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Multinomial processing tree (MPT) models are a family 
of substantively motivated stochastic models for the anal-
ysis of categorical data. The main idea of this modeling 
approach is to explain behavioral data by a function of a 
sequence of latent states that can be interpreted as psycho-
logical processes. The statistical properties of MPT mod-
els are well understood (Hu & Batchelder, 1994; Riefer 
& Batchelder, 1988), and there is a substantial body of 
research using these models (for reviews, see Batchelder 
& Riefer, 1999; Erdfelder et al., 2009).

To illustrate MPT models and the computer program 
presented in this article, a model of source monitoring 
(Batchelder & Riefer, 1990) is used as a running exam-
ple. The source monitoring paradigm usually inducts two 
stages. In the learning phase, memory items are presented 
in one of two (or more) formats—for instance, nouns 
printed in either red (Source A) or blue (Source B). In 
the test phase, a recognition memory test is given, where 
participants have to identify the words from the learning 
phase and new words as being learned from Source A, 
Source B, or as new items. Thus, for each item one of 
three discrete outcomes (A, B, new) is observed. Com-
pleting this task involves several processes—for example, 
item recognition, source discrimination, and various re-
sponse biases. Figure 1 shows how such a source monitor-
ing experiment with two sources may be represented as a 
processing tree structure. The model assumes that partici-
pants’ responses to Source A, Source B, and new items are 
a function of the alleged underlying processes. Item de-
tection of Source A and B items is represented by the pa-
rameters D1 and D2, respectively. Depending on whether 

they correctly recognize an item as being old, participants 
may be able to correctly identify the source of that item. 
The parameters d1 and d2 are defined as probabilities of 
correctly discriminating the source of detected Source A 
and Source B items, respectively. Finally, if unable to re-
trieve sufficient information to correctly identify an item, 
participants may engage in guessing processes, which are 
represented by the parameters a (guessing that a detected 
but nondiscriminated item belongs to Source A), b (bias 
for responding “old” to a nondetected item), and g (guess-
ing that a nondetected item belongs to Source A).

Several computer programs have been developed in the 
past decade that can be used to estimate MPT models—
namely, AppleTree (Rothkegel, 1999), GPT (Hu & Phillips, 
1999) and HMMTree (Stahl & Klauer, 2007). Moreover, 
the parameters of MPT models can be estimated using the 
SOLVER library from Microsoft Excel with macros pro-
vided by Dodson, Prinzmetal, and Shimamura (1998). A 
comparison of features across these programs is shown in 
Table 1. Three main motivations led to the development of 
a new program called multiTree. First, with the advent of 
the Mac operating system OS X Leopard, AppleTree is no 
longer supported, due to the lack of the classic environment. 
Since there are no programs available for Unix systems, 
there is a need for a platform-independent software for the 
analysis of MPT models. Second, except for GPT, none of 
the existing programs offers an easy-to-use option to con-
duct a priori and post hoc power analyses, which is of vital 
importance for the rational design of experiments. Finally, 
most existing programs lack advanced modeling features 
such as bootstrap procedures and identifiability checks.
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To illustrate the definition of MPT models, consider the 
tree for Source A items in the model of source monitor-
ing shown in Figure 1. The Source A tree consists of six 
branches leading to three response categories (“Source A,” 
“Source B,” “Old”) and comprises five independent pa-
rameters (D1, d1, a, b, g). If a participant correctly rec-
ognizes a Source A item as being old (D1), he or she may 
either correctly identify (d1) or fail to correctly identify 
(1  d1) the source of that item. After failure to identify 
the source of a detected item, guessing the source can lead 
either to a correct (a) or to an incorrect (1  a) response. 
In contrast, if a participant fails to detect a Source A item 
(1  D1), he or she guesses this item as being old (b) or 
new (1  b). If the item is guessed as old following non-
detection of that item, the participant engages in another 

MULTINOMIAL PROCESSING  
TREE MODELS

MPT models attempt to estimate latent parameters from 
observed category frequency counts. An MPT model com-
prises a set of branches that lead to observable response 
categories. Each branch consists of a series of conditional 
link probabilities of one stage to another. The probability 
of a branch i leading to category j equals the product of the 
corresponding link probabilities,
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where   ( 1, . . . , s) is a vector of length s of the pa-
rameters representing the conditional link probabilities, 
aijs and bijs are count variables that represent the frequency 
of a parameter s or its complement 1  s in a branch, 
and cij is a nonnegative real representing the product of 
constants on the links. A particular response category may 
be reached by more than one branch. Thus, the probability 
of observing a response in the jth category equals the sum 
of the branch probabilities leading to that category,
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Figure 1. A multinomial processing tree model of source monitoring.

Table 1 
Comparison of Different Programs for MPT Modeling

  AppleTree  GPT  HMMTree  Microsoft Excel†  multiTree

Operating system MacOS†† Windows Windows MacOS, Windows Linux, MacOS, Windows†††

Parameter estimation
Hypothesis testing
Information criteria AIC, BIC AIC, BIC, AIC, BIC, wAIC, wBIC
Variability of parameter estimates SE, CI SE CI SE, CI
Fisher information
Jacobian
Power analysis ††††

Bootstrapped CI Parametric Nonparametric Parametric and nonparametric
Bootstrapped goodness of fit
Latent class models
Analysis of continuous data
Simulation option
Simulated identifiability
Nonbinary trees
Automatic reparameterizations
Multiple data sets
Graphical model builder

Note—AIC, Akaike information criterion; BIC, Bayesian information criterion; AIC, BIC, AIC and BIC in relation to a saturated H0 model; 
wAIC, wBIC, weighted AIC and BIC; SE, standard error; CI, confidence interval. †Using the SOLVER library (not available in Excel 2008 
for Mac), with macros provided by Dodson et al. (1998). ††Requires the classic environment (discontinued with Mac OS X Leopard). †††Re-
quires the Java runtime environment. ††††Power analysis is only available for the effect size w (Cohen, 1988).
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maximization (M) step. In the E step of the EM algorithm, 
expected frequencies mij for each branch are computed 
given the parameter vector from the previous trial:
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The M step calculates revised parameter estimates 
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In order to ensure that each iteration reduces the dis-
tance between observed and expected frequencies when 
  0, the parameter estimates after each iteration t are 

corrected by the step-width parameter ,

 ( ) ( ) ( ) ( ) ,t t t tM1 1 1  (5)

where the condition (1  )  0 must be satisfied (Hu 
& Batchelder, 1994). Regardless of the value of ,  may 
also be used to speed up the iteration process, since the 
algorithm may converge faster for higher values of .

Parameter estimation begins with initializing the pa-
rameter vector   ( 1, . . . , S) with a set of start val-
ues. Equations 3, 4, and 5 are then applied repeatedly 
and the change in the distance between observed and 
expected frequencies is computed after each iteration: 
 PD [R, P( )] (t 1)  PD [R, P( )](t). The algorithm stops 
if either the criterion of convergence (e.g., 1.0E 8  
10 8) is reached or the maximum number of iterations 
(e.g., 1,000) is exceeded.

Assessment of Model Fit
multiTree offers two ways to assess the fit of a model 

to the data. The generic goodness-of-fit statistic for MPT 
models is given by the asymptotically 2 distributed power 
divergence family PD , which is used both in parameter 
estimation and model evaluation. The fit of a model can 
also be evaluated by means of information criteria. The 
latter approach is particularly attractive when comparing 
models not hierarchically nested.

Power divergence statistic. The goodness of fit of a 
model is determined by measuring the distance between 
the model-implied frequencies and the observed category 
frequencies. MPT models utilize distance measures that 
can be characterized as a power divergence family (Read 
& Cressie, 1988). PD  defines an asymptotically 2 dis-
tributed family of distance measures:
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guessing process judging the item as belonging to either 
Source A (g) or Source B (1  g). From this model, it 
is easy to calculate the implied branch probabilities. The 
probabilities of the three branches leading to a “Source A” 
response are

p1,A  D1d1 

p2,A  D1(1  d1)a 

p3,A  (1  D1)bg. 

The probability of observing a particular response is sim-
ply the sum of the probabilities of corresponding branches. 
For example, the probability of observing a “Source A” 
response is

 p p D d D d a D bgA i A
i

, ( ) ( ) .
1

3

1 1 1 1 11 1  

The model of source monitoring is a so-called joint 
MPT model, because it is based on a joint multinomial dis-
tribution of several independent item classes (Source A, 
Source B, and new items), consisting of different trees 
for each item class (Riefer & Batchelder, 1988). A special 
case of joint MPT models occurs in a between-subjects ex-
periment, where it is usually assumed that the same model 
applies to each experimental condition (with possible re-
strictions on the parameters across conditions). For ex-
ample, in an experiment by Saegert, Hamayan, and Ahmar 
(1975), participants memorized a mixed list of words in 
different languages (sources) presented either alone (word 
condition) or embedded in sentences (sentence condition). 
The model of source monitoring applied to these data thus 
consists of the same tree structure (as shown in Figure 1) 
for each condition (Batchelder & Riefer, 1990). For the 
sake of clarity and simplicity, it is assumed in the remain-
der of this article that simple MPT models are analyzed; 
however, the statistical methods presented next also apply 
to joint multinomial models (with minor changes in nota-
tion; see Hu & Batchelder, 1994, for details).

STATISTICAL METHODS  
AND NUMERICAL ALGORITHMS

A brief presentation of the algorithms underlying multi-
Tree follows. This presentation relies heavily on the more 
thorough treatments by Efron and Tibshirani (1997), Hu 
and Batchelder (1994), and Read and Cressie (1988), and 
interested readers are referred to these authors.

Parameter Estimation
Parameter estimation proceeds by employing the ex-

pectation maximization (EM) algorithm (Dempster, Laird, 
& Rubin, 1977) tailored for binary tree models (Hu & 
Batchelder, 1994). The algorithm attempts to obtain a set 
of parameters   ( 1, . . . , S) that minimize the distance 
between the observed frequencies R  (n1, . . . , nJ) and the 
expected frequencies P( )  [Np1( ), . . . , NpJ( )] (where 
N  J

j 1nj), as measured by a member of the power di-
vergence family (PD ; see below). The EM algorithm is 
an iteration of trials consisting of an expectation (E) and a 
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a model, whereas negative values indicate that the model 
is tenable.

Furthermore, it is useful to consider AIC and BIC 
weights (Wagenmakers & Farrell, 2004) to facilitate the 
interpretation of the difference between information crite-
ria when comparing competing models. If only two mod-
els are compared, wAIC and wBIC are given by
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and can be interpreted in terms of normalized weight ra-
tios (evidence ratios). These evidence ratios represent the 
probability that model p is the better model, in terms of 
expected information loss, than model q.

Parameter Variability
The multiTree program offers several ways to obtain 

information about the variability of the parameter esti-
mates. The asymptotic variance–covariance matrix of the 
parameters (and hence standard errors) can be computed 
by inverting the observed Fisher information matrix. In 
some cases, however, the observed Fisher information 
matrix may not provide a good approximation to the true 
variance–covariance matrix. Accordingly, it is sometimes 
desirable to draw inferences regarding the variability of 
parameter estimates in other ways, such as by using a 
bootstrap procedure.

Asymptotic variances. By default, multiTree com-
putes the inverse of the observed Fisher information ma-
trix as an estimate of the variance–covariance matrix of 
the parameters (Erdfelder, 2000; Hu & Batchelder, 1994). 
The observed Fisher information matrix I( )s r can be 
computed as shown in Equations 15–19.

To obtain standard errors of the parameters, I( )s r is 
inverted and the root is taken from the diagonal terms. 
Since the maximum likelihood estimates of the param-
eters can be shown to be asymptotically normally distrib-
uted (Hu, 1999), confidence intervals can be computed 
according to s  z /2SE

s
, where z /2 is the tail of the 

standard normal distribution corresponding to the desired 
 level.
Bootstrapping. Although obtaining standard errors 

by the Fisher information matrix may, in general, be con-
sidered the method of choice, this approach may fail in 
certain situations. Since the estimate of the Fisher in-
formation matrix is based on observed frequencies, the 
estimates are heavily influenced by the sample size. If 
the sample size is too small, the estimate may be a rather 
poor approximation to the true variance–covariance ma-
trix (Hu, 1999). Moreover, situations may arise in which 
the observed information matrix contains offending 
estimates (i.e., negative variance estimates), or may be 
singular and incapable of being inverted. However, even 

where  is the family parameter. The term power diver-
gence describes the fact that the divergence of observed 
from expected frequencies is measured through a weighted 
sum of -powers. Several well-known statistics can be de-
rived from this general formula by choosing appropriate 
values for . These may include   0 and   1 by 
taking the limit

 lim .
( , )0 1

PD  

For example, the log-likelihood ratio statistic G2 is a spe-
cial case with   0:
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Similarly, PD 1 reduces to the Pearson 2 distance 
measure:
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Other well-known statistics are the Cressie–Read sta-
tistic with   0.66, the Freeman–Tukey statistic with 
  0.5, and the Neyman-modified 2 with   2. 

The properties of the different members of the power-
divergence family have been extensively studied (García-
Pérez, 1994; Read & Cressie, 1988; Riefer & Batchelder, 
1991). Generally speaking,  should be chosen to lie in the 
interval 2    2 to achieve a good approximation of 
the 2 distribution and to minimize the sensitivity to outli-
ers (i.e., local misfit).

Information criteria. In addition to a goodness-of-
fit statistic of the power divergence family, model fit can 
be evaluated by the Akaike information criterion (AIC; 
Akaike, 1974) and the Bayesian information criterion 
(BIC; Schwartz, 1978):

 AIC  2S  2ln(L) (9)

and

 BIC  2S ln(N)  2ln(L), (10)

where S is the number of parameters and L is the maxi-
mized value of the likelihood function. These information 
criteria include a penalty term for the number of param-
eters in a model and, therefore, favor simpler over more 
complex models. Since these criteria are rather difficult 
to interpret in isolation, multiTree also provides AIC and 
BIC values in relation to a saturated null hypothesis model 
(Read & Cressie, 1988):

 AIC  PD   2df (11)

and

 BIC  PD   ln(N )df. (12)

Consequently, evaluating models with the generalized 
AIC or the BIC is equivalent to comparing the value of 

the goodness-of-fit statistic PD against a linear transfor-
mation of its expectation. For AIC and BIC it is suf-
ficient to check the sign: Positive values indicate to reject 
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the desired  confidence interval. Note that the latter ap-
proach usually requires more than 100 bootstrap samples 
to obtain reliable estimates of the confidence intervals 
(Efron & Tibshirani, 1997).

The nonparametric and parametric bootstraps differ 
with respect to the resampling mechanism. In the non-
parametric bootstrap, random data sets are repeatedly 
drawn with replacement from given observed frequen-
cies. Since the nonparametric bootstrap does not assume 
that a model fits the data, it can primarily be used to draw 
inferences with respect to the variability of parameter es-
timates. In the parametric bootstrap, however, data sets 
are generated as implied by a particular MPT model; that 
is, it assumes that the model under consideration is valid. 
Therefore, the parametric bootstrap additionally allows 
for evaluating the exact distribution of the PD  statistic, 
for example, if the assumption of an asymptotic 2 distri-
bution under the null hypothesis may be violated due to 
parameters at the boundaries of the parameter space (cf. 
Klauer & Oberauer, 1995).

The implementation of the parametric bootstrap in 
multi Tree is similar to the one in GPT (Hu & Phillips, 
1999). Given an MPT model, the desired number of ob-
servations, and means and standard deviations of the pa-
rameters, a random parameter vector is obtained from a 
multivariate beta distribution (see below). Then, beginning 

if the sample size is large and the model is identified, 
confidence intervals based on the information matrix 
may exceed the admissible region of 0–1, for example, 
when there are parameter estimates near the boundaries 
of 0 or 1. In such situations, it is desirable to rely on other 
procedures to obtain information about the variability of 
the parameter estimates. Fortunately, multiTree provides 
the option to perform nonparametric and parametric 
bootstrapping analyses.

The bootstrap is based on the idea that an empirical 
probability distribution F of a random sample drawn 
from a probability distribution F is a good estimate for 
aspects of the “true” distribution F (Efron & Tibshirani, 
1997). In the bootstrap, random frequencies are repeat-
edly generated or sampled, and the model is fitted to 
these bootstrap samples. When this process is repeated 
a number of times (e.g., 100), the resulting distribution 
of the estimates for each parameter can be used to draw 
inferences regarding some aspects of its “true” distribu-
tion, such as the variability of a parameter. The standard 
deviation in the estimates of a parameter is the bootstrap 
estimate of its standard error, which may then be used to 
construct bootstrapped confidence intervals in the usual 
way. Another approach in obtaining confidence inter-
vals via the bootstrap is to use the /2th and (1  /2)th  
percentile of the bootstrap distribution as estimates of 
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unique parameter estimates. In contrast, if a model is not 
at least locally identified, multiple parameter sets may re-
late equally well to some category probabilities. In such a 
scenario, applying the EM algorithm repeatedly to identi-
cal category frequencies will not yield the same parameter 
estimates.

Whereas it is often difficult to demonstrate analyti-
cally that a particular model is identified, there are sim-
pler ways to show that a model is not locally identified: 
(1) Count free parameters and independent categories; 
(2) determine the rank of the Jacobian matrix (Bamber & 
van Santen, 1985, 2000); and (3) perform an identifiabil-
ity simulation study (Rouder & Batchelder, 1998).

Generally, a model cannot be identifiable if there are 
more free parameters S than independent categories J—
that is, if S  K

k 1(Jk  1), where K is the number of 
trees. However, S  K

k 1(Jk  1) is a necessary but not 
sufficient condition for identifiability. Therefore, it is 
often useful to compute the rank of the Jacobian matrix. 
The Jacobian is the matrix of the first partial derivatives 
of the model equations with respect to the parameters 
evaluated at a particular location in the parameter space 

o  ( o
1, . . . , 

o
S) and a vector of category probabilities 

f ( o)  [ p1( o), . . . , pJ( o)]. The Jacobian can be com-
puted by Equation 23 below, where aijs, bijs, cij, and Ij are 
defined in Equations 1 and 2.

If the maximum rank of the Jacobian is smaller than the 
number of free parameters, the model is neither locally 
nor, by implication, globally identified (Bamber & van 
Santen, 1985, 2000). Conversely, evidence for local iden-
tifiability can be obtained by comparing the rank of the 
Jacobian at various points in the parameter space with the 
number of free parameters.1 It is important to note, how-
ever, that a full rank, even in the entire parameter space, 
does not imply global identification of the model (P. L. 
Smith, 1998). Consequently, if the rank of the Jacobian 
is equal to or greater than the number of free parameters, 
one should use a procedure called simulated identifiability 
(Rouder & Batchelder, 1998). In such an analysis, model-
implied category probabilities are generated from a ran-
dom parameter location within the admissible parameter 
space. These expected category probabilities are then used 
to reestimate the parameters on the basis of random start-
ing values. This procedure is repeated several times (e.g., 
1,000). If the model is globally identified, the estimated 
parameters should match the values of the parameters ini-
tially used to generate the expected category probabilities 
(up to a tolerance accounting for the fact that the con-
vergence criterion must be greater than zero). Although 

at the root node, a random number drawn from a uniform 
distribution is compared with the link probabilities at that 
node to decide which link to follow. When reaching the 
end of a branch, the frequency count of the corresponding 
category is incremented and the procedure starts again 
at the root node until the frequency table is completed. 
Finally, the model parameters are estimated given the gen-
erated frequencies.

Moreover, in a manner similar to GPT, multiTree ex-
tends the parametric bootstrap to a more general simula-
tion option by constructing a beta distribution for each 
parameter with desired mean and standard deviation. The 
beta distribution with parameters  and  (with ,   0) 
is given by

 f x x x( ; , )
( )

( ) ( )
( ) ,1 11  (20)

where  is the gamma function and 0  x  1. Given 
the mean and standard deviation, multiTree tries to obtain 

 and  on the basis of
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From Equations 21 and 22 it is evident that it is not pos-
sible to construct a beta distribution for arbitrary means 
and standard deviations, because  and  must be greater 
than zero. If the standard deviations of the parameters dif-
fer, this analysis can be used to evaluate the robustness 
of a model against violations of the identical distribution 
(iid) assumption (cf. Hu & Phillips, 1999). For example, 
MPT models assume that the parameters are identically 
distributed for all items across all participants. However, 
interindividual differences and item differences may result 
in a violation of the iid conditions. In a robustness study, 
the performance of an MTP model can be evaluated under 
various degrees of violations of the identical distribution 
assumption by setting different probability distributions 
for each parameter.

Identifiability
A model is globally identified if there is a one-to-one 

relationship between an arbitrary location in the entire 
parameter space and certain category probabilities. Iden-
tifiability in the neighborhood of the true parameter val-
ues (local identifiability) is required for the existence of 
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also used by AppleTree, GPT, and HMMTree (which is 
usually given a filename suffix .eqn), with the exception 
that it is neither required nor allowed to place the total 
number of branches ahead of the equations. When export-
ing an equation file, multiTree automatically adds this 
line; similarly, multiTree ignores this line when importing 
an equation file.

Beginning with the first line, the equation defining a 
branch of a tree is given. Each line consists of three parts, 
separated by one or more spaces or tabs: the label of the 
tree, the label of the category, and the actual equation. No 
spaces are allowed within any of these parts. The model 
equations for the Source A tree of the source monitoring 
model shown in Figure 1 could look as follows:

SourceA AA D1 d1

SourceA AA D1 (1  d1) a

SourceA AB D1 (1  d1) (1  a)

SourceA AA (1  D1) b g

SourceA AB (1  D1) b (1  g)

SourceA AN (1  D1) (1  b),

where the first line defines a branch of the “SourceA” tree 
leading to a response category labeled “AA.” When each 
equation defining a model has been entered, it is neces-
sary to notify multiTree about the new model: When a 
file is saved by the choice of “Save multiTree File” from 
the file menu, multiTree performs several checks to make 
sure that the equations describe an MPT model as defined 
in Equation 1. If multiTree accepts the model equations, 
it will read the parameter labels from the equations and 
update the parameter tab accordingly.

Using the model builder. In addition to entering 
model equations directly, multiTree offers a more intui-

this procedure cannot be considered as an equivalent to 
a mathematical proof of identifiability, it nevertheless 
makes identifiability of a model plausible.

When an analytically identified MPT model is fitted 
to observed data, it may turn out that the model is empiri-
cally underidentified for particular data sets. Empirical 
identification can be technically defined as obtaining a 
nonsingular information matrix at the estimated param-
eter vector (Kenny, 1979). A measure of how close a ma-
trix is to singularity is the condition number, defined as 
the square root of the ratio of the largest to the smallest 
eigenvalue. The condition number is infinite for a singular 
matrix, whereas a very large condition number indicates 
that the model is weakly identified. In such a scenario, 
the observed Fisher information matrix is still invertible, 
but the estimates of the variances will be large (and some-
times negative).

PROGRAM HANDLING

Using multiTree for parameter estimation of a model 
involves 4 steps: (1) Define a model; (2) select a data set; 
(3) review the model specification; and (4) press the “An-
alyze” button, the green arrow in the toolbar, or Alt  R 
to run the analysis and view the results.

Defining a Model
Two ways are provided by multiTree to define a model. 

Equations may be directly entered in the text field in the 
model tab. Alternatively, multiTree offers a graphical input 
method (the model builder). It is also possible to import 
existing equation files from other programs.

Entering equations. Equations defining a model can 
be entered directly in the text field in the equations tab. 
The syntax of the model files closely follows the format 

Figure 2. The graphical input facility for defining MPT models.
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a response category, the button labeled “s” in the upper 
left corner of a node has to be clicked, and the label of 
the response category can be entered the same way as in 
the case of latent states. Nodes representing latent states 
have a rectangular shape with rounded corners, whereas 
nodes representing response categories are displayed as 
rectangles.

When the model has been defined, equations can be 
generated by clicking on the “Update equations” button 
at the top of the model builder window; multiTree first 
checks whether the model is properly defined. If the 
model is accepted, the model equations are shown in the 
equations tab. In order to prompt multiTree to update the 
parameters given the newly created equations, it is neces-
sary to save the current file.

Entering Data
The format of the data sets conforms to the format 

also used by Hu (1999), Rothkegel (1999), and Stahl and 
Klauer (2007), which is usually given a filename suffix  
.mdt. The first line must contain a title describing the data 
set. Beginning with the second line, a response category 
and a frequency count are given (separated by one or more 
blanks). It is important that the labels of the response cat-
egories in a data set match the category labels in the model 
equations. For example, a data set for the source monitor-
ing model could look as follows (only the Source A tree 
is shown):

tive way of defining a model via a graphical input method. 
The model builder can be assessed by selecting “Open 
Model Builder” from the “Model” item in the menu bar. 
The model builder window comprises one or more tabs 
each representing a single tree (Figure 2). If a model con-
tains multiple trees, new trees can be added by clicking 
on the “Add new tree” button at the lower right of the 
model builder window. The model builder can also be 
used to create a graphical tree representation from exist-
ing equations.

When building a tree, the first step is to define a label 
for the tree (e.g., “SourceA”) by double-clicking on the 
default label of the root node. Branches can then be added 
by clicking on one of the “ ” buttons on the right side of 
a node. Upon clicking on a “ ” button, a new node ap-
pears, along with a link connecting the current with the 
new node. An arbitrary label can be attached to a node in 
the same way as is done with the root node; however, la-
bels for nodes representing latent states are not required. 
The name of the parameter connecting two nodes needs 
to be defined on the corresponding link. The same pa-
rameter label must be used for links departing from the 
same node and the probability of the lower link [e.g., 
“(1  D1)”] needs to be the complement of the upper 
link (e.g., “D1”). With the repetition of this process, new 
nodes and links can be easily added to a tree. By default, 
a node always represents a latent state. In order to change 
a node representing a latent state to a node representing 

Figure 3. Setting constraints on parameters.
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both D1 and D2, where d1 is freely estimated or assigned 
a constant value.

Add order restrictions on parameters. Occasionally, 
one may want to model change in certain parameters. For 
example, in a learning experiment with R trials, 1 may 
represent a cognitive process or skill likely to improve 
with repeating trials. The natural modeling approach is 
to place an order restriction on this parameter of the form 

1,1  1,r  . . . 1,R. In order to add such constraints 
to an MPT model as defined in Equation 1, it is necessary 
to apply some simple reparameterizations. For example, 
to add the constraint 1,1  1,2, it is sufficient to replace 
every occurrence of 1,1 with 1,1  1,1 1,2 (Knapp & 
Batchelder, 2004), yielding a statistically equivalent 
model to the original model with parameters 1,1 and 1,2 
subjected to the order constraint 1,1  1,2. The newly in-
troduced parameters 1,r can then be interpreted as rates. 
It should be noted that these reparameterizations do not 
reduce the dimensionality of the model and, therefore, do 
not allow for using standard procedures of nested model 
testing.

Although in principle it is easily possible to reparam-
eterize a model to reflect certain order constraints, the 
number of branches of a given model increases substan-
tially. For example, Knapp and Batchelder (2004) reported 
an application of a pair clustering model, where adding 
order constraints on three parameters over six learning 
trials increased the number of branches from 36 to 256. 
It is clear that manually reparameterizing a model of this 
size is tedious and error-prone. Therefore, multiTree of-
fers automatic reparameterizations of a model reflecting 
linear order constraints on the parameters. To request such 
a reparameterization, select “Add parametric order con-
straints” from the “Model” item in the menu bar. Order 
constraints can then be placed on the parameters in the 
same way as for ordinary equality constraints. When all 
desired constraints are set, multiTree generates the equa-
tions reflecting the specified order constraints on the 
parameters.

Changing Preferences Related to  
the Estimation Process

Several preferences related to the estimation process 
can be changed in the window to the right of the main 
window (Figure 3), such as the  value of the power diver-
gence statistic, the maximum number of iterations, and 
the criterion of convergence.

In some cases, the EM algorithm may get stuck in a 
local minimum. Thus, repeated estimations of the parame-
ters may be requested in the text field labeled “Number of 
replications.” Obviously, repeating the estimation process 
using identical start values will lead to the same parameter 
estimates, so random start values must be used for each 
run of the EM algorithm. If random start values are dis-
abled, multiTree uses the values entered in the parameter 
tab next to the parameter labels as start values.

Depending on the value of , the power divergence sta-
tistic may be undefined when there are empty cells in the 
frequency tables (observed category frequencies of zero).2 

Rose, Rose, King, and Perez (1975)
AA 181

AB 39

AN 20

Multiple data sets referring to the same model may be 
stored by multiTree. There is a separate tab for each data 
set in the data window. New data sets can be added by 
clicking on the “Add new data set” button to the lower 
right. To discard a particular data set, it is sufficient to 
close the associated tab. Data sets can also be imported 
from an existing data file.

The drop-down menu at the top of the data window is 
used to specify the data set that should be used in an analy-
sis. The drop-down menu also contains an entry labeled 
“Batch Analysis.” If a batch analysis is requested, multi-
Tree analyzes each of the currently available data sets and 
gives a summary output.

Placing Constraints on the Parameters
Constraints can be placed on a parameter in the window 

showing the parameters of the model along with a drop-
down menu and a text field (Figure 3). There are two basic 
parameter constraints. A parameter may be fixed to a con-
stant, or a parameter may be constrained to be equal to 
another parameter. A slightly more complicated situation 
arises if one wishes to apply constraints of the form 1  

2. Parametric order constraints cannot be added directly 
to a model, but it is possible to reparameterize a given 
model such that order constraints on the parameters are 
reflected (Knapp & Batchelder, 2004).

Assign a constant to a parameter. To fix a param-
eter to a constant, it is necessary to select “constant” from 
the drop-down menu next to the parameter. The value of 
the parameter is entered in the corresponding text field. 
For example, to set the b parameter of the source moni-
toring model to zero, we select “constant” in the drop-
down menu next to b and enter “0.0” in the associated 
text field. Note that constant values at the boundaries of 
the parameter space (0.0 and 1.0) cause a division by zero 
when computing the observed Fisher information matrix 
(Equation 15). Therefore, multiTree adjusts parameters at 
boundaries by a constant as defined in the preferences re-
lated to the EM algorithm in the “Boundary Parameters” 
text field. By default, boundary parameters are adjusted 
by 1.0E 8; that is,   0.0 is replaced by   0.0  
10 8 and   1.0 is replaced by   1.0  10 8.

Equality restrictions. To restrict a parameter to be 
equal to another parameter, one selects the label of the 
target parameter from the drop-down menu next to the 
source parameter. For example, to impose the equality 
restriction D1  D2, one selects “  D2” from the drop-
down menu next to D1 (or vice versa). Consequently, one 
of the equality-constrained parameters is always freely 
estimated or fixed to a constant. To avoid circularity er-
rors, a parameter cannot be set to be equal to a parameter 
itself constrained to be equal to another parameter. For 
example, to apply the restriction D1  D2  d1, it is 
necessary to select “  d1” from the drop-down menus of 



MULTITREE    51

D1  D2 and yielded PD 0 (df  2)  0.82. We are now 
interested in determining whether the additional restric-
tion d1  d2 results in a significant loss in model fit. First, 
we have to define the baseline model by checking the box 
labeled “New baseline model” and running the analysis 
with a  g and D1  D2. Next, we have to define the 
more restrictive model. Thus, we additionally restrict d1  
d2, mark the box labeled “Compare against baseline,” and 
click “analyze” to view the results. The output shows that 
the change in model fit is far from being significant with 

PD 0 ( df  1)  0.16.

Performing Power Analyses
The statistical power of a test is defined as the com-

plement of the -error probability of falsely retaining an 
incorrect null hypothesis (Cohen, 1988; Faul, Erdfelder, 
Lang, & Buchner, 2007). Generally, the power of a test is 
a function of the -error probability, the sample size, and 
the degree of deviation between null (H0) and alternative 
hypothesis (H1). The -error probability can be computed 
by evaluating the noncentral 2 distribution at a given  
with the difference of the PD  fit statistics of a more re-
strictive H0 model and a less restrictive H1 model as an 
estimate of the noncentrality parameter (Erdfelder, Faul, 
& Buchner, 2005).

Two different types of power analysis can be computed 
by multiTree: In a priori power analyses, the required 
number of observations to reject an H0 if it is false is 

Therefore, multiTree offers to replace zero frequencies 
by a constant value as defined in the text field labeled 
“Zero frequencies.” Similarly, expected frequencies of 
zero may occur in some rare cases. Since both the power 
divergence statistic and the Fisher information matrix are 
undefined in this case, expected probabilities of zero may 
be replaced by a constant defined in the text field labeled 
“Zero probabilities.”

Nested Model Testing
Since multinomial modeling often involves testing hi-

erarchically nested model families, multiTree provides 
built-in support for computing the difference of the good-
ness of fit between two models. To define a baseline 
model, the box labeled “Define current model as new 
baseline model” in the parameter tab (Figure 3) has to be 
checked and the baseline model estimated. Subsequently 
defined models can then be compared against this base-
line model when the box labeled “Compare current model 
against baseline model” is checked and the analysis is run. 
The output shows the PD  statistic, the difference in the 
information criteria, and the normalized weight ratios 
(evidence ratios) of the AIC and the BIC. The evidence 
ratios represent the probability that the current model is 
the better model (in terms of the AIC and BIC) than the 
baseline model.

For example, suppose that the model of source mem-
ory was estimated with the equality restrictions a  g and 

Figure 4. Performing power analyses.
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new items) to detect a difference between d1 and d2 of 
| d1  d2|  .1 with a power of 1  .8.

ACCURACY OF THE ALGORITHMS 
UNDERLYING MULTITREE

Several tests were performed to validate the statisti-
cal algorithms implemented in multiTree. The accuracy 
of parameter estimation was established by analyzing 
simulated data sets generated from models with known 
parameter values. Model-implied category probabilities 
were created from a model of source monitoring involv-
ing 5 independent parameters (Batchelder & Riefer, 
1990, model 5c) and from a more complex model of 
the hindsight bias involving 13 independent parameters 
(Erdfelder & Buchner, 1998). For each of these two mod-
els, 200 simulated data sets with 1,000 observations per 
tree were generated on the basis of random values of the 
parameters. Given that the generated category frequen-
cies were not rounded to the nearest integer, analyzing 
the data sets with multiTree (with random starting val-
ues) should yield parameter estimates closely matching 
the true parameters. The results show that less than 1% 
of the 200  5  200  13  3,200 unique parameter 
estimates differed in the fifth decimal place and less than 
10% differed in the sixth decimal place from the true val-
ues. The maximum deviation of an estimate from the true 
parameter value was 4.2  10 5 and the mean deviation 
was 9.1  10 8.

Moreover, the estimates of the PD  statistic and of the 
variances of the parameters were validated by analyz-
ing five different data sets (Erdfelder & Buchner, 1998, 
Experiments 1–3; Johnson, Foley, & Leach, 1988; Rose 
et al., 1975, Experiment 1) for each of the two models with 
multi Tree and GPT (Hu & Phillips, 1999). The two pro-
grams yielded variance estimates that agreed to at least five 
decimal places. The estimates of the PD  statistic agreed 
to the seventh decimal place. Finally, the implementation 
of the noncentral 2 distribution for power analyses was 
compared with G*Power 3 (Faul et al., 2007). G*Power 
and multiTree produced identical results.

LIMITATIONS

Several limitations apply to the current version of 
multi Tree. First, it can handle only binary tree models of 
the form defined in Equation 1. There are, of course, mod-
els that do not comply with this general form and require 
more than two links at a given stage. Although such mod-
els can easily be reparameterized to fit the definition of bi-
nary MPT models, problems may arise in interpreting the 
parameters and confidence intervals of the reparameter-
ized model (Batchelder & Riefer, 1999). Second, it would 
be useful to link multiTree to more general statistical pro-
gramming environments such as the R project. Finally, 
multiTree offers no means to diagnose or handle heteroge-
neity across items and/or participants (Klauer, 2006; J. B. 
Smith & Batchelder, 2008). This is considered a major 
limitation and will be addressed in future versions.

computed and given a significance level  and the desired 
power. In post hoc power analyses, the achieved power to 
reject an H0 if it is false is computed and given  and a 
prespecified number of observations. It should be noted 
that restrictions on parameters must lie in the admissible 
interval between 0 and 1 to satisfy the regularity condition 
of the likelihood ratio test (Birch, 1964).

Suppose we are interested in the power to detect a dif-
ference between the d1 and d2 parameters of | d1  d2|  .1 
in the model of source monitoring with a  g and D1  
D2, given   .05 and a certain number of observations 
per tree (say, 432 for Source A items, 432 for Source B 
items, and 288 for new items). When “power analysis” 
is selected from the analysis menu, the power-analysis 
window appears (Figure 4). Since we are interested in 
the achieved power given a particular sample size, we re-
quest a post hoc power analysis by marking the checkbox 
labeled “post hoc.” Next, the “true” parameter values in 
the population, the H1 and the H0 model, need to be speci-
fied. Suppose that previous research suggests population 
parameters of a  g  .5, D1  D2  .8, and b  .3. 
The hypothesis of interest is reflected by specifying a 
certain population value for d1 (say, d1  .5) and d2 (say, 
d2 .6), such that the difference between d1 and d2 equals 
| d1  d2|  .1. After the population values have been 
set, the H1 model needs to be specified. The H1 model 
is usually chosen in such a way that it yields a perfect 
fit to the data. Consequently, we restrict a  g and D1  
D2, whereas the remaining parameters may be freely es-
timated. Therefore, the parameters of the H1 model will 
be estimated as defined in the population—that is, a  
g  .5, D1  D2  .8, b  .3, d1  .5, and d2  .6. Fi-
nally, the H0 model needs to be specified. The H0 model 
contains the same restrictions as the H1 model (a  g and 
D1  D2) and at least one additional constraint reflecting 
the hypothesis of interest. Since we are interested in the 
power to detect a difference between d1 and d2, the H0 
model posits that d1 and d2 are actually equal (d1  d2). 
The power analysis may now be initiated by pressing the 
OK button. The results show that the power to detect the 
specified difference between the d1 and d2 parameters is 
1   .62.

Suppose we also want to know the number of observa-
tions required to detect a difference between d1 and d2 
of | d1  d2|  .1 with a power of 1   .8. Perform-
ing an a priori power analysis is very similar to perform-
ing a post hoc power analysis, with three exceptions. Of 
course, the type of power analysis needs to be changed to 
“a priori” and the desired power has to be set, in the pres-
ent example to 1  .8. Furthermore, the trees can be 
weighted when distributing the total number of observa-
tions across trees. For example, if we wanted to assign two 
times as many observations to the Source A and Source B 
trees as to the tree for new items, we could represent this 
restriction by assigning the Source A and Source B trees 
a weight of 2 and the new item tree a weight of 1. Per-
forming this a priori power analysis shows that we would 
need about 1,650 observations in total (660 observations 
each for Source A and Source B; 330 observations for 
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SYSTEM REQUIREMENTS  
AND PROGRAM AVAILABILITY

The multiTree program is Java-based and runs under 
Linux, MacOS, and Windows operation systems, provided 
that at least version 6.0 of the Java runtime environment 
is installed on the target machine. The latest Java runtime 
environment may be freely downloaded from www.java 
.com. Depending on the platform, multiTree comes as 
archive file (Linux), disk image (Mac), or installer (Win-
dows). In addition to the program itself, every distribution 
contains sample data (among others, the model of source 
memory used as a running example in the present article) 
and a license file.

Depending on the platform, hard-disk space require-
ments vary between 6 and 8 MB, with multiTree itself 
requiring about 40 MB RAM. Processing speed de-
pends on many factors, including the size of the model, 
the number of required iterations, and the number of 
times the parameter estimation is replicated. As a rule of 
thumb, using a 2-GHz Intel Core 2 processor, multiTree 
needs about 0.04 msec for each iteration and parameter 
in the model. For example, parameter estimation lasts for 
about 1 sec for a model with 25 parameters that requires 
1,000 iterations to converge. However, when performing 
a bootstrap analysis with 1,000 simulations on a model 
comprising 80 parameters that needs on average 5,000 
iterations to converge and requires 5 replications to as-
sure convergence to a global minimum, the analysis will 
last for about 22 h.

Linux, MacOS, and Windows versions of multiTree 
can be downloaded from http://psycho3.uni-mannheim 
.de/multitree free of charge for academic and personal 
use. Users who wish to distribute multiTree in another 
way need to ask the author for permission. The charge for 
commercial applications is €400. Although considerable 
effort has been put into program development and evalua-
tion, there is no warranty whatsoever.
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