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Responding to environmental events often demands 
rapid categorization of both familiar and novel stimuli. The 
learning required for such categorization readily occurs 
under a variety of circumstances, and it is generally be-
lieved that such learning is supported by multiple memory 
systems (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; 
Ashby & Valentin, 2005; Maddox & Ashby, 2004; Poldrack 
et al., 2001; Poldrack & Packard, 2003; Smith, Patalano, & 
Jonides, 1998; but see Lagnado, Newell, Kahan, & Shanks, 
2006, and Nosofsky & Johansen, 2000, for discussions of 
a unitary system of categorization). At least one of these 
systems supports declarative, explicit category learning,1 
which requires active memorization and/or hypothesis 
testing, whereas at least one other system supports non-
declarative, implicit category learning, which develops in 
a gradual and nonconscious manner.

A number of cognitive, neuropsychological, and neuro-
imaging studies have supported the existence of multi-
ple category-learning systems (for relevant reviews, see 
Ashby & Valentin, 2005; Shohamy, Myers, Kalanithi, 
& Gluck, 2008). In these investigations, one of the most 
commonly used paradigms is the weather prediction 
task (WPT), a probabilistic classification task designed 
to assess gradual, incremental learning over many trials 
(Knowlton, Squire, & Gluck, 1994). On this task, partici-
pants must categorize a set of visually presented cues that 
are probabilistically related to one of two outcomes and 
then receive feedback on the accuracy of their response. 
The probabilistic cue–outcome relationships are thought 
to disrupt declarative-learning processes (Knowlton, 
Mangels, & Squire, 1996; Knowlton et al., 1994; Pol-

drack et al., 2001). For this reason, the WPT has been used 
extensively to examine the neural mechanisms that sup-
port nondeclarative learning (Aron, Gluck, & Poldrack, 
2005; Foerde, Knowlton, & Poldrack, 2006; Poldrack 
et al., 2001; Poldrack,  Prabakharan, Seger, & Gabrieli, 
1999; Shohamy et al., 2004) and to assess the integrity 
of nondeclarative learning in various neuropsychological 
populations (Beninger et al., 2003; Eldridge, Masterman, 
& Knowlton, 2002; Foerde et al., 2008; Hopkins, Myers, 
Shohamy, Grossman, & Gluck, 2004; Kéri, Szlobodnyik, 
Benedek, Janka, & Gádoros, 2002; Knowlton et al., 1996; 
Knowlton et al., 1994).

Although the WPT is commonly considered a measure 
of nondeclarative learning, neuropsychological evidence 
suggests that the task may rely on declarative-learning 
processes. Patients with focal damage of the medial 
temporal lobe (MTL), who experience a selective defi-
cit of declarative memory, exhibit minimal learning even 
with considerable practice (Hopkins et al., 2004; Meeter, 
Myers, Shohamy, Hopkins, & Gluck, 2006). Further-
more, neuropsychological research with healthy older 
adults and patients with Parkinson’s disease indicates that 
WPT learning is greater among those with higher levels 
of executive function (Knowlton et al., 1996; Price, 2005). 
Executive function is positively associated with explicit 
category learning but has a negative or null relationship 
with implicit category learning (DeCaro, Thomas, & 
Beilock, 2008; Maddox & Filoteo, 2001), suggesting that 
WPT performance depends on explicit processes. Behav-
ioral evidence provides further support for this possibil-
ity. Concurrent performance of an attention-demanding 
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delivery of feedback triggers dopamine signals that alter 
synaptic connections associated with the immediately pre-
ceding stimulus and associated response (Arbuthnott, Ing-
ham, & Wickens, 2000; Hollerman & Schultz, 1997; Kerr 
& Wickens, 2001; Schultz, 1992). If feedback is delayed, 
the feedback-mediated dopamine release will modify in-
appropriate synapses, thereby disrupting implicit learn-
ing. Explicit category learning is unaffected by a delay 
in feedback, presumably because the relevant rule can be 
verbalized and maintained in working memory until feed-
back occurs (Maddox et al., 2003; Maddox & Ing, 2005). 

To the extent that WPT learning relies upon implicit 
processes, a delay in feedback should hamper perfor-
mance. If implicit learning develops only after participants 
have completed sufficient training (e.g., 50 training trials; 
Poldrack et al., 2001), feedback delay should selectively 
impair later task performance. Alternatively, if the WPT 
primarily relies on explicit processes, feedback delay 
should have little impact on performance. In addition, if 
reliance on a multicue strategy reflects the development of 
implicit knowledge, delaying feedback should reduce the 
frequency of such strategy use. Alternatively, if explicit 
knowledge is sufficient to support the use of a multicue 
strategy, feedback delay should not affect the distribution 
of individual response strategies.

Whereas Experiment 1 manipulated the operation of 
implicit processes in WPT learning, Experiment 2 ma-
nipulated the operation of explicit processes by disrupting 
participants’ ability to process feedback. According to neu-
robiological models of category learning, rule-based ex-
plicit learning necessitates attention as participants perform 
hypothesis-testing processes (Ashby et al., 1998; Maddox 
& Ashby, 2004). These processes require time and atten-
tion. If the time available to process feedback is limited, 
one is unable to properly execute the hypothesis- testing 
process, thereby disrupting explicit category learning 
(Maddox, Ashby, Ing, & Pickering, 2004). Implicit learn-
ing is unaffected, however, because the reward- mediated 
synaptic changes presumed to support implicit learning 
occur in a rapid and relatively automatic fashion. Consis-
tent with these arguments, limiting the time available for 
feedback processing has been shown to disrupt explicit, 
but not implicit, category learning (Maddox et al., 2004).

To the extent that WPT learning relies on explicit pro-
cesses, a disruption to feedback processing should im-
pair classification performance. If explicit processes are 
necessary only during initial task performance, disrupt-
ing feedback should impair initial performance only. In 
addition, if the singleton and one-cue response strategies 
reflect explicit knowledge, disrupting explicit processes 
should reduce participants’ tendency to rely on these strat-
egies but should have little impact on participants’ use of 
the multicue response strategy. Alternatively, if implicit 
knowledge is sufficient to support both simple and mul-
ticue strategies, feedback delay should have little impact 
on strategy use. Finally, if WPT performance primarily 
reflects implicit processes, participants’ awareness of the 
underlying structure in either experiment should be unre-
lated to classification accuracy or the particular response 
strategy in use.

secondary task, which has previously been shown to dis-
rupt explicit, but not implicit, category learning (Jiménez 
& Vázquez, 2005; Waldron & Ashby, 2001; Zeithamova 
& Maddox, 2007), impairs performance on the WPT 
(Foerde et al., 2006; Foerde, Poldrack, & Knowlton, 2007; 
Newell, Lagnado, & Shanks, 2007). Furthermore, WPT 
performance is positively associated with participants’ 
 awareness of the underlying structure (Foerde et al., 2007; 
Gluck, Shohamy, & Myers, 2002; Knowlton et al., 1994; 
Lagnado et al., 2006; Newell et al., 2007; Price, 2005; 
Reber, Knowlton, & Squire, 1996).

In addition, analyses of participants’ response patterns 
have indicated that participants often attain relatively 
high levels of accuracy through consistent reliance on a 
simple, verbalizable strategy (Gluck et al., 2002; Meeter 
et al., 2006; Newell et al., 2007). Specifically, Gluck et al. 
demonstrated that participants tended to initially rely on 
a singleton strategy, responding optimally on each of the 
single- cue patterns but randomly on the other patterns. As 
the task progressed, participants increasingly adopted a one-
cue strategy, responding solely on the basis of the presence 
or absence of a particular cue. After considerable training, 
some participants began to use a multicue strategy, basing 
their responses on an integration of the optimal outcome for 
all four cues. Because the singleton and one-cue strategies 
are more easily verbalized than the multicue strategy, they 
may reflect the operation of explicit processes, whereas 
the multicue strategy reflects the operation of implicit pro-
cesses (Shohamy et al., 2004). If this is correct, it would 
suggest that explicit processes predominate during early 
task performance but that learning increasingly depends on 
implicit processes as the task progresses.

Consistent with this, neuroimaging evidence has indi-
cated that WPT performance was associated with an ini-
tial (e.g., first 50 trials; Poldrack et al., 2001) increase in 
MTL activation, suggestive of declarative learning. As the 
task progressed, MTL activity decreased and activation 
increased in striatal regions, suggesting the emergence 
of nondeclarative processes (Cohen & Eichenbaum, 
2001; Squire, 1992). This pattern of neural activity led 
to the conclusion that declarative processes mediated by 
the MTL (e.g., exemplar memorization) support initial 
learning on the WPT but that nondeclarative processes 
mediated by the striatum (e.g., habit learning) are largely 
responsible for performance improvement as the task pro-
gresses (Poldrack et al., 2001; Shohamy et al., 2008).

In the present investigation, this possibility was exam-
ined by manipulating the WPT so as to assess the specific 
contributions of implicit- and explicit-learning processes 
to performance, with a particular focus on how the contri-
butions of these processes changed as the task progressed. 
More specifically, Experiment 1 manipulated the delay 
between categorization response and feedback delivery, 
a modification previously shown to selectively impact 
implicit category-learning processes (Maddox, Ashby, 
& Bohil, 2003; Maddox & Ing, 2005). Neurobiological 
models of category learning (Ashby et al., 1998; Ashby 
& Valentin, 2005; Shohamy et al., 2008) argued that non-
declarative learning depends on the immediate delivery 
of feedback to strengthen cue–outcome associations. The 
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regardless of the probabilistically determined feedback 
provided on that particular trial. Cue combinations asso-
ciated equally with both outcomes were excluded from 
analysis. Figure 1 illustrates the proportion of optimal 
responses for each condition as a function of block. An 
examination of individual participants’ data indicated 
that the majority of the participants in each condition ex-
ceeded chance levels of performance (50% accuracy). A 
chi-square analysis indicated that the proportion of partic-
ipants failing to exceed chance in the immediate feedback 
(10%) and the delayed feedback (11%) conditions did not 
differ ( p  .8).

Each participant’s mean accuracy, determined as the 
proportion of optimal responses, was computed for each 
block of 40 trials. To examine the development of learning 
in each condition, a mixed ANOVA was conducted, with 
block (1–4) as the within-subjects factor and learning con-
dition (immediate vs. delayed feedback) as the between-
subjects factor. Overall, accuracy did not differ between 

EXPERIMENT 1

Method
Participants

Thirty-eight undergraduate students participated for partial ful-
fillment of a class requirement. The participants were randomly 
assigned to either the immediate-feedback (n  18) or the delayed-
feedback (n  20) condition.

Materials
Stimuli presentation and data collection were completed with  

E-Prime software (Psychology Software Tools, Pittsburgh) on IBM-
compatible computers, equipped with 15-in. Super VGA monitors. 
Following the general method of Knowlton et al. (1994), the classifi-
cation task required that the participants learn which of two possible 
outcomes (rain or sunshine) would occur on each trial on the basis 
of a set of visual cues. Each of the four cues was a card, 200 pix-
els in height and 150 pixels in width, bearing a geometric shape 
(circles, diamonds, squares, or triangles). The cards were situated 
horizontally along the center of the screen. One, two, or three cards 
were displayed on each trial, with 14 possible cue combinations. 
The sequence of cue combinations that appeared on each trial was 
randomized for each participant, with the constraints that the same 
cue combination did not appear twice in succession and that neither 
outcome occurred more than five times in a row. The two outcomes 
occurred equally often.

Each cue was associated with an outcome according to a fixed prob-
ability. Table 1 lists each cue combination, the frequency with which it 
appeared in the task, and the probability with which it predicted rain 
(probabilities taken from Knowlton et al., 1994). Across all 14 cue 
combinations,2 Cue 1 was associated 75% of the time with rain and 
25% of the time with sun; Cue 2 was associated 56% of the time with 
rain and 44% of the time with sun; Cue 3 was associated 44% of the 
time with rain and 56% of the time with sun; and Cue 4 was associated 
25% of the time with rain and 75% of the time with sun.

Procedure
Classification learning. The participants were told that they 

were being placed in the position of weather forecaster and that 
their job was to decide whether a given set of cues predicted rain 
or sunshine. They were told that the relationship between cues and 
outcomes was complex and that, at first, they would be guessing but 
would gradually become better at deciding which cues predicted rain 
or sun. The participants completed 160 classification-learning trials 
with either immediate or delayed feedback.

The procedure for a typical trial in each condition followed Maddox 
and Ing (2005): immediate feedback condition, classification stimuli 
 appeared/response/500-msec mask/750-msec corrective  feedback/5-sec 
blank screen intertrial interval; delayed feedback condition, classi-
fication stimuli  appeared/response/5-sec mask/750-msec corrective 
feedback/500-msec blank screen intertrial interval. The mask consisted 
of four rectangles, situated in the positions of the four cue cards, each 
filled with randomly positioned dots.

Assessment of structure awareness. Upon completion of the 
WPT, the participants were shown each of the four cards and were 
asked to indicate whether that card was more strongly associated 
with rain, with sun, or equally with both. The participants were then 
informed that each of the four cue cards was related to a given out-
come according to a specific probability. The participants were then 
shown each card by itself and were asked to estimate what percent-
age of the time rain occurred when that card appeared, regardless of 
whether it appeared alone or in combination with other cards.

Results

Classification Accuracy
A participant was considered to have made an optimal 

response if he/she selected the outcome that was more 
strongly associated with the cue combination presented, 

Table 1 
Probability Structure of the Weather Prediction Task

Cue Cue

Pattern  1  2  3  4  P(appearance)  P(rain)

A 0 0 0 1 .133 .150
B 0 0 1 0 .087 .385
C 0 0 1 1 .080 .083
D 0 1 0 0 .087 .615
E 0 1 0 1 .067 .200
F 0 1 1 0 .040 .500
G 0 1 1 1 .047 .143
H 1 0 0 0 .133 .850
I 1 0 0 1 .067 .500
J 1 0 1 0 .067 .800
K 1 0 1 1 .033 .400
L 1 1 0 0 .080 .917
M 1 1 0 1 .033 .600
N  1  1  1  0  .047  .857
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Figure 1. Proportion of optimal responses for each condition in 
Experiment 1 as a function of block. Error bars represent stan-
dard errors of the means. FB, feedback.
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sun whenever the strong rain card is present; respond rain 
otherwise).

Following the method outlined by Gluck et al. (2002), 
ideal data were constructed for each of these strategies and 
then compared with each participant’s response pattern for 
each block. A least means squares (LMS) procedure was 
used to calculate the degree to which a participant’s data 
fit with the ideal data for each of the possible strategies. 
For each block of trials, a participant was classified as fol-
lowing the strategy that produced the greatest fit (lowest 
LMS) with his/her particular response pattern. Figure 2 
illustrates the distribution of response strategies for each 
condition as a function of block

Frequency of inappropriate strategies. To determine 
whether the tendency to rely on inappropriate strategies 
varied across the two conditions, all correct strategies (one 
cue, singleton, or integrative) were pooled together so that 
the distribution of random, incorrect, and correct strat-
egies could be compared across conditions. A series of 
chi-square analyses revealed that the timing of feedback 
(immediate vs. delayed) did not impact the distribution of 
correct, incorrect, and random strategies. No differences 
emerged across conditions for Block 1 ( 2  5.12, p  
.07), Block 2 ( 2  0.01, p  .9), Block 3 (the partici-
pants used only correct strategies), or Block 4 ( 2  0.92, 

the immediate feedback (M  .68, SE  .02) and the de-
layed feedback (M  .68, SE  .02) conditions ( p  .9). 
Classification accuracy improved over the course of the 
task, as indicated by a main effect of block [F(3,108)  
9.00, p  .001]. The effect of block did not vary by condi-
tion ( p  .7). These results indicated that learning-related 
changes in classification accuracy were unaffected by the 
timing of feedback at any point in the task.

Strategy Analysis
Gluck et al. (2002; see also Meeter et al., 2006) identi-

fied several classes of strategies that participants may use 
to successfully perform the WPT. 

Singleton strategies. The participants relying on this 
strategy responded with the optimal response for those 
patterns that presented a single card (Patterns A, B, D, 
and H) and guessed on the remainder of the patterns. The 
participants were also classified as relying on a singleton 
strategy if they gave the optimal response only for the two 
strongly weighted cards (Patterns A and H).

One-cue strategies. The participants relying on the 
one-cue strategy responded solely on the basis of the pres-
ence or absence of a single cue, regardless of the other 
cues presented.

Integrative strategies.3 The participants relying on an 
integrative strategy appeared to learn the optimal outcome 
for each of the four cues and based their responses on 
multiple cues. Integrative strategies included (1) singleton 
plus strategy, in which the participants responded with 
the optimal outcome on the singleton patterns and pat-
terns presenting either two sun cards or two rain cards 
(Patterns C and L); (2) the 2 versus 1 strategy, in which 
the participants responded with the optimal response on 
each of the singleton and three-card patterns (e.g., two 
rain cards and one sun card; Patterns G, K, M, and N); 
(3) the all but 2v1, in which the participants responded 
with the optimal outcome on all the patterns, except for 
the three-card patterns; and (4) the multicue strategy, in 
which the participants responded with the optimal out-
come on all patterns.

In addition to these successful strategies, it is possible 
that the participants may have responded according to 
strategies that did not support successful performance. 
Therefore, two inappropriate strategy types were also 
considered.

Random strategy. The random strategy best fit those 
participants who were equally likely to have responded sun 
or rain, regardless of the presented pattern. This “strategy” 
reflected guessing, rapid switching between strategies, or 
use of a strategy that more closely approximated random 
behavior than did any of the other strategies considered. 

Wrong strategies. The participants relying on a wrong 
strategy responded in a consistent but incorrect manner. 
Several possible incorrect strategies were considered: 
(1) incorrect singleton strategies, in which the participants 
consistently responded incorrectly on the single-card pat-
terns and responded randomly on the other patterns; and 
(2) incorrect one-cue strategies, in which the participants 
based their responses on the presence or absence of one 
particular card, but in an incorrect fashion (e.g., respond 
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Figure 2. Strategy distribution for the participants in Experi-
ment 1 as a function of block under conditions of delayed feed-
back (A) and immediate feedback (B).
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condition did not impact performance ( p  .4). To sum-
marize, WPT performance varied considerably with the 
type of strategy in use, but this effect did not vary as a 
function of the timing of feedback delivery.

Structure Awareness
Two measures of structure awareness were created for 

each participant on the basis of his/her responses during 
the posttask assessment. The first measure reflected the 
number of cue–outcome relationships that a participant 
correctly identified. The second measure reflected the ac-
curacy of a participant’s estimates of the individual cue 
weights and was derived in the following manner. For each 
of the four cues, the absolute difference was taken between 
the actual and the estimated probability that rain would 
follow that cue. The absolute differences for each cue were 
averaged to create a measure of cue weight awareness; on 
this measure, lower deviations indicated greater aware-
ness. In Tables 2 and 3, the participants’ awareness of the 
cue–outcome relationships and underlying cue weights, 
respectively, are presented for each individual cue as a 
function of feedback condition.

p  .6). As is shown in Figure 2, the participants in both 
conditions relied overwhelmingly on correct strategies.

Distribution of correct response strategies. To ex-
amine whether the timing of feedback delivery (immediate 
vs. delayed) had an impact on the distribution of correct 
response strategies (singleton, one cue, or integrative), a 
series of chi-square analyses were conducted within each 
block.4 These analyses indicated that the distribution of 
correct strategies was similar across the two conditions for 
Block 1 [ 2(2, N  30)  0.27, p  .8], Block 2 [ 2(2, N  
36)  2.77, p  .2], and Block 4 [ 2(2, N  35)  2.04, 
p  .3]. A difference in strategy distribution emerged for 
Block 3 [ 2(2, N  38)  8.00, p  .05], reflecting the fact 
that the participants in the immediate-feedback condition 
were more likely to rely on a one-cue strategy, whereas 
those in the delay condition were more likely to rely on a 
singleton strategy; the proportion of participants relying on 
an integrative strategy did not differ across conditions.

To examine whether the distribution of correct re-
sponse strategies varied over the course of the task, strat-
egies were reclassified as either simple (one-cue and 
singleton strategies) or integrative. A series of pairwise 
block comparisons, using Wilcoxon signed ranks tests, 
indicated an increased reliance on integrative strategies 
in Block 3 (z  2.11, p  .05) and Block 4 (z  2.0, 
p  .05), relative to Block 1; no other block differences 
emerged in strategy use ( p  .1) for each block com-
parison. These analyses were then repeated for the dis-
tribution of singleton versus one-cue strategies but did 
not reveal any evidence of a change in simple strategy 
distribution over the course of the task ( p  .1 on all 
block comparisons). Taken together, these data indicated 
that regardless of the timing of feedback delivery, the par-
ticipants relied primarily on simple strategies in the early 
part of the task and increasingly on integrative strategies 
as the task progressed.

Variations in Accuracy by Strategy Type
Although the timing of feedback delivery had little im-

pact on the types of strategies that the participants tended 
to use, it may have affected the way in which they made 
use of a given strategy. Furthermore, it is likely that WPT 
performance varied depending on the response strategy 
in use. To examine these possibilities, mixed ANOVAs 
were conducted within each block to assess the impact 
of condition (immediate vs. delayed feedback) and cor-
rect strategy type (one cue, singleton, and integrative) on 
accuracy. A significant effect of strategy type emerged 
on each of the blocks [Block 1, F(2,24)  4.14, p  .05; 
Block 2, F(2,30)  18.33, p  .001; Block 3, F(2,32)  
3.34, p  .05; and Block 4, F(2,29)  9.21, p  .001]. 
Post hoc Games–Howell tests (   .05) indicated that 
for Blocks1, 2, and 4, participants who used an integra-
tive strategy performed better than those using a one-cue 
or singleton strategy. On Block 3, the participants using 
an integrative strategy outperformed only those using a 
singleton strategy. Performance did not vary between par-
ticipants relying on one-cue and singleton response strate-
gies on any of the four blocks. The effect of strategy type 
on performance did not vary by condition ( p  .2), and 

Table 2 
Awareness of Cue–Outcome Relationships

Cue Card

Strong Weak Weak Strong
Group  Sun  Sun  Rain  Rain

Experiment 1

Immediate feedback .80 .65 .45 .80
Delayed feedback .89 .39 .56 .72

Experiment 2

Short feedback .69 .25 .19 .38
Long feedback .56 .50 .88 .56

Note—Each value is the proportion of participants in each group who 
identified the optimal outcome for that particular cue card.

Table 3 
Awareness of Individual Cue Weights

Cue Card

Strong Weak Weak Strong
Sun Sun Rain Rain

Group  (.75)  (.56)  (.44)  (.25)

Experiment 1
Immediate feedback
 M .72 .52 .42 .21
 SE .06 .06 .06 .04
Delayed feedback
 M .69 .49 .41 .33
 SE .04 .06 .07 .06

Experiment 2
Short feedback
 M .58 .45 .58 .56
 SE .04 .06 .06 .05
Long feedback
 M .61 .58 .32 .41
 SE .05 .05 .04 .07

Note—The values in parentheses are the actual cue–outcome probabili-
ties. Other values are the means and standard errors for the participants’ 
estimates of the frequency with which each cue card would be followed 
by rain.
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data indicated that the participants developed a substantial 
degree of declarative knowledge of the underlying clas-
sification structure, regardless of the timing of feedback 
delivery.

To better understand how structure awareness mapped 
onto the reliance of particular response strategies, it is 
worthwhile to determine whether structure awareness dif-
fered depending on the strategy in use on the final block 
of trials. Figure 3 illustrates the two awareness measures 
as a function of response strategy. Separate ANOVAs were 
conducted on each measure, with condition (immediate 
vs. delayed feedback) and response strategy (singleton, 
one cue, and integrative) as factors. These analyses in-
dicated that cue weight awareness did not differ across 
conditions ( p  .3) or response strategies ( p  .7); 
the interaction also was not significant ( p  .4). Cue–
outcome awareness, by contrast, varied with the type of 

To determine whether the timing of feedback delivery 
affected the participants’ level of structure awareness, in-
dependent samples t tests were conducted on each aware-
ness measure. No difference emerged in cue–outcome 
awareness for the participants in the no-delay (M  2.6, 
SE  0.24) and delay (M  2.7, SE  0.25) conditions 
( p  .8). Similarly, the participants in the immediate-
feedback (M  0.2, SE  0.02) and delayed-feedback 
(M  0.22; SE  0.02) conditions exhibited comparable 
levels of cue weight awareness ( p  .7). The participants 
were relatively accurate in their cue weight estimates; a se-
ries of one-sample t tests comparing the mean cue weight 
estimate provided by the participants with the actual 
cue weight revealed no significant differences for Cue 1 
[strong sun; t(37)  1.27, p  .2], Cue 2 [weak sun; 
t(37)  1.55, p  .1], Cue 3 [weak rain; t(37)  0.3, 
p  .7], or Cue 4 [strong rain; t(37)  0.69, p  .5]. These 
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colleagues are difficult to verbally rehearse, the partici-
pants could easily have rehearsed the WPT stimuli (e.g., 
“stars, circles, and squares”) during the delay period. In 
this way, synapses associated with the auditory represen-
tation of the stimulus would remain active throughout the 
delay period. Unfortunately, it is difficult to differenti-
ate between such aural implicit learning and explicit rule 
learning, since any manipulation designed to disrupt one 
of these processes would likely disrupt the other. Conse-
quently, it is difficult to determine whether the null effects 
in the present experiment reflected the absence of implicit 
learning or a shift in the way the participants implicitly 
learned the task.

EXPERIMENT 2

To further examine the relative contributions of  implicit- 
and explicit-learning processes in WPT performance, Ex-
periment 2 minimized explicit processes by limiting the 
time available for the participants to process feedback. 
Typically, participants are given 2–5 sec to respond to the 
categorization stimulus and a similar amount of time to 
process feedback prior to beginning the next trial (e.g., 
Foerde et al., 2006; Foerde et al., 2007; Gluck et al., 2002; 
Knowlton et al., 1994). These delays allow participants the 
time to perform the hypothesis-testing processes necessary 
for explicit category learning. Here, hypothesis testing was 
disrupted by requiring the participants to respond within 
1 sec after the categorization stimulus appeared and then 
complete an attention-demanding memory-scanning task 
immediately following the delivery of feedback. These 
manipulations have been shown to significantly disrupt 
explicit category learning, yet have minimal impact on 
implicit-learning processes (Maddox et al., 2004). As with 
Experiment 1, performance was assessed through mean 
classification accuracy and individual response strategies 
for each block of the task. Measures of structure awareness 
were also collected once the task had been completed.

Method
Participants

Thirty-two undergraduate students participated for partial fulfill-
ment of a class requirement. The participants were randomly as-
signed to complete either the long-feedback-processing condition 
(long feedback; n  16) or the short-feedback-processing condition 
(short feedback; n  16).

Materials and Procedure
Memory scanning. The memory-scanning task followed the 

procedure outlined by Maddox et al. (2004). On each trial, four dig-
its (0–9) were randomly selected and displayed for 500 msec in 48-
point type. Each digit appeared at the corner of an imaginary square, 
400 pixels in height and width, centered on the screen. Following 
memory set presentation, a blank screen appeared for 1,000 msec, 
followed by a single probe digit. The probe was sampled randomly 
with a .5 probability of having been shown in the memory set. The 
selected digit was centered on the screen with the question, “Was 
this one of the numbers you saw?” The participants then responded 
yes or no by pressing one of two labeled keys that were different 
from those used in classification learning. The memory-scanning 
task was emphasized to the participants as the primary task, and they 
were told to respond as accurately as possible.

response strategy [F(2,32)  14.22, p  .001]. Post hoc 
Tukey HSD tests indicated that the participants who relied 
on an integrative response strategy were able to correctly 
identify more cue–outcome relationships than were those 
participants who relied on a singleton or one-cue strategy; 
no difference emerged between the participants who used 
one-cue or singleton strategies. Neither the main effect 
of condition ( p  .1) nor the interaction of condition and 
strategy type ( p  .2) was significant. Together, these data 
indicated that the participants who relied on an integra-
tive strategy had more extensive declarative knowledge of 
the WPT structure than did those who relied on a simple 
strategy. In addition, higher accuracy on the WPT was 
associated with greater awareness of the individual cue–
outcome relationships [r(37)  .76, p  .001] and more 
accurate cue weight awareness [r(37)  .55, p  .001], 
indicating that structure awareness also was associated 
with classification performance.

Discussion

The overall results of Experiment 1 indicated that a 
delay in feedback delivery had no impact on classifica-
tion accuracy at any point in the task or on the distribution 
of response strategies in use. Regardless of when feedback 
occurred, the participants exhibited a similar progression 
from relying on simple one-cue and singleton strategies to 
relying on more integrative strategies. These data indicate 
that the explicit learning processes are sufficient to sup-
port a reliance on integrative strategies. This conclusion 
is further supported by the finding that explicit structure 
awareness was more extensive for the participants who re-
lied on an integrative strategy, relative to those who relied 
on simpler strategies.

These findings converge with previous studies of WPT 
performance that have demonstrated normal WPT perfor-
mance despite significant delays in feedback delivery (up 
to 6 sec; Aron et al., 2004; Heffernan & Newell, 2008; 
Poldrack et al., 2001). Neurobiological theories of cat-
egory learning (e.g., Ashby & Valentin, 2005;  Shohamy 
et al., 2008) argue that implicit learning depends on 
reinforcement-mediated dopamine signals that alter the 
synaptic connections associated with the immediately 
preceding stimulus and associated response. If reinforce-
ment is delayed, the dopamine release will modify inap-
propriate synapses, thereby disrupting implicit learning. 
Explicit learning is unaffected by a delay in feedback, 
presumably because the relevant rule can be verbalized 
and maintained in working memory until feedback occurs 
(Maddox & Ashby, 2004).

Consistent with this, feedback delay disrupted informa-
tion integration category learning, which is thought to de-
pend on implicit processes, but had no impact on explicit, 
rule-based category learning (Maddox et al., 2003; Mad-
dox & Ing, 2005). Failure to find any effect of feedback 
delay here or in other studies suggests that the WPT does 
not necessitate implicit processes. It is worth noting, how-
ever, that the feedback delay manipulation may not have 
actually disrupted implicit learning processes on the WPT. 
Whereas the Gabor-patch stimuli used by Maddox and 
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ditions, classification accuracy improved over the course 
of the task, as evidenced by a significant main effect of 
block [F(3,90)  7.00, p  .001]. The interaction of block 
and condition was not significant ( p  .9), suggesting that 
the disruptive effect of limiting feedback-processing time 
did not dissipate as the task progressed.

Learning on each block was separately assessed for 
the short- and long-feedback conditions, using one-tailed 
t tests to determine whether classification accuracy ex-
ceeded chance levels (50% accuracy). In the long-feedback 
condition, mean accuracy exceeded chance on Block 1 
[t(15)  2.50, p  .05], Block 2 [t(15)  3.70, p  .01], 
Block 3 [t(15)  5.95, p  .001], and Block 4 [t(15)  
5.50, p  .001]. By contrast, performance in the short-
feedback condition exceeded chance only on the final 
block [t(15)  2.53, p  .05]; performance was no better 
than chance on Block 1 [t(15)  0.50, p  .6], Block 2 
[t(15)  1.12, p  .2], or Block 3 [t(15)  2.02, p  .06]. 
These analyses indicated that although the participants in 
the short-feedback condition performed poorly, evidence 
of learning emerged after considerable training.

Strategy Analysis
Determination of individual response strategies fol-

lowed the procedure described in Experiment 1. The dis-
tribution of response strategies within each block is shown 
separately for each condition in Figure 5.

Frequency of inappropriate strategies. An inspec-
tion of Figure 4 indicates that a number of participants, 
especially those in the short-feedback condition, relied 
on a random or incorrect strategy at some point in the 
task. As in Experiment 1, the three classes of correct strat-
egies (one cue, singleton, and integrative) were pooled 
together as a single group of correct strategies. To deter-
mine whether the distribution of random, incorrect, and 
correct strategies varied across the two conditions, a se-
ries of chi-square analyses were conducted within each 
block. On Block 1, the distribution of strategies varied 
across conditions ( 2  7.11, p  .05), reflecting the fact 
that the participants in the short-feedback condition were 
more likely than those in the long-feedback condition to 
rely on an incorrect strategy. The distribution of strategies 
also varied on Block 2 ( 2  5.93, p  .05), reflecting the 
fact that the participants in the short-feedback condition 
were more likely than those in the long-feedback condi-
tion to rely on a random strategy; reliance on incorrect 
strategies was similarly low across the two conditions. Al-
though short-feedback participants were less likely than 
long-feedback participants to rely on a correct response 
strategy for Blocks 3 and 4, these trends were not signifi-
cant ( p  .2 in each case).

Given the relatively high incidence of inappropriate 
strategies, it is worthwhile to examine whether reliance on 
inappropriate strategies varied over the course of the task. 
A series of Wilcoxon signed ranks tests, pooled across 
conditions, indicated that the participants were more 
likely to rely on correct strategies as the task progressed. 
Relative to Block 1, reliance on correct strategies was 
higher in Block 3 (z  2.80, p  .01) and Block 4 (z  

2.32, p  .05). Similarly, relative to Block 2, reliance on 

Classification-learning trials. The structure of the WPT was 
identical to that outlined in Experiment 1, with the following ex-
ceptions. Following each classification trial, the participants com-
pleted a trial of memory scanning. The procedure for a typical 
trial within each condition was as follows: Short-feedback condi-
tion, classification stimuli appeared/response/500-msec correc-
tive feedback/500-msec memory scan stimulus/1,000-msec delay/
memory scan probe/2,500-msec delay/2,000-msec delay; long feed-
back condition, classification stimuli appeared/response/500-msec  
corrective feedback/2,500-msec delay/500-msec memory scan 
 stimulus/1,000-msec delay/memory scan probe/2,000-msec delay. 
In both conditions, the participants were required to respond to the 
classification stimulus within 1 sec of its appearance. To ensure that 
the participants were comfortable responding this quickly, they com-
pleted 20 trials each of practice on the classification task by itself, 
the memory-scanning task by itself, and finally the classification 
task and memory-scanning task together. On these practice trials, the 
only feedback provided to the participants on the classification task 
was an indication of the response they had made (“You responded 
rain”); they were not informed of whether or not they were correct. 
Upon finishing the WPT, the participants completed an assessment 
of structure awareness identical to that outlined in Experiment 1.

Results

Classification Accuracy
For each participant, the proportion of optimal responses 

was computed for each block. Figure 4 illustrates the pro-
portion of optimal responses for each condition as a func-
tion of block. Chi-square analysis indicated that a higher 
proportion of participants in the short-feedback condition 
(31%) than in the long-feedback condition (0%) failed to 
exceed chance levels of performance [ 2(N  32)  5.93, 
p  .05]. To further assess the impact of limited feedback-
processing time, a mixed ANOVA was conducted with 
learning condition (long feedback vs. short feedback) and 
block (1–4) as factors. A significant effect of condition 
indicated that the participants in the short-feedback condi-
tion made fewer optimal responses (M  .55, SE  .10) 
than did those in the long-feedback condition (M  .63, 
SE  .10) [F(1,30)  5.71, p  .05]. Across the two con-
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Figure 4. Proportion of optimal responses for each condition of 
Experiment 2 as a function of block. Error bars represent stan-
dard errors of the means. FB, feedback.
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egies) or integrative. A series of Wilcoxon signed ranks 
tests indicated that reliance on integrative strategies was 
higher in Block 4 than in Block 1 (z  2.11, p  .05); 
no other block differences in strategy use emerged. The 
same pairwise block comparisons were conducted on the 
distribution of singleton versus one-cue strategies, but no 
differences emerged across any of the blocks ( p  .2 for 
each block comparison). These data indicated that across 
conditions, the participants relied primarily on simple 
strategies until the final block of the task, at which point a 
few participants began to rely on integrative strategies.

Relationship of strategy and accuracy. To deter-
mine whether the participants in the two feedback condi-
tions differed in the way in which they made use of correct 
strategies, separate ANOVAs were conducted on mean ac-
curacy within each block, with condition and strategy type 
(one cue, singleton, and integrative) as factors. No effect 
of strategy type emerged for Block 1 [F(2,18)  3.07, 
p  .08] or Block 2 [F(2,16)  1.84]. Performance did 
vary by strategy type for Block 3 [F(2,21)  21.62, p  
.001] and Block 4 [F(2,22)  21.18, p  .001]; in each 
of these blocks, post hoc Games–Howell tests indicated 
that performance was higher for those using an integra-
tive strategy than for those relying on either of the simple 
strategies; no differences in accuracy emerged between 
the participants relying on one-cue and singleton strate-
gies. Regardless of block, performance did not vary by 
feedback-processing condition, nor did the effect of strat-
egy type vary by condition. To summarize, among the par-
ticipants who relied on correct response strategies, WPT 
performance was generally unaffected by the amount of 
time available for feedback processing but varied consid-
erably with the type of strategy in use.

Structure Awareness
Following the methods outlined in Experiment 1, two 

measures of structure awareness were created for each par-
ticipant: (1) number of correctly identified cue–outcome 
relationships and (2) cue weight awareness, based on the 
degree to which the participants’ cue weight estimates de-
viated from the true cue weights. In Tables 2 and 3, the 
participants’ awareness of the cue–outcome relationships 
and underlying cue weights, respectively, are presented for 
each individual cue as a function of feedback condition.

The participants in the long-feedback condition cor-
rectly identified more cue–outcome relationships (M  
2.56, SE  0.20) than did those in the short-feedback 
condition (M  1.56, SE  0.27) [t(30)  2.93, p  .01]. 
Similarly, the cue weight estimates provided by the par-
ticipants in the long-feedback condition (M  1.93, SE  
0.02) tended to deviate less from the true cue weights than 
did the estimates provided by the participants in the short-
feedback condition (M  0.25, SE  0.02) [t(30)  1.93, 
p  .06]. Neither of the groups was entirely accurate at 
estimating the individual cue weights, however. A series 
of one-sample t tests comparing the actual cue weight with 
the mean of estimates provided by the participants in the 
short-feedback condition revealed significant differences 
for Cue 1 [strong sun; t(15)  3.97, p  .01], Cue 2 [weak 
sun; t(15)  1.97, p  .08], Cue 3 [weak rain; t(15)  

correct strategies was higher in Block 3 (z  1.98, p  
.05) and Block 4 (z  2.01, p  .05). No other paired 
block comparisons were significant ( p  .1). Together, 
these analyses indicated that the frequency with which 
the participants relied on inappropriate response strategies 
was higher in the short-feedback condition but that both 
groups exhibited increased reliance on correct strategies 
as the task progressed.

Distribution of correct response strategies. Al-
though a number of participants relied on inappropriate 
(random or wrong) strategies, it is worthwhile to also 
examine the distributions of the three types of correct 
response strategies—namely, singleton, one-cue, and in-
tegrative strategies. A series of chi-square analyses con-
ducted within each block indicated that the distribution of 
correct strategies did not differ across the two conditions 
for Block 1 [ 2(2, N  18)  0.60, p  .7], Block 2 [ 2(2, 
N  22)  0.63, p  .7], Block 3 [ 2(2, N  27)  0.52, 
p  .7], or Block 4 [ 2(2, N  28)  1.0, p  .7]. Thus, 
among the participants who relied on correct strategies, 
feedback processing time had little impact on the particu-
lar strategy in use.

To examine whether the distribution of correct strategies 
varied over the course of the task, response strategies were 
reclassified as either simple (one-cue and singleton strat-
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Figure 5. Strategy distribution for the participants in Experi-
ment 2 as a function of block under conditions of short feedback 
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the participants in the short-feedback condition failing to 
exceed chance levels of performance by the final block. 
Disruption of feedback processing also increased the 
participants’ tendency to rely on inappropriate response 
strategies and reduced their level of structure awareness. 
Furthermore, WPT learning was correlated with structure 
awareness, but only when feedback-processing time was 
sufficient to support explicit-learning processes. These 
findings emphasize the necessity of explicit processes in 
WPT performance.

It is worth noting that although performance in the 
short-feedback condition was especially poor, perfor-
mance in the long-feedback condition was not especially 
strong either. Whereas the participants in Experiment 1 
averaged 68% optimal responses, those in the long-
 feedback condition in this experiment averaged only 63% 
optimal responses, suggesting that learning was hampered 
in both conditions in Experiment 2. Similarly, Maddox 
et al. (2004) examined the impact of disrupting feedback 
processing on rule-based and information integration 
tasks and found that a sizable percentage of participants 
failed to exceed chance levels of performance in the long-
feedback (31%) and short-feedback (41%) conditions of 
a rule-based task. By contrast, very few participants (8%) 
failed to exceed chance on an information integration task, 
regardless of whether feedback processing was disrupted. 
It is likely that the requirement to respond rapidly ( 1 sec 
of stimulus appearance) limited the participants’ ability to 
perform hypothesis-testing processes prior to responding. 
Thus, the relatively poor performance of the participants 
in this experiment further supports the argument that the 
WPT relies on explicit hypothesis-testing processes.

GENERAL DISCUSSION

In this study, the contributions of implicit and explicit 
category-learning processes to WPT performance were 
examined. In Experiment 1, disruption of implicit learn-
ing processes by a delay in feedback had no effect on clas-
sification performance or the distribution of individual 
response strategies. In Experiment 2, disrupting explicit-
learning processes by limiting feedback-processing time 
had a substantial impact on WPT performance. When ex-
plicit hypothesis testing was disrupted, the participants 
exhibited only a minimal amount of learning and were less 
likely than others to rely on a correct response strategy. In 
addition, strategy analyses in both experiments indicated 
that both implicit and explicit processes were sufficient to 
support simple, one-cue, or singleton strategies, as well as 
more complex integrative strategies. These findings chal-
lenge the idea (e.g., Shohamy et al., 2008) that the use of 
particular types of strategies reflects a specific reliance on 
either implicit- or explicit-learning processes.

The present pattern of findings suggests that WPT 
learning was driven primarily by declarative processes. 
However, although the participants in the short-feedback 
condition performed poorly, they did exhibit learning 
after considerable training. It is possible that disrupting 
feedback processing hampered, but did not eliminate, 
explicit-learning processes. Previous work with explicit, 

2.34, p  .05], and Cue 4 [strong rain; t(15)  6.58, p  
.001]. A similar set of analyses conducted on the cue 
weight estimates provided by the participants in the long-
feedback condition revealed significant differences for 
Cue 1 [t(15)  3.13, p  .01], Cue 2 [t(15)  2.42, p  
.05], and Cue 4 [t(15)  2.56, p  .5]; estimates for Cue 3 
did not differ from the cue’s actual weight [t(15)  0.58, 
p  .8]. As is detailed in Table 3, although the cue weight 
estimates were not especially accurate, those provided by 
the participants in the long-feedback condition were in the 
correct direction for all four cues, whereas the mean esti-
mates provided by the participants in the short-feedback 
condition were in the correct direction for Cue 1 (strong 
sun card) only.

To better understand the relationship between struc-
ture awareness and strategy use, separate ANOVAs were 
conducted on each measure, with condition (short vs. 
long feedback) and final block response strategy (one 
cue, singleton, and integrative) as factors. These analy-
ses indicated that response strategy predicted the level of 
cue–outcome awareness [F(2,22)  5.49, p  .05] and 
cue weight awareness [F(2,22)  3.60, p  .05]. The par-
ticipants who relied on an integrative strategy in the final 
block tended to hold greater awareness of individual cue 
weights and cue–outcome relationships than did the par-
ticipants who relied on a one-cue or singleton strategy (see 
Figure 3); Tukey’s HSD tests indicated that these pairwise 
differences were not significant, however. The effect of 
strategy type on awareness did not vary with condition, 
however. The condition  strategy type interaction was 
not significant for the cue–outcome measure ( p  .1) or 
the cue weight measure ( p  .7).

Awareness was associated not only with the type of re-
sponse strategy that a participant used in the final block, 
but also with overall performance on the WPT. Pooled 
across conditions, higher classification accuracy on the 
WPT was associated with greater awareness of the indi-
vidual cue–outcome relationships [r(31)  .63, p  .01] 
and more accurate knowledge of underlying cue weights 
[r(31)  .56, p  .01]. These relationships were driven 
primarily by the participants in the long-feedback con-
dition [cue–outcome awareness, r(15)  .61, p  .05; 
cue-weight estimate, r(15)  .57, p  .05]; no relation-
ships emerged within the short-feedback condition [cue– 
outcome awareness, r(15)  .31, p  .3; cue weight esti-
mate, r(15)  .27, p  .3].

In summary, these data indicated that structure aware-
ness was greater among those participants who received 
time to explicitly process feedback. Furthermore, struc-
ture awareness, which was associated with WPT accuracy, 
was higher for those participants who relied on an integra-
tive response strategy during the final classification block, 
relative to those who relied on a simpler strategy.

Discussion
The results of Experiment 2 indicated that WPT learn-

ing was slower and less robust when explicit processing of 
feedback was minimized. The negative impact of reduced 
feedback processing was apparent early in the WPT and 
remained as the task progressed, with roughly one third of 
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has varied across studies (for impaired WPT learning, see 
Heffernan & Newell, 2008; Newell et al., 2007; for nor-
mal WPT learning, see Foerde et al., 2006; Foerde et al., 
2007). Specifically, the participants learned normally 
when the secondary task primarily taxed working mem-
ory resources during stimulus presentation but had diffi-
culty when a secondary task demanded working memory 
throughout the entire trial, including the period in which 
feedback was processed. In conjunction with the present 
findings, these results suggest that normal WPT learning 
develops only when sufficient attentional resources are 
available to support effective feedback processing. Col-
lectively, these results suggest that WPT learning depends 
primarily on explicit, rule-based processes.

Importantly, this behavioral evidence suggests a rein-
terpretation of neuroimaging evidence regarding WPT 
performance. In particular, as participants progress 
through the WPT, striatal activation increases (Aron et al., 
2005; Poldrack et al., 2001; Seger & Cincotta, 2005); this 
has typically been interpreted as indicating the operation 
of nondeclarative learning processes, but the present re-
sults challenge this assumption. Considerable evidence 
points to the necessity of striatal activity in both explicit 
(e.g., Ell, Marchant, & Ivry, 2006; Eslinger & Grattan, 
1993; Nomura et al., 2007) and implicit (e.g., Nomura 
et al., 2007) category learning. Thus, one cannot inter-
pret striatal activation during a category-learning task 
as evidence that the task specifically demands implicit, 
or explicit, processes (Ashby & Valentin, 2005). Given 
accumulating evidence pointing to a necessary role for 
declarative-learning processes in WPT performance, it is 
reasonable to conclude that striatal activity during WPT 
performance reflects a reliance on explicit, rule-based 
learning. Future neuroimaging examinations of the task 
should include manipulations, such as those used here, or 
particular category structures (e.g., rule-based vs. infor-
mation integration structures) that have been previously 
demonstrated to specifically emphasize either explicit- or 
implicit-learning processes. This would help to distin-
guish the nature of the neural activity that supports each 
of these processes.

Although the WPT is often referred to as a measure of 
nondeclarative learning, it does not fit with theoretical 
conceptualizations of nondeclarative category learning 
(e.g., Ashby et al., 1998; Maddox & Ashby, 2004). Spe-
cifically, implicit category-learning tasks are optimally 
performed using a strategy that is not readily verbalized, 
are impaired by a delay in feedback, and are unaffected 
by disruptions to hypothesis-testing processes, due to ex-
perimental manipulations or declines in executive func-
tion. Evidence here and elsewhere has indicated that the 
WPT fails to satisfy these conditions (Gluck et al., 2002; 
Knowlton et al., 1996; Lagnado et al., 2006; Meeter et al., 
2006; Newell et al., 2007; Price, 2005, 2006; Reber et al., 
1996). Several recent articles have argued that the pat-
tern of evidence regarding the WPT is consistent with the 
existence of a single, explicit category-learning system 
(Lagnado et al., 2006; Newell et al., 2007; Zaki, 2004). 
However, the conceptualization of category learning as 
depending on a unitary, explicit system is difficult to 

rule-based category structures showed that when feedback 
processing was disrupted, participants required greater 
training to acquire the optimal, rule-based strategy (Mad-
dox et al., 2004). Similarly, many participants in the 
short-feedback processing condition ultimately arrived at 
a successful strategy after extended training. Thus, late 
improvement in WPT performance may reflect the slowed 
development of explicit knowledge.

Alternatively, it is possible that performance improve-
ments in the short-feedback condition reflected the late 
emergence of implicit knowledge. The participants may 
have developed implicit knowledge throughout the task 
but were unable to express it due to initial persistence with 
inappropriate response strategies. Elsewhere, reliance on 
inappropriate explicit strategies hampered the expression 
of implicit knowledge (Howard & Howard, 2001; Jitsu-
mori, 1993; Maddox & Ashby, 2004; Maddox et al., 2003). 
Performance improves once participants abandon their 
unsuccessful response strategies and begin to rely on im-
plicit knowledge. Alternatively, the late improvements in 
WPT performance could indicate that the development of 
implicit knowledge requires extensive practice. However, 
learning of information integration category structures, 
which is thought to rely on implicit processes, developed 
within the first block of 80 trials, even when feedback 
processing was disrupted (Maddox et al., 2004; Waldron 
& Ashby, 2001; Zeithamova & Maddox, 2006).

If implicit category learning requires extensive train-
ing, disrupting implicit processes through a delay in feed-
back, as in Experiment 1, may impact performance only 
after considerable training. Consequently, the WPT used 
here could have been too brief to support the intended as-
sessment of implicit processes. Although this possibility 
cannot be ruled out, it runs counter to previous claims 
of implicit knowledge expression in shorter versions of 
the task, which included roughly 100 classification tri-
als (Aron et al., 2005; Foerde et al., 2006; Poldrack et al., 
2001; Poldrack et al., 1999). Moreover, feedback delay 
disrupts information integration category learning within 
the first block of 80 trials (Maddox et al., 2003; Maddox 
& Ing, 2005). In contrast, these same studies showed that 
delayed feedback had no impact on explicit, rule-based 
category-learning performance, even when training was 
extended to 300 trials. Consequently, it is unlikely that 
extending the length of the WPT would have eventually 
revealed evidence of implicit category knowledge.

Instead, the pattern of classification performance 
across the two experiments emphasizes the importance 
of explicit processes for WPT performance. This possi-
bility is further supported by evidence that classification 
performance and response strategy were strongly associ-
ated with explicit awareness of the underlying strategy. 
Specifically, the participants who relied on an integrative 
strategy, which most closely approximates the optimal re-
sponse strategy, tended to be those who verbalized greater 
structure awareness.5 These results converge nicely with 
previous behavioral research pointing to the necessity of 
attentional resources for WPT learning. Performance of 
an attention-demanding secondary task has been shown to 
disrupt WPT performance, but the nature of this disruption 
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information. Similarly, implicit and nondeclarative are used interchange-
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of the learned information.
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computed by calculating the probability that rain would occur follow-
ing a particular cue, divided by the total probability that the cue would 
occur, regardless of the outcome. For example, as one can calculate from 
Table 1, in the case of Cue 1, the probability that Cue 1 would be present 
and that rain could occur [P(cue combination)  P(rain)] is calculated 
by summing across Patterns 8–15 (.346); the total probability that Cue 1 
would occur regardless of the outcome equals the sum of each P(cue 
combination) for Patterns 8–15 (.462). Thus, the association of Cue 1 
with rain can be calculated by computing the probability that rain would 
occur following Cue 1 (.346) and dividing by the total probability that 
Cue 1 would occur (.462). This value is .346/.462, or 75%.

3. Analysis of response strategies initially differentiated between 
inter mediate strategies (Meeter et al., 2006), defined as the singleton 
plus and 2v1 strategies, and optimal strategies, defined as the all but 2v1 
and multicue strategies. However, only 2% of the participants relied on 
an optimal strategy in the final block of trials. To increase the power of 
the strategy analyses, these participants were combined with the 36% of 
participants who were relying on an intermediate strategy.

4. The number of participants included in each analysis varied because 
the participants who relied on a random or wrong response strategy on 
that block were excluded from that particular analysis.

5. Although these relationships were not statistically significant 
among the participants in the short-feedback condition, they were in 
the predicted directions; higher accuracy was associated with greater 
cue–outcome awareness and more accurate cue weight estimates. In ad-
dition, the participants in the short-feedback condition who performed 
above chance in the final block were relying primarily on simple strate-
gies (singleton, one cue). The participants who relied on these simple 
strategies were most likely aware of some aspects of the categorization 
structure but, nevertheless, exhibited poor structure awareness, perhaps 
because both awareness measures collapsed across all four cues.

(Manuscript received March 24, 2008; 
revision accepted for publication September 24, 2008.)

task conditions: Alternatives to a resource-based account. Psychologi-
cal Research, 69, 352-368.

Jitsumori, M. (1993). Category discrimination of artificial polymor-
phous stimuli based on feature learning. Journal of Experimental Psy-
chology: Animal Behavior Processes, 19, 244-254.

Kéri, S., Szlobodnyik, C., Benedek, G., Janka, Z., & GÁdoros, J. 
(2002). Probabilistic classification learning in Tourette syndrome. 
Neuropsychologia, 40, 1356-1362.

Kerr, J. N. D., & Wickens, J. R. (2001). Dopamine D-1/D-5 receptor 
activation is required for long-term potentiation in the rat neostriatum 
in vitro. Journal of Neurophysiology, 85, 117-124.

Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostri-
atal habit learning system in humans. Science, 273, 1399-1402.

Knowlton, B. J., Squire, L. R., & Gluck, M. A. (1994). Probabilistic 
category learning in amnesia. Learning & Memory, 1, 106-120.

Lagnado, D. A., Newell, B. R., Kahan, S., & Shanks, D. R. (2006). 
Insight and strategy in multiple cue learning. Journal of Experimental 
Psychology: General, 135, 162-183.

Maddox, W. T., & Ashby, F. G. (2004). Dissociating explicit and 
procedural- learning based systems of perceptual category learning. 
Behavioural Processes, 66, 309-332.

Maddox, W. T., Ashby, F. G., & Bohil, C. J. (2003). Delayed feedback 
effects on rule-based and information-integration category learning. 
Journal of Experimental Psychology: Learning, Memory, & Cogni-
tion, 29, 650-662.

Maddox, W. T., Ashby, F. G., Ing, A. D., & Pickering, A. D. (2004). 
Disrupting feedback processing interferes with rule-based but not in-
formation integration category learning. Memory & Cognition, 32, 
582-591.

Maddox, W. T., Baldwin, G. C., & Markman, A. B. (2006). A test 
of the regulatory fit hypothesis in perceptual classification learning. 
Memory & Cognition, 34, 1377-1397.

Maddox, W. T., & Filoteo, J. V. (2001). Striatal contribution to cat-
egory learning: Quantitative modeling of simple linear and complex 
nonlinear rule learning in patients with Parkinson’s disease. Journal of 
the International Neuropsychological Society, 7, 710-727.

Maddox, W. T., & Ing, A. D. (2005). Delayed feedback disrupts the 
procedural-learning system but not the hypothesis testing system in 
perceptual category learning. Journal of Experimental Psychology: 
Learning, Memory, & Cognition, 31, 100-107.

Meeter, M., Myers, C. E., Shohamy, D., Hopkins, R. O., & Gluck, 
M. A. (2006). Strategies in probabilistic categorization: Results from a 
new way of analyzing performance. Learning & Memory, 13, 230-239.

Newell, B. R., Lagnado, D. A., & Shanks, D. R. (2007). Challeng-
ing the role of implicit processes in probabilistic category learning. 
Psychonomic Bulletin & Review, 14, 505-511.

Nomura, E. M., Maddox, W. T., Filoteo, J. V., Ing, A. D., Gitelman, 
D. R., Parrish, T. B., et al. (2007). Neural correlates of rule-based 
and information-integration visual category learning. Cerebral Cor-
tex, 17, 37-43.

Nosofsky, R. M., & Johansen, M. K. (2000). Exemplar-based accounts 
of “multiple-system” phenomena in perceptual categorization. Psy-
chonomic Bulletin & Review, 7, 375-402.

Poldrack, R., Clark, J., ParÉ-Blagoev, E. J., Shohamy, D., Creso 
Moyano., J., Myers, C., & Gluck, M. (2001). Interactive memory 
systems in the human brain. Nature, 414, 546-550.

Poldrack, R. A., & Packard, M. G. (2003). Competition among mul-
tiple memory systems: Converging evidence from animal and human 
brain studies. Neuropsychologia, 41, 245-251.

Poldrack, R. A., Prabakharan, V., Seger, C., & Gabrieli, J. D. E. 
(1999). Striatal activation during cognitive skill learning. Neuropsy-
chology, 13, 564-574.

Price, A. (2005). Cortico-striatal contributions to category learning: 
Dissociating the verbal and implicit systems. Behavioral Neurosci-
ence, 119, 1438-1447.

Price, A. (2006). Explicit category learning in Parkinson’s disease: 
Deficits related to impaired rule generation and selection processes. 
Neuropsychology, 20, 249-257.

Reber, P., Knowlton, B., & Squire, L. (1996). Dissociable properties 
of memory systems: Differences in the flexibility of declarative and 
nondeclarative memory. Behavioral Neuroscience, 110, 861-871.


