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Most category learning involves an interplay between 
prior knowledge and basic associative learning. When 
we learn about a new kind of thing, we generally know 
something about that domain (animals, electronic devices, 
medical conditions) already. But learning the new concept 
nevertheless requires that we encounter examples and as-
sociate properties to a category representation. In the pres-
ent article, we investigate how the creation of these asso-
ciations interacts with prior knowledge during learning.

Relevant prior knowledge speeds concept learning (Mur-
phy & Allopenna, 1994; Pazzani, 1991). For instance, an 
experienced game-player’s knowledge of past games and 
their rules makes it easy to learn a novel game, and a car 
mechanic’s knowledge of engines helps him or her quickly 
learn about a new car model. Even a minimal amount of 
prior knowledge (only one in five features connected to 
prior knowledge) can reduce the number of learning trials 
and increase what is learned about novel concepts (Kaplan 
& Murphy, 2000).

However powerful, the effects of prior knowledge are 
not addressed by most current categorization theories. 
Although our understanding of concept learning has ad-
vanced over the past 30 years through the development of 
sophisticated models, such models address how people 
learn to respond to category exemplars varying on simple 
dimensions (e.g., line length, orientation, color), with 
little or no connection to prior conceptual knowledge. 
The models do well in characterizing people’s behavior in 
learning these types of simple concepts. In the next sec-
tions, we will discuss the formal properties of some of 
these models and then relate those properties to the issue 
of how knowledge influences category learning.

Minimal-Learning Models
Standard category-learning models are based on error-

driven learning mechanisms, whether they are exemplar 
(Kruschke, 1992; Kruschke & Johansen, 1999), rule-
based (Nosofsky, Palmeri, & McKinley, 1994), or hy-
brid (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; 
Erickson & Kruschke, 1998, 2002) models. Such mod-
els assume that category learning is driven by the goal 
of reducing classification error to zero. This assumption 
derives from earlier work on associative learning, such as 
the Rescorla–Wagner learning model (Rescorla & Wag-
ner, 1972), which proposes that once a stimulus can be 
predicted by other stimuli, no further associative learning 
will take place. In the classical conditioning paradigm of 
blocking (Kamin, 1969), once an animal has learned that 
a light predicts a shock and is then exposed to stimuli con-
sisting of the light plus a tone, resulting in shock, it will 
not learn that the tone predicts the shock. The shock is 
already fully predicted by the light, and therefore, there is 
no prediction error to drive the formation of an association 
between the tone and the shock.

In many models of human category learning, forming as-
sociations (between features or exemplars and a category) 
works in a similar way. When the model makes incorrect 
classifications, associations are changed to decrease this 
error. When the category is correctly predicted, this up-
dating stops, and no further learning occurs. In computa-
tional models, this assumption can be found in learning 
algorithms using versions of the Widrow–Hoff learning 
rule (Widrow & Hoff, 1960), such as backpropagation (for 
a discussion, see Gluck & Bower, 1988; Kruschke, 1993). 
When models use error in this way, loosely speaking, only 
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Bloom, 2000; Carey, 1978; Murphy, 2001). People know 
dozens of features of everyday concepts, such as cars, 
cows, and coffee, so it seems unlikely that those concepts 
were learned by exactly the same mechanism as the one 
that exhibits blocking, cue competition, and other limita-
tions on how much can be learned. Hoffman and Murphy 
(2006) suggested that high-dimensional categories may 
foster learning about the category in general, perhaps by 
causing learners to allocate free attention to unlearned 
stimulus dimensions.1 Rather than treating attention as 
strictly limited and spread across the stimulus dimensions, 
they argued that when a category has more dimensions, 
more attention is recruited to learn about them, if they 
seem relevant to understanding the category. This may not 
take place in classical conditioning or probabilistic cue 
learning, when there is no need to learn about the stimuli 
beyond giving the right answer in the task.

Prior Knowledge and Feature Co-Occurrence
We can now return to the issue of how prior knowl-

edge might be involved in learning to associate category 
features to a representation. The goal of understanding 
feature relations via prior knowledge may, in fact, drive 
additional learning beyond that which is necessary for 
classification (Murphy & Allopenna, 1994; Rehder & 
Ross, 2001). In fact, recent connectionist accounts pro-
pose that knowledge encourages learners to relate features 
either indirectly through previously known concepts or 
through feature–feature links (Heit & Bott, 2000; Reh-
der & Murphy, 2003). These mechanisms increase activa-
tion to (and therefore, learning of ) category labels and 
features. Perhaps this mechanism would lead to greater 
feature learning much as does the high-dimensionality 
manipulation of Hoffman and Murphy (2006).

In fact, there is evidence that prior knowledge can help 
people learn more about a category. Murphy and Allo-
penna (1994) observed both faster learning rates (three 
times faster) and enhanced learning of the category’s fea-
tures when the features were related to one another than 
when they were not related. In fact, correcting for guess-
ing (see below), the average subject in the knowledge-
 unrelated condition learned the minimum number of 
features necessary to achieve perfect classification per-
formance (around 3 dimensions out of 5), but the average 
subject in the knowledge-related condition learned more 
(4.2 dimensions). Thus, subjects not only learned faster in 
the presence of prior knowledge, they learned more about 
the category even when that additional knowledge was 
not strictly necessary for accurate performance (see also 
Kaplan & Murphy, 2000).

Possible Links Between Knowledge Effects  
and Dimensionality

Apparently, both high-dimensional categories and 
prior knowledge foster learning of a category’s features 
beyond the minimum necessary for accurate classifica-
tion. These variables may work via related mechanisms: 
high dimensionality by recruiting additional capacity for 
learning interdimensional links, and prior knowledge 
by using existing links (Rehder & Murphy, 2003). This 

the minimum amount necessary to achieve correct classi-
fication will be learned. Recall that in the case of blocking 
in classical conditioning, once the animal has learned that 
the light predicts the shock, it does not learn that a tone also 
predicts the shock. In category learning, the analogy would 
be that once people have learned that some stimulus prop-
erties determine categorization, other properties will not 
be learned. We call such models minimal-learning models, 
in that they learn only what is necessary to classify cor-
rectly. Not all error-driven models are minimal- learning 
models, because they include additional mechanisms for 
learning more than what the error signal might allow. For 
example, SUSTAIN (Love, Medin, & Gureckis, 2004) 
has an unsupervised learning component that changes its 
cluster representation of the category when it encounters 
unusual exemplars. As we will demonstrate later, KRES 
(Rehder & Murphy, 2003) uses interactive activation to 
learn more than the minimum necessary.

In previous work (Hoffman & Murphy, 2006, Experi-
ment 3), we investigated whether people are minimal 
learners by examining category learning of objects with 
fewer (four) or more (eight) stimulus dimensions, the 4-D 
and 8-D conditions, respectively. Learning any three di-
mensions in either condition would lead to 100% accu-
racy. If people are like these minimal-learning models, 
they will learn the same number of dimensions in the two 
conditions (i.e., the minimum necessary) or else will learn 
the dimensions less well in the 8-D condition.

A related reason to expect reduced learning of indi-
vidual features in the 8-D case is the cue competition 
(see Kruschke & Johansen, 1999) found in probabilis-
tic cue-learning tasks. Adding features to a category has 
been shown to reduce the use of individual features as 
they compete for attention. In probabilistic learning tasks, 
any particular dimension will be used less in classification 
when additional dimensions are provided (Edgell et al., 
1996), and this effect increases with the salience and cue 
validity of the additional dimensions (Edgell, Bright, Ng, 
Noonan, & Ford, 1992; Edgell et al., 1996, Experiment 6). 
Thus, although adding dimensions to a category might 
not harm classification of whole items, cue competition 
should reduce how much each dimension is used and, 
therefore, the strength of the association between that di-
mension and the category. Thus, there were a number of 
reasons to expect that the learning of categories or the 
categories’ individual features should have been harder in 
the 8-D than in the 4-D condition.

In fact, however, across three experiments, Hoffman 
and Murphy (2006) found similar learning rates in the 4-D 
and 8-D conditions. In Experiment 3, the subjects in the 
8-D condition actually achieved perfect classification per-
formance in fewer blocks, learned more features (correct-
ing for guessing), and were no slower to categorize those 
features than were those in the 4-D condition. Thus, Hoff-
man and Murphy’s results appear inconsistent with studies 
and models suggesting that learning some features of a 
category should interfere with learning other features.

However, these results do seem consistent with the 
unlabored speed with which people (and especially chil-
dren) learn high-dimensional natural categories (see, e.g., 
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tures generally associated with a cold weather climate and Streaths 
with a warm climate. On average, the features in the knowledge and 
no-knowledge conditions contained 2.4 and 2.3 words, respectively.

The categories were composed of 5 (5-D) or 10 (10-D) binary 
dimensions, following the structures depicted in Table 2. In the 5-D 
condition, the subjects learned the category structure shown under 
5-D1 or 5-D2 in Table 2. As is represented in the table, the Mob-
ble category had 1 as the most common value on each dimension, 
whereas Streaths had 0 as the most common value on each dimen-
sion. However, each dimension had an exception feature, so that it 
did not perfectly predict category membership.

Table 2 also shows the category structure for the 10-D condition, 
consisting of Dimensions 1–10. There was one exception feature per 
item. Thus, both conditions had 10 exemplars per category, but the 
exemplars in the 10-D condition had twice as many features as those 
in the 5-D condition. All the dimensions were equally predictive of 
category membership, in all the conditions.

As Table 2 indicates, we created two versions of the 5-D condi-
tion, one using Dimensions 1–5 and the other Dimensions 6–10, so 
that across the two 5-D conditions all 10 dimensions were shown, 
allowing comparisons between the 5-D and the 10-D conditions.

Procedure. We presented items randomly in four blocks of 20 
trials. One exemplar was presented on each trial, with its features 
in a random order. The subjects classified the exemplar by pressing 
the “z” or “/” key on the keyboard. After the response, the correct 
category label appeared above the feature list, and the word CORRECT 
or INCORRECT appeared below it for 5.5 sec. This relatively long feed-
back period was chosen so that the learners in the 10-D conditions 
would have time to read all the stimulus features. Although current 
theories do not predict anything specific about the length of feed-
back influencing the effects of knowledge or dimensionality, it is 
possible that the longer time allowed the subjects to learn more fea-
tures than usual. However, the time was constant across conditions 
and could not be responsible for any of the obtained differences. All 
the subjects classified vehicles for four blocks.

In the test phase, the subjects viewed one of the learning items 
or a single-feature item (see below) and classified it as quickly as 
they could, without feedback. Training and single-feature items were 
presented twice, resulting in 60 test trials for the 5-D condition and 
80 for the 10-D condition.

suggests that the two variables should interact. Although 
there is probably some limit on just how many features can 
be acquired through pure associative learning in a fixed 
learning phase, this limit can be stretched if features are 
linked through knowledge. With prior knowledge, learn-
ing one feature–category association can activate another, 
through a knowledge link. In this way, links between the 
dimensions will feed feature–category associations. For 
example, if the subject learns that Category A vehicles 
have the feature used on glaciers, the related feature has 
treads might be activated, thereby increasing its associa-
tion to the same category. When many related features are 
present, many can take part in this learning process. The 
difference between how much people learn in high- and 
low-dimensional concepts should therefore be magnified 
by the presence of prior knowledge.

The present experiment contrasts learning of lower 
and higher dimensional categories and also contrasts 
knowledge- related and -unrelated features. (Because we 
anticipated that the knowledge-related materials might 
cause ceiling effects, we used 5 and 10 dimensions, rather 
than 4 and 8, as in Hoffman & Murphy, 2006.) In each 
case, a minimum of 3 dimensions was required to learn 
the categories, and all dimensions were equally diagnostic. 
We predicted, first, that the knowledge-related categories 
would lead people to learn more than the minimum num-
ber of dimensions. Second, higher dimensional categories 
should also cause people to learn more properties, even 
though the task does not require it. The first two predic-
tions follow directly from Murphy and Allopenna (1994) 
and Hoffman and Murphy (2006), respectively. Our third 
prediction was that the dimensionality effect would be 
magnified in the knowledge condition because of the 
larger number of knowledge links that can be formed 
in high-dimensional categories. Thus, we predicted that 
the effect of dimensionality on feature learning would be 
greater when knowledge was present.

Following the empirical results, we will present simula-
tions comparing Rehder and Murphy’s (2003) knowledge 
resonance (KRES) model with a minimal-learning model 
based on the assumption of independent contributions from 
stimulus features. The simulations will provide a formal 
demonstration of how processing feature co- occurrences 
can lead to enhanced learning of a concept’s properties 
as a function of dimensionality and prior knowledge. We 
will also confirm that a minimal- learning model cannot 
account for the dimensionality effect.

EXPERIMENT 1

Method
Subjects. Fifty-six New York University students participated for 

pay. They were randomly assigned to one of four conditions created 
by crossing the factors of prior knowledge (knowledge vs. no knowl-
edge) and category dimensionality (5 vs. 10 dimensions).

Materials. The subjects learned categories of vehicles modified 
from Murphy and Allopenna (1994), using short phrases as features. 
As Table 1 shows, in the knowledge condition, the features of each 
category were chosen to be consistent with a theme, whereas in the 
no-knowledge condition, all the features were generic vehicle proper-
ties. In the knowledge condition, the Mobble category contained fea-

Table 1 
Features Associated With Each Category (Mobbles and 

Streaths) for the Knowledge and No-Knowledge Conditions

Dimension  Mobbles  Streaths

No Knowledge

 1 One air bag Two air bags
 2 Colored white Colored green
 3 Cloth seats Vinyl seats
 4 Gasoline fuel Diesel fuel
 5 Rear wheel drive Front wheel drive
 6 Custom license plate Generic license plate
 7 Manual transmission Automatic transmission
 8 Antilock brakes Normal brakes
 9 Four doors Two doors
10 Fast acceleration High top speed

Knowledge

 1 Used on glaciers Used on safaris
 2 Heavily insulated Lightly insulated
 3 Ice-repellent windshield Mud-repellent windshield
 4 Colored white Colored green
 5 Has snow plow Has vine cutters
 6 Has treads Has wheels
 7 Heated seats Air conditioned
 8 Closed roof Open roof
 9 Made in Norway Made in Africa
10  Penguin tracking device  Elephant tracking device



DIMENSIONALITY AND KNOWLEDGE    259

condition achieved an errorless block at some point in the 
learning phase, which suggests a slight learning advantage 
for the higher dimensional condition. This advantage was 
supported by a marginally reliable higher proportion cor-
rect (a 4% increase) in the 10-D condition, as compared 
with the 5-D condition [F(1,52)  3.42, MSe  .021, p  
.07]. Although we are cautious in concluding a learning 
advantage for the 10-D condition, it is clear that the 10-D 
condition was no harder to learn than the 5-D condition.

We next tested whether we replicated the effect of 
knowledge on category-learning rate shown in past stud-
ies. Overall, the knowledge condition yielded a greater 
number of perfect performers (16 of 28), as compared 
with the no-knowledge condition (12). There was also an 
advantage for the knowledge condition in average pro-
portion correct over blocks (a 3% increase), although this 
difference was not statistically reliable [F(1,52)  2.47, 
MSe  .021, p  .13], most likely due to a ceiling effect, 
since all the groups were around 90% correct. We found 
no interaction between knowledge and learning block on 
proportion correct (F  1).

Whole-item tests. The learning results were similar 
to the subjects’ subsequent classification performance on 
whole items (unsurprising, given that this test is essen-
tially the same as the learning trials). We found a marginal 
increase in proportion correct (about 3%, see the middle 
of  Table 3) from the 5-D to the 10-D condition [F(1,52)  
2.91, MSe  .004, p  .10]. The test classifications also 
yielded the predicted knowledge effect, with knowledge 
subjects performing better (by about 4%) on the subse-
quent test classifications [F(1,52)  7.27, MSe  .004, 
p  .01]. These variables did not interact (F  1) . Thus, 
there is, at best, a weak effect of knowledge on both learn-
ing rate and postlearning responses to whole items, but 
given the apparent presence of ceiling effects, differences 
are more likely to be found in the single-feature tests.

Single-feature tests. We will focus on number of di-
mensions learned because proportion correct decreases 
as the number of dimensions increases when dimension 
learning is held constant, biasing it against higher dimen-
sionality conditions. The single-feature transfer items 

To assess the subjects’ category knowledge of each individual 
dimension across conditions, we used items with one feature in 
single-feature tests. However, simply by guessing, the subjects in 
the 10-D condition would appear to have learned more dimensions, 
because they have more dimensions on which to guess. We unbiased 
the estimate of number of dimensions learned by using the guessing 
correction from Hoffman and Murphy (2006):

 Dlearned  Dtotal (Pcorrect  Pincorrect), 

where Dtotal is the total number of dimensions in the learned category 
and Pcorrect and Pincorrect are the proportions of correct and incorrect 
responses to single-feature items, respectively. If half of a subject’s 
guesses are correct, subtracting the incorrect guesses from the cor-
rect answers should leave only the known answers (on average). If 
subjects had solely guessed, they would have as many incorrect as 
correct answers and would get a score of 0. If they learned all the 
features, they would receive scores of 5 and 10 in the 5-D and 10-D 
conditions, respectively. As an alternative measure of individual di-
mension knowledge, the subjects were recognized as having knowl-
edge of a dimension only if they responded correctly on all four 
tests of that dimension during transfer. The probability that a subject 
would meet this criterion on a dimension by chance was only .504  
.0625. This is a strict criterion, because it does not allow for response 
errors, but it makes no assumptions regarding guessing. Also, it is a 
direct measure of whether each individual dimension was learned, 
rather than an estimate based on overall accuracy.

Results
Learning. We first examined the no-knowledge condi-

tion to see whether we replicated the high-dimensional 
learning advantage found by Hoffman and Murphy (2006, 
Experiment 3). Note, however, that whereas that study 
used 4 and 8 dimensions, this one used 5 and 10, so the 
comparison is not exact. The top of Table 3 shows that 7 
(of 14) subjects in the 10-D condition and 5 in the 5-D 

Table 2 
The 5-Dimension (5-D) and 10-D Category Structures

10-D

5-D1 5-D2

Stimulus  D1  D2  D3  D4  D5  D6  D7  D8  D9  D10

Mobbles

 1 0 0 0 0 0 0 0 0 0 1
 2 0 0 0 0 0 0 0 0 1 0
 3 0 0 0 0 0 0 0 1 0 0
 4 0 0 0 0 0 0 1 0 0 0
 5 0 0 0 0 0 1 0 0 0 0
 6 0 0 0 0 1 0 0 0 0 0
 7 0 0 0 1 0 0 0 0 0 0
 8 0 0 1 0 0 0 0 0 0 0
 9 0 1 0 0 0 0 0 0 0 0
10 1 0 0 0 0 0 0 0 0 0

Streaths

 1 1 1 1 1 1 1 1 1 1 0
 2 1 1 1 1 1 1 1 1 0 1
 3 1 1 1 1 1 1 1 0 1 1
 4 1 1 1 1 1 1 0 1 1 1
 5 1 1 1 1 1 0 1 1 1 1
 6 1 1 1 1 0 1 1 1 1 1
 7 1 1 1 0 1 1 1 1 1 1
 8 1 1 0 1 1 1 1 1 1 1
 9 1 0 1 1 1 1 1 1 1 1
10 0 1 1 1 1 1 1 1 1 1

Note—The 5-D conditions contained either Dimensions 1–5 or 6–10. 
The 10-D condition included all 10 dimensions.

Table 3 
Summary of Results, Experiment 1

Dimensionality

No 
Knowledge

 
Knowledge

 Dependent Measure  5-D  10-D  5-D  10-D  

Learning

Perfect performers 5.00 7.00 7.00 9.00
Proportion correct .86 .90 .90 .92

Test: Whole Items

Proportion correct .91 .94 .95 .98

Test: Single Features

Proportion correct .83 .72 .91 .96
No. learneda 3.25 4.36 4.07 9.29
No. learnedb 3.21 5.14 4.00 8.93

aNumber of dimensions learned with the guessing-corrected esti-
mate. bNumber of dimensions learned with the alternative criterion.
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the 5-D condition. That is, the 5-D subjects could not score 
higher than five, whereas the 10-D subjects could. We can 
address this concern by comparing the number of subjects 
in the 5-D condition who learned all five dimensions with 
those in the 10-D condition who learned five or more: The 
10-D subjects no longer get extra credit for learning more 
than five dimensions in this comparison. There were 2 
subjects in the no-knowledge, 5-D condition who learned 
all five dimensions, as compared with 6 (basic criterion) 
or 8 (alternate criterion) in the corresponding 10-D condi-
tion. Because fewer subjects learned five or more dimen-
sions in the 5-D than in the 10-D condition, the former’s 
lower learning cannot be explained by truncation.

Reflecting the magnification effect of knowledge on 
dimensionality, there is a pronounced difference between 
the number of subjects learning five or more dimensions 
in the 10-D and 5-D knowledge conditions (14 vs. 7). 
Regardless of criterion, every subject in the knowledge 
10-D condition learned five or more dimensions. Thus, 
none of the obtained differences between the 5-D and the 
10-D structures can be explained by truncation in the 5-D 
condition, since more subjects learned at least five dimen-
sions in the 10-D condition.

Reaction times. We examined RTs to determine whether 
there were speed–accuracy trade-offs in the subjects’ single-
feature responses. In fact, RTs were very similar between the 
5-D (M  1,413, SD  478) and the 10-D (M  1,422, SD  
302) conditions (F  1), and the subjects in the knowledge 
condition (M  1,291, SD  354) were 253 msec faster than 
those in the no- knowledge condition (M  1,544, SD  
402) [F(1,52)  8.23, MSe  0.047, p  .01]. There was no 
interaction between knowledge and dimensionality in RTs 
[F(1,52)  2.00, MSe  0.047, p  .17].

The shorter RTs in the knowledge condition are not a 
readily interpretable effect, because comparison of differ-
ent features is involved, but the result nevertheless rules 
out the possibility of speed–accuracy trade-offs. The more 
accurate conditions were responded to at the same rate as 
or more quickly than were the less accurate conditions in 
every comparison.

EXPERIMENT 2

A key result from Experiment 1 is the interaction of 
knowledge and number of dimensions for the number of 
features learned. Expanding the number of dimensions 
of the stimuli caused people to learn more in the no-
 knowledge condition (as in Hoffman & Murphy, 2006), 
but the effect was relatively small. In the knowledge con-
dition, the number of features learned essentially doubled 
when the number of dimensions doubled. We have been 
interpreting this as people’s actually learning more of 
the dimensions that are presented, through the knowl-
edge connections that permeate the thematically related 
features. That is, learning that Streaths have vine cutters 
helps in learning that they are made in Africa.

However, our results are compatible with an effect of 
knowledge at retrieval, rather than—or in addition to—
initial learning. (We thank a reviewer for raising this pos-
sibility.) For example, perhaps people did not, in fact, learn 

also will allow us to compare response times (RTs) across 
conditions, which is not possible with the whole-item or 
learning analyses, because 10-D items would always take 
longer to read than the 5-D items. Here, RTs to the same 
stimuli will be compared.

The second to last row of  Table 3 lists the number of di-
mensions learned in each condition (guessing corrected). 
The first two columns in the table show that in the ab-
sence of knowledge, increasing dimensionality yielded 
an increase in the number of dimensions learned, from 
about three dimensions to four (SDs  1.30 and 2.30, re-
spectively). This increase was consistent with the effect of 
dimensionality observed by Hoffman and Murphy (2006), 
in which people learned more than the minimum number 
of dimensions in the high-dimensional condition.

In the present study, we predicted that knowledge re-
lations would feed learning of feature–category associa-
tions, causing an even larger effect of dimensionality in 
the knowledge condition. We found this effect, shown in 
the last two columns of Table 3. When the features were 
thematically related, increasing dimensionality increased 
the number of dimensions learned from about four dimen-
sions to nine (SDs  1.30 and 1.09, respectively). This 
increase in the number of dimensions was about five times 
larger than the corresponding one in the no-knowledge 
condition. In short, dimensionality strongly interacted 
with knowledge.

To test the reliability of this interaction we compared 
the number of dimensions learned across the four condi-
tions in a 2  2 between-subjects ANOVA. The interac-
tion between knowledge and dimensionality was, in fact, 
highly reliable [F(1,52)  24.0, MSe  2.459, p  .001]. 
The interaction suggests that the effect of knowledge is to 
magnify the effect of dimensionality. Whereas the advan-
tage for the 10-D condition was marginally reliable in the 
no-knowledge condition [F(1,52)  3.44, p  .07], it was 
highly significant in the knowledge condition [F(1,52)  
57.37, p  .001]. The advantage seen in the 10-D no-
knowledge condition replicated a similar comparison 
in Hoffman and Murphy (2006), albeit marginally (but 
see the next paragraph). However, the effect size of di-
mensionality was about 10 times larger in the knowledge 
condition ( p

2  .59) than in the no-knowledge condition 
( p

2  .06).
These results are supported by the alternative measure 

of feature knowledge requiring perfect performance on 
a dimension to indicate learning (see the bottom row of 
Table 3). The contrast between 5-D and 10-D conditions 
was reliable both with knowledge [F(1,52)  70.03, 
MSe  2.40, p  .001] and, now, in the no-knowledge 
condition [F(1,52)  10.53, MSe  2.40, p  .01], repli-
cating the dimensionality effect. The predicted interaction 
was also present here [F(1,52)  13.10, MSe  2.40, p  
.001]. The effect of dimensionality was about four times 
greater in the knowledge condition ( p

2  .63) than in the 
no-knowledge condition ( p

2  .17), using the alternative 
measure.

Truncation explanation. One concern is whether the 
increase in dimensions learned in the 10-D conditions was 
due to a limit on the number of features one can learn in 
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inferred features might reflect not just the inference process, but also 
the time required to read and comprehend new features.

To minimize reading differences, we preexposed subjects to the 
inferred features before the classification- learning phase, using a 
memory task that would not integrate those features into the catego-
ries used in the classification phase. The preexposure task included 
20 study-and-test trials, in which the subjects viewed a study screen 
with a randomly ordered list of six features, numbered 1–6. Two 
features were inferred feature items, and four were filler items cho-
sen so that the resulting list would not be interpreted as describing 
a vehicle (see the Appendix). After studying the list at their own 
pace, the subjects saw a second list in which one randomly selected 
filler feature had changed (e.g., can take photographs was changed 
to can record sound). The subjects then indicated which of the six 
features had changed by pressing the corresponding number key. 
Filler features and items were selected randomly on each trial with-
out replacement, so that by the end of the preexposure phase, each 
inferred feature had been read a total of eight times (i.e., at study and 
at test, on four study–test pairings).

Results
The subjects performed well in the preexposure phase, 

at 85% accuracy (chance accuracy was about 17%), show-
ing that they had attended to the presented features. Thus, 
we were certain that they had read and encoded the features 
that would be used as inferred features in the test phase.

Following preexposure, the subjects learned the 5-D 
knowledge-related categories and were tested on both 
learned and inferred single features. The accuracy mea-
sure that distinguished those features best was the strict 
criterion metric of number of features learned (requiring 
perfect performance on that dimension). Because this 
measure requires good performance right from the begin-
ning, it is more useful for distinguishing learned from in-
ferred features than is a measure that could be diluted by 
further learning during the test phase. If the subjects were 
inferring features, they might make mistakes when they 
first encountered a new feature but begin to make the con-
nection between that feature and the themes underlying 
the categories on a second or third exposure. According 
to the strict criterion, the subjects performed nearly per-
fectly on the 5 old dimensions, learning 4.7 of them. The 
subjects responded perfectly to an average of 3.8 of the 
inferred dimensions. It is clear that people were, in fact, 
able to infer the category membership of a majority of the 
new features. However, they did not respond as accurately 
to the inferred dimensions as to the trained dimensions 
[t(19)  3.32, p  .01]. On the basis of the learners’ high 
accuracy on the inferred features in this experiment, the 
concern over whether the observed differences in Experi-
ment 1 were based on inference seems valid.

We next compared the classification RTs in the first 
block of the test phase, avoiding any influence of repeated 
classifications of the new features in the second block. As 
we expected, people were reliably faster to classify the old 
features (M  1,207, SD  218) than the new ones (M  
1,504, SD  417) [t(19)  3.28, p  .01]. Interestingly, 
this ~300-msec difference completely disappeared in the 
second block of testing, with average RTs of 1,042 msec 
(SD  208) and 1,041 msec (SD  210) for the old and 
new items, respectively. This demonstrates how effort-
lessly knowledge-based features can be learned: After only 

that Streaths were made in Africa but, when given the test 
at the end of the experiment, they inferred this fact, using 
the features that they had learned. This possibility seems 
most likely in the 10-D knowledge condition. In the no-
knowledge conditions, people could not infer unknown 
features from known ones, since they were not related. In 
the 5-D knowledge condition, the subjects learned only a 
little more than did those in the no-knowledge condition; 
thus, inference could not have had much effect there. But 
in the 10-D condition, learners might have truly learned 
only four or five dimensions and then inferred the catego-
rizations of the rest, thereby leading to a large figure for 
number of dimensions “learned.”

As will be seen in the modeling we report below, effects 
of knowledge during test are completely compatible with 
theories of how knowledge influences category learning. 
To foreshadow, KRES assumes that features related to a 
theme are linked in a way that tends to increase the acti-
vation going to the correct category at test. So, effects at 
test are by no means incompatible with such accounts. 
Indeed, we have no a priori way of knowing how much of 
a knowledge effect takes place at learning and how much 
at test. However, to address our goal of comparing how 
much is learned about categories’ features, we set out to 
discover whether the subjects’ performance in the 10-D 
knowledge condition could be explained by their infer-
ring, rather than learning, more features than did those in 
the 5-D condition.

In Experiment 2, we taught the subjects 5-D knowledge-
related concepts but then tested them on all 10 knowledge-
related dimensions. In this way, we were able to directly 
compare people’s accuracy and speed in classifying fea-
tures that had probably been learned with their accuracy 
and speed for those that must have been inferred. Our 
expectation was that people would be less accurate and 
slower to identify inferred features, which would allow 
us to rule out the possibility that most of the knowledge-
related features in Experiment 1 were inferred. Because 
people would likely be slower to read and comprehend 
features that they had never seen before, we had a preex-
posure phase in which the subjects read the features in a 
different context, to control for the effect of mere expo-
sure on the learned versus inferred features.

Method
Twenty New York University students participated for pay. The 

subjects were randomly assigned to one of the two 5-D knowledge 
conditions from Experiment 1 (either side of Table 2). The stimuli 
and procedure were identical to those in the 5-D knowledge condi-
tions in Experiment 1, with the following differences.

Inference tests. After the learning phase, we assessed the sub-
jects’ category knowledge through single-feature tests, as in Ex-
periment 1. However, in addition to classifying the old features, the 
subjects were asked to infer the category membership of features 
from the opposite 5-D knowledge condition, so that each subject was 
tested on all 10 knowledge-related dimensions. The subjects were 
not warned that they would be tested on new features.

Preexposure task. Experiment 2 was intended to contrast RTs 
and accuracies between old and inferred features from the single-
feature tests. One complication, however, is that the old features, 
but not the inferred features, would have been seen during the 
classification- learning phase of the experiment. Longer RTs for the 
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ing learned features (from Experiment 2), that condition 
should have been the slowest—not the fastest. We can 
therefore conclude that the apparently learned features in 
Experiment 1 were, in fact, likely learned at training and 
were unlikely to have been mostly inferred at test time. 
Of course, this does not deny that inferring does occur in 
knowledge-based categories; it no doubt often does. But 
in the present experiment, learning the features was appar-
ently so efficient that inferring was not necessary.

This RT interaction may also reveal the nature of the 
processing differences for knowledge-based and neu-
tral features. When one learns more dimensions without 
knowledge, the RT goes up slightly, presumably because 
of cue competition effects, but also because people may 
not have learned all the dimensions and so are spending 
more time in the first test block trying to recall the answer. 
In contrast, when the features are thematically related, they 
gang up and aid each other’s processing. That is, knowing 
that Streaths are made in Africa helps one learn that they 
have vine cutters. The two features reinforce one another, 
thereby increasing their association to the category, rather 
than competing with one another. In the next section, we 
will discuss one possible way of instantiating these prin-
ciples in a computational model.

The interaction between number of dimensions and 
prior knowledge is related to findings in the recognition 
memory literature. Normally, the more facts one studies 
about a single item, the slower the retrieval is of any of 
those facts in a recognition test. However, when the facts 
are thematically related, this effect disappears (Smith, 
Adams, & Schorr, 1978). Reder and Ross (1983) showed 
that this could be explained by people’s judging the the-
matic consistency of thematically related facts, a strategy 
that is impossible for unrelated facts. When this strategy 
was prevented, interference among the facts reappeared. 
Interestingly, people’s explicit judgments of thematic con-
sistency became faster and more accurate the greater the 
number of thematic facts they had learned (Reder & Ross, 
1983, p. 63)—analogous to our RT findings. Because our 
subjects were asked to classify each feature—not to recog-
nize it—our task could be considered as a kind of thematic 
consistency judgment (assuming that people learned the 
themes associated with each category). But the results 
from our Experiment 2 show that even thematic consis-
tency may be easier to judge when the feature has already 
been learned. Part of learning the theme underlying our 
categories involves learning how the features relate to the 
theme, and this requires specific encoding of the features, 
rather than simply representing the gist of the category. 
Nonetheless, the convergence of our results and those in 
the older recognition memory literature is intriguing.

MODEL-BASED ANALYSES

The psychology of concepts contains many models that 
describe how people learn categories of a few simple di-
mensions. Such models do well in characterizing people’s 
behavior in learning simple concepts when there is little or 
no connection to prior knowledge. The question is, what 

a single exposure without feedback in the first test block, 
they became as strongly associated to the category as did 
features that had been viewed many times with feedback. 
But importantly, this difference also contradicts the con-
cern that people were inferring correct responses to many 
of the knowledge-based features in Experiment 1. That is, 
the speedup after the single exposure shows that the sub-
jects were not inferring the features in later test blocks but, 
rather, remembered them and that very little exposure, and 
no feedback, is necessary to acquire the new feature. It 
would be very peculiar if the subjects in Experiment 1, 
with explicit learning trials, did not learn the knowledge-
based features that the subjects in Experiment 2 learned 
without feedback.

Reanalysis of Experiment 1. We cannot directly com-
pare these RTs with those in the first experiment, given 
the differences in procedure (the initial task, slightly dif-
ferent test instructions) and the absence of random subject 
assignment to the two experiments. However, we can use 
the results obtained in this experiment to direct a reanaly-
sis of the earlier results to see whether they show signs of 
feature inference.

As was discussed earlier, it is the 10-D knowledge case 
that would be most subject to any effect of inference, be-
cause it had the greatest number of features learned by 
far. In contrast, the knowledge and no-knowledge groups 
learned about the same amount in the 5-D categories, so 
there is no reason to suspect that inference unduly aided 
the knowledge group there. (Keep in mind that inference 
works only after one has learned some of the features, 
which then allow extraction of the theme. So, even in 
the knowledge condition, some features must be actually 
learned before others can be inferred.) Therefore, the criti-
cal question is whether the interaction of knowledge and 
dimensionality resulted primarily from the fact that people 
in the 10-D knowledge condition used inference at test.

To examine this, we compared the classification RTs 
of the 5-D and 10-D knowledge conditions in the first 
test block of Experiment 1, since that is the block that 
showed a difference between inferred and learned features 
in Experiment 2. If people were inferring many of the fea-
tures in the 10-D knowledge condition, but not in the 5-D 
knowledge condition, we should observe an RT advan-
tage in the latter. In fact, the pattern was in the reverse 
direction, with faster responses in the 10-D knowledge 
condition (M  1,359 msec, SD  312) than in the 5-D 
condition (M  1,594 msec, SD  580). To identify the 
effects of knowledge and dimensionality, we performed 
a two-way ANOVA on the first test block RTs and dis-
covered that knowledge features were classified 331 msec 
faster, on average [F(1,52)  6.22, p  .05]; again, this 
is not readily interpretable, given the different features 
in the two conditions. There was also an interaction, re-
sulting from the fact that higher dimensionality increased 
speed for knowledge-related features but decreased it for 
neutral features [F(1,52)  3.94, p  .05]. This pattern 
is the opposite of the one that would have been expected 
if the 10-D knowledge condition had consisted primarily 
of inferences. Given that inferring is slower than classify-
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search among the many dimensions for explanations of 
feature co-occurrence. When knowledge structures are 
not available to facilitate learning, subjects may engage in 
a process of inventing them for future use. For example, 
when learning categories of vehicles in the 10-D, no-
knowledge condition, subjects may look for an explana-
tion for why rear wheel drive vehicles also typically have 
a manual transmission. Perhaps manual transmission is 
easier to manufacture with rear wheel drive.

The attentional strategy hypothesis makes sense if cat-
egories are not random collections of features. People 
may expect a reason for features’ co-occurrence (Medin 
& Ortony, 1989) and, moreover, may expect that it is use-
ful to know the reason. For example, consider the novice 
mechanic distinguishing old and new engines. Although 
the model year alone suffices, the mechanic can learn that 
older engines use a carburetor and newer engines use fuel 
injection. These features enable him or her to diagnose 
and then repair engine problems associated with one or 
the other fuel system. Whereas relating engine age and 
fuel system helps produce a useful and flexible concept, 
learning to distinguish engines with the minimum number 
of features (e.g., model year alone) does not (Markman & 
Ross, 2003). Thus, adding dimensions to a category may 
encourage categorizers to learn about relations between 
dimensions that are not necessary to learn a particular 
distinction but are likely to be useful for learning a broad 
range of conceptual distinctions (e.g., electrical vs. hy-
drogen engines), inferences (e.g., fuel efficiency), or pur-
poses (e.g., diagnostics, repair, or innovation).

This attentional hypothesis is one of several potential 
explanations that share a common thread—a nontrivial 
relationship between co-occurrences of features. The fol-
lowing section will consider the implications of an alter-
native hypothesis that assumes no relationship between 
features. Instead, each feature has an association with a 
category label, and each of the perceived features inde-
pendently contributes to the category response.

Independent Feature Models
There are a number of models that make the assumption 

that features are independent sources of information about 
categories. In the perception literature, models that explicitly 
implement this independence assumption have been quite 
prominent (Movellan & McClelland, 2001). In these mod-
els, the presence of each feature contributes weight toward 
a potential response. The weights of all features are added, 
and the result is transformed into a response probability.

One such model, the fuzzy logical model of perception 
(FLMP; Oden & Massaro, 1978), assumes that stimulus 
features and category responses are linked by an asso-
ciation ranging in strength from 0 ( perfect negative as-
sociation) to .5 (no association) to 1 ( perfect positive 
association). Since each association strength is assumed 
to be independent, this formulation allows for an easy 
representation of partial stimuli. Massaro and Fried-
man (1990) have provided an equation that relates the 
response probabilities of a whole item to the response 
probabilities of its two features. Here, we want the re-

is needed to explain everyday concept learning, where 
concepts are composed of many dimensions and where 
concepts are not merely arbitrary collections of features?

This question motivated the present investigation of the 
combined influence of dimensionality and prior knowl-
edge on category learning. According to minimal- learning 
models, people should stop learning feature–category 
associations once they can reliably predict the category. 
When learning is faster, as in the present knowledge or 
dimensionality effects, there is less opportunity to learn 
nonminimal properties of the category. If the subjects in 
our task were attempting to learn simple rules, the same 
number of dimensions should have been learned across di-
mensionality conditions (because all our categories can be 
learned by any three dimensions). Alternatively, if the sub-
jects in our task were attempting to learn feature–category 
associations, higher dimensionality should yield reduced 
single-feature learning, due to increased cue competition. 
Thus, minimal-learning theories predict either that the 
same number of features should be learned or that learn-
ing of the features will be weaker in high-dimensional 
conditions, as reflected in lower accuracy or longer RTs 
on single-feature tests. However, in Experiment 1, single-
feature tests showed that the subjects in the 10-D condition 
learned more dimensions than those in the 5-D condition 
did—a number greater than the three required for perfect 
performance—yet RTs were equal across conditions. Fea-
ture learning was thus stronger than would be predicted by 
minimal-learning models.

Enhanced feature learning from dimensionality and 
knowledge has been observed now in multiple studies, 
including the present Experiment 1, across different cat-
egory structures and over a range of stimuli (drawings of 
bugs and textual descriptions of vehicles). New here is the 
interaction, where prior knowledge magnified the dimen-
sionality effect, suggesting that the two variables influ-
ence a common learning mechanism. Having less error 
did not seem to harm single-feature learning. In fact, these 
results provided a rare (if not unique) demonstration of 
cue cooperation, rather than competition. How could the 
subjects have learned more in the high-dimensional and 
knowledge conditions?

One proposal was that both knowledge and dimen-
sionality increase categorizers’ attention to feature co-
 occurrence. If knowledge is represented (in part) as in-
terfeatural relationships, learning one feature–category 
association can lead to learning others that are connected 
through the same network of knowledge structures. Thus, 
knowledge can lead to a greater amount of activation 
of (i.e., attention to) feature–category associations and, 
thereby, enhance learning. The attention hypothesis also 
explains the interaction between knowledge and dimen-
sionality: High dimensionality increases the knowledge 
effect, because, with many dimensions, there is a larger 
number of interfeatural relationships that feed the learn-
ing of feature– category associations.

As the number of dimensions increases in the absence 
of knowledge, however, attention shifts to feature co-
occurrence in a different way: Subjects are motivated to 
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knowledge), using four blocks of training that were the 
same as those the subjects received. Model parameters 
(the learning rate, the range of initial weights, and , the 
slope parameter of the activation function) were tuned to 
match the subjects’ average whole-item and single- feature 
results, using a chi-square goodness-of-fit measure. In ad-
dition, the model’s predictions over a wide range of param-
eter settings were collected to allow a qualitative measure 
of performance. We first examined whether the Perceptron 
can be tuned to account for the subjects’ single-feature per-
formance for categories without prior knowledge. Table 4 
shows that the Perceptron was, in fact, off target, with the 
best fits typically severely underestimating single-feature 
accuracy and number of dimensions learned for both 5-D 
and 10-D categories. (The best-fitting results shown in 
Table 4 were for the following parameters: learning rate  
1.2,   0.1, initial weight range  0.1.)

We were additionally able to show that this failure of 
the Perceptron reflects a general property of the indepen-
dent feature assumption. Using the FLMP predictions of 
Equation 1, we calculated the expected single-feature ac-
curacy, E(SF ), from the empirically observed whole-item 
accuracy (i.e., inserting the W values from the table into 
Equation 1 for each row). Single-feature accuracy values 
near the expected value indicate independent dimensional 
combination, but values higher than expected indicate that 
dimensions are not being treated as independent sources 
of information about the category label. The third and 
fourth columns of Table 4 reveal that single-feature ac-
curacy was higher than was theoretically predicted. This 
result reflects the fact that people learned more dimen-
sions than were expected from their whole-item accuracy, 
assuming an independent combination of dimensions.

Although the FLMP does not well describe human 
performance here, its predictions are, in fact, essentially 
identical to the Perceptron’s SF and whole-item response 
proportions, over its parameter space. Figure 1 (top row) 
shows the range of the Perceptron’s response patterns 
(black dots) and the average subject data (large gray dot), 

verse, the response probability for single features as a 
function of whole-item response probabilities. By gen-
eralizing Massaro and Friedman’s equation to multiple 
features and inverting it, we get the following:
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where E(SF ) is the expected single-feature accuracy, W is 
whole-item response accuracy, and Dtotal is the number of 
dimensions.2

Another independent feature model is the canonical 
minimal-learning model, the Perceptron (e.g., Cohen & 
Massaro, 1992). The weights of the Perceptron convert 
input activations to output activations and can be trained 
through error-correcting feedback. Although the Percep-
tron is not considered a modern model of classification 
learning, it is closely related to the classic Rescorla– 
Wagner learning theory. We consider the consequences 
of assuming an independent feature model by simulating 
how such a model would perform in our experimental 
task, to demonstrate that the observed effects require non-
independence of features.

We implemented a Perceptron model with a single out-
put node whose nonlinear activation ranged from 0 (the 
Mobble category) to 1 (the Streath category). There were 
either 5 or 10 input nodes, whose activations were set to 
0 or 1, following Table 2. We used an entropy-based error 
function and weight update rule that allows the output 
activation to be treated as a response probability (Hertz, 
Krogh, & Palmer, 1991; Hopfield, 1987). (To allow output 
activations to represent response probabilities, we used a 
continuous sigmoid activation function, rather than the 
hard threshold of the original Perceptron.)

Whole items and single features. We trained the Per-
ceptron on the 5-D and 10-D category structures (without 

Table 4 
Model-Fitting Results

 
Model

  
Dtotal

  
W

  
SF

  
E(SF )

 No. 
Learneda

 No. 
Learnedb

  
E(Learned)

No Knowledge

Empirical  5 .91 .83 .65 3.3 3.2 2.4
10 .94 .72 .59 4.4 5.1 2.7

KRES  5 .92 .80 .66 3.0 2.4 2.1
10 .96 .74 .60 4.8 5.1 3.0

Perceptron  5 .90 .64 .64 1.5 0.9 0.9
10 .96 .60 .60 1.9 1.3 1.3

Knowledge

Empirical  5 .95 .91 .69 4.1 4.0 3.4
10 .98 .96 .62 9.2 8.9 8.5

KRES  5 .96 .95 .70 4.5 4.1 4.1
10 .98 .97 .62 9.4 8.8 8.8

Note—Dtotal is the number of dimensions. W is whole-item accuracy. SF is single-
 feature accuracy. E(SF) is the expected single-feature accuracy based on the whole-item 
accuracy and the assumption of independent contributions to responses. E(Learned) is 
the expected number of single-features learned according to the strict criterion, assum-
ing equal attention to features. aGuessing-corrected estimate. bStrict criterion.
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single-feature tests for each dimension; the subject would 
thus demonstrate moderate and uniform learning of every 
dimension. But a subject can also get 75% by answering 
correctly on all four single-feature tests for five of the 
dimensions but answering correctly on only half of the 
single-feature tests—guessing—for the remaining five 
dimensions. In this case, learning is nonuniform; five di-
mensions were answered perfectly, and the others were 
answered at chance levels.

With uniform learning, the expected number of dimen-
sions learned with our strict alternative criterion (all four 
single-feature responses for a dimension correct) is the 
following: E(learned)  Dtotal * SF4—that is, the single-
feature accuracy, raised to the fourth power to give the 
likelihood of four correct responses for a particular di-
mension, times the total number of dimensions. If the 
number of dimensions responded to perfectly is higher 
than expected, subjects must have learned some dimen-
sions particularly well (and others less well). The expected 

where each location in the space represents a particular 
combination of whole-item and single-feature accuracy. 
The solid black line is the theoretical curve corresponding 
to an independent, additive combination of dimensions 
according to the FLMP. The Perceptron’s performance 
closely follows the FLMP curve, which is not near the 
subjects’ data. Thus, the Perceptron failed here exactly 
because it assumes that information from separate dimen-
sions is combined independently.

Uniform learning of features. We observed in the 
analysis above that the Perceptron independently com-
bines dimensions. We now will describe another inter-
esting property of the Perceptron, which can serve as a 
second point of comparison with human learning. Con-
sider the following question: Did people learn all dimen-
sions uniformly, or did they learn a subset of dimensions 
particularly well? Consider two ways for a subject in the 
10-D condition to score 75% correct on single-feature 
tests. One way is to answer correctly on three of the four 

Figure 1. Range of possible model predictions of Perceptron and the knowledge reso-
nance model (KRES; black dots), with the empirical results in the no-knowledge case 
(large circle) and the relationship between whole-item and single-feature accuracy as 
predicted by the fuzzy logical model of perception (solid line).
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will test whether KRES generalizes to a phenomenon for 
which it was not originally designed. As we will describe 
in detail below, KRES’s mechanisms for learning and rep-
resenting knowledge should satisfy the three requirements 
of increased feature learning relative to whole-item ac-
curacy, nonuniform feature learning, and the interaction 
between number of dimensions and prior knowledge. Fur-
thermore, its interactive architecture may lead to effects of 
feature co-occurrence in higher dimensional categories, as 
revealed in the present study. At present, however, KRES 
lacks an attentional-learning mechanism, so any success 
it has in modeling the task will not be due to explicit at-
tention differences across learning conditions, as has been 
proposed by Hoffman and Murphy (2006). Instead, such 
success would be due to the model’s interactive activation 
processes. Thus, KRES tests our assumptions about how 
knowledge may influence feature learning and may pro-
vide another account of the dimensionality effect.

Figure 2 illustrates the KRES model, as configured for 
the 5-D knowledge condition. Like the Perceptron, KRES 
is a prototype model, with weighted connections between 
input feature nodes and category label output nodes. Each 
input and output dimension is represented by two mutu-
ally exclusive feature nodes. KRES’s output activations 
can be transformed by the standard Luce choice rule to 
yield category response probabilities. KRES can repre-
sent knowledge either as connections to prior knowledge 
nodes (as in Heit & Bott, 2000), or as connections between 
input nodes, indicating prior associations among features. 
(Real knowledge is undoubtedly more complex; the fea-
ture links are a simplification that stand in for causal and 
other knowledge that connects properties of a concept.) 
Because the vehicles learned in our experiment did not 
refer to previously known categories, the prior knowledge 
nodes were not used, and knowledge was represented only 
as links between input features.

In comparison with other models, KRES has two im-
portant properties. First, activation in the model resonates 
among bidirectional links in a type of constraint satisfac-
tion process. This means that representations in the input 
layer can change substantially after the initial stimulus 
presentation, once the model takes other constraints into 
account (i.e., once activation flows to and from other 
nodes in the network and the network settles). This prop-
erty may increase single-feature performance, especially 
in the high-dimensional condition, as activation flows 
downward from the activated output nodes to consistent 
input features, then back up again to the output nodes. 
Note that in both the attention hypothesis and KRES, the 
linking of features to each other, directly or indirectly, 
plays a central role.

This interactive activation process is the basis for 
the biologically plausible contrastive Hebbian learning 
(CHL) rule (O’Reilly, 1996), which updates weights in 
a KRES network based on feedback (Rehder & Murphy, 
2003). Briefly, the input to the network is presented, and 
activation is allowed to flow throughout the network until 
it settles into a stable state. The activation of the output 
nodes is transformed to a response prediction. Then the 
target value of the output nodes is added to those nodes, 

and actual numbers of dimensions learned appear in the 
second to last and last columns of Table 4, respectively. 
In the no-knowledge condition, the number of dimen-
sions learned was higher than expected, especially in the 
10-D case. Clearly, the subjects in no-knowledge condi-
tions learned some dimensions better than they did others. 
However, this difference disappeared in the knowledge 
conditions (in part, because learning was so high there).

Examining these last two columns in Table 4 for the 
Perceptron reveals that, unlike humans, the model learned 
the dimensions uniformly. Further analysis indicated 
that the Perceptron showed nonuniform learning only in 
circumstances in which the learning rate parameter was 
pathologically large and the weights saturated in only one 
or two learning steps. Otherwise, the gradient descent 
learning rule evens out any initial variance in the weights 
as it minimizes error, resulting in all dimensions being 
learned equally well.

In summary, the FLMP and Perceptron, which represent 
independent learning of each stimulus dimension, cannot 
account for the results. Unlike these simple models, people 
learned more dimensions than would be expected, and their 
associations were clumped, with some dimensions learned 
well and others not learned. Humans do not appear to as-
sume independent features when they are learning about 
novel categories. This finding may provide a useful con-
straint on a number of models of category learning.

The Knowledge Resonance Model
The modeling above highlights two reasons why inde-

pendent feature models such as the Perceptron are inad-
equate to account for our empirical results.3 To account 
for our results, we need a model with at least three proper-
ties. First, its responses to single features and whole items 
should not reflect the independent feature assumption. 
Second, it should not always learn features in a uniform 
manner. Any model based on the FLMP or on the Percep-
tron will violate these two requirements.

The third property of a successful category-learning 
model is that it should account for the effects of prior 
knowledge, which few current models can claim. However, 
it is possible to account for prior knowledge effects while 
still violating the first two requirements of nonindepen-
dence and nonuniformity. For example, one model of cat-
egory learning with prior knowledge is the Baywatch model 
(Heit & Bott, 2000). Baywatch adds prior knowledge nodes 
to a single-layer neural network model of categorization. 
Although Baywatch can account for many effects of prior 
knowledge on category learning, it reduces to a Perceptron 
when knowledge is absent and, as a result, necessarily fails 
to account for the nonindependence and nonuniformity 
requirements. Therefore, we explored the performance of 
Rehder and Murphy’s (2003) KRES model on our task.

We chose KRES because it can incorporate prior knowl-
edge and is the only such model with interactive activa-
tion processes. KRES was designed to account for many 
knowledge effects, including accelerated category learn-
ing, better learning of features not related to prior knowl-
edge, and reinterpretation of features in light of error-
 corrective feedback. The present simulation, however, 
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slope of the activation function, the weights of the fixed 
inhibitory and fixed excitatory weights, and the initial 
range of trainable weights. Parameters were tuned via a 
grid search over the parameter space.

Simulation results. Table 4 shows that, unlike the 
independent feature Perceptron model, KRES could ac-
count for the relatively high single-feature accuracy and 
number of dimensions learned. KRES’s resonance proper-
ties allowed it to take advantage of feature co-occurrence 
and to both qualitatively and quantitatively account for 
subjects’ single-feature accuracy performance. (The re-
sults in Table 4 were found with learning rate  0.25,   
0.75, inhibitory fixed weights  2.5, excitatory fixed 
weights  0.5, and initial trainable weights  1.0.)

We next examined whether, by adding lateral knowl-
edge links among input nodes, KRES could account for 
the knowledge effect and its interaction with dimension-
ality. Recall that no KRES parameters were changed 
in modeling the knowledge data. Nevertheless, Table 4 
shows that KRES was able to account for the enhanced 
whole-item and single-feature performance in the knowl-
edge condition.

Given that KRES was designed to account for the 
learning- enhancing effects of knowledge, it was perhaps 
not too surprising that it was able to account for the main 
effect of knowledge found in our data. It is more impres-
sive that the model also accounts for the dimensionality ef-
fect and its interaction with knowledge. Table 4 shows that 
KRES yielded a much larger dimensionality effect in the 
knowledge condition, as was observed in the human data.

KRES was able to account for all observed effects in 
our initial model analysis. However, it is possible that 
it accounted for the effects through its functional com-
plexity, rather than any inherent explanatory property. In 
other words, it may not be that KRES, in general, predicts 
the observed pattern of results, but rather that it found 
an unlikely region in its parameter space that incidentally 
matched the data (Pitt, Kim, Navarro, & Myung, 2006). 
However, Figure 1 (bottom row) shows that this is not the 
case. In contrast to the Perceptron, KRES patterned near 
the human subject data and away from the FLMP curve 
over a wide sampling of its parameter space. KRES pat-
terns this way because, when making predictions based 
on single features, activity resonates from the single 
presented feature to the category node and back to input 
nodes, changing their activation to be consistent with the 
category prototype and, thereby, yielding greater activation 
of the category node. This interactive flow of activation in 
single-feature tests is even stronger with knowledge, be-
cause associated input nodes are connected to each other 
directly. (However, when all dimensions are present in the 
stimulus, input node activation is less affected by interac-
tive feedback, and category activation does not change as 
much.) Given that KRES and the Perceptron have a simi-
lar feature-to-category node architecture, we can safely 
conclude that it was KRES’s interactive activation proper-
ties, and not any superficial functional complexity, that 
allowed it to match the observed pattern of behavior.

As is also shown in Table 4, KRES was able to capture 
the nonuniform dimension-learning effect. This result has 

and activation again flows throughout the network until it 
again settles. A Hebbian process then uses the differences 
in each node’s activation between the two settled states to 
update the weights between each pair of nodes.

KRES’s second notable property is that it can represent 
prior knowledge as direct lateral connections among related 
features. Activation of one input feature spreads to directly 
linked features. These links boost node activation, with 
two potential effects on the model’s performance. First, the 
links can combine to facilitate classification learning. As 
the CHL learning rule strengthens weights in proportion 
to the activation levels of linked nodes, the activation from 
the knowledge will result in stronger associations being 
learned. The second effect of the lateral links is to increase 
single-feature classification accuracy. At test time, activa-
tion will spread from feature to feature, through the lateral 
connections and then to output units, increasing output node 
activation and, therefore, single-feature performance. Thus, 
KRES’s account of knowledge has similarities to Hoffman 
and Murphy’s (2006) attention strategy hypothesis, in that 
knowledge causes more features to become activated and 
weights to be more strongly learned.

KRES was trained on 5-D and 10-D category structures. 
The feature values of 0 and 1 were converted into pairs of in-
puts ( 1, 1 for a 1; 1, 1 for 0), since KRES represents 
each dimension as two separate units (one for each value). 
For single-feature tests, the missing dimensions were set to 
(0, 0). We simulated knowledge and no- knowledge condi-
tions by configuring KRES with and without lateral links 
between input nodes, respectively. The same parameters 
were used for all four KRES configurations, simulating 
the four experimental conditions. KRES has five tunable 
parameters: learning rate, an  parameter representing the 

Figure 2. The 5-D KRES model as used in simulations, with 
prior knowledge connections shown. The 10-D version uses 10 
input nodes, whereas the version with no prior knowledge does 
not have the excitatory lateral connections. Excitatory connec-
tions are shown with solid circles, and inhibitory connections are 
shown with empty circles. I, input nodes, and I0 and I1 represent 
the nodes associated to the two themes. Each dimension in I0 has 
an inhibitory link to its opposite node in I1. O, output nodes, the 
two categories Mobbles and Streaths.
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nate the process of category learning and to evaluate other 
models, whether they include prior knowledge or not.

CONCLUSION

A significant shortcoming of the psychological study 
of concepts has been that different research programs tend 
to work on different topics, and the field has done little 
to integrate these different approaches (Murphy, 2002, 
chap. 13). In particular, research on structural aspects of 
category learning and research on the influences of prior 
knowledge have occupied parallel tracks, and work in one 
has often had little influence on the other. The present re-
search shows that a formal model of category learning can 
simultaneously account for a structural phenomenon (the 
effect of dimensionality), an effect of prior knowledge in 
category learning, and their interaction. Thus, this work is 
a step toward devising models that address multiple kinds 
of phenomena simultaneously. It also shows that although 
prior knowledge is notoriously difficult to represent, its 
effects can be modeled computationally by feature-to-
feature links.

We reasoned that knowledge and dimensionality influ-
ence a common learning mechanism, in which presentation 
of one feature activates other features related to it. This led 
us to predict that the two variables would interact, and Ex-
periment 1 documented both their main effects and their 
interaction in terms of number of dimensions learned. We 
used KRES to investigate these findings and showed that 
its interactive activation architecture and representation of 
knowledge were able to reproduce the observed effects. 
Prior knowledge magnifies the dimensionality effect in 
the model, because prior knowledge causes more features 
to be activated when a single feature is presented. A model 
lacking interactive activation, the Perceptron, was unable 
to account for the results even when no knowledge was 
present. Our analysis revealed that this was largely due to 
its assumption of independent contribution of a category’s 
properties. KRES, which uses interactive activation dur-
ing learning and test, was able to model the nonuniform 
learning of the properties and also the relation between 
whole-item and single-feature tests.

Although KRES was quite successful, it does not ex-
actly represent the original hypothesis we proposed for the 
dimensionality effect (Hoffman & Murphy, 2006), which 
involved more explicit manipulation of attention. There, 
we suggested that when people are attempting to learn a 
category, they assume that they should learn most of its 
properties. Therefore, even when they are classifying items 
with little error, they allocate free attention to try to learn 
more properties. In this respect, category learning is differ-
ent from classical conditioning or other forms of cue learn-
ing in which people do not have the belief that most prop-
erties should be learned. Indeed, recent work from our lab 
has shown that an analogue of the classical conditioning 
blocking effect is not found when people believe they are 
learning categories but is found when the same problem 
is construed as predicting the computer’s response (Bott, 
Hoffman, & Murphy, 2007). KRES’s success suggests an 
alternative account of the effect of dimensionality, based 

to do with an aspect of KRES’s learning rule. Instead of the 
target value replacing the output unit’s activation, as in the 
Perceptron learning rule, in CHL, the target value is added 
to the output unit’s activation. As a result, any initial vari-
ance in weights is often preserved, allowing nonuniform 
response patterns even after extensive learning. The initial 
variance in weights between inputs and outputs might cor-
respond to subjects’ initial guesses as to which features are 
likely to be important in the learning task. Although this 
is not hypothesis testing in the traditional sense, subjects 
may, in fact, begin the experiment with hypotheses about 
which subset of dimensions is likely to be most predictive 
of the categories. This initial guess causes differences in 
association weights, leading to nonuniform learning.

The combination of CHL and input–output weight vari-
ance is not the only way to capture nonuniform learning in 
KRES. In the current simulations, we assumed, for sim-
plicity, that all of the learners in the no-knowledge condi-
tion had zero associations between features. But this might 
not be entirely accurate. For example, there may be a weak 
association between rear wheel drive and manual transmis-
sion, whereas there may be no association at all between 
gasoline fuel and cloth seats. Thus, KRES has a second 
way of accounting for the nonuniformity of learning in 
the no-knowledge condition. Regardless of the potential 
source of variation, it is clear that KRES captures the non-
uniform learning of dimensions that people exhibit.

It is also worth noting that KRES was able to capture 
learners’ more uniform learning in the knowledge condi-
tion, due to KRES’s lateral links’ directly spreading acti-
vation across the input nodes during single-feature tests 
and, thereby, equating single-feature performance across 
dimensions. It appears that for both KRES and people, in 
the presence of knowledge, learning some features entails 
learning all of them.

KRES’s success and the Perceptron’s failure allow us to 
draw several conclusions about how people acquire con-
cepts. First, it is clear that people do not learn family re-
semblance categories as collections of isolated sources of 
information, as the Perceptron assumes. Indeed, KRES’s 
assumption of dimension nonindependence, embodied in 
its interactive activation properties, accounted for the sub-
jects’ highly accurate single-feature classification. This 
can be interpreted as the single visible feature’s remind-
ing people of the missing features, which, in turn, help 
them select the correct category. The dimensionality ef-
fect arises, then, because a greater number of dimensions 
provides greater opportunity for a given feature to acti-
vate other features in memory. Finally, the dimensional-
ity effect increases in the presence of knowledge because 
features are already strongly associated with one another. 
Thus, just one visible feature can remind people (now very 
strongly) of the missing ones. However, knowledge in-
creases the capacity for one feature to evoke the missing 
features, so that from the categorizers’ perspective, one 
single feature is almost as good as many.

The (non)uniformity of feature learning does not seem 
to have been a focus of past research on category learning, 
and it would be interesting to subject other data sets to a 
similar analysis. Perhaps this finding can help to illumi-
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NOTES

1. Pearce and Bouton (2001) proposed that attention is freed after 
error gets reduced.

2. Equation 1 applies as it is written only when all features predict 
the same category (e.g., Stimuli 1–5 of condition 5-D1 in Table 2). For 
items with an exception feature (e.g., Stimuli 6–10 of condition 5-D1), 
one feature predicts the opposite category and, so, effectively “cancels 
out” another feature. We thus adjusted the formula for such items by 
subtracting 2 from Dtotal.

3. The failure to fit is not restricted to prototype models. We simulated 
the ALCOVE model (Kruschke, 1992), a prominent exemplar model of 
categorization, and found that it also failed to account for the high single-
feature response accuracy. In fact, ALCOVE often responded with lower 
single-feature accuracy than that predicted by the FLMP.

on interactive activation and its learning rule. It is possible 
that both hypotheses are correct to some degree. However, 
future research will have to attempt to distinguish them.
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APPENDIX 
Filler Items for the Preexposure Task

 1. Has transparent lens Has opaque lens
 2. Leather padding Wool padding
 3. Has tiled floor Has carpet floor
 4. Holds soda Holds coffee
 5. Curved edge Straight edge
 6. Erasable Indelible
 7. Can be insured Cannot be insured
 8. Recently built Built long ago
 9. Water resistant Water sensitive
10. Is mechanical Is organic
11. High frequency waves Low frequency waves
12. Floats in water Sinks in water
13. Light activated Touch activated
14. Absorbs pollutants Emits pollutants
15. Closed with buttons Closed with snaps
16. Holds books Holds magazines
17. Can take photographs Can record sound
18. Hard to operate Easy to operate
19. Is comfortable Is uncomfortable
20. Above ground  Under ground

(Manuscript received July 17, 2006; 
revision accepted for publication September 6, 2007.)
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