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In order to survive in a possibly hostile environment
with stimuli occurring at various positions in space and
time, an individual must constantly discriminate between
signals relevant for action planning (targets) and signals
that demand no immediate response (nontargets). Separate
sensory channels process stimuli from different modalities,
but in order to succeed in the discrimination task, the in-
dividual must integrate the information coming from dif-
ferent modalities in an optimal way. In an orienting task,
saccadic reaction time (the time to initiate an eye move-
ment) to a target stimulus is facilitated when the stimulus
is composed of several modalities, rather than a single one.
This multisensory interaction effect is larger than predicted
by a simple probability summation mechanism, and it is
most conspicuous if the stimulus elements coincide in
time and space (e.g., Colonius & Diederich, 2004; Frens,
Van Opstal, & Van der Willigen, 1995; for a review, see
Diederich & Colonius, 2004).

Evidence for multisensory interaction at the neural
level has been documented in a series of studies on the
superior colliculus (SC), a midbrain structure involved
in the control of eye movements (Stein & Meredith, 1993).
Multisensory neurons in the deep SC of anesthetized cats
(Meredith & Stein, 1986a, 1986b; Stein, Magalhães-
Castro, & Kruger, 1976) and monkeys (Wallace, Wilkin-

son, & Stein, 1996) show an enhanced response to partic-
ular combinations of visual, auditory, and tactile stimuli
paralleling the spatial–temporal rules observed in behav-
ioral studies. Similar results have recently been obtained
for recordings from unanesthetized cats by Wallace,
Meredith, and Stein (1998) and from the awake behaving
monkey by Bell, Corneil, Meredith, and Muñoz (2001)
and by Frens and Van Opstal (1998).

Although the multisensory integration properties of
deep SC neurons facilitate the detection of cross-modal
targets, not all deep SC neurons are multisensory. In the
cat, about half of deep SC neurons are multisensory; in
the monkey, only about one quarter. Moreover, the per-
centage of neurons responsive to visual–auditory stimuli
is about twice that of neurons responsive to visual–
somatosensory stimulation, whereas about 9% have been
found to respond to all three modalities in the cat and 6%
in the monkey (Wallace & Stein, 1996).1 Given that multi-
sensory neurons do respond to unimodal input, this raises
the issue of why not all SC neurons are multisensory or,
at least, develop multisensory response behavior during
an organism’s maturation? There have been several at-
tempts to answer this question, but none of them appears
entirely satisfactory as of yet. This article suggests that
one possible explanation for the existence of modality-
specific SC neurons can be given from a signal detection
theory perspective.

As was mentioned above, an organism confronted with
the task of discriminating targets from nontargets not
only should keep up a high rate of detecting targets but,
at the same time, must strive to minimize false alarms to
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irrelevant nontarget stimuli. This can be achieved fol-
lowing a simple decision rule, the so-called Bayes’ ratio
(BR) rule: Given the evidence from the afferent sensory
input, decide that a target is present (rather than a non-
target) if the probability for a target is greater than the
probability for a nontarget; otherwise, vote for a non-
target to be present. Most important, it can be shown that
any optimally adapted system maximizing the number of
correct decisions (i.e., hits and correct rejections) has to
follow this decision rule (cf. Egan, 1975). We postulate
that the neural response is proportional to the probability
to respond “Yes” computed under the BR decision rule.
Although both bimodal (visual–auditory) and unimodal
targets exist, the organism is not required to distinguish
between different types of targets, but only between tar-
gets and nontargets. From these simple assumptions, it is
demonstrated that optimal performance with both cross-
modal and unimodal targets cannot be accomplished
with multisensory SC neurons alone. In fact, it turns out
that optimal performance of multisensory neurons vis-à-
vis cross-modal stimuli implies, at the same time, that
modality-specific neurons will outperform multisensory
neurons in processing unimodal targets.

For simplicity, we will consider only the bimodal 
(visual–auditory) case here, although an extension to three
or more modalities can be developed. The present model
extends the approach of Colonius and Diederich (2002), in
that cross-modal targets are distinguished from unimodal
ones, which makes possible an answer to the title question.

The Bayes’ Ratio Model of Multisensory
Enhancement

The notion that part of the saccadic response duration
reflects an on-going decision process in the SC (and other
areas, such as the frontal eye fields [FEFs]) has been dis-
cussed in many recent contributions (e.g., Krauzlis, Lis-
ton, & Carello, 2004). Saccadic reaction times typically
lie in the range between 100 and 500 msec (e.g., Muñoz &
Schall, 2004). From single-unit studies, it is known that
afferent delays to the SC take between 40 and 100 msec,
whereas the SC motor command (efferent processing) is
carried out within 30–50 msec. “The fact that saccades
are not initiated as soon as theoretically possible based
on known afferent and efferent delays is presumed to re-
flect the time necessary to make decisions about where
to move the eyes in the event of competing alternatives”
(Stanford, 2004, p. 49).

It should be noted that the model proposed here is com-
putational—that is, it purports to describe the decision
processes that are being made in generating a saccade—
but that its physiological implementation is not at the
level of detail found in models that show, for example,
how Bayesian probabilities can be computed in a network
architecture (Rao, 2004). The BR model is formulated as
describing the function of a single deep SC neuron, but an
alternative implementation at the level of an entire cell
assembly will be considered in the Discussion section.

After introducing some necessary notation, we will
present the important concept of the BR and the funda-
mental decision rule underlying our model.

The Bayes’ Ratio Decision Rule
Visual and auditory afferent input to a deep SC neu-

ron are represented by random variables V and A, re-
spectively, taking on integer values 0, 1, 2, . . . . These
values are to be interpreted as the number of neural im-
pulses arriving at the deep SC in a (small) unit interval
of time. We first will restrict the development to the uni-
modal (visual) case.

Let TV� denote the event that a visual target is present,
while TV� denotes the occurrence of a (visual) nontarget.
Then P(Yes | TV�) stands for the conditional probability
to decide that a target is present if it is present (hit),
whereas P(Yes | TV�) is the probability to decide that a
target is present when in fact only a nontarget is present
( false alarm). In order to maximize the probability of a
correct response,

P(C) � P(Yes | TV�) P(TV�)

P(C) � � [1 � P(Yes | TV�)] P(TV�), (1)

the following decision rule must be adopted in the uni-
modal visual case (the unimodal decision rule):

If P(TV� | V � v) � P(TV�| V � v), 

then decide “Yes”; otherwise, decide “No.”

In the signal detection theory literature, this is known as the
max-P(C) rule2 (cf. Egan, 1975, pp. 20–23). P(TV� | V � v)
is the (Bayesian) posterior probability that a target is
present given afferent input V � v. It can be computed
via the classic Bayes rule,

(2)

whenever the likelihood P(V � v | TV�), the a priori tar-
get probability P(TV�), and the input probability distrib-
ution P(V � v) are available.

Interestingly, however, decisions following the above
max-P(C) rule can be made without using the Bayes for-
mula (Equation 2) explicitly. In fact, note that the in-
equality in the max-P(C) rule is equivalent to

(3)

The left-hand side is called Bayes’ ratio and is equal to
the ratio of the a priori probabilities times the likelihood
ratio L(v),

Thus, a Bayesian decision maker can be interpreted as
using a form of likelihood ratio testing in which the like-
lihood ratio is adjusted for the prior probabilities (cf.
Wickens, 2002). Under the max-P(C) rule, a “Yes” deci-
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sion is made whenever the BR is larger than one. Trans-
forming Equation 3, this rule is equivalent to the follow-
ing unimodal decision rule:

then decide “Yes”; otherwise, decide “No.”

Considered as a function of the random variable V, the
likelihood ratio L(V ) is itself a random variable, and this
leads to the conditional probability to decide “Yes,” given
that a target is present (hit rate):

(4)

Computation of the hit rate requires specification of the
probability distributions

and

which we will assume to be Poisson (see below).

The Bayes’ Ratio Model
The BR model casts an individual deep SC neuron as

a computational unit that processes afferent input and
prior target probabilities and that calculates a response in
the form of the mean spike rate. Specifically, we postu-
late that the neural response is proportional to the prob-
ability to respond “Yes” computed under the max-P(C)
rule. This guarantees a maximum number of correct de-
cisions (i.e., hits and correct rejections) when targets and
nontargets are to be discriminated (see Egan, 1975).

Let TV�A�, TV�A�, and TV�A� denote the event that a
bimodal target, a unimodal visual target, or a unimodal
auditory target, respectively, occurs in the receptive field
of a deep SC neuron. At any point in time, one type of
target signal, at most, may appear, or the signal may be
a nontarget, denoted TV�A�. The prior probabilities of
these events, in obvious notation, are π��, π��, π��,
and π�� and have to add up to one.

The probability of a correct response that is being
maximized in the BR model, then, is

P(C) � P(Yes | TV�A� or TV�A� or TV�A�)

P(C) � P(TV�A� or TV�A� or TV�A�)

P(C) � � [1 � P(Yes | TV�A�)] P(TV�A�), (5)

generalizing Equation 1. Note that for this maximization,
there is no requirement to distinguish between different
types of targets, but only between targets and nontargets.
For the likelihood distributions, we introduce the notation

f ��(v, a) � P(V � v, A � a | TV�A�),

f ��(v, a) � P(V � v, A � a | TV�A�),

and so forth. The max-P(C) rule for a multisensory SC
neuron (the bimodal decision rule), then, is

If P(TV�A� or TV�A� or TV�A� | V � v, A � a)

� P(TV�A� | V � v, A � a),

then decide “Yes”; otherwise, decide “No.”

By simple algebra and using the above notation, the in-
equality is equivalent to

f��(v, a) π�� � f��(v, a) π�� � f��(v, a) π��

� f��(v, a) π��

or, written as a BR,

(6)

Extending the unimodal case, this BR, considered as a
function of the random variables V and A, is again a ran-
dom variable—BR(V,A), say—where dependence on the
prior probabilities is suppressed to keep the notation
simple. The probability of a hit, given a bimodal target,
for example, can be computed as

P[BR(V,A) � 1 | TV�A�],

whereas the probability of a false alarm would be

P[BR(V,A) � 1 | TV�A�].

Similarly, the max-P(C) rule for a modality-specific vi-
sual SC neuron (unimodal decision rule) is

If P(TV�A� or TV�A� | V � v) 

� P(TV�A� or TV�A� | V � v),

then decide “Yes”; otherwise, decide “No,”

since the auditory sensory input, A � a, is lacking. The
corresponding BR is

(7)

where g��(v), g��(v), and so forth refer to the likelihood
distributions P(V � v | TV�A�), P(V � v | TV�A�), and so
forth. For a modality-specif ic visual SC neuron, the
probability of a hit, given a bimodal target, and of a false
alarm, for example, are computed analogously from

P[BR(V ) � 1 | TV�A�]

and

P[BR(V ) � 1 | TV�A� or TV�A�],

respectively, where BR(V ) is the BR corresponding to
Equation 7. Actual computation of these probabilities,
however, requires specification of the likelihood distri-
butions. We will consider only the Poisson case here.

The Poisson Bayes’ Ratio Model
Unimodal stimulation case. The most common dis-

tribution to account for the random number of spikes oc-
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curring in a fixed unit time interval is the Poisson distri-
bution with a mean of λ� � 0,

(8)

and it is often seen as a reasonable first approximation
(Tuckwell, 1989). For P(V � v | TV�), we will assume a
Poisson distribution as well, with a mean λ� and λ� �
λ�. The hit rate in Equation 4 then equals

where

Thus, in this simple case, the hit rate can be computed di-
rectly from the Poisson distribution.

Bimodal stimulation case. For the multisensory SC
neuron, we have to specify the bivariate Poisson distrib-
ution for visual–auditory input (V,A) for each target–
nontarget condition. Although many dependent bivariate
Poisson models exist (e.g., Kocherlakota & Kocherlakota,
1992), we will confine discussion here to the indepen-
dent Poisson case. Thus,

(9)

and

(10)

and so forth, where μ� and μ� are the auditory target and
nontarget means, λ� � λ�, and μ� � μ�. This condi-
tional stochastic independence assumption implies that

the visibility of a target indicates nothing about its audi-
bility and vice versa.

For modality-specific visual SC neurons we assume that

(11)

and

(12)

The likelihood functions for modality-specific auditory
SC neurons are defined analogously. Note that these de-
finitions contain two more implicit assumptions. First,
the fact that the mean value parameters (the λs and μs)
are the same for multisensory and modality-specific SC
neurons reflects the premise that under unimodal stimu-
lation, multisensory neurons receive the same afferent
input as the modality-specific neurons. Note that it is not
assumed that the mean values are the same throughout
the entire SC. There is a large variability among real neu-
rons in their response characteristics, and the specific pa-
rameter value for λ or μ is ascribed to a subpopulation of
SC neurons tuned to the same level of afferent input (see
also the Discussion section). Second, it is assumed that for
the modality-specific visual SC neurons, the likelihood is
the same whether or not an auditory target is present and
vice versa. This context independence assumption seems
very innocuous because the modality-specific visual SC
neuron has no auditory input channel, by definition.

It is now straightforward to write down the probability
for a “Yes” response under the various target–nontarget
conditions by inserting the likelihood functions into the
BRs. For a multisensory neuron, the hit probability for a
bimodal target, for example, is shown at the bottom of the
page in Equation 13, where the bivariate random variable
(V, A) has distribution f��(v, a) from Equation 9. Similarly,
for a modality-specific visual SC neuron, the hit probabil-
ity for a bimodal target, for example, is shown at the bot-
tom of the page in Equation 14, where random variable V
has distribution g��(v) from Equation 11. A derivation
of the explicit distribution of the BR seems difficult in
the bimodal case, however, so we obtained various hit
and false alarm rates through numerical simulation.
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Comparing Bimodal With Unimodal
Performance

The performance of multisensory and modality-specific
deep SC neurons under the Poisson BR model is com-
pletely characterized by (1) the prior probabilities and
(2) the Poisson parameters. Each data point was obtained
by sampling pseudorandom numbers (or pairs of num-
bers) from Poisson distributions and inserting the values
into Equations 13 or 14, respectively. The relative fre-
quency with which the inequality was satisfied was taken
as an estimate of the corresponding probability.3

It should be mentioned that in the formulation of the
BR decision rule used here, the costs for false alarms and
correct rejections have been set equal. An extension to
unequal weighting could easily be established, if sug-
gested by the decision situation. The results most perti-
nent to the question raised by the title of this article come
from comparing the hit and false alarm rates between
modality-specific and multisensory neurons when only a
unimodal target is present. In this case, modality-specific
neurons can be shown to exhibit performance superior
to multisensory neurons under various conditions. This
unimodal neuron superiority depends, in particular, on the
difference between the detectabilities of the unimodal
(visual and auditory) targets and on the prior probability
of bimodal targets. We will consider both factors in turn.

Unimodal detectability in the Poisson case is defined
similarly to the familiar d′ measure of signal detection
theory (cf. Egan, 1975):

(15)

for visual targets. DA(μ�, μ�) for auditory targets is defined
analogously. The first case study will illustrate that the hit
rate of a multisensory neuron does not depend on the ab-
solute values of the means but, rather, on the detectabilities
of the unimodal targets. Specifically, it will suggest that
unimodal neuron superiority shows up when a unimodal
target occurs in the modality of lower detectability.

Case Study 1. Setting π�� � .45, π�� � .5, π�� �
π�� � .025, λ� � 9, and λ� � 5, we varied both μ� and
μ� such that DA(μ�,μ�) was constant and equal to 3.11.
Note that visual detectability remained constant: DV(9,5) �
1.54. For a large range of μ� and μ� values, the hit rate
of a multisensory neuron for a unimodal visual target,
P[BR(V,A) � 1 | TV�A�], was about constant at a value of
.35 (see Figure 1).

The hit rate for a modality-specific visual neuron for
the same parameter values, P[BR(V ) � 1 | TV�A�], was
equal to .40, demonstrating some degree of unimodal
neuron superiority.
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λ λ
λ λ
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Figure 1. Curve of constant auditory detectability; for parameter values, see the
text. The numbers at the arrows indicate the nearly constant hit rate of a multisensory
neuron for a unimodal visual target for different (μ�, μ�) combinations.
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In the next case study, we will investigate how uni-
modal neuron superiority depends on the difference be-
tween unimodal target detectabilities. Note that uni-
modal neuron superiority here refers to a higher hit rate
(and/or a lower false alarm rate) of a visual modality-
specific neuron, as compared with a multisensory neu-
ron, when a visual target and an auditory nontarget are
presented. Interchanging the roles of the visual and the
auditory modalities would lead to analogous results.

Case Study 2. Two different sets of priors are consid-
ered: the first, as before, with target probabilities equal
to nontarget probabilities, and the second with rather
small target probabilities (.05 for bimodal and .025 for
unimodal targets). Visual detectability is kept constant
at DV � 1.54, with λ� � 9 and λ� � 5, as before. Audi-
tory detectability is varied from zero (last row of Table 1)
to DA � 4.74 (first row of Table 1) by increasing μ� from
5 to 20, with μ� � 5 throughout.

First, consider the case of relatively high target prob-
ability (π�� � .45, π�� � .5, π�� � π�� � .025). The
hit rate for a modality-specific visual neuron, UV�, equals
.40, as above. Increasing auditory detectability depresses
the multisensory SC neuron hit rate for visual targets,
BV�A� (Table 1, second column), down to a value of .23,
thus exhibiting unimodal neuron superiority. For de-
creasing auditory detectability, unimodal superiority
quickly vanishes and transforms into a clear advantage
for the multisensory neuron (.85 vs. .40).

On the other hand, the multisensory SC neuron hit rate
for unimodal auditory targets, BV�A� (fourth column),
shows the opposite behavior: It is large when BV�A� is
low, and vice versa. Note that, at the same time, the hit
rate for the bimodal target BV�A� (third column) de-
creases from .99 to .84 when auditory detectability di-

minishes. The fifth column (BV�A�) contains the corre-
sponding false alarm rates for the multisensory neuron.
It starts at .24 when auditory detectability is zero and
goes down to .01 for the highest auditory detectability,
whereas the false alarm rate for a modality-specific vi-
sual neuron with the same (visual) parameter values
equals UV� � .24. Thus, there is a multisensory neuron
superiority for the false alarm rates.

Columns 6–9 of Table 1 refer to the case of low target
probabilities (π�� � .05, π�� � .9, π�� � π�� � .025).
The modality-specific visual neuron hit rate is 50% lower
now (UV� � .20). The corresponding bimodal hit rate
for visual targets, BV�A�, is at .32 for zero auditory detect-
ability (last row) and decreases to .14 with increasing au-
ditory detectability. Thus, unimodal neuron superiority
occurs again in line with the case of high target proba-
bilities. Behavior of multisensory SC neuron hit rates for
bimodal targets (BV�A�, column 7) and for auditory tar-
gets (BV�A�, column 8) parallels the previous case. On
the other hand, as a consequence of the small prior tar-
get probabilities, the false alarm rate for the modality-
specific visual neuron is very low (.004), and the corre-
sponding bimodal false alarm rates do not exceed .01 for
most levels of auditory detectability.4

The following picture emerges from this example. For
the multisensory SC neuron, the hit rate for bimodal tar-
gets is high as long as visual or auditory detectability is
not too low, but the exact level depends on the prior prob-
abilities as well. Most important, its hit rate for a uni-
modal (say, visual) target gets severely depressed and be-
comes lower than the modality-specific neuron hit rate if
visual and auditory unimodal detectabilities differ sub-
stantially and, simultaneously, the target happens to occur
in the modality with lower detectability (the visual, in

Table 1
Hit and False Alarm Rates of a Multisensory Superior Colliculus (SC)

Neuron (BV�A�, BV�A�, BV�A�, BV�A�) as a Function of 
Auditory Target Intensity μ�

UV� � .40 UV� � .24 UV� � .20 UV� � .007

μ� BV�A� BV�A� BV�A� BV�A� BV�A� BV�A� BV�A� BV�A�

20 .23 .99 .99 .01 .14 .99 .99 .004
19 .24 .99 .99 .01 .13 .99 .99 .004
18 .25 .99 .99 .02 .15 .99 .99 .005
17 .28 .99 .99 .02 .16 .99 .97 .007
16 .30 .99 .99 .03 .16 .98 .96 .006
15 .32 .99 .99 .04 .16 .97 .93 .007
14 .35 .99 .97 .05 .16 .95 .88 .008
13 .41 .99 .94 .07 .17 .93 .82 .009
12 .45 .98 .88 .08 .19 .89 .73 .011
11 .50 .97 .79 .09 .21 .82 .58 .012
10 .58 .95 .68 .12 .22 .72 .41 .012

9 .66 .93 .52 .15 .26 .62 .24 .011
8 .71 .89 .35 .16 .27 .49 .09 .010
7 .76 .86 .24 .18 .27 .40 .02 .008
6 .80 .85 .12 .20 .28 .33 .01 .007
5 .85 .84 .05 .24 .32 .32 .01 .009

Note—The top row contains hit and false alarm rates for a visual SC neuron. The left
part of the table presents data for prior values π�� � .45, π�� � .5, and π�� � π�� �
.025; the right part presents data for π�� � .05, π�� � .9, and π�� � π�� � .025.
Mean values were set to λ� � 9, λ� � 5, and μ� � 5.
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this case). Thus, the BR model predicts that, if unimodal
visual and auditory detectabilities differ in a cross-modal
stimulus combination, the multisensory SC neuron’s re-
sponses to unimodal stimulation should also differ: High
auditory detectability leads to a low visual hit rate and a
high auditory hit rate, and vice versa. There is a clear
unimodal neuron superiority effect for the hit rates. For
the false alarm rates, the effect depends on the prior
probabilities for the targets. For relatively high target
probabilities (left part of Table 1), the depression of the
multisensory neuron hit rate for visual targets goes along
with a decrease of its false alarm rate, whereas for low
prior target probabilities (right part of Table 1), the false
alarm rates stay below 1% under all conditions.

Case Study 3. In this study, the effect of different sets
of prior target probabilities is investigated further. The
rows in Table 2 are arranged by nontarget probabilities
(π��, fourth column) decreasing from .99 to .2. Fixing
the mean values and, thereby, visual and auditory detect-
ability at λ� � 9, μ� � 14, λ� �μ� � 5, we computed the
probability to detect a unimodal visual target both for a
multisensory (fifth column) and for a modality-specific
visual (sixth column) SC neuron and the corresponding
false alarm rates (columns 7 and 8) for each combina-
tion of prior probabilities.

Clearly, the priors have a strong effect on both hit
rates: The latter increase when nontarget prior probabil-
ity decreases, as one would expect, and there is clear uni-
modal neuron superiority in the hit rate for most sets of
priors. For the false alarm rates, the effects are less con-
spicuous. In particular, when nontarget probability is
above .90, the false alarm rates stay below 1% for both
types of neurons, and there is a slight tendency, if any, for
smaller false alarm rates in the modality-specific neuron.
This reverses into a clear advantage for the multisensory

neuron only when nontarget probability falls below 50%.
Moreover, for constant nontarget prior probability π��,
the unimodal neuron superiority (with respect to the hit
rates) tends to be larger when the prior bimodal target
probability π�� exceeds the unimodal priors π�� and
π��. Finally, when the unimodal priors differ, the multi-
sensory SC neuron detection rate is affected much more
than the modality-specific SC neuron detection rate if
the less likely unimodal target occurs. For example, with
π�� � .40, the bimodal rate goes down from .53 to .27
if visual prior probability drops from .9 to .01, whereas
the unimodal visual rate only drops from .40 to .34. This
is in line with the observation, in the previous case study,
that the performance of the multisensory neuron is af-
fected more by differences between the unimodal condi-
tions (priors or detectabilities).

Discussion
The question why some, but not all, deep SC neurons are

multisensory is a legitimate one, given that multisensory
neurons are also responsive to unimodal stimulation.
One could argue that multisensory neurons are especially
important when weak stimuli from several modalities co-
occur, because multisensory response enhancement mea-
sured at the single-cell level is most dramatic under these
conditions (inverse effectiveness, cf. Stein & Meredith,
1993), and that modality-specific neurons process above-
threshold unimodal stimuli mostly. Note, however, that
although this line of reasoning supports the existence of
multisensory neurons, it does not explain why a large
number of neurons in an organism remain modality spe-
cific over their lifetime. Moreover, the hypothesis that
cell type (multisensory vs. modality specific) implies the
tuning to specific stimulus intensities is not easy to rec-
oncile with the observation that there is large variability
in the response characteristics of the entire population of
deep SC cells.

The present investigation suggests a more specific so-
lution to the issue from a decision theoretic point of
view—that is, the BR decision rule, which maximizes
the percentage of correct decisions when targets are to be
discriminated from nontargets. Taking for granted that
deep SC neurons are, in that sense, optimally adapted to
discriminate between targets (stimuli that need immedi-
ate orientation or attention) and nontargets, we were able
to show that optimal performance of multisensory neurons
vis-à-vis cross-modal stimuli implies, at the same time,
that modality-specific neurons will outperform multi-
sensory neurons in detecting unimodal targets. Specifi-
cally, if an auditory stimulus is better detectable than a
visual, the performance of the multisensory neuron vis-
à-vis the unimodal visual stimulus is severely degraded
even though its performance with respect to auditory, or
bimodal, stimuli can still be very high. In the terminol-
ogy of decision thresholds, if the multisensory neuron
weights the auditory input highly (since it is very de-
tectable), it is difficult to exceed the decision threshold
if the auditory input happens to be low. Note that this be-
havior of multisensory neurons is not due to some par-

Table 2
Hit and False Alarm Rates of Multisensory Neuron (BV�A�,

BV�A�) and Modality-Specific Neuron (UV�A�, UV�) to
Unimodal Visual Target, Under Various Sets of Prior

Probabilities π��, π��, π��, and π��

π�� π�� π�� π�� BV�A� UV� BV�A� UV�

.009 .0005 .0005 .99 .01 .04 .001 �.001

.001 .0045 .0045 .99 .024 .02 .001 �.001

.002 .014 .014 .97 .05 .07 .003 .001

.026 .002 .002 .97 .03 .12 .002 .003

.026 .001 .003 .97 .025 .12 .003 .002

.026 .003 .001 .97 .036 .125 .002 .002

.01 .01 .01 .97 .05 .07 .001 �.001

.03 .01 .01 .95 .08 .13 .004 .002

.001 .0245 .0245 .95 .08 .07 .003 �.001

.01 .04 .04 .91 .15 .20 .01 .006

.05 .025 .025 .90 .16 .20 .008 .007

.20 .025 .025 .75 .22 .53 .02 .07

.05 .10 .10 .75 .35 .41 .035 .031

.35 .025 .025 .60 .29 .69 .035 .13

.40 .025 .025 .55 .32 .67 .042 .13

.40 .09 .01 .50 .53 .79 .07 .24

.40 .01 .09 .50 .27 .67 .055 .14

.45 .025 .025 .50 .37 .80 .05 .24

.25 .125 .125 .50 .57 .68 .09 .13

.75 .025 .025 .20 .58 .94 .13 .56
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ticular assumptions but simply follows from the BR de-
cision rule. Thus, the existence of modality-specific vi-
sual neurons is quite essential and, interchanging the
roles of the visual and the auditory modalities, the same
holds true for modality-specific auditory neurons.

Neurophysiological implementation. Although the
BR model is developed at the computational level without
specifying the exact neural underpinnings, it is impor-
tant to point out the neural structures that are supposed
be involved in the computational process. Application of
the BR rule requires the computation of the probability
that the likelihood ratio is larger than the ratio of the
prior probabilities of a target and a nontarget, given the
afferent input (see Equation 4). For a given afferent input
(a realization v of the random variable V, say), the SC
neuron has to compute the likelihood ratio L(v) and to
determine whether or not it exceeds the ratio of priors.
The former would lead to a “Yes” response and the latter
to a “No” response by the neuron. In order to generate
the final output—that is, a neural response proportional
to the probability to respond “Yes” computed under the
BR rule—the SC neuron must average its response over
small unit time intervals. Note that the suggestion of
conceiving of the firing rate of an SC neuron as an esti-
mate of the (log) likelihood that a target is present has
been made previously by Carpenter and Williams (1995).

An implementation of the BR model at the level of an
entire cell assembly is possible. We define a cell assembly
as a subset of multisensory and modality-specific deep
SC neurons tuned to the same intensity level—that is, to
certain fixed means of afferent bimodal input λ and μ.
Each cell element of the assembly delivers a “Yes” or “No”
vote based on the outcome of the likelihood ratio com-
putation, as before. The final computational step of esti-
mating the probability to respond “Yes,” however, will
now take place at the level of the cell assembly by eval-
uating the relative frequency of “Yes” responses in the
cell assembly. Note that this way, the unimodal advan-
tage is preserved at the assembly level, because an esti-
mate of the probability of a “Yes” response, given a uni-
modal (visual) target, will be better in the presence of
modality-specific neurons with their higher relative fre-
quency of hits, rather than being based on the multi-
sensory cells’ hit rate only.

It is an open question at which neural site the computa-
tion of the relative frequencies would be accomplished.
Several alternatives exist. Using a two-alternative forced
choice task, Krauzlis and Dill (2002) have reported that
build-up neurons in the rostral SC exhibit higher activity
for target than for nontarget stimuli. In a similar vein, Hor-
witz and Newsome (2001) have reported a neural correlate
of the process of discriminating the direction of motion in
the activity of SC neurons. “Rather than discharge only
after a target had been selected, these neurons appeared to
participate in, or at least reflect, the process of accumulat-
ing sensory evidence for this process” (Stanford, 2004,
p. 49). Alternatively, the FEFs may be involved as well.
The FEF projects to the SC, which projects to the thala-
mus, which then projects back to the FEF. The transmis-

sion time of these pathways is 2–3 msec, allowing enough
time for the SC and the FEF to mutually influence one an-
other’s state (see Muñoz & Schall, 2004, for references).

Finally, multisensory integration properties of most
SC neurons, as well as observed orientation behavior, are
mediated by influences from two parietal cortical areas,
the anterior ectosylvian sulcus (AES) and the rostral as-
pect of the lateral suprasylvian sulcus (rLS; Jiang, Jiang,
& Stein, 2002; Jiang, Wallace, Jiang, Vaughan, & Stein,
2001). When cortical activation is eliminated, multi-
sensory SC neurons lose their enhancement facility to
cross-modal combinations, and their responses parallel
that for unimodal input. “Whether or not activity in SC
[during decision time] is essential or simply reflects the
state of computations carried out in cortex is difficult to
know. . . . In principle, an experiment that combines the
right behavioral task, microstimulation parameters, and
microstimulation timing might distinguish the SC’s re-
spective contributions to sensorimotor decision-making
and motor command formation” (Stanford, 2004, p. 49).
At least as far as multisensory integration is concerned, it
has been shown through ortho- and antidromic stimulation
that the SC is a site of multisensory integration and not
only reflects multisensory integration processes in cortical
(AES) multisensory neurons (Wallace, Meredith, & Stein,
1993).

Empirical testability. The last points raise the ques-
tion as to what degree the BR model may be subjected to
empirical testing. It should be possible to condition an
animal to an environment in which priors are set by the
experimenter at the start of the recording session. When
these well-defined priors are changed by modifying the
environment in a controlled way, the brain should be able
to adapt to these changes, and this would allow us to test
predictions of the model, as is exemplified in Table 2.
Similarly, it may be possible to estimate the detectability
of various uni- and cross-modal stimuli by recording the
afferent input. Although thousands of neurons are nec-
essary to produce a saccade, the averaged signal from
single neurons in the SC and the FEF has been shown to
be sufficient to specify whether and when a saccade will
occur (Muñoz & Schall, 2004, p. 74). Thus, it might also
be possible, in principle, to test predictions for hit and
false alarm rates, as is exemplified in Table 1.

Intriguingly, recent studies of multisensory effects
under different types of lesions may offer an additional
testing opportunity for the unimodal advantage prediction
of the BR model even at the behavioral level. Jiang et al.
(2002) showed that cryogenic blockade of the AES or the
rLS disrupted the multisensory enhancement of orienta-
tion responses to visual–auditory stimuli in cats. These
data were very similar to the effects of AES or rLS de-
activation on individual multisensory SC neurons (Jiang
et al., 2001). Under cortical deactivation, the responses of
these neurons to cross-modal stimuli were indistinguish-
able from those of modality-specific neurons. Thus, if
the effect of deactivation is functionally equivalent to an
increase of the proportion of modality-specific SC neu-
rons, the unimodal advantage should show up in the ori-
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enting behavior of the cats under unimodal auditory
stimulation. Unfortunately, there are two obstacles to an
immediate test with the data sets currently available.
First, the cats have been trained to consider only visual
stimuli as targets, and second, the intensity levels of the
stimuli have been at about the same (low) level. Never-
theless, the responses of the individual multisensory SC
neurons under cryogenic cortical blockade would pres-
ent a case in point.5 In a similar vein, studies such as the
one by Burnett, Stein, Chaponis, and Wallace (2004),
where excitotoxic lesions of the SC presumably had a
preferential impact on multisensory neurons, thus mod-
ifying the relative proportion of modality-specific neu-
rons, might be used to test for a unimodal advantage in
the visual–auditory orientation task.

Concluding remarks. Building a model from deci-
sion theoretic principles is certainly superior to a purely
descriptive approach, and recently, there has been a strong
tendency in neural modeling to appeal to Bayesian and re-
lated rules of decision making (e.g., Ernst & Banks, 2002;
Glimcher, 2003). In Anastasio, Patton, and Belkacem-
Boussaid (2000), it is proposed that multisensory deep
SC neurons compute the posterior probability that a tar-
get is present given stochastic afferent input. In an in-
formation theoretic analysis of that model, Patton,
Belkacem-Boussaid, and Anastasio (2002) showed that
input of an additional modality may indeed increase target
information, but only if the input received from the initial
modality does not completely reduce uncertainty about the
presence of a target. There are some obvious correspon-
dences between this approach and the BR model presented
here. An important difference is the explicit introduction of
a signal detection theoretic perspective in the BR model,
the postulate of an optimal decision rule for hits and false
alarms, and the distinction between uni- and cross-modal
targets that lead to specific predictions concerning uni-
modal neuron superiority. In a more recent development,
Anastasio and Patton (2003) suggested a neural network
model with a two-stage unsupervised learning algorithm
that produces multisensory enhancement. Interestingly,
in their information theoretic analysis of the model, the
authors were able to show that target information gain is
highest when the SC contains between 10% and 50%
multisensory units only. Although starting from somewhat
different perspectives, this coincides with the conclusion
of the BR model that modality-specific SC neurons are a
necessary part of an optimally adapted organism.
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NOTES

1. Such estimates of proportions of multisensory cells are always
fairly rough, because it is difficult to exclude the possibility that an ex-
perimenter may simply be using the wrong type of stimuli.

2. It is a special case of the maximum a posteriori (MAP) rule (see,
e.g., Rowe, 2003).

3. The Mathematica programming system was used for the simula-
tions. A sample size of N � 5,000 yielded probability estimates suffi-
cient for a precision of about 1%. For false alarm rates, sample size was
increased to N � 10,000 for greater precision.

4. Given that the accuracy of our simulations is not smaller than 1%,
the values observed do not differ from each other significantly.

5. Figure 3 in Jiang et al. (2001) even suggested a unimodal auditory
advantage of the SC neuron under cortical deactivation.
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