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The case for implicit category learning

EpwARD E. SMITH
Columbia University, New York, New York

This article evaluates the evidence regarding the claim that people can learn a novel category implicitly—that
is, by an implicit memory system that is qualitatively different from an explicit system. The evidence that is
considered is based on the prototype extraction task, in which participants are first exposed to a set of category
exemplars under incidental learning instructions and are then required to categorize novel test items. Knowlton
and Squire (1993) first reported that memory-impaired patients performed normally on the prototype extraction
task while being impaired on a comparable recognition task. Several studies have replicated these results, but
other articles have criticized the evidence for implicit category learning on both methodological and theoreti-
cal grounds. In this article, we consider five of these criticisms—for example, that the normal performance of
the patients is due to intact working memory mechanisms (see, e.g., Palmeri & Flannery, 1999) or to the lesser
cognitive demands of prototype extraction rather than recognition (e.g., Nosofsky & Zaki, 1998). For each of
the five criticisms, we offer counterevidence that supports implicit category learning.

Psychologists and neuroscientists began to recognize
the existence of an implicit memory system during the
1960s and early 1970s when they discovered that a me-
dial temporal lobe (MTL) amnesic, H.M., could learn a
new perceptual motor skill as readily as neurologically
intact participants. Soon after, researchers discovered that
MTL patients showed intact perceptual priming, which
indicated that implicit memory is not confined to motor
skills (see, e.g., Schacter, 1987, and Squire, 2004, for re-
views of these early developments). These findings led to
a characterization of implicit memory as a system that can
use past experience without intention or awareness and
that does not depend on MTL.

In 1993, Knowlton and Squire published the first article
claiming to demonstrate that memory-impaired patients had
an intact ability to learn a novel category. This is known as
implicit category learning. These findings were important
because they demonstrated a kind of implicit learning that
extracts common features and supports generalizations to
novel items, which seemed to go beyond perceptual prim-
ing or other known forms of implicit learning. However,
in recent years, the evidence for implicit category learning
has come under sharp criticism, primarily from researchers
who have focused on behavioral and mathematical analyses
of category learning (e.g., Nosofsky & Zaki, 1998; Zaki &
Nosofsky, 2001). The purpose of this article is to review and
evaluate the evidence for and against postulating an implicit
category-learning system, particularly in light of recent
findings on this topic (e.g., Bozoki, Grossman, & Smith,
2006; Reber, Gitelman, Parrish, & Mesulam, 2003). The
argument will be made that these recent articles provide
new evidence that (1) people can indeed learn a category
implicitly, (2) patients with compromised MTL function

learn roughly as well as normals, and (3) the learning in-
volved may be a kind of perceptual fluency.

Initial Evidence for Implicit Category Learning

In their seminal study, Knowlton and Squire (1993)
used a prototype extraction task. Both memory-impaired
patients and normal controls were presented a series of 40
dot patterns (see Figure 1A for examples). All of the pat-
terns had been created by starting with a prototype pattern
and then transforming it to some degree by moving some
proportion of the dots (after Posner & Keele, 1968). Dur-
ing training, nothing was mentioned about a category, since
both patients and controls were instructed simply to point to
the center dot in each pattern. After training, all participants
were informed that the patterns they had just seen “all be-
longed to a single category” and that they now had to deter-
mine which of a sequence of test patterns also belonged to
that category. This procedure is standard implicit memory
methodology: The purpose of the training information was
disguised so that participants did not intentionally try to re-
member it; hence, they presumably had to rely on an implicit
system during test. During the test phase, a total of 80-plus
novel items were presented, which varied in how similar
they were to the prototype that had spawned the training
items. Both the patients and controls performed the unex-
pected categorization task with above-chance accuracy, and
the patients performed as accurately as the controls. These
results were in sharp contrast to findings obtained in a test
of recognition memory for the same kind of dot patterns. In
the latter task, the patients performed significantly worse
than did the controls, although the test was not particularly
demanding (the study items consisted of five different dot
patterns presented eight times each).!

E. E. Smith, eesmith@psych.columbia.edu

Copyright 2008 Psychonomic Society, Inc.



4 SMITH

A
.
- * ol . *
- L
@ .
. .
I. - .
1 - . = *
-
. .. - *
° L
Sample Training ltems
B
90
80 - I
'8 70 |
2
3 60
c
w
€ 501
7
4
& a0t
30 +
20
Prototype Low High Random
Distortion Distortion

Similarity to Prototype (Measured by Distortion Level)

Figure 1. Knowlton and Squire (1993) experiment. Panel A
contains examples of the items used during training. Panel B
presents, in bar-graph form, prototypicality gradients obtained
from test trials, for both memory-impaired patients and matched
controls. A prototype test item is, of course, maximally similar to
the prototype, a low-distortion test item somewhat less similar, a
high-distortion item even less similar, and a random test item is
the least similar to the prototype. The black bars depict the data
for the patients, the white bars the data for controls. From “The
Learning of Categories: Parallel Brain Systems for Item Memory
and Category Knowledge,” by B. J. Knowlton and L. R. Squire,
Science, 262, p. 1748. Copyright 1993 by the American Associa-
tion for the Advancement of Science. Adapted with permission.

Further evidence for implicit category learning was
provided by examining the extent to which a participant
endorsed a test item as a category member as a function of
its similarity to the underlying prototype of the category
(which was not presented during training). This prototypi-
cality gradient is presented in Figure 1B, in which more
extreme values on the x-axis represent less similarity to the
prototype. There appears to be little difference between the
memory-impaired patients and controls in their gradients.

The conclusion that was drawn by Knowlton and Squire
(1993) was that both groups of participants had learned
the category implicitly rather than explicitly. Several sub-
sequent experiments have used a variant of this prototype
extraction task and have replicated the findings above for
patients—intact categorization, but impaired recogni-
tion—using as patients either MTL amnesics (Kolodny,
1994; Reed, Squire, Patalano, Smith, & Jonides, 1999;
Squire & Knowlton, 1995) or people with mild Alz-
heimer’s disease (Bozoki et al., 2006; for partial replica-
tions, see also Keri, Kalman, Kelemen, Benedek, & Janka,
2001; Keri et al., 1999).

The Reed et al. (1999) study made an additional im-
portant point. In this experiment, the items that were used
were not abstract dot patterns, but a set of artificial ani-
mals (Figure 2A illustrates some of the animals). Whereas
abstract dot patterns are difficult to describe, Reed et al.’s
artificial animals are not, since they are composed of
salient and separable dimensions—for example, a crea-
ture with a round, striped body and a long neck. The fact
that Reed et al. obtained the usual results for memory-
impaired patients with these items—intact categorization
with impaired recognition, and a roughly normal proto-
typicality gradient for categorization—suggests that the
implicit categorization system of interest operates on both
easy- and difficult-to-describe materials.

The prototype extraction task shares certain features
with other paradigms that are used to study implicit
memory. The training phase contains no feedback and is
disguised as something other than a learning task; the pur-
pose of the disguise is to block intentional learning and
the subsequent use of explicit memory. This aspect dis-
tinguishes prototype extraction from two other tasks that
have been used to study implicit category learning. One
is probabilistic categorization, which has been used ex-
tensively in neuropsychological studies (e.g., Knowlton,
Mangels, & Squire, 1996; Shohamy et al., 2004). In this
paradigm, a set of one to three different visual patterns is
presented on each trial, and the participant has to decide
in which of two categories each set belongs. Unlike the
prototype extraction task, in probabilistic categorization,
feedback is given during the training phase, and the identi-
cal stimulus can be assigned to different categories on dif-
ferent trials. In view of these differences, it is not surpris-
ing that performance on the probabilistic-categorization
and prototype extraction tasks can be dissociated: Patients
with Parkinson’s disease are impaired on probabilistic cat-
egorization, but not on prototype extraction (Ashby & Ell,
2001; Keri, 2003).

There are also neuroimaging results that imply that
probabilistic categorization is based on a system differ-
ent than that mediating prototype extraction. When young
normals are imaged while performing the probabilistic-
categorization task, the striatum is consistently activated
(see, e.g., Poldrack et al., 2001), and differences in striatal
activation are correlated with differences in behavioral
performance (Foerde, Knowlton, & Poldrack, 2006). In
contrast, the striatum seems to play little role when young
normals are imaged while performing prototype extrac-
tion (e.g., Reber et al., 2003).
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The other implicit category learning task of note is the
information integration task that has been used exten-
sively by Ashby and Maddox and their colleagues (see,
e.g., Ashby & Maddox, 2005, for a recent review). In a
typical version, a two-dimensional stimulus is presented,
and participants must decide to which of two categories
the stimulus belongs. Feedback is given during the train-
ing phase, and the stimuli are constructed so as to be dif-
ficult to describe. These characteristics are unlike those of
prototype extraction; as already noted, Reed et al. (1999)
used materials that were relatively easy to articulate in
prototype extraction and obtained the standard results (see
also Bozoki et al., 2006). Again, the two tasks dissociate:
Parkinson’s patients are impaired on information integra-
tion, but not on prototype extraction (Ashby & Ell, 2001).
Furthermore, in one of the only neuroimaging studies to
use an information integration task, activation of the stria-
tum was again a major finding (Seger & Cincotta, 2002).
Thus, the two alternative category-learning paradigms
seem to be tapping a system different from that recruited
by prototype extraction, and we will not dwell on them in
what follows.

Criticisms of Prototype Extraction Research

Several criticisms of the prototype extraction research
that supports implicit category learning have been made,
and one way to appreciate them is through the lens of
memory systems. The research at issue assumes that
results in the prototype extraction task reflect only im-
plicit memory, with no contribution of explicit memory
or working memory, and this is presumably the case for
both memory-impaired patients and controls. All of the
criticisms essentially challenge this assumption and argue,
for example, that performance on prototype extraction by
memory-impaired patients is entirely due to either explicit
memory (see, e.g., Nosofsky & Zaki, 1998), or working
memory (e.g., Palmeri & Flanery, 1999). More specifi-
cally, there are five criticisms of concern, with some being
made on the basis of empirical findings and others on the
basis of the results of computational modeling.

1. The seemingly intact performance of memory-
impaired patients on prototype extraction can be attrib-
uted entirely to the patients’ relying on working memory
mechanisms during the test trials (see, e.g., Palmeri &
Flanery, 1999).

2. The seemingly intact performance of memory-
impaired patients on prototype extraction in at least one
particular study—Reed et al. (1999)—can be explained
(modeled) by assuming that participants need explicitly
remember information about only one or two features, ac-
quired during either the training or the test phase (Zaki &
Nosofsky, 2001).

3. The performance of memory-impaired patients on
prototype extraction is not truly intact, as revealed by
meta-analysis techniques. This means that the perfor-
mance of memory-impaired patients on categorization
and their performance on recognition are only quantita-
tively dissimilar, which suggests that performance on both
tasks may be based on the same system (Zaki, 2004).

4. The findings that memory-impaired patients are in-
tact on prototype extraction but impaired on a recognition
task is due to the categorization tasks being less difficult
than the recognition task (Zaki, Nosofsky, Jessup, & Un-
verzagt, 2003).

5. Intact performance of memory-impaired patients
on prototype extraction, along with their impaired per-
formance on a standard recognition memory task, can
be explained (modeled) entirely in terms of retrieval of
exemplars from explicit memory (see, e.g., Nosofsky &
Zaki, 1998).2

The gist of the criticisms is this. Most researchers
would readily acknowledge that there are two different
category-learning systems: an exemplar retrieval system
based on explicit memory that determines the similarity of
a test item to stored exemplars of a category and uses this
as a guide to categorization, and a system based on work-
ing memory that tests hypotheses about what features are
relevant to category membership and uses these features
to guide categorization (Ashby & O’Brien, 2005; Smith,
Patalano, & Jonides, 1998). But there is no convincing
evidence for the existence of a third category-learning
system, one based on implicit memory. In the next sec-
tion, we will consider in detail each of these criticisms,
along with rebuttals to them.

EVALUATION OF THE EVIDENCE

Are Results in the Prototype Extraction Task
Due to Working Memory?

Using the standard prototype extraction task, Palmeri
and Flanery (1999) demonstrated that one can learn a cat-
egory solely from the test trials. In an ingenious experi-
ment, the participants (young normals) were misleadingly
told that a series of dot patterns had been presented to them
subliminally (while they were doing another task) and that
these subliminal patterns were all instances from the same
category. The participants were further informed that they
now had to determine which of a sequence of test patterns
also belonged to the category. Essentially, the paradigm
was the same as that of Knowlton and Squire (1993), ex-
cept that no training patterns were ever presented. Never-
theless, the participants in Palmeri and Flanery performed
the categorization task with above-chance accuracy and
showed a prototypicality gradient like that in Figure 1B
(i.e., the probability of endorsing a test item as a category
member decreased as the similarity of the test item to the
category prototype decreased). The undeniable conclusion
from these results was that category learning had occurred
during the test trials (there were 80 such trials).?

More to the point, the evidence that previous investiga-
tors had used to support implicit category learning dur-
ing training now could be attributed to learning during
the test trials, and the latter could have involved working
memory, which is known to be relatively intact in some
memory-impaired patients. More specifically, knowing
that a category is present, and confronted with the first
few test trials, participants may have tested hypotheses
about which features were diagnostic of the category (e.g.,
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with dot patterns, participants might have noted that most
of the first few test patterns contained a cluster of dots in
their upper left-hand quadrants; with artificial animals,
participants might have noticed that most of the first few
test items contained striped creatures with long necks). On
each successive test trial, participants might have checked
for these critical features or, if too many patterns had
them, sought another feature set that would have allowed
them to sometimes declare an item a nonmember. In short,
participants could have engaged in hypothesis testing, a
means of category learning that is heavily dependent on
working memory, not explicit memory, and that is primar-
ily mediated by prefrontal structures, not MTL ones (see,
e.g., Ashby & O’Brien, 2005). In addition to its plausibil-
ity, this working memory proposal has some empirical
support. When schizophrenic patients were tested in the
no-training variant of the prototype extraction task, those
patients who were known in advance to have intact work-
ing memory performed normally on the task, whereas
those patients with a known deficiency in working mem-
ory were impaired on the task (see Keri, 2003).4

The fact that participants in standard prototype extrac-
tion tasks (i.e., those that include training trials) could have
learned the category solely on test trials does not mean
that they did learn it in this fashion. To determine how par-
ticipants actually do learn in a standard paradigm, we need
a direct comparison of performance on prototype extrac-
tion with and without training trials: Performance without
training trials may be used as a rough estimate of what can
be learned during test via working memory alone, and this
estimate can be subtracted from performance with train-
ing trials to determine whether there is residual learning
that can be attributed to an implicit system.

Bozoki, Grossman, and Smith (2006) recently reported
an experiment using this kind of subtraction logic. The
participants were patients with mild Alzheimer’s disease
(who had extensive damage in MTL and, thus, compro-
mised explicit memory) and age-matched normal con-
trols. The task was prototype extraction, with the items
being the artificial animals used by Reed et al. (1999);
see Figure 2A. On the measure of overall categorization
accuracy, the Alzheimer’s participants showed significant
residual learning after subtracting their working memory
component, and their implicit category learning was in-
distinguishable from that of normal controls. The proto-
typicality gradients for patients with and without training
items are presented in Figure 2B. (Again, more extreme
values on the x-axis represent less similarity to the pro-
totype.) Clearly, patients with impaired memory learned
something about the category during the training trials,
and what they learned did not differ significantly from
what controls learned; that is, there was no difference be-
tween the prototypicality gradients for the AD patients
and controls. In sum, these results offset the working
memory criticism and provide some evidence for implicit
category learning.’

Will these results for patients generalize to other kinds
of materials, particularly the dot patterns that have fig-
ured so prominently in this research? Earlier, we noted
that the basic phenomena obtained in studies with dot

patterns—intact categorization with impaired recogni-
tion and a roughly normal prototypicality gradient—are
obtained with artificial animals as well (see the introduc-
tion). But these past correspondences do not guarantee
that the results in Figure 2B will also generalize across
materials. And there is reason to be cautious. The Palmeri
and Flanery (1999) study, which used dot patterns and
introduced the no-training condition, also included a stan-
dard condition in which normal participants were exposed
to training items before being tested. The authors found no
beneficial effect of training. This null result contrasts with
the positive one of Bozoki et al. (2006), and the discrep-
ancy may well reflect the difference in materials, dot pat-
terns being substantially less analyzable and verbalizable
than artificial animals. The discrepancy in results may
also partly reflect the difference in participants—older,
memory-impaired patients in Bozoki et al. (2006), as op-
posed to young normals in Palmeri and Flanery (1999).
Normals are more likely than patients to be strategic about
their use of working memory during test, deploying this
system more when they have had no training than when
they have had training and learned something from it (see
Bozoki et al., 2006). This kind of strategic control in nor-
mals would compromise the subtraction logic of the ex-
periments of interest.

What is needed are experiments with memory-impaired
patients that contrast training and no-training conditions
with both artificial animals and dot patterns. As things
stand now, the Bozoki et al. (2006) results provide evidence
that memory-impaired patients are capable of implicit cat-
egory learning, at least with analyzable materials.

Do Participants Explicitly Remember
Only a Few Features?

A number of researchers have proposed that in some
of the studies supporting implicit category learning, par-
ticipants may have attended to only one or two relatively
salient features of the patterns rather than formed a rep-
resentation of the entire pattern. This criticism has been
most developed in Zaki and Nosofsky’s (2001) critique
of the Reed et al. (1999) study that used artificial animals
as items.

Zaki and Nosofsky (2001) consider two different ver-
sions of this criticism. (1) Using explicit memory, par-
ticipants need remember only one or two salient features
of the training items (which presumably is within the
capacity of memory-impaired patients) and then employ
these features as a basis for categorization during test, and
(2) using working memory, during the test phase, partic-
ipants discover one or two critical features and employ
them as a basis for categorization decisions. The second
version is easier to deal with. It is just a special case of
the previous criticism, and again, the Bozoki et al. (2006)
findings—evidence for category learning after test phase
learning has been subtracted—provide a counterargument
to the criticism.

The first version of the criticism requires more extended
discussion. Reed et al. (1999) did, in fact, consider the hy-
pothesis that their patients made their categorizations on
the basis of just 1 or 2 of the 10 relevant features and tried
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Figure 2. Bozoki, Grossman, and Smith (2006) experiment. Panel A contains examples of the items
used. Panel B presents prototypicality gradients for Alzheimer’s patients who did or did not receive
training items (white circles and black triangles, respectively). Importantly, the gradient for patients
who received training items is steeper than that for patients who had no training items, and steep-
ness is a measure of learning. Not endorsing a test item that shares fewer than four features with the
prototype is considered a correct response. From “Can Patients With Alzheimer’s Disease Learn a
Category Implicitly?” by A. Bozoki, M. Grossman, and E. E. Smith, Neuropsychologia, 44, p. 822.
Copyright 2006 by Elsevier B.V. Adapted with permission.

to evaluate this hypothesis in a couple of ways. As one ex-
ample, for each participant, they determined the feature,
or attribute value, that was the most frequently endorsed
in order to see whether that endorsement rate was close to
100% (as it might be if participants made their categori-
zations solely on the basis of 1 feature). Reed et al. found
that on average, the most frequently endorsed feature was
endorsed only 77% of the time, and they offered this result
as evidence against the hypothesis that patients used only
a single feature during categorization. In a more recent
study (Koenig et al., 2007) that used prototype extraction
with artificial animals that varied on six attributes, we per-
formed similar tests of the hypothesis of interest. For each
of 23 mild AD patients and a like number of age-matched
controls, we asked whether there was any attribute that
had one of its values endorsed 80% of the time and the
other value endorsed less than 20% of the time. Only 2 of
the 23 patients showed this pattern of single-feature use

(none of the controls did), and when we removed these 2
patients from our data analysis, there was still evidence for
implicit category learning in the patient group.

Zaki and Nosofsky (2001) raised a problem with such
straightforward behavioral measures. Even when partici-
pants are using only one feature, they may use a proba-
bilistic response rule (e.g., “If most of the training items
were red, then endorse a red test item 75% of the time”)
rather than a deterministic rule (e.g., “Endorse red items
100%”). One way to deal with this potential problem is
to use a mathematical model of category learning that
includes a parameter for the response rule, as well as pa-
rameters for other relevant processes. In doing so, one can
see how well the model fits data for memory-impaired pa-
tients under the assumption that only one or two features
are attended and the response rule is probabilistic. Zaki
and Nosofsky approximated this strategy in an experiment
that was patterned on the Reed et al. (1999) study, and
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they found that an attend-to-one-or-two-features version
of the model provided a good fit to their data.

However, their research is problematic in two respects.
First, rather than testing patients and controls, Zaki and
Nosofsky (2001) tested only young normals, with one
group of participants receiving the test immediately after
training (the immediate group), and the other group re-
ceiving the test after a 1-week delay (the delay group). The
delay group is a “stand-in” for memory-impaired patients.
This is a rather pale approximation to memory impair-
ment caused by brain damage (as the authors themselves
note). When Alzheimer’s patients are presented a list of
words to remember and are tested on them 10 min later
(a standard procedure in some Alzheimer’s clinics), not
only do the patients fail to recall any of the words, often
they cannot remember ever being tested (Grossman, 2007,
personal communication). It seems unlikely that the young
normals in Zaki and Nosofsky’s delay condition would
forget that they were given a memory test. Thus, although
Zaki and Nosofsky’s results show that young normals may
perform the test phase of prototype extraction by recalling
one or two features from a training session a week ago, it
is by no means clear that memory-impaired patients could
recall this much information from material presented a
few minutes ago.

Second, Zaki and Nosofsky’s (2001) means of deter-
mining the amount of attention paid to a particular attri-
bute was quite removed from the actual data. In the first
step of their analysis, the attentional value, or “weight,”
of an attribute was determined by a model that included
11 free parameters for every participant, with a separate
parameter for each relevant attribute. The authors found
that attention weights for only one to two of these attri-
butes were needed to account for the participants’ catego-
rizations. Because there are so many free, unconstrained
parameters, the results do not seem that compelling. In
the second step of their analysis, Zaki and Nosofsky fit
more restricted versions of their model that contained
between one and three attention-weight parameters, and
they showed that these restricted models provided fits
to the categorization data that were as good as those of
the full model (the 11-parameter version). This seems a
more impressive result. Note, however, that the restricted
models were based on the full, 11-parameter version; for
example, the single attribute used in a one-parameter re-
stricted model was the attribute with the greatest attention
weight in the full model.

We are thus left with a conclusion—categorization is
based on one or two explicitly remembered features—that
is based on an analytic framework that has a large number
of unconstrained parameters and that has never been ap-
plied to memory-impaired patients. Further applications
of the model may lead to a more convincing argument,
particularly if it is applied to patients. But the results that
were just discussed do not seem strong enough to over-
throw a conclusion made on the basis of direct behavioral
measures of patients’ performances on prototype extrac-
tion. We have not reached a resolution of this issue.

Is the Performance of Memory-Impaired
Patients in Prototype Extraction Truly Intact?

Every prototype extraction study that has compared
normal controls and memory-impaired patients has shown
that controls do slightly better, even though this difference
has failed to reach statistical significance. Although the
differences may have been small in each study, their con-
sistency across studies led Zaki (2004) to perform some
meta-analyses of category-learning tasks that involved
memory-impaired patients. She analyzed over 14 different
experiments, 5 of which used the prototype extraction task.
These analyses showed that controls scored significantly
higher on implicit category learning than did memory-
impaired patients. This finding indicates that the perfor-
mance of memory-impaired patients on categorization is
only quantitatively dissimilar from their performance on
recognition (they are impaired on both), which suggests
that both tasks may recruit the same system. Zaki used
this finding in conjunction with a model-based analysis
to argue that the only system involved in prototype extrac-
tion is explicit memory. In essence, although memory-
impaired patients have reduced memory sensitivity (in a
sense that will soon be described in detail), it is sufficient
to score close to normal on the categorization task, but not
on a recognition task.

From the present perspective, a problem with Zaki’s
(2004) meta-analysis is that it mixes together studies using
different category-learning paradigms—including proto-
type extraction, probabilistic-categorization, and infor-
mation integration tasks—and we have already noted that
the latter two paradigms likely reflect different mecha-
nisms than does prototype extraction (see the introduc-
tion). However, even if we assume that Zaki’s finding of a
small advantage for controls applies to prototype extrac-
tion and further grant the claim that this advantage is due
to controls, having better explicit memory, this does not
necessarily imply that the patients in these studies also
used explicit memory. Indeed, this conclusion seems par-
ticularly implausible for the results obtained by Squire
and Knowlton (1995) and Reed et al. (1999). In both these
studies, one of the patient participants, E.P., performed
at chance on all measures of explicit memory, but nor-
mally on implicit category learning, which undermines
Zaki’s conclusion to some degree. If category learning is
due only to explicit memory and E.P. has no discernible
explicit memory, how can he perform normally on cat-
egory learning? (This same point has been discussed by
Knowlton, 1999, and Nosofsky & Zaki, 1999.) In short,
with respect to explaining the results of neuropsycholog-
ical experiments, Zaki’s argument has parsimony on its
side, but it lacks plausibility.

An alternative proposal to Zaki (2004) is that during
the training period, both patients and controls acquired
information only implicitly, but during the test period,
the controls, but not the patients, also tried to explicitly
recall training patterns to help guide their categorization
decisions. This alternative acknowledges that prototype
extraction can involve explicit memory but restricts this
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involvement to people who have neurologically intact
memory systems.

Interestingly, the point of agreement between the two
proposals—that an implicit task recruits an explicit sys-
tem in normal participants—is rarely considered in the
relevant experimental reports. Typically, researchers do
not ask participants whether they tried to remember train-
ing instances during the test phase. Such postexperimen-
tal interviews also appear to be rare in other studies of
implicit learning, such as repetition priming. In a recent
study of repetition priming in younger and older normal
participants that did ask such questions, fully one third
of all participants volunteered that they had indeed tried
to recall the training items during the test phase (May,
Hasher, & Foong, 2005).6

Is the Difference in Performance of MTL
Patients on Categorization and Recognition
Tasks Due to Task Difficulty?

We have been focusing on whether implicit categoriza-
tion is really intact, but it is important to keep in mind that
the phenomena of interest include impaired recognition
along with intact categorization. In a recent attempt to ac-
count for this dissociation, Zaki, Nosofsky, Jessup, and
Unverzagt (2003) suggested that the categorization tasks
that have been used with memory-impaired patients are
simply less demanding than the recognition tasks used.
Taken at face value, this claim is at odds with certain
basic findings. The standard way of determining the rela-
tive difficulty of two tasks is to see which task leads to
poorer performance in normal controls. By this standard,
Knowlton and Squire’s (1993) categorization task was
more difficult than their recognition task, since the per-
cent correct on the two tasks was roughly 60% and 80%,
respectively. (This difference likely reflected the fact that
Knowlton and Squire used 40 different training items in
categorization, but only 5 different study items in recog-
nition.) Indeed, even if we consider only the performance
of Knowlton and Squire’s patients, their performance on
recognition is no worse than their performance on cat-
egorization. There is simply no evidence in this study (or
Squire & Knowlton’s, 1995, follow-up experiments) to
support the claim that the dissociation is due to differen-
tial difficulty. Squire and Knowlton (2000) have argued
roughly the same point.

The only way to salvage the differential-difficulty hy-
pothesis is by focusing on a component process of the task,
not the whole task, and to argue that this process is more
taxed in the recognition than in the categorization con-
ditions in studies that have shown the dissociation. Zaki
et al. (2003) take this tack as well, and they argue that the
critical process involves discriminating between memory
representations. They further propose that such discrimi-
nation is impaired in memory-impaired patients (essen-
tially, any comparison between a test item and a memory
representation is degraded by noise), and that prototype
extraction requires less discrimination sensitivity than do
the recognition tasks used. Note that this kind of differen-

tial difficulty argument rests on a computational analysis
of the tasks, not on empirical data about the overall diffi-
culty of the task. And note further that even if recognition
taxes a memory discrimination process more than catego-
rization does, it does not follow that recognition should
be the more difficult task. Among other considerations,
there are processes in addition to memory discrimina-
tion that contribute to performance in the two tasks (like
the response rule that we considered earlier), and some
of these additional processes may favor recognition over
categorization.

To provide data on the point, Zaki et al. (2003) com-
pared memory-impaired patients and controls on two cat-
egorization tasks that presumably differed in the demand
they made on memory discrimination. One task was stan-
dard prototype extraction—it was exactly the Knowlton
and Squire (1993) dot-pattern paradigm. The other task
required participants to learn two categories of dot pat-
terns concurrently, the two categories being generated
from different prototypes. On each training trial, a pattern
would appear; the participant would indicate whether it
belonged to Category A or B and then would receive feed-
back. During the test trials, participants had to categorize
novel items (as well as the old training items). As was ex-
pected, the patients performed less well than the controls,
at least in the final blocks of trials (55% vs. 63%).

This dual-category task has little connection to the kind
of implicit category learning that is at issue in this article.
For one thing, participants were instructed during training
that categories were present; for another, they received
feedback. For both these reasons, participants presumably
had an intention to learn, which should have led them (at
least the control participants) to apply explicit memory
processes. All this study shows is that in a task that re-
cruits and requires explicit memory, patients with mem-
ory impairment perform worse than controls. We already
knew this from studies of recognition memory.

In sum, there is no merit to the global claim that the
prototype extraction task is easier than the recognition
tasks with which it has been compared. However, there
may be merit to the idea that a common component of the
categorization and recognition tasks is more taxed in the
recognition task (see the next subsection), but the experi-
ment provided as support for this idea by Zaki et al. (2003)
does not seem to deal with implicit category learning.

Can the Performance of Memory-Impaired
Patients on Prototype Extraction and
Recognition Be Explained (Modeled) Entirely
in Terms of Explicit Memory?

Basic argument. In their initial critique of the research
on implicit category learning, Nosofsky and Zaki (1998)
argued that the Knowlton and Squire (1993) findings on
categorization and recognition could be explained in terms
of a single-system, explicit-memory model. The findings
at stake are the dissociation between recognition and cat-
egorization, and the prototypicality gradient for categori-
zation. The model at issue, the generalized context model
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(or GCM), is a mathematical model of exemplar-based
categorization that was developed by Nosofsky (see, e.g.,
1988, 1991). According to the GCM, during the training
phase in prototype extraction experiments, participants
store a representation of each exemplar presented to them;
during the test phase, they determine whether a test item
belongs to the category by determining its similarity to
each exemplar, summing these similarities, and compar-
ing the summed similarity with a categorization criterion.
Exactly the same processes go on in a recognition task in
determining whether a test item is old or new, except that
the summed similarities are now compared with a recogni-
tion criterion that need not be the same as the categoriza-
tion criterion.

Nosofsky and Zaki (1998) obtained empirical es-
timates of the exemplar similarities involved and used
them to fit a multiparameter version of the GCM to the
Knowlton and Squire (1993) data. To account for differ-
ences between the memory-impaired patients and con-
trols, Nosofsky and Zaki (1998) altered one parameter
of their model—that which reflects memory discrimi-
nation, in the sense that less discrimination means that
the outcome of a similarity comparison is degraded. The
memory discrimination parameter was constrained to be
lower for memory-impaired patients than for controls.
This model was shown to provide an excellent fit to both
sets of critical findings: the dissociation between recogni-
tion and categorization accuracy, and the comparable pro-
totypicality gradients for memory-impaired patients and
controls in categorization (see Nosofsky & Zaki, 1998,
Figures 1 and 2). Variants of the GCM were used to suc-
cessfully model the results of other studies of implicit
category learning that have compared normal controls
and memory-impaired patients.”

Analysis of the dissociation. Appreciating how the
GCM works in producing the dissociation between cat-
egorization and recognition is useful. The first thing to
note is that the model exploits a difference in how these
two tasks were implemented in Knowlton and Squire
(1993)—namely, that different items were used in the
categorization and recognition tasks. Specifically, 40 dif-
ferent but similar dot patterns served as training items in
categorization, whereas 5 dissimilar dot patterns were the

memory items in recognition. This difference in materials
allows the GCM model to readily capture the dissociation.
Table 1 provides an illustration of how this works. The
top half of the table illustrates the categorization task; the
bottom half illustrates the recognition task. To keep things
simple, for each task, only five training exemplars are rep-
resented (shown on the left side of Table 1), and each one is
represented in terms of binary values on five dimensions,
designated as D1 through D5 in the table. (As examples
for dot patterns, one dimension might be whether there are
many or few dots in the upper-left quadrant; for artificial
animals, one dimension might be whether the creature has
stripes or not.) The two test items for each task (shown on
the right side of the table) are represented in the same way.
The structure of the training and test items is intended to
capture the structure of the items used by Knowlton and
Squire.

For the categorization task (top half of Table 1), the ex-
emplar representations required during training are highly
similar to one another. Because of this intraset similarity,
a positive test item (a category member) will be highly
similar to most of the stored training exemplars, and it
will have a high summed similarity: In contrast, a negative
test item (a nonmember) may be highly dissimilar to the
stored exemplars, and it will have a low summed similar-
ity. The consequence is that it does not take much memory
discrimination to tell members from nonmembers in cat-
egorization. The bottom half of Table 1 illustrates the rec-
ognition task. Now the training exemplars are less similar
to one another, and the positive test items (old items) show
only a moderate summed similarity to the stored exem-
plars, whereas the negative test items (new items) show a
somewhat smaller summed similarity to the stored exem-
plars. The consequence is that it is relatively difficult to
discriminate old items from new ones.

The upshot is that the difference between (1) summed
similarity for positive test items and stored training ex-
emplars and (2) summed similarity for negative test items
and stored training exemplars is greater for categorization
than for recognition. Consequently, if the outcome of a
similarity comparison is diminished by decreasing sen-
sitivity, as it presumably is in memory-impaired patients,
then categorization may be unaffected, but recognition

Table 1
GCM Analysis of Memory Comparisons
Training Test
D1 D2 D3 D4 D5 DI D2 D3 D4 D5
Categorization
1. 1 1 1 1 0 1 1 1 1 1 (positive: member)
2. 1 1 1 0 1 0 0 0 0 1 (negative: nonmember)
3. 1 1 0 1 1
4. 1 0 1 1 1
5. 0 1 1 1 1
Recognition
1. 1 1 1 1 0 1 1 1 1 0 (positive: old)
2. 1 1 0 0 1 0 1 1 (negative: new)
3. 1 0 1 1 0
4. 0 1 0 0 0
5. 0 0 1 0 1
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should clearly suffer. This is how GCM predicts the dis-
sociation. This analysis has not been addressed in previ-
ous attempts to rebut Nosofsky and Zaki (1998; see, e.g.,
Squire & Knowlton, 2000).8

A number of comments about the analysis above are
in order. First, the differences in representations between
categorization and recognition and the resulting similarity
differences are sufficiently great so that the Nosofsky and
Zaki (1998) model can capture the dissociation without
recourse to any subtle interplay between free parameters
in GCM. Indeed, the representational differences between
categorization and recognition are such that other models
of categorization based on explicit memory can also pre-
dict the critical dissociation. As an example, consider the
SUSTAIN model proposed by Love, Medin, and Gureckis
(2004). Unlike the exemplar-based GCM, SUSTAIN as-
sumes that to the extent that training items are similar,
participants will group them together into a single cluster,
whereas dissimilar items will require their own clusters
(i.e., they are treated like exemplars). When these ideas
are applied to the training items represented on the left
side of Table 1, it appears that only one cluster might be
needed to represent the categorization items (the cluster
characterized by the dimension values 11111), whereas
three to four clusters might be needed to represent the
recognition items. Assuming that patients with memory
impairment are less likely to form a new cluster than are
controls (which is captured by a single parameter in SUS-
TAIN), the model predicts that the patients will be im-
paired on recognition, but not on categorization (see Love
& Gureckis, 2007).

Other existent mathematical models of category learn-
ing might also be comfortable with the dissociation. The
general point is that the structure of the materials used in
some relevant experiments are such that the results can be
explained by a number of category learning models in a
straightforward way. This criticism of key experiments on
implicit category learning seems well founded.

Second, although the use of different materials for
categorization and recognition leads to an interpretation
problem, we note that there are some reasons for this de-
sign decision. One wants to use highly similar instances
for the categorization task so as to mimic the structure
of natural categories. However, employing the same in-
stances in recognition could lead to problems. If the new
items are similar to the training instances, the recognition
task will be too difficult for patients, whereas if the new
items are dissimilar to the training items, all participants
may perform the recognition task by using a categoriza-
tion strategy (see Bozoki et al., 2006). So the use of dif-
ferent materials in Knowlton and Squire (1993) at least
ensured that the recognition task was no more difficult
than the categorization task.

What about other prototype extraction experiments that
have been reviewed? Either they too have used different
materials for categorization and recognition (see, e.g.,
Squire & Knowlton, 1995), or they have used the same
materials but have employed a memory task that did not
permit direct comparison with categorization (e.g., Bo-
zoki et al., 2006; Reed et al., 1999).

Clearly, we are in need of further neuropsychological
experiments that use the same materials for categoriza-
tion and recognition and that employ comparable tasks.
If such experiments are performed and continue to pro-
duce a dissociation between categorization and recog-
nition, then the case for implicit category learning will
be strengthened, although it may still be possible for the
GCM to account for the dissociation via parameters other
than memory discrimination. In the version of GCM pre-
sented in Nosofsky and Zaki (1998), different parameters
are used for the criteria for categorization and recogni-
tion, and these two parameters can take on different values
for memory-impaired patients and controls. Variations in
these parameters (and still others) could possibly yield the
dissociation of interest. What is needed, then, are neuro-
psychological experiments that take into consideration
the main component processes that are posited in current
models of category learning. A similar argument is made
in Love and Gureckis (2007).

Role of neuroimaging data. There is another source
of evidence that can be brought to bear on the question of
whether the results from prototype extraction and recogni-
tion tasks reflect the same underlying mechanisms—neu-
roimaging evidence. Using functional magnetic resonance
imaging (fMRI), we can ask whether prototype extraction
and recognition tasks recruit different neural networks,
even in normal controls (this kind of research has not yet
been done with patients).

Reber, Stark, and Squire (1998) performed exactly this
kind of experiment, using the same tasks that were em-
ployed in Knowlton and Squire (1993) (see Figure 1A),
but with all of the participants being normal. In prototype
extraction, participants first were presented 40 different
distortions of a prototype pattern, and then categorized
70-plus novel patterns while being imaged by fMRI. In
recognition, participants first were presented five patterns
(different from those in prototype extraction), and then they
made old—new judgments while being imaged by fMRI.
The behavioral results indicated that, if anything, catego-
rization again was the more difficult task (categorization
accuracy was only 58%, whereas the hit rate in recognition
was 81%). Of greater importance are the imaging results.
In categorization, the fMRI contrast of interest was the dif-
ference in activation between a category member and a non-
member (member minus nonmember); in recognition, the
contrast of interest was the difference in activation between
an old item and a new one (old minus new). These contrasts
produced striking differences between the two tasks. The
recognition task resulted in numerous activations, including
several areas in the prefrontal cortex and the MTL. These
are exactly the areas that have repeatedly been implicated
in neuroimaging studies of explicit memory (for recent re-
views, see Squire, Clark, & Bayley, 2004; Wagner, Bunge,
& Badre, 2004). But none of these areas was activated in
categorization. Even more dramatically, an area in the pos-
terior occipital cortex known to be involved in visual pro-
cessing (Brodmann Area 17/18) was activated in recogni-
tion but deactivated in categorization. At face value, these
results provide evidence that different memory systems are
involved in prototype extraction and recognition.
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For our purposes, however, this study has a number of
critical limitations. For one, the difference in materials
used in the two tasks leaves open the possibility that the
greater activations in recognition than in categorization
may reflect the greater demands on memory discrimina-
tion in the recognition task. (It is less clear, however, how
the difference in material could explain the finding that
there were some different activations in the two tasks.) A
second problem with the study is that the critical contrasts
for categorization and recognition may not be strictly
comparable; the difference between a category member
and a nonmember is somewhat arbitrary in this task (see
note 1) and may be different from the nonarbitrary differ-
ence between an old and a new item.

A more recent fMRI study by Reber et al. (2003) solved
these two problems by using only prototype extraction
but varying whether the task was performed with the
usual incidental instructions (participants did not know
a category was present at the beginning of training) or,
instead, with intentional instructions (participants were
told that there was a category during training). Because
the items were identical in both conditions, and because
the only fMRI contrast was between members and non-
members at test, Reber et al. (2003) eliminated the two
problems mentioned above. Moreover, in asking whether
incidental and intentional instructions recruit different
neural systems in categorization, Reber et al. (2003)
asked a question that is even more germane to the issue
of dual-category learning systems than is the question
of categorization versus recognition. Intentional instruc-
tions should engage explicit category learning, which
is mediated by structures in the MTL (particularly the
hippocampus). To the extent that incidental instructions
show a qualitatively different pattern of neural activation,
there is evidence for a second system.?

Two different groups of participants were used. Dur-
ing training, the incidental group was told to point to the
center of each dot pattern, whereas the intentional group
was told that the patterns all came from the same category
and that they were to learn it. Participants were imaged
by fMRI during the test trials when both groups were in-
structed to discriminate category members from nonmem-
bers. The behavioral results showed that the intentional
instructions led to substantially better categorization per-
formance than did the incidental instructions. Such an ef-
fect is hardly informative about whether there are separate
explicit and implicit category-learning systems, since the
difference in accuracy could merely reflect a difference
in the amount of attention paid during training (a process
that is included in virtually all single-system mathemati-
cal models of category learning). But the imaging results
are more informative on the issue of multiple learning sys-
tems. In line with other findings on category learning (see,
e.g., Koenig et al., 2004), intentional instructions led to
increased activations in a number of brain areas, including
prefrontal and parietal areas; in line with the Reber et al.
(1998) study discussed above, incidental instructions led
to a deactivation in the visual cortex. The fact that a differ-
ence in instructions determined whether the pattern was
one of activation or deactivation suggests that the different

instructions recruit qualitatively different categorization
systems. (See Aizenstein et al., 2000, for comparable re-
sults with a different version of prototype extraction.)

In a particularly diagnostic contrast, Reber et al. (2003)
focused on neural activity in two target regions: the hip-
pocampus (a critical part of the MTL system) and the pos-
terior occipital region that was deactivated in the inciden-
tal condition (as well as in Reber et al., 1998). Substantial
research indicates that in comparison with an appropriate
baseline, hippocampal activation is a marker of explicit
memory, whereas deactivation of the extrastriate occipi-
tal cortex is a marker of implicit memory (as reflected in
perceptual priming; see Buckner, 2000, for a relatively re-
cent review). The results of this contrast are reproduced in
Figure 3 and show a double dissociation: In the hippocam-
pus, intentional instructions led to greater activity than did
incidental instructions (incidental instructions produced
no discernible activation here); in the occipital area, in-
cidental instructions led to a greater deactivation than
did intentional instructions. These results provide data
that cannot easily be accounted for by any single-system
model of category learning. To the extent to which these
findings prove robust, they offset the challenge raised by
the Nosofsky and Zaki (1998) analysis.

Although these imaging data are informative, by no
means are they the last word on the matter. There are no
direct comparisons of the hippocampal activation or the
occipital deactivation across the two tasks; rather, the ac-
tivations and deactivations are compared only with a base-
line. There are also some anomalies in the data. For one, in
Reber et al. (2003), the intentional condition shows some
deactivation of the posterior occipital site, whereas in the
earlier Reber et al. (1998) study, the recognition task con-
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Figure 3. Reber, Gitelman, Parrish, and Mesulam (2003) exper-
iment: The fMRI difference between members and nonmembers
in the intentional (referred to as “explicit”’) and unintentional
(referred to as “implicit™) conditions. From “Dissociating Explicit
and Implicit Category Knowledge With fMRI,” by P. J. Reber,
D. R. Gitelman, T. B. Parrish, and M. M. Mesulam, Journal of
Cognitive Neuroscience, 15, p.578. Copyright 2003 by MIT Press.
Adapted with permission.
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dition (which should be similar to intentional categoriza-
tion) shows a significant activation of the same area. An-
other issue concerns hippocampal activation. Reber et al.
(2003) found no such activation in their incidental condi-
tion, but we recently have obtained hippocampal activa-
tion in a comparable task (Koenig et al., 2007). According
to arguments made earlier in this article, there should be
such activation even with incidental instructions, because
the present participants were normal controls, and such
participants seem to employ explicit memory in the pro-
totype extraction task. The upshot of these two points is
that the apparent double dissociation displayed in Figure 3
may be more a quantitative than a qualitative difference;
there may be some hippocampal activation with incidental
instructions (but less than with intentional instructions),
and some occipital deactivation with intentional ones (but
less than with incidental instructions). Even a quantitative
difference, however, challenges the Nosofsky and Zaki
(1998) model-based claim that a single system can explain
categorization.

There is a superficial sense in which imaging data can-
not be explained by some of the mathematical models that
we have considered. As currently formulated, some of the
models make no claims about the neural bases of cogni-
tive functions and, hence, have nothing to say about neural
data. But the imaging data above are incompatible with
existent single-system models in a deeper sense. There
is so much evidence linking explicit memory tasks to the
hippocampus that any cognitive model that claims that
category learning is in essence an explicit memory task
seems obligated to predict hippocampal activation during
category learning. (Indeed, Nosofsky and Zaki have con-
sistently accepted the link between explicit memory and
hippocampal function when discussing studies with MTL
patients; see, e.g., Nosofsky & Zaki, 1998, 1999.) There
are some correspondences between cognitive processes
and brain areas that are so well established that neither a
personal disavowal of interest in the brain nor a principled
skepticism about the limits of reductionism seems an ac-
ceptable reason to ignore neural evidence.

Summary of criticisms and counterarguments.
We have considered five criticisms of the evidence for
the existence of implicit category learning. The first two
of these argued that the results obtained in prototype ex-
traction can be attributed to learning during test trials via
working memory mechanisms that are relatively intact
in memory-impaired patients (Palmeri & Flanery, 1999;
Zaki & Nosofsky, 2001). These two criticisms correctly
point out a problem with the standard prototype extrac-
tion paradigm—namely, that the test trials are sufficiently
numerous and structured so as to permit learning. But
although such learning clearly occurs, the recent results
of Bozoki et al. (2006) indicate that such learning is not
always sufficient to account for the overall performance of
memory-impaired patients in prototype extraction; learn-
ing during training also makes a contribution, and this
learning presumably is implicit.

The second criticism also argued that the results ob-
tained in at least one prototype extraction task (Reed et al.,
1999) can be attributed to participants’ explicitly remem-

bering one or two features from the training phase. But
the evidence supplied was too indirect to convincingly
overthrow the behavioral findings that show that neither
patients nor controls restricted their categorization deci-
sions to only one or two features.

The third criticism argued that contrary to the findings
in individual experimental reports, meta-analyses reveal
that memory-impaired patients are somewhat impaired
on tasks used to study implicit category learning (Zaki,
2004). These meta-analyses lack the data to make a strong
case that memory-impaired patients are impaired on pro-
totype extraction in particular. More importantly, the
single-system account that Zaki applies to some of these
experiments seems to lack plausibility.

The fourth criticism holds that the prototype extrac-
tion categorization is simply a less difficult task than the
recognition tasks with which it has been compared (Zaki
et al., 2003). This claim is at odds with the findings that
prototype extraction actually is easier than recognition
in most of the relevant studies, and the experiment that
Zaki et al. offer in support of the criticism does not meet
the boundary conditions of the kind of implicit category
learning considered in this article.

The most telling criticism of research on implicit cat-
egory learning is the Nosofsky and Zaki (1998) demon-
stration that a single-system explicit memory model can
readily account for normal and patient data on both proto-
type extraction and recognition; this comes about because
the categorization task is less taxing than the recognition
task of a memory discrimination process that is a likely
subcomponent of both tasks. This criticism highlights
the need for detailed computational accounts of tasks
used in neuropsychology and makes clear the problems
that arise when the unit of analysis is a task, rather than
a component process. But as useful as the criticism is,
the single-system model of Nosofsky and Zaki (1998)
seems at odds with recent neuroimaging evidence, which
reveals different patterns of activations and deactivations
for categorization when it is based on explicit versus im-
plicit processes.

All things considered, the evidence favors the existence
of an implicit category-learning system.

THE NATURE OF IMPLICIT
CATEGORY LEARNING

Given that there is substantial evidence for an implicit
category-learning system, what is the nature of the pro-
cesses involved? The neuroimaging findings suggest an
answer. The deactivations observed in the posterior oc-
cipital cortex are similar to those routinely reported in
imaging studies of perceptual priming (e.g., Buckner,
2000). In the latter studies, the deactivation is attributed
to increased efficiency in processing the perceptual fea-
tures of the stimulus. Thus, when one reads a word faster
the second time it is presented, presumably the speedup
reflects faster processing of the features that comprise the
letters of the word. The same kind of process may be in
play in prototype extraction. Because the training items
are highly similar to one another, they must have numer-
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ous features in common. These common features, by defi-
nition, occur frequently during training, and consequently,
the participants in these experiments become increasingly
proficient in processing them. In turn, the participants
may experience a feeling/sensation of greater perceptual
fluency with items that contain many common features.
Then—and this is the critical point—during the test phase,
participants can use this feeling of perceptual fluency as
a basis of categorization: the greater the fluency, the more
likely it is that the item is a member of the category (see
also Squire & Knowlton, 2000).

This perceptual-fluency hypothesis seems compatible
with all the critical data. First, it explains why memory-
impaired patients are relatively intact on categorization
but are impaired on recognition. Specifically, (1) judg-
ments made on the basis of fluency may be sufficient for
single-category categorization, but they are not a reliable
indicator for recognition (new items can be composed
of the same features as old ones, but in different combi-
nations), and (2) patients with memory impairment are
capable of increasing their processing efficiency of fre-
quently occurring features (they are intact in perceptual
priming), so they have the critical ingredient of the per-
ceptual fluency process.

Second, the perceptual fluency hypothesis directly pre-
dicts prototypicality gradients. The more prototypical a
test item, the more common features it has, the more it
will be accompanied by a greater feeling of perceptual flu-
ency, and the more likely it is to be categorized as a mem-
ber. Moreover, because this account hinges only on the
perceptual fluency mechanism, prototypicality gradients
should be comparable for normal controls and patients
with memory impairments.

Third, a perceptual fluency process is consistent with
increasing deactivation in brain areas associated with per-
ceptual processing—the less processing needed, the less
the activation.

Fourth, because perceptual fluency is based on rela-
tively low-level perceptual processes that people are not
aware of, the hypothesis is consistent with the observation
that, typically, people cannot articulate implicit knowl-
edge (see, e.g., Roediger & McDermott, 1993).

Perceptual fluency is a step up from perceptual priming;
it assumes that one gets feedback about how effortful one’s
processing is and then uses this feedback to make categori-
cal judgments. The process is sufficient to support the cat-
egorization of novel items, which is an important criterion
for claiming that a category has been learned. What about
other criteria for category knowledge? One is that what has
been learned can be used with items presented in a different
modality or format. Could the implicit knowledge obtained
in prototype extraction with artificial animals be used if
the animals’ features were instantiated differently (e.g., dif-
ferent sized spots were used on different animals)? To the
extent perceptual fluency operates on truly low-level per-
ceptual properties, the mechanism may not meet this con-
dition. Another criterion for category knowledge is that it
support inductive inferences (see, e.g., Smith, 1995). If one
has acquired a category of artificial animals via perceptual

fluency and then learns that some of the instances have an
additional feature, will one generalize this feature to other
category members? Attempting to answer questions such
as these will require the development of new paradigms for
studying implicit category learning.

SUMMARY

All things considered, there is indeed evidence for im-
plicit category learning. The seminal neuropsychological
studies of Knowlton and Squire (1993), as well as later
follow-ups, have provided suggestive evidence for such
a system. But critiques from cognitive psychology and
mathematical modeling have raised important challenges
to the neuropsychological findings. Some of the critiques
have focused on the role of working memory in categori-
zation tasks, but the challenges raised have been at least
partially offset by the recent Bozoki et al. (2006) results.
Perhaps the most important critique of the evidence for
implicit category learning was contained in Nosofsky
and Zaki’s (1998) analysis of the shared-component pro-
cesses in categorization and recognition; their discussion
reminds us that the unit of analysis in neuropsychology, as
in mainstream cognitive psychology, must be the compo-
nent processes, not the task. But recent imaging evidence
(e.g., Reber et al., 2003) provides evidence that offsets
the Nosofsky and Zaki (1998) critique. This evidence also
suggests that the critical mechanism underlying implicit
category learning is perceptual fluency. What becomes of
interest, then, is whether this mechanism can yield truly
categorical knowledge.
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NOTES

1. The fact that the categorization task is named “prototype extrac-
tion” does not mean that that is the cognitive mechanism involved. The
notion of accuracy in the categorization task is somewhat arbitrary, be-
cause no feedback was given. A test item was considered a category
member if it was the prototype or a systematic distortion of it, and a
nonmember otherwise.

2. Strictly speaking, single-system theorists like Nosofsky and Zaki
(1998) would not refer to the memory system involved as “explicit,”
because they see no need to draw the explicit-implicit distinction in the
first place. I use the qualifier “explicit” when referring to their claims
mainly to keep things clear.

3. Zaki and Nosofsky (2001) partially replicated these results with
artificial animals. Specifically, they tested 37 normal participants in a
no-training condition and found that 23 of them showed evidence for
category learning during test, whereas the remaining 14 participants
performed at chance. It appears that if Zaki and Nosofsky had averaged
the data from all their participants, they would have produced a shal-
low prototypicality gradient that is similar to that found by Palmeri and
Flanery (1999).

4. Note that both Knowlton and Squire (1993) and Reed et al. (1999)
did try to determine whether their participants could learn the category
solely from the test trials. In both studies, a separate group of controls
was instructed to imagine that a set of training trials had been presented
and were then given the standard test trials. Neither study found any evi-
dence for category learning in the absence of training trials. Presumably,
these failures were due to the fact that the imagine instructions did not
convince the participants that they could learn the category, in contrast
to the Palmeri and Flanery (1999) cover story about subliminal presenta-
tion of training items.

5. A qualification about the Bozoki et al. (2006) study is in order.
In addition to the difference between test performance with and with-
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out training, Bozoki et al. used a second measure of implicit category
learning—namely, performance on the first 10 test trials. Presumably,
working memory mechanisms should have had relatively little time to
operate during these early trials. The controls performed significantly
better than the patients on this measure. But note that this second mea-
sure of implicit category learning was based on roughly one eighth of
the data that went into the first measure (the difference between perfor-
mance with and without training); for this reason, Bozoki et al. favored
the first measure.

6. This alternative account of Zaki (2004) implies that we cannot ex-
pect to find true dissociations between performance in prototype extrac-
tion paradigms and performance in standard tests of explicit memory,
such as recognition memory. Interestingly, the same point may be true
for would-be dissociations between probabilistic categorization and tests
of explicit memory, since recent findings indicate that normal partici-
pants use some explicit memory in the most widely used paradigm for
studying probabilistic categorization (Foerde et al., 2006).

7. This is the same general model that was used by Zaki and Nosof-
sky (2001) to argue that memory-impaired patients used only one or
two features in the Reed et al. (1999) study (see the subsection on Do

Participants Explicitly Remember Only a Few Features?). The criticisms
offered against that instantiation of the model do not apply here; for ex-
ample, in the current instantiation, empirical estimates of critical param-
eters were obtained, thereby constraining parameters, and one version of
the model contained only three authentically free parameters.

8. The analysis captures most of the story for memory-impaired pa-
tients but leaves something out for normal controls. Because controls
have substantial memory discrimination, they will find some exact
matches during recognition (but not during categorization). And an ad-
ditional feature of the model—the parameter for memory discrimina-
tion is transformed by a power function— guarantees that exact matches
contribute disproportionally to the summed similarities. For this reason,
recognition may be easier than categorization for controls.

9. Reber et al. (2003) seem to be assuming that when items are
processed under minimalist incidental instructions, the only memory
formed is implicit. The same assumption has been made in all prototype
extraction studies but has never been systematically tested.

(Manuscript received August 8, 2006;
revision accepted for publication February 2, 2007.)
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