
© 2010 The Psychonomic Society, Inc. 1096
PS

Currently, there are various tools for developing soft-
ware capable of running psychological experiments.
Well-known commercial software packages are Superlab,
E-Prime, Inquisit, and DirectRT (Stahl, 2006). These soft-
ware packages take care of timing precision and support
specialist hardware, such as keyboards designed for reac-
tion time measurement. PsyToolkit has similar functions
but differs from the commercial packages in that it is de-
veloped specifically for the operating system Linux.

Linux’s popularity is steadily increasing, in part be-
cause most of its software, including PsyToolkit1, is free
of cost. This makes Linux and PsyToolkit suitable for
those on a limited budget, such as students or universities
in developing countries. Furthermore, with the addition
of PsyToolkit, Linux is well suited for use by experimen-
tal psychologists. After all, statistical software for data
analysis and office software for dissemination and com-
munication have been around for Linux for a long time,
and a fully functional experimental toolkit was probably
the only missing bit.

Although PsyToolkit is the only experimental package
developed exclusively for Linux, it is not the only software
toolkit available for programming experiments on Linux
computers. Today, there are a number of cross- platform
solutions that have been reviewed elsewhere, such as
PyEPL (Geller, Schleifer, Sederberg, Jacobs, & Kahana,
2007), PsychoPy (Peirce, 2007), Vision Egg (Straw,
2008), and TScope (Stevens, Lammertyn, Verbruggen,
& Van dierendonck, 2006). Cross-platform solutions are
ideal in principle, because they aim to deliver the same

software package for a number of different operating sys-
tems—typically, Microsoft Windows, Apple Macintosh,
and Linux. But in practice, cross-platform solutions rarely
deliver exactly the same functions on all three platforms,
and it is typically the Linux implementation that suffers
from a lack of complete implementation.

PsyToolkit has three components, which can be used
independently. From a user perspective, the main compo-
nent of PsyToolkit is its scripting language, designed for
psychological experiments and distributed with a num-
ber of detailed examples, including a spatial stimulus–
response compatibility experiment, a task-switching ex-
periment, an inhibition-of-return experiment, a computer
analogue of the Wisconsin card-sorting test, a Fitts’s law
experiment, and a visual search experiment. Many of the
examples also include R scripts for data analysis with the
free and open source statistical software R (R Develop-
ment Core Team, 2009).

In the scripting language, experiments are programmed
as a list of command codes (similar to most programming
languages). There is no graphical user interface to program
experiments, as is available in various other psychological
software packages; the list of command codes must there-
fore be entered and edited using a text editor. The scripting
language is optimized for psychological experiments, with
command codes for events of specific relevance to experi-
ments. The efficiency of the scripting language is illustrated
in Appendix A, which shows an example of a fully functional
stimulus–response compatibility experiment in as few as 31
lines (the examples will be explained in detail below).

PsyToolkit: A software package for programming
psychological experiments using Linux

GIJSBERT STOET
University of Leeds, Leeds, England

PsyToolkit is a set of software tools for programming psychological experiments on Linux computers. Given
that PsyToolkit is freely available under the Gnu Public License, open source, and designed such that it can easily
be modified and extended for individual needs, it is suitable not only for technically oriented Linux users, but
also for students, researchers on small budgets, and universities in developing countries. The software includes
a high-level scripting language, a library for the programming language C, and a questionnaire presenter. The
software easily integrates with other open source tools, such as the statistical software package R. PsyToolkit
is designed to work with external hardware (including IoLab and Cedrus response keyboards and two com-
mon digital input/output boards) and to support millisecond timing precision. Four in-depth examples explain
the basic functionality of PsyToolkit. Example 1 demonstrates a stimulus–response compatibility experiment.
Example 2 demonstrates a novel mouse-controlled visual search experiment. Example 3 shows how to control
light emitting diodes using PsyToolkit, and Example 4 shows how to build a light-detection sensor. The last two
examples explain the electronic hardware setup such that they can even be used with other software packages.

Behavior Research Methods
2010, 42 (4), 1096-1104
doi:10.3758/BRM.42.4.1096

G. Stoet, g.stoet@leeds.ac.uk

PROGRAMMING PSYCHOLOGICAL EXPERIMENTS USING LINUX 1097

the experiment, displaying instructions, setting variables,
and even calling other programs (e.g., the statistical pro-
gramming language R to analyze the participant’s data and
present the participant with performance feedback).

The second component of PsyToolkit is a C library,
which offers the same functionality as the scripting lan-
guage, but which can also be used separately. Nearly all
commands used in the scripting language have an equiva-
lent in the C library.2 A quick way to learn the C library is
to compile a script with “psycc” and use the “ k” option,
which keeps a copy of the temporary C file into which the
script has been compiled. Users who want features not
easily performed by the scripting language can start with a
script, keep the C code, and then enhance the C code. But
users who want to add just a few lines of C can do this in
a much more convenient way by using the command code
“c” (whereby everything following “c” will be interpreted
and executed as C language).

The third component of PsyToolkit is a questionnaire
presenter (“PsyQuest”) that enables a quick and easy entry
system for questionnaires using the mouse or keyboard.
The functionality and implementation of “PsyQuest” is
entirely different from those of the previous two compo-
nents of PsyToolkit. It is included to enable researchers to
complement their experiment by collecting demographic
data or carrying out established personality tests.

So far, this review has focused on the programming
interface, but this interface would not be of much use
without some of the underlying programming technolo-
gies that ensure accurate timing and access to hardware,
such as the screen, response pads, and digital input/output
boards.

Timing accuracy in multitasking operating systems
has received much attention in the psychological research
methods literature, and accurate timing is not a problem
for Linux-operated computers (Finney, 2001). But even
when the Linux system is capable of accurate timing, ex-
ternal devices such as screens, keyboards, and computer
mice might affect timing because of their own timing
inaccuracies.

Both traditional cathode ray tube (CRT) screens and
modern flat screens (LCD) are typically very reliable in
their timing and similar across product lines, and the use
of vertical synchronization, as recommended for psycho-
logical experiments on all platforms (Gofen & Mackeben,
1997; McKinney, MacCormac, & Welsh-Bohmer, 1999;
Stewart, 2006), is implemented in PsyToolkit. It is possi-
ble to measure the timing accuracy of visual stimulus onset
and offset using the BlackBox toolkit (Plant, Hammond,
& Turner, 2004; Plant, Hammond, & Whitehouse, 2002)
or with a setup similar to that in Example 4 (below). More
difficult to deal with are timing inaccuracies that can arise
from response measurement with the regular keyboard
and the mouse (Plant, Hammond, & Whitehouse, 2003).
These devices vary strongly in their timing accuracy and
should be tested in the lab if possible—for example, using
the BlackBox toolkit. For time-sensitive tasks, PsyToolkit
should use an external keyboard, such as IoLab3 or Ced-
rus (PsyToolkit has a number of dedicated procedures for
dealing with these keyboards). These devices keep their

After a script has been created, the user can use the
program “psycc” to compile it into Linux executable code
(the user types “psycc” on the command line interface,
followed by the name of the script). “Psycc” is a source-
to-source cross compiler; that is, it translates the script
code into C code, which then is compiled into machine
code (i.e., the code the microprocessor uses). In accor-
dance with the Linux tradition, “psycc” comes with a
manual page (which can be shown typing “man psycc”)
and multiple options. For example, if the user wishes to
get an overview of the scripting language syntax, the user
types “psycc -s,” and the syntax will be displayed in the
terminal window.

A script is a list of command codes, and this list follows
a syntax. At the highest level of the scripting language,
there are different sections. The “options” section can be
used to set specific options the user might have for the
experiment. Currently, there are 19 different options. For
example, the “cedrus” option enables the use of Cedrus
keyboards, and the “resolution” option can set another
screen resolution than the default 800 600 pixels. Sec-
tions are separated from each other by an empty line, and
indentation of code is recommended (but not required) for
readability (see the Appendixes for examples).

Apart from the “options” section, there are seven other
sections available. Four of these sections are used just to
specify stimulus material (“bitmaps,” “sounds,” “videos,”
“fonts”). If an experiment uses none of these stimulus
types, these sections are not necessary (see Example 1
below for a simple experiment that can do without them).
Further sections are for describing the events of individual
trials (“task”), describing different experimental condi-
tions (“table”), and describing the way trials are selected
and combined (“block”).

The “task” and “block” sections allow for a high level
of control and design complexity. For example, users can
use variables, control structures (i.e., “if . . . then”), and
store data (i.e., “save”). The “task” section, especially, is
designed to present stimuli (e.g., “show bitmap”) and pro-
cess signals from the keyboard(s) and mouse. Altogether,
30 different command codes can be used in the “task” sec-
tion, most of them with various parameters. Different task
sections can be used to describe different tasks or task
types used in an experiment. For example, if you wanted
to combine a visual search and a stimulus–response com-
patibility experiment in one study, you would have two
different task sections.

The “block” section (with 11 different command codes)
is designed to specify how trials are combined into blocks.
The user can sequence trials in many different ways. For
example, the user can randomize the call of trials or use
a fixed order of trials (which can be used to ensure that
all participants perform exactly the same order of trials).
Furthermore, trials can be called such that they will repeat
when the participant makes an error. Also, the maximum
duration of a block can be specified with one command
(“maxtime”), which is helpful for experiments in which
the researcher wants to limit the time a participant spends
on a set of trials. Finally, the block statement has a num-
ber of command codes available for inserting breaks in

1098 STOET

relevant from the participant’s point of view. As previously
mentioned, the code consists of various sections—in this
case, “options” (lines 9–10), “table” (lines 12–17), “task”
(lines 19–35), and “block” (lines 37–40), and these sec-
tions are separated by empty lines (lines 11, 18, and 36).

The “options” section has just one option (line 10), which
specifies that position 0,0 refers to the center of the screen
(by default, 0,0 refers to the top left corner of the screen).
The “table” section has four rows, each row describing one
of the four experimental conditions. The columns reflect
the name of the condition, the horizontal position of the
imperative stimulus, the red and green color channels of
the stimulus, and the correct response, respectively.

The “task” section describes what happens in one trial.
The “table” (line 20) command tells the computer to use
the table “compatibilitytable” and selects one of its rows
for the present trial. In this example, PsyToolkit uses the
default method of choosing a table row randomly (each
trial), but other methods are available as well. The “keys”
command (line 21) states that the left and right shift keys of
the keyboard will be used, and these will be numbered as
they occur in this line (i.e., 1, 2). A small white rectangle is
displayed at the center of the screen (line 22) for 200 msec
(line 23) and is then erased (line 24). The rectangle com-
mand code takes a number of arguments; the first two are
the position, followed by the width and height, followed
by the values of the RGB (i.e., red–green–blue) channels
(255,255,255 equals white). Following a 50-msec pause
(line 25), the “show” command (line 26) is then used for
displaying the imperative stimulus, a red or green rectan-
gle. Now, some of the arguments are read from the table,
as indicated by the “@” sign (the horizontal position and
the red and green values vary from trial to trial).

The “readkey” command (Line 27) waits for up to
5,000 msec for keyboard input, but it will ignore any key
except the keys specified in line 21. The second argument
of “readkey” specifies what constitutes a correct response,
and in this case this is read from the fifth column of the
table (as specified by the “@5”), using the randomly se-
lected row of the present trial. Once the “readkey” com-
mand finishes, a number of variables related to the “read-
key” event will automatically be set. The KEY variable
will be set to the number of the keypressed (1 or 2), the
STATUS variable is set to CORRECT, WRONG, or TIME-
OUT, and finally, the RT and TT variables will be set to
the time (since the start of “readkey”) the button is pressed
down and the time the button is released, respectively. The
“clear” command (line 28) erases the second presented
stimulus (i.e., the one on line 26) once the response is
measured or once the 5,000 msec have passed (a “clear”
command can also be called with negative numbers to in-
dicate the relative number of stimulus presentation: 1
would indicate that the last presented stimulus must be
erased; see also Example 3).

The “if ” statement (line 29) illustrates the PsyToolkit
conditional statement; the lines between “if ” and “fi” are
carried out only if the “STATUS ! CORRECT” condi-
tion4 applies.

Finally, the “save” statement is used to save variables
permanently to a computer file for later data analysis (the

own time, independently of the host computer. For less
time-sensitive tasks, the regular keyboard and mouse can
be extremely helpful and cost-effective solutions.

For users who want to construct their own devices for
stimulus presentation or data collection, PsyToolkit sup-
ports two digital input/output boards (i.e., a computer card
that can send or receive discrete on/off signals to or from
an external electronic circuit). On the one hand, it supports
the parallel port, which is often built into desktop PCs, and
on the other hand, it supports Measurement Computings’
PCI-DIO24 board. Example applications for an input/
output board are a stimulus display made with light emit-
ting diodes (LEDs, see Example 3), which can be updated
with a millisecond resolution (unlike regular computer
displays, which are typically updated in the 60-Hz range),
and a light sensor system (see Example 4).

Like any other software package, PsyToolkit keeps in-
creasing its functionality with each version. The potential
downside of continuing development is the difficulty of
between-version compatibility. To deal with this, Psy-
Toolkit has been designed and implemented such that
multiple versions of PsyToolkit can be installed on one
computer, and can be used independently of each other.
Laboratories can even go as far as designing their own
PsyToolkit version (e.g., “myversion-2.0”) and keep its
functionality entirely separate of the other PsyToolit ver-
sions on the same computer. Using this version control
technique, researchers do not need to be worried about
older experiments no longer being compatible with the
newest PsyToolkit version.

Below, four examples demonstrate details of the script-
ing language. These examples range from simple to com-
plex. The first two examples can be run with the regular
keyboard and mouse, whereas the last two examples illus-
trate the use of external devices. The latter two examples
are of potential use beyond PsyToolkit, because they de-
scribe how to build simple circuits for using LEDs and
measuring light.

EXAMPLE 1
Simple Stimulus–Response
Compatibility Experiment

Stimulus–response compatibility studies have demon-
strated that people typically respond faster and less erro-
neously to stimuli that have a straightforward relationship
with their associated responses (Prinz & Hommel, 2002).
For example, if participants must associate the visually
presented words “left” and “right” to a left- and a right-
positioned response button, and if the words can appear
at any location on the screen, people will respond fastest
when both stimulus and response button are located on
the same side.

Example 1 (Appendix A) implements a stimulus–
response compatibility experiment and aims to illustrate
some key concepts of the PsyToolkit scripting language.
The instruction for the participant is to respond to red
stimuli with the left shift button and green stimuli with the
right shift button. Stimuli can appear on the left or right
of the screen, but this variation in stimulus position is ir-

PROGRAMMING PSYCHOLOGICAL EXPERIMENTS USING LINUX 1099

in the area of the second presented bitmap (line 24) in the
present “task section,” and the 5,000 indicates the maxi-
mum response time in milliseconds. The optional “range”
element of the “readmouse” command indicates that only
mouse clicks on bitmaps 2 through 5 (lines 24–27) will
be considered. The latter statement helps to ensure that
participants are not punished for clicking the mouse on
something that is irrelevant (such as the fixation point,
which in this case is bitmap 1).

Once the participant has clicked, all bitmaps are erased
at once, and if the participant selected the correct bitmap,
a sound will be played. At the end of the “task” section,
some of the relevant variables will be saved (line 35). RT
is the time the mouse button was pressed, and TT when
it was released. MOUSE_X and MOUSE_Y refer to the
cursor position when the mouse was clicked (not all off
these variables are necessary for a real visual search ex-
periment but are shown merely for illustration).

EXAMPLE 3
LED

In Examples 1 and 2, and in most ongoing studies in
experimental psychology, a computer screen is used for
the display of visual stimuli. The downside of regular
computer screens is that they cannot be controlled with
millisecond resolution. For example, on a typical com-
puter monitor of 60 Hz, the display can be changed only
every 16.7 msec.

For studies that require stimulus control at a millisec-
ond resolution, the use of LEDs can be a solution. The
skills required to set up a small LED display are minimal,
and one can even circumvent the need to solder by using
a solderless breadboard. LEDs are inexpensive and can be
bought at electronic hardware stores (such as RadioShack
in the U.S. and Maplin in the U.K.). The more expensive
hardware needed is a digital input/output board, such as the
parallel port or Measurement Computing’s PCI-DIO24.
The required items for Example 3 are the PCI-DIO24 card
and peripherals, 1 LED (any color, 5-V), a 470- resistor,
two flexible jumper wires (ideally, 15–20 cm), and one
breadboard.

The PCI-DIO24 device should be installed as instructed
by the manufacturer, with a cable (Measurement Com-
puting C37FFS-5) and a 37 universal screw terminal
pinboard (Measurement Computing CIO-MINI37). The
PCI-DIO24 device requires a driver (a piece of software
interfacing the operating system and PsyToolkit), which is
distributed for free and is easy to install.6

The advantage to the use of a breadboard and a screw
terminal is that the whole setup can be created with only a
screwdriver as a tool (Figure 1). The LED and the resistor
are pushed into the breadboard, and so are the two jumper
wires. The two wires are attached to the screw terminal
pins 37 (port A0) and 21 (ground).

Once the hardware has been prepared, the script (Ap-
pendix C) should be used to run the study. The script is
designed to measure the time it takes a participant to
respond (i.e., pressing the space bar) to the LED light.
There are different intervals between trials, as coded in

file name is a combination of the script name and the date
of the experiment). Variables are saved in plain text for-
mat and can thus easily be read in by any major statistics
program. The programmer determines exactly which data
are saved and which not. This prevents intermediate data-
filtering stages in which the researcher needs to filter out
the data of interest (as is the case in some other software
for running experiments).

EXAMPLE 2
Visual Search Using the Mouse

Visual search experiments serve the study of a number
of cognitive processes, ranging from studies of attention
to studies of object representation (Wolfe, 2003). Typi-
cally, the participant has to indicate whether or not a target
stimulus is present among a set of nontargets. The neces-
sity of the inclusion of nontarget trials can be overcome by
using a pointing device: The participant needs to “click”
the found target, instead of merely indicating target pres-
ence. This can reduce the number of trials significantly
and thus improve the efficiency of the experimental vi-
sual search task design. But procedures for handling and
reading a pointing device are typically more complicated
in programming languages than are those for handling
a keyboard. Therefore, PsyToolkit includes a number of
functions to simplify the use of the mouse, as illustrated
in a visual search experiment (Appendix B).

In this example experiment, four stimuli are displayed,
and the instruction is to find the red circle.5 The partici-
pant has to move the mouse cursor to the target stimulus
and click the left mouse button.

In order to use the mouse, the “options” section must
contain the “mouse on” statement (Appendix B, line 3).
The “bitmaps” section is used to load bitmaps (lines 6–10)
and specifies the names of the bitmap files. PsyToolkit
supports all common bitmap formats (e.g., jpeg, tiff, png,
bmp) and treats the png file format as default: On line 10,
one does not need to specify the complete filename (with
extension) to indicate that there is a “redsquare.png” file.
In analogy to bitmaps, PsyToolkit can load sound files
into memory using the “sounds” section (lines 12–13).

This example experiment uses only four visual stimuli
(lines 6–9) and two possible experimental conditions,
specified in the table (lines 15–17). In the task section
(lines 19–35), first the “searchtable” table is associated
with the “searching” task, such that the columns referred
to by “@” correspond to the columns of that table (for
simplification, the table has only two table rows, specify-
ing two possible stimulus configurations). In line 21, a
fixation point is put at the center (position 0,0 is the de-
fault position and does not need to be specified explicitly).
In order to present multiple stimuli at exactly the same
time, rather than one for one, the “show bitmap” state-
ments (lines 24–27) are within a “draw off ”–“draw on”
part of the code, which guarantees that the computer does
not display until it reaches the “draw on” statement.

The “readmouse” (line 29) command takes three or five
arguments. The “l” specifies that the left mouse button
must be pressed, the “2” specifies that the mouse must be

1100 STOET

The script (Appendix D) introduces some new Psy-
Toolkit features. First of all, there is a “while” loop em-
ployed in the “task” section. The script uses “timers” to
keep track of the lapsed time. The script uses various
variables to keep track of the status of the light sensor. A
“C” expression is used, and text is displayed. Below, each
of these features will be explained.

Typically, the task section describes just one trial,
and it is the “block” section that organizes the looping
through a sequence of trials. But in experiments in which
the researcher wants to execute many measures that are
not necessarily separate trials, it might be more prac-
tical to use a “while” loop to carry out multiple mea-
sures within this loop. For example, this is useful for
implementing a synchronous tapping task (Repp, 2005),
in which a participant must repeatedly press a button in
response to a regularly flashing LED. The “while” loop
can also be useful for certain dual-task setups in which
multiple-response events need to be controlled inde-
pendently. In such a situation, the user can combine the
“while” loop with the more advanced “status” arguments
of keyboards (e.g., “keystatus,” “mousestatus,” “cedrus
status,” and “iolab status”).

In the present example, a “while” loop lasting 10 sec
(lines 12–30) is used to measure whether the light sen-
sor detects changes in light (line 12). In order to prevent
the computer from running the “while” loop faster than
necessary, the “nap” command must be included (Finney,
2001).

The “set” command is used to set the value of vari-
ables. PsyToolkit distinguishes between local variables
(prefixed by a “$” sign) and global variables (prefixed by
an “&” sign). Local variables are valid only within the task
section they are being used in, whereas global variables
can be used and kept between tasks and blocks.

“Timestamp” variables are used to store the current time
in a special class of time variables (lines 10, 11, and 13). The
difference between two “timestamps” can be calculated and
stored in a variable using the set command in combination
with the “timestamp-diff ” argument (line 14).

Occasionally, “C” syntax can be useful for more com-
plex expressions, such as the “logical and” expression.

the table (lines 4–7), which is associated with the “simple-
responsetask” task (line 10). To switch an output line of
 PCI-DIO24 to high, the “pcidio24” command is used with
three arguments. The eight lines of port A are coded as a
number between 0 and 255 (bit 1 corresponds to line 1
of port A, bit 2 to line 2, etc.). The “readkey” statement
(line 13) follows the same logic as in Example 1. To switch
the LED off, the digital channel is set to zero (line 14). All
other code is similar to that in Examples 1 and 2.

The script is simple and requires elaboration for use in
a real experiment, but it illustrates the ease of controlling
an LED setup using PCI-DIO24. Up to 24 LEDs can be
attached.

EXAMPLE 4
Light Sensor

Light sensors are relatively simple to build and can be
very useful for measuring behavior or for verifying the
timing accuracy of screens and projectors. Yet there is a
lack of simple documentation on how to build a light sen-
sor for this purpose; this example explains how to build
one (Figure 2) and how to use it with PsyToolkit and
 PCI-DIO24 (Appendix D).

The necessary components for the light sensor are a
photodiode and a mega-ohm variable resistor (Figure 2).
Although the light sensor can be constructed using a
breadboard, it is highly recommended to make it more
stable by soldering the components together.

Figure 1. Light-emitting diode (LED) setup. (A) Diagram of
the electronic components. Jumper wires and components are
pushed into the holes of the breadboard (gray filled circles are
here the ones used). The right component is the LED, with an
illustration of its positive (cathode) and negative (anode) sides
(which can easily be recognized when looking at the transparent
bulb of the LED). The component at the top is a resistor. This
diagram should be connected to the pins of the terminal pinboard
CIO-MINI37, which itself is connected to the PCI-DIO24 digital
input/output board. (B) Exactly the same as panel A, but now
represented as a conventional electronic diagram.

Figure 2. Diagram of a light sensor. The two components of
this diagram are a variable resistor (1 M) and a photodiode.
This circuit should be connected to the pins of the terminal pin-
board CIO-MINI37. The variable resistor can be adjusted to light
conditions.

PROGRAMMING PSYCHOLOGICAL EXPERIMENTS USING LINUX 1101

AUTHOR NOTE

The author thanks IoLab Systems Inc., Cedrus Inc., Warren J. Jasper
of North Carolina State University, and Lawrence H. Snyder of Wash-
ington University in St. Louis for support. Support for two PCI24 boards
was made possible by a grant from the Experimental Psychology So-
ciety. Correspondence concerning this article should be addressed to
G. Stoet, Institute of Psychological Sciences, University of Leeds, Leeds
LS2 9JT, England (e-mail: g.stoet@leeds.ac.uk).

REFERENCES

Finney, S. A. (2001). Real-time data collection in Linux: A case study.
Behavior Research Methods, Instruments, & Computers, 33, 167-173.

Geller, A. S., Schleifer, I. K., Sederberg, P. B., Jacobs, J., & Ka-
hana, N. J. (2007). PyEPL: A cross-platform experiment- programming
library. Behavior Research Methods, 39, 950-958.

Gofen, A., & Mackeben, M. (1997). An introduction to accurate display
timing for PCs under “Windows.” Spatial Vision, 10, 361-368.

McKinney, C. J., MacCormac, E. R., & Welsh-Bohmer, K. A. (1999).
Hardware and software for tachistoscopy: How to make accurate mea-
surements on any PC utilizing the Microsoft Windows operating system.
Behavior Research Methods, Instruments, & Computers, 31, 129-136.

Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python.
Journal of Neuroscience Methods, 162, 8-13.

Plant, R. R., Hammond, N., & Turner, G. (2004). Self-validating pre-
sentation and response timing in cognitive paradigms: How and why?
Behavior Research Methods, Instruments, & Computers, 36, 291-303.

Plant, R. R., Hammond, N., & Whitehouse, T. (2002). Toward an Ex-
perimental Timing Standards Lab: Benchmarking precision in the real
world. Behavior Research Methods, Instruments, & Computers, 34,
218-226.

Plant, R. R., Hammond, N., & Whitehouse, T. (2003). How choice of
mouse may effect response timing in psychological studies. Behavior
Research Methods, Instruments, & Computers, 35, 276-284.

Prinz, W., & Hommel, B. (2002). Common mechanisms in perception
and action: Attention and performance XIX. Oxford: Oxford University
Press.

R Development Core Team (2009). R: A language and environment for
statistical computing [Computer software]. Vienna: R Foundation for
Statistical Computing. Available from www.R-project.org.

Repp, B. (2005). Sensorimotor synchronization: A review of the tapping
literature. Psychonomic Bulletin & Review, 12, 969-992.

Stahl, C. (2006). Software for generating psychological experiments.
Experimental Psychology, 53, 218-232.

Stevens, M., Lammertyn, J., Verbruggen, F., & Vandieren-
donck, A. (2006). Tscope: A C library for programming cognitive
experiments on the MS Windows platform. Behavior Research Meth-
ods, 38, 280-286.

Stewart, N. (2006). Millisecond accuracy video display using OpenGl
under Linux. Behavior Research Methods, 38, 142-145.

Straw, A. D. (2008). Vision Egg: An open-source library for realtime
visual stimulus generation. Frontiers in Neuroinformatics, 2(4).

Wolfe, J. M. (2003). Moving towards solutions to some enduring contro-
versies in visual search. Trends in Cognitive Sciences, 7, 70-76.

NOTES

1. http://psytoolkit.leeds.ac.uk.
2. The C library itself uses other common libraries, especially the SDL

libraries, but also the hid and parapin libraries.
3. In fact, IoLab is a complex device integrating keyboard, voicekey,

and digital input/output.
4. “! ” stands for “not equal.”
5. This example uses only four stimuli, but increasing the numbers of

stimuli and trials would be trivial.
6. This driver is written by W. J. Jasper, North Carolina State Uni-

versity, and can be downloaded from ftp://lx10.tx.ncsu.edu/pub/Linux/
drivers/.

The A0 port of the PCI-DIO24 device contains the value 1
or 0, depending on whether light is shining on the sensor
or not. Because only the A0 port is used (i.e., one line of
the eight lines of port A), the other ports (A1–A7) are ir-
relevant, and the value of the A0 port can be filtered out
from the other values port A can hold using the logical
“and” command (line 16).

When this example script is running, the screen should
display “light is on” when the light goes on and “light is
off ” when the light goes off. Text display is performed
using the “show text” command, which per default uses
the first font loaded (“Times New Roman, 40 pt,” line 6).

DISCUSSION

In summary, PsyToolkit is a well-developed and -tested
software package for programming psychological experi-
ments on Linux computers. PsyToolkit is suited not only
for technically oriented users, but also for those on a lim-
ited budget, because both the operating system Linux and
Psytoolkit are free of cost. The four examples, ranging
from simple to complex, have reviewed and explained a
variety of functions. Altogether, this review gives poten-
tial users a good basis on which to start experimenting
with PsyToolkit.

The remainder of this review addresses limitations of
this software and plans for future work. One limitation of
PsyToolkit is that it is available only for Linux. In prin-
ciple, it is possible to port PsyToolkit to other platforms,
especially since it uses software libraries that are available
for the common computing platforms. The most difficult
aspect of such a port is the programming of the Linux
specific interface library for the Measurement Computing
board. Furthermore, much of the development time spent
on PsyToolkit was devoted to testing time-critical func-
tions and hardware compatibility. A complete port to other
computer platforms is possible, but it would take consid-
erable effort to ensure that the complete package is ported
(not just the parts that are easy to port) and to submit the
software to the same level of testing. Currently, there are
no plans to work on porting PsyToolkit, but anybody with
a strong desire to use PsyToolkit should consider that
Linux is reasonably easy to install (and Linux can easily
be added to computers that already have another operating
system installed).

Another limitation of PsyToolkit is that it does not
come with the same support users can expect from com-
mercial packages—there is no phone hotline or support
team.

PsyToolkit will be further developed with a focus on
two aims. First of all, the reliability of this software has
priority over the development of new features or porting
to other platforms. Second, it is intended to release Psy-
Toolkit in more Linux-distribution-specific “packages”
to ease the installation (currently, a custom source-based
installer and a Debian/Ubuntu package are available).

1102 STOET

APPENDIX A
PsyToolkit Scripting Code for Example 1

 1 # text following hash marks is comment for humans only (if you do not
 2 # count lines that are entirely comments, there are 31 lines of real
 3 # code)
 4 # simple stimulus response compatibility study with 40 trials
 5 # instruction for participants:
 6 # press left shift button in response to red stimuli
 7 # press right shift button in response to green stimuli
 8
 9 options
10 centerzero # position 0,0 is center of screen
11
12 table compatibilitytable # each row describes 1 of the 4 conditions
13 #-name of condition----------------position--red?--green?--correct key------
14 "leftresponse compatible" -200 255 0 1
15 "leftresponse incompatible" 200 255 0 1
16 "rightresponse compatible" 200 0 255 2
17 "rightresponse incompatible" -200 0 255 2
18
19 task compatibility
20 table compatibilitytable # table to be used
21 keys lshift rshift # the two keys (numbers 1 and 2) to be used
22 show rectangle 0 0 10 10 255 255 255 # small white rectangle at
23 delay 200 # center for 200 ms
24 clear 1 # erase the rectangle
25 delay 50 # and wait 50 ms
26 show rectangle @2 0 100 100 @3 @4 0 # target stimulus is presented
27 readkey @5 5000 # wait for key of column 5 of table
28 clear 2 # remove target stimulus from screen
29 if STATUS != CORRECT # check the result of the "readkey" command
30 show rectangle 0 0 300 300 255 0 0 # show big central red rectangle
31 delay 1000
32 clear 3 # remove the third stimulus shown
33 fi # "fi" ends the "if" part
34 delay 1000 # wait 100ms (inter trial interval)
35 save BLOCKNAME @1 KEY STATUS RT # save data to file
36
37 block test # this block is called "test"
38 tasklist # list the tasks being used, here we use only 1
39 compatibility 40 # run the task 40 times
40 end # end of the "tasklist" part

PROGRAMMING PSYCHOLOGICAL EXPERIMENTS USING LINUX 1103

APPENDIX B
PsyToolkit Scripting Code for Example 2

 1 options
 2 centerzero
 3 mouse on
 4
 5 bitmaps
 6 fixpoint fixpoint.jpg
 7 redcircle redcircle.bmp
 8 greensquare greensquare.tiff
 9 greencircle
10 redsquare
11
12 sounds
13 soundsok sayingok.wav
14
15 table searchtable
16 redcircle -100 -100 greensquare 100 100 redsquare -100 100 greencircle 100 -100
17 redcircle 100 100 greensquare -100 100 redsquare 100 -100 greencircle -100 -100
18
19 task searching
20 table searchtable
21 show bitmap fixpoint
22 delay 100
23 draw off
24 show bitmap @1 @2 @3
25 show bitmap @4 @5 @6
26 show bitmap @7 @8 @9
27 show bitmap @10 @11 @12
28 draw on
29 readmouse l 2 5000 range 2 5
30 clear 1 2 3 4 5
31 if STATUS == CORRECT
32 sound soundsok
33 fi
34 delay 2000
35 save TABLEROW STATUS RT TT MOUSE_X MOUSE_Y
36
37 block searchblock
38 tasklist
39 searching 5
40 end

APPENDIX C
PsyToolkit Scripting Code for Example 3

 1 options
 2 pcidio24 out a # setup the PCIDIO24 board
 3
 4 table intertrialintervaltable # a table with 3 rows/conditions
 5 "short" 500
 6 "medium" 1000
 7 "long" 2000
 8
 9 task simpleresponsetask
10 table intertrialintervaltable # table to choose conditions from
11 keys space # only one response key being used, the space bar
12 pcidio24 set a 1 # LED on (controlled by bit 1 of port A)
13 readkey 1 3000 # wait for pressing the space bar for 3 seconds
14 pcidio24 set a 0 # LED off
15 if STATUS == CORRECT # check the result of the "readkey" command
16 show rectangle 0 0 300 300 0 255 0 # show big central green rectangle
17 delay 250 # wait 250 ms

1104 STOET

APPENDIX D
PsyToolkit Scripting Code for Example 4

 1 options
 2 pcidio24 in a
 3 centerzero
 4
 5 fonts
 6 times times.ttf 40 # make sure the file "times.ttf" exists!
 7
 8 task lightsensor
 9 show text "The light is off"
10 timestamp TimeBegin
11 timestamp TimeNow
12 while $totaltime 10000
13 timestamp TimeNow
14 set $totaltime timestamp-diff TimeBegin TimeNow
15 set $lightstatus pcidio24 a
16 set $lightstatus c-expression lightstatus & 1
17 if $lightstatus != $previousstatus
18 if $lightstatus == 1
19 clear -1
20 show text "light is on "
21 fi
22 if $lightstatus == 0
23 clear -1
24 show text "light is off "
25 fi
26 save $lightstatus $totaltime
27 set $previousstatus $lightstatus
28 fi
29 nap
30 while-end
31
32 block measurelight
33 tasklist
34 lightsensor 1
35 end

18 clear -1 # remove the last stimulus shown
19 fi # "fi" ends the "if" part
20 delay @2 # delay (intertrial time)
21 save BLOCKNAME @1 @2 RT # save data to file
22
23 block testdio24 # this block is called "testdio24"
24 tasklist # list the tasks being used, here we use only 1
25 simpleresponsetask 10 # run 10 trials

26 end # end of the "tasklist"

APPENDIX C (Continue)

(Manuscript received March 9, 2010;
revision accepted for publication June 15, 2010.)

