assimilate to 
their prior expertise (Tanaka, Curran, & Sheinberg, 2005; 
Tarr & Gauthier, 1998) but, at the same time, they would 
be expected to exhibit some interference from this prior 
learning.

Method
Subjects. Eight students from the University of Texas at Austin 

participated in Experiment 3. They received monetary reimburse-
ment of $7 per session for four 1-h sessions. In addition, they were 
offered a final day bonus of $23 depending on their performance; all 
subjects earned the bonus. Each subject was randomly assigned to 
either the extended category learning or identification condition.

Materials. The materials were identical to those used in Experi-
ment 2.

Design. The experimental overview is presented in Figure 1. Both 
conditions were trained in a manner identical to those in Experi-
ment 2 up until the final test on the fourth day. Immediately after the 
recognition phase following the first category learning test phase, 
subjects completed an additional category learning and recognition 
phase. The category structures for these second testing phases were 
constructed for each subject using the same procedure as outlined in 
Experiment 2B. This ensured that all of the items that were excep-
tions, foils, or frequency-matched rule-following items in the first 
phase were regular rule-following items in the second phase.

Procedure. The procedures for all phases were identical to those 
in Experiment 2A, except that in both category learning test phases 
on the final day, all stimuli remained on the screen with feedback 
for 4,000 msec instead of the 2,000 msec used in the previous two 
experiments. All other timing during the training and recognition 
phases was identical.

Results
As in Experiments 1 and 2, data from the final block 

of both category learning phases and both blocks of each 
of the recognition phases were analyzed. Results from the 
initial training regimens were very similar to those from 
Experiment 2A.

Category learning. Figure 5 displays categorization 
accuracy for the final block of training for both category 
learning phases. A factorial condition (identification 
vs. extended category learning)  item (exception vs. 
frequency- matched rule)  phase (1st vs. 2nd) ANOVA 
was conducted on the accuracy for the final block of the 
category learning phase. The highest order interaction 
was not significant [F(1,6)  2.000, MSe  .015625, p  
.2070, 2

p  .25]. Furthermore, there were no significant 



PART- AND IMAGE-BASED ENCODING    409

Fitting procedure. The model fitting procedure was 
identical to that described for Experiment 1.

Modeling results. The results of the nested model 
testing are summarized in Figure 10 and the goodness-
of-fit values are given in Table 2. The results are similar 
to those from Experiment 1 and are clear. In every case 
that a Cx parameter was included, it provided a signifi-
cant improvement in fit over the nested model for which 
Cx  1; this pattern did not hold for any other parameter. 
An important difference between experiments was that the 
value Cx was much higher (13.38) in Experiments 2 and 3 
than in Experiment 1 (2.67), suggesting that subjects in 
Experiments 2 and 3 relied more heavily on distinctive 
feature matches for exception items; this may be a sign of 
expertise in the task (see Tables 3 and 4 for the  predicted/
observed probabilities from both experiments and the 
best-fitting parameter values, respectively).

Finally, even though we did not focus on the individual 
conditions, in order to show that they were fairly homo-
geneous we calculated the variance accounted for in each 
type of condition when they were fit individually, and 
compared this with the variance accounted for in each of 
these conditions when the parameters were fixed at the 
values obtained from the aggregate data. In both cases, the 
parameter values obtained from fits to the aggregate data 
accounted for nearly as much variance as did fitting each 
type of condition individually. In the identification condi-
tions, the parameter values from the Cx  GCM model fit 
to the aggregate data accounted for 83% of the variance, 
and the fit to the identification subjects alone fared only 
slightly better, accounting for 85% of the variance. The 

 based encoding is more so. Furthermore, as predicted by 
the compositionality of part-based representations, this 
pathway supports performance in new contexts—for 
example, when the exception items and rule-relevant di-
mension are changed. The fact that the extended category 
learning condition also elicited good performance in the 
second testing phase is consistent with evidence suggest-
ing that experts are able to transfer to new subcategories of 
objects similar to those for which their image-based repre-
sentations have developed. Indeed, the stimulus set in the 
second category learning phase used the same stimuli, and 
only the way that they were partitioned was changed (i.e., 
which dimension was relevant, which items were excep-
tions, etc.).

Model-Based Analysis for  
Extended-Training Experiments

In the modeling for the second set of experiments, 
we focused on the aggregate data from all conditions in 
Experiments 2A, 2B, and 3, except for the identification 
condition in Experiment 2A (in which the subjects were 
unable to encode the exception items). This includes the 
extended category learning conditions in Experiments 2A 
and 3 and the identification conditions in 2B and 3. We 
used the aggregate data for modeling because the number 
of subjects in each of these individual conditions and ex-
periments was low. After we present the primary model-
ing results for these experiments, we show that the model 
selected on the basis of fits to the aggregate data account 
for nearly as much variance as did the fits to the individual 
conditions.

Cx Dr Dx Cr Dx DrCx Dx Cr DrCx Cr

Cx Dx Cr Dr

GCM
Wr K

(all inherit)

Cx Dx
Cr

Cx Cr
Dr

Cx Dx
Dr

Dx Cr
Dr

Cx Dx
Cr  Dr

Figure 10. Model hierarchy for Experiments 2 and 3. Each level of the hierarchy 
adds an additional free parameter from the possible free parameters discussed in the 
introduction. Solid connections show significant increases in variance accounted for 
between levels (general linear test).
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In Experiments 2 and 3, we found that subjects trained 
in a manner stressing either pathway were able to learn 
to categorize and recognize exceptions in the absence 
of external discrete cues, such as tick marks and ver-
bal labels. These different training regimens revealed 
performance profiles that follow from the two-pathway 
framework. Subjects who were trained in a manner that 
encouraged the development of image-based representa-
tions required less time to encode exception items than 
did those trained to use the more analytically based and 
attention demanding part-based pathway. Subjects trained 
via either pathway were also able to generalize to novel 
partitionings of the stimulus set. One might expect that the 
part-based pathway would yield greater generalization; 
although there was a numerical advantage for conditions 
that promoted part-based encoding, this advantage did not 
reach significance, perhaps because of limited power, or 
because image-based encoding can support generalization 
within a stimulus set.

Along with the transfer findings from Experiment 3, 
findings from the expertise literature suggesting that 
holistic image-based representations can be flexibly ex-
tended to novel subcategories reinforce the notion that the 
representations used by the part-based pathway are com-
positional (Tanaka et al., 2005; Tarr & Gauthier, 1998). At 
the same time, the flexibility of subjects in the extended 
category learning condition in transferring to novel sub-
categories leaves open the possibility that these subjects 
had also developed a part-based vocabulary in the course 
of their training, perhaps via feature learning processes 
discussed by Schyns et al. (1998). Below, we discuss ma-
nipulations that could be used to test this hypothesis.

One of the main conclusions to be drawn from this work 
is that category learning researchers should consider how 
stimuli are encoded in categorization tasks. Differences in 
stimulus properties (such as having continuous or discrete 
valued features) and expertise are only some of the areas 
where encoding effects may arise in category learning. We 
present the two-pathway framework as a potential heu-
ristic for incorporating ideas from the object recognition 
literature where encoding has been more thoroughly stud-
ied. Because this approach is necessarily exploratory, it is 
useful to consider possible single-system approaches.

At the outset, the present framework was used to sug-
gest that these two types of encoding, part- and image-
based, use fundamentally different pathways. This follows 
some hybrid accounts in the object recognition literature 
that use both types of representations in isolated systems 
designed to fulfill disparate roles in object recognition 
(e.g., JIM II; Hummel & Stankiewicz, 1996). It could be 
the case, as other contemporary hybrid accounts suggest 
(e.g., Ullman et al., 2002), that part-based and holistic rep-
resentations represent opposite ends of a single hierarchy. 
It is an empirical question whether these two types of en-
coding do represent different systems, or whether they are 
manifestations of a single system; there are likely to be 
advantages to both perspectives, since they may provide 
subtly different ways of approaching encoding in category 
learning. For example, viewing them as separate pathways 

extended category learning condition was much the same, 
with 78% of the variance accounted for using the param-
eters from the aggregate model, and only a slight increase 
to 81% when this condition was fit individually.

GENERAL DISCUSSION

The aim of the present investigation was to examine 
object-encoding processes in category learning. Models 
of category learning do not often focus on how stimuli 
are encoded, and thus tacitly suggest that there is a single 
encoding mechanism. In contrast, we developed a novel 
framework to explore the possibility that there are at least 
two pathways for stimulus encoding in categorization. The 
first of these pathways, which has received a large amount 
of attention in the recent expertise/object recognition lit-
erature, is through the development of holistic image-
based representations. The second pathway, motivated by 
the part-based representations that are also common in 
the object recognition literature, involves mapping objects 
onto discrete symbolic representations.

We used this framework to derive predictions for a se-
ries of experiments involving rule-plus-exception designs. 
Rule-plus-exception designs are well suited for testing as-
sumptions about stimulus encoding because accurate re-
sponding requires separate encoding and storage of excep-
tion stimuli. We found evidence to suggest that subjects 
required the ability to individuate items via one of these 
pathways in order to learn the exception items. This was 
not the case for individual rule-following items. Indeed, 
comparing recognition results across experiments (see 
Figure 6) reveals that none of the manipulations affected 
performance for the frequency-matched rule-following 
items, whether these items were presented 9 times prior to 
the recognition memory test, as in Experiment 1, or 144 
times, as in Experiments 2A and 3. Given the consistently 
high category learning accuracy and low recognition per-
formance across conditions with the frequency-matched 
rule-following items, we suspect that all conditions in all 
experiments used similar encoding strategies for these 
items, regardless of training, but that neither of the condi-
tions consistently used one of the two pathways to encode 
and store these items as individuals.

In support of the two-path framework, we found in Ex-
periment 1 that subjects could successfully individuate 
exception items following brief training when stimuli con-
tained tick marks and verbal labels that facilitated part-
based encoding. Subjects were not successful when stimuli 
were purely continuous (i.e., lacking tick marks and verbal 
labels). This is a potentially important difference between 
stimuli with continuous and discrete valued dimensions. 
Discrete valued stimuli are easily mapped onto symbolic 
representations (i.e., encoded via the part-based pathway), 
and this facilitates categorization and recognition of these 
stimuli early in learning. Continuous stimuli do not share 
this property, so they are not easily mastered in a limited 
number of learning trials. This result has implications for 
the category learning literature, because these types of 
stimuli are often used interchangeably.
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the image-based pathway has been achieved, particularly 
in the communicative roles that concepts serve. Our work 
builds on existing efforts in the categorization literature 
that incorporate notions of automaticity (e.g., Johansen 
& Palmeri, 2002; Nosofsky & Palmeri, 1997; Palmeri & 
Tarr, 2008). One unique aspect of our approach is its focus 
on different encoding formats rather than on the relative 
processing times of different solution paths.

One potential criticism of the present studies from an 
automaticity standpoint is that subjects in the two condi-
tions used in Experiments 2 and 3, the extended category 
learning and identification conditions, were not equal in 
terms of their skill development at the final-day category 
learning and identification tests. Because subjects in the 
extended category learning condition were tested using 
exactly the same procedures and category structures that 
they had trained extensively on, it comes as little sur-
prise that in Experiment 2A they tested significantly bet-
ter than did subjects in the identification condition who 
had been trained on a different task. Although we agree 
that this potential criticism affects the interpretation of 
Experiment 2A, we know of no theory of automaticity 
that suggests that extending the duration of feedback (Ex-
periments 2B and 3) would reverse this deficit and en-
able subjects in the identification condition to encode the 
exceptions. Rather, in applications to category learning 
(Nosofsky & Palmeri, 1997), the speed-up in task perfor-
mance due to automaticity is described as occurring prior 
to subject’s responses; lengthening feedback should have 
no effect. Thus, although it is unlikely that the choice of 
training regimens severely affects the interpretation of the 
data, future research may benefit from using training regi-
mens that are better matched in terms of ease of transfer.

Integral versus separable dimensions. Another area 
that has an important relationship to the present research 
is Garner’s (1974; see also Maddox, 1992) work on in-
tegral versus separable dimension stimuli. Integral di-
mension stimuli are ones for which the stimulus dimen-
sions combine and are difficult for subjects to consider 
separately from one another, whereas separable dimension 
stimuli allow subjects to consider each stimulus dimen-
sion in isolation. Likewise, we proposed two pathways for 
stimulus encoding, one of which (image-based) relies on 
holistic, nondecomposable representations, and another 
that uses representations made up of individual stimulus 
parts (part-based). It is likely that some of the same psy-
chological mechanisms underlie these two frameworks. 
Separable dimension stimuli are likely to encourage ana-
lytic processes such as part-based encoding, and integral 
dimension stimuli may encourage more holistic process-
ing such as image-based encoding.

There are, however, important aspects of the present 
framework that go beyond the classic integral/separable 
distinction. Whereas Garner (1974) was interested in 
whether stimulus dimensions could be analyzed inde-
pendently from one another, we focus on how subjects 
individuate values along a dimension or images within 
a psychological space. Furthermore, the typical solution 
for modeling differences between integral and separable 
dimension stimuli is to use different distance metrics; in-

helps to highlight the probable differences in the composi-
tionality as well as automaticity between representing ob-
jects as a set of parts as opposed to a unitary whole. At the 
same time, viewing them as opposite ends of a hierarchy 
suggests that there are likely to be representations between 
these two extremes; this account may be better equipped 
to characterize how the ability to encode objects changes 
over time. The present experiments provide both novel and 
important contributions to the category learning literature, 
regardless of which (if either) of these two interpretations 
is ultimately correct. In this spirit, future research should 
be aimed primarily at discovering further constraints on 
stimulus encoding in category learning, as well as further 
integrations of the object recognition and categorization 
literatures, as opposed to focusing solely on how many 
pathways or systems are required to account for the extant 
results. One way to facilitate integration of the present 
framework and the object recognition literature would be 
to test predictions for real-world stimuli such as natural 
scenes. Although the current stimuli are well controlled 
and typical of category learning experiments, they are vi-
sually sparse in comparison with those used in the object 
recognition literature.

One avenue for future research is to further test possible 
representational differences between the two encoding 
pathways that we have proposed by using manipulations 
more common in the object recognition and expertise lit-
eratures. This would help to further strengthen the con-
nections between the fields, as well as provide additional 
evidence about the nature of the representations in the 
two pathways. One type of manipulation often used to test 
whether representations are holistic is testing a subject’s 
recognition sensitivity (d ) when the spatial relations be-
tween stimulus features have been distorted (e.g., Farah 
et al., 1998; Tanaka & Gauthier, 1997). Applying these 
manipulations in the present experiments would involve 
developing a post-training task requiring subjects to state 
whether one of the features (height or line-segment posi-
tion) of a probe stimulus matches the features of a previ-
ously seen item. Holistic processing would be consistent 
with a decreased ability to recognize exception features 
when removed from the whole, whereas part-based encod-
ing should not be disturbed.

Relationships With Other Approaches
Automaticity. In addition to the clear relationships 

with work in object recognition and categorization, the 
present work is readily connected to other topics in cog-
nitive psychology, such as theories of automaticity (e.g., 
Logan, 1988). These theories distinguish between cases in 
which people use memory to rapidly retrieve a response 
(e.g., recalling the result of a previously solved addition 
problem) and cases in which people effortfully and algo-
rithmically solve a problem (e.g., an addition problem). 
Similar to these theories, we focus on the possibility that 
automatic (image-based) and algorithmic (part-based) 
processes could both be used to accomplish a particular 
task. We also suggest, in a similar vein to Logan, that the 
algorithmic processes might still operate and serve a va-
riety of other purposes after expert-level performance via 
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ing). This led us to successfully predict processing differ-
ences between discrete and continuous-valued stimuli, as 
well as differences between subjects who received extensive 
experience in categorizing exceptions, or learned to assign 
labels to parts of the stimuli. The findings are important 
for the category learning literature, in which encoding has 
not been a thoroughly investigated topic. Although these 
findings follow from the present framework, they provide 
insight into category learning performance independent of 
any theoretical perspective. It is our hope that the research 
presented here may help to open up broader discussion be-
tween the categorization, object recognition, automaticity, 
and language and thought literatures.
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