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In behavioral studies, response times (RTs) provide 
valuable measures of human performance (Jastrow, 1890; 
Luce, 1991). Defined as the lapse of time between stimu-
lus or task onset and a subject’s response, RTs have been 
measured in a variety of tasks, ranging from simple visual 
and auditory detection (Arieh & Marks, 2008), choice re-
action (Brown, Marley, Donkin, & Heathcote, 2008), and 
object recognition (Lu, Morrison, Hummel, & Holyoak, 
2006) tasks to more complex lexical decision tasks (Yap, 
Balota, Cortese, & Watson, 2006). RT is also a key com-
ponent in speed–accuracy trade-off paradigms (Dosher, 
1976; Ratcliff & Smith, 2004). In this article, we describe 
the design, implementation, and test results of a new de-
vice, the RTbox, for accurate RT measurements in behav-
ioral experiments. We focus on the most commonly used 
response mode, button responses.

Accurate measurements of RTs require recording of 
two time stamps, the onset time of a stimulus or task and 
the time of a subject’s response, with millisecond accu-
racy. It would be ideal that both time stamps are repre-
sented in the same time base—that is, according to the 

same clock. They should also be reliable, free of system-
atic bias and excessive measurement noise, and not af-
fected by any timing jitter caused by standard computer 
hardware and operating systems. For an RT measurement 
device to be widely applicable, it must be (1) compatible 
with the standard, widely used computer hardware, such 
as Intel PC-compatible computers and Apple Macintosh 
computers; (2) compatible with the commonly used op-
erating systems, including Microsoft Windows, Apple 
Mac OS X, and GNU/Linux; (3) easy to use and control 
from stimulus presentation software; and (4) easy to set up 
(only a minimal amount of work is required to integrate 
the device into common experimental setups). To reduce 
the impact of other component devices in experimental 
setups on RT measurements, it is also essential that the 
device can collect a subject’s responses asynchronously: It 
should be capable of storing the timing of all the response 
events until it is convenient for the user software to re-
trieve them. The ability to detect and time stamp signals 
from external devices—for example, transistor–transistor 
logic trigger signals from a stimulus or data acquisition 
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3. Scanning. To save manufacturing costs, there is 
not a dedicated electric connection from each key on a 
keyboard to an input of the encoder chip. Instead, the 
electrical contacts are arranged in a matrix form, with 
the switches placed at the intersections of the rows and 
columns in the matrix. A keyboard with up to 128 keys 
typically uses 24 connections on the chip and an 8  
16 matrix. Pressing a key closes the electric circuit in one 
row and one column of the matrix. The keyboard encoder 
sequentially and periodically scans the connections in all 
the columns and rows and uses the state of the matrix to 
identify the key/button pressed/released. Keys connected 
to different rows and columns are checked at different 
times in the cycle. Depending on the keyboard encoder, 
the scan cycle typically takes 5–20 msec and may intro-
duce a 5- to 20-msec timing bias among keys (Shimizu, 
2002) if multiple keys at different rows/columns of the 
matrix are used in an experiment. A mouse typically has 
only one to three buttons, so it is not vulnerable to scan-
ning bias. However, some mice may have up to a 70-msec 
delay and variations due to other design issues (Plant, 
Hammond, & Whitehouse, 2003).

4. Polling. Mice and keyboards are usually connected 
to their host computers via the USB using the USB–HID 
protocol—an inexpensive, flexible, and standardized com-
munication protocol. USB–HID, like all USB protocols, is 
based on periodic polling. The host computer periodically 
queries input devices for state changes—for example, 
mouse movements or keyboard buttonpresses. Detection 
of any keyboard or mouse event is quantized in time to the 
boundary between successive polling cycles. The standard 
polling interval for mice and keyboards is typically fixed 
at 8 msec. This introduces an additional uncertainty of 
8 msec, independently of the type of the host computer, 
operating system, or software toolkit.

5. Event handling. Additional uncertain delays could 
arise due to the variability in the latency between event 
detection by the USB controller and the handling of the 
event by the operating system, as well as event registration 
by the user program. These delays depend mostly on the 
operating system, the user software toolkit, and program, 
as well as the computational load on the host computer’s 
central processing unit (CPU). It can vary from being neg-
ligibly short to lasting hundreds of milliseconds or even 
longer. General-purpose operating systems, not designed 
for reliable real-time control, do not provide any correc-
tive mechanisms against any of these software-induced 
variable delays. In some software toolkits, the user pro-
gram needs to control the stimulus, such as refreshing the 
visual display in each video frame, and, therefore, may 
increase the response check interval, thus making the time 
measurements less accurate.

Generally speaking, regular computer keyboards and 
mice are optimized for daily use and low manufacturing 
costs, not for scientific experiments with highly accurate 
timing, which is also the case for the standard USB or any 
general-purpose operating systems. Putting together the 
various sources of timing errors in keyboard responses 
can add up to create delays and uncertainties of between 
20 and 70 msec, comparable to or greater than the vari-

device—is also a very useful feature. Before describing 
our RTbox, we review a few commonly used RT collection 
methods and devices.

Computer keyboards and mice are widely used for RT 
measurements. These devices are cheap, do not require 
any special hardware setup or programming, and naturally 
work with any computer hardware, operating system, and 
standard software toolkit. However, the use of a keyboard 
and mouse often leads to huge variations and biases in 
RT measurements. Figure 1 shows a typical sequence of 
events involved in obtaining a buttonpress response with 
a regular computer keyboard. There are several sources of 
timing error in keyboard responses.

1. Mechanical lag. Typical keyboard and mouse buttons 
are implemented as electrical contacts that close and open 
an electronic circuit when the subject presses and releases 
a key or button. A keyboard encoder chip is used to register 
each closing of the electric circuit as a  key-/ buttonpress. 
Depending on the mechanics of the keys/ buttons, there is 
some delay between key/button press/ release and circuit 
switch on/off. This kind of delay cannot be eliminated 
totally, but some keyboards and mice may introduce un-
known long delays.

2. Debouncing. Due to mechanical imperfections, 
button bouncing—that is, an electrical contact opening 
and closing the circuit multiple times in quick succes-
sion for a single key-/buttonpress—often happens. To 
eliminate the errors caused by button bouncing, the en-
coder chip performs debouncing—treating switch-on and 
switch-off events within a certain time window as a single 
event. Although the length of the time window and the 
exact implementation of the debouncing algorithm vary 
across keyboard models and manufacturers, a 20-msec 
delay due to debouncing is not uncommon. This intro-
duces a systematic delay but does not affect relative RT 
measurements.

Encoder detects key or

button event

Computer system gets

event from encoder

User code reads event

from computer system

User code reads system

time

Mechanical lag and

debouncing delay

Scanning bias: 5–20 msec

Operating system, CPU

load, and user program-

dependent variable delay

Figure 1. A diagram showing the steps involved in measuring 
response times with a regular computer keyboard/mouse. Each 
step may introduce some timing error, as summarized on the 
right side of the figure.
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software must be specifically written to perform button 
events polling with high precision and reliability, which is 
not an easy task on general-purpose multitask operating 
systems, where any piece of regular user software can be 
interrupted or delayed in its execution by the operating 
system for an unbounded amount of time.

In order to reduce timing uncertainty caused by pro-
cessing delays within the host computer system and ex-
periment toolkit and to simplify the implementation of 
user programs, a response device should have its own 
clock and microprocessor to record button event times in-
dependently of activities on the host computer.

The PsyScope Button Box (http://psyscope.psy.cmu 
.edu/bbox/index.html) is designed to have its own clock, 
but according to its manual, its clock mechanism has 
never worked properly, so this feature is not usable. The 
RB Series Response Pads from Cedrus Corporation 
(www.cedrus.com/support/rb_series) is the closest to our 
definition of a suitable response box. The RB device has 
its own clock and microprocessor for independent event 
detection, time stamp assignment, and buffering with mil-
lisecond accuracy. It can be connected to a standard USB 
port and can communicate with experimental software via 
a serial port protocol emulated on top of the USB connec-
tion. This allows any experimental software with support 
for serial ports to communicate with the devices. The de-
vice can receive external TTL signals indicating stimulus 
onsets, and there are different button designs for different 
purposes. This is a well-designed device for accurate RT 
measurement. However, one of the authors (M.K.) found 
that it is not easy to accurately synchronize the clock of 
the box with the computer clock, making it difficult to 
compare stimulus onset time stamps created by the host 
computer software and response time stamps created by 
the box.

We have designed and implemented a device, the 
RTbox, for highly accurate RT measurements, to satisfy all 
the considerations of an ideal response device described 
in the beginning of this section. The RTbox has its own 
microprocessor and high-resolution clock, so it can record 
the identities and timing of button events with high accu-
racy, unaffected by potential timing uncertainty or biases 
during data transmission and processing in the host com-
puter. It stores button events until the host computer re-
trieves them. The asynchronous storage greatly simplifies 
the design of user programs. The RTbox can also receive 
and record external signals as triggers, measure RTs with 
respect to external events, and synchronize other equip-
ment with the device. The internal clock of the RTbox can 
be synchronized with the computer clock. A simple USB 
connection is sufficient to integrate the RTbox with any 
standard computer and operating system.

DESIGN

The RTbox is a USB 1.1 and 2.0 compatible device with 
four response buttons. In the simplest setup, the user needs 
only to plug it into a USB port. The RTbox also has two 
external input ports for receiving TTL and light triggers.

ability of human RTs, which is typically about 20 msec 
in simple detection tasks. Perhaps more important, vari-
ability in human RTs is normally distributed (Luce, 1991), 
but some of the timing variability in keyboard/mouse 
responses is biased. The bias may make comparisons of 
RTs between multiple conditions invalid. In situations in 
which the possible RT difference is small, the additional 
variability from the measurement device may make the 
difference undetectable. A dedicated solution, other than 
keyboard and mouse, is needed for high-accuracy RT 
measurements.

There exist several commercial and custom-made RT 
measurement devices, although detailed descriptions of 
the design principles for most of them are not publicly 
available. As an example of a do-it-yourself solution, 
Stewart (2006) described an inexpensive button box with 
millisecond accuracy under the Linux operating system. 
Although his solution can also be implemented in the 
Windows operating system, its requirement of a parallel 
port can no longer be satisfied with most current com-
puter hardware. A PCI card with a parallel port must be 
added to the computer.

Some commercial RT devices are essentially improved 
computer keyboards. The advantage is that they work with 
minimal setup and across all software and hardware plat-
forms. For example, the button box and keyboard from 
Empirisoft Corporation (www.empirisoft.com/directin 
.aspx) utilize high-quality keys with good mechanical 
properties in combination with a specially designed key-
board encoder, but with a standard USB connection and 
the standard keyboard device drivers of the host operat-
ing systems. The keyboard encoder employs a debounc-
ing method optimized for low timing bias and high-speed 
scanning to reduce the delay between a keypress and its 
detection by the host computer to about 1 msec. If a poll-
ing interval of 1 msec can be achieved, the device is ca-
pable of transmitting a key event to the host computer with 
a timing uncertainty of 1–3 msec. However, the 1-msec 
polling interval is not widely available for USB 1.1 com-
pliant devices. The typical polling interval is 8 msec.

Many button boxes use a native serial port connection 
to transmit buttonpress events to the host computer. Upon 
detecting a buttonpress event, a byte is sent to the host 
computer with a delay that is typically less than 1 msec. 
The host computer waits or polls for receipt of such single 
event bytes and calculates an event time stamp on receipt. 
Examples are the response box from Engineering Solu-
tions, Inc. (www.response-box.com/tools.shtml) and the 
PST Serial Response Box from Psychology Software 
Tools Inc. (www.pstnet.com/products/SRBOX/default 
.htm). Although the manufacturers claim that these de-
vices are capable of reducing the mechanical lag, de-
bouncing time, and scanning bias, standard serial ports 
are not commonly available on commercial computers. 
Serial ports emulated over USB connections usually have 
a longer latency than do native serial ports. Both emulated 
keyboards and serial port response boxes are also vulner-
able to timing uncertainty due to processing delays of the 
operating system. In addition, the response collection 
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for each event, is stored by the serial buffer of the host 
computer. The user program is free to retrieve the data 
whenever it is convenient—for example, at the end of 
each experimental trial.

Selective Event Detection
The RTbox is also designed to detect both buttonpress 

and release events. Some researchers prefer to measure 
RTs using button releases, instead of buttonpresses, be-
cause the mechanical lag in button releases is shorter for 
some buttons. In a given experiment, the user is usually 
interested in only a subset of events. Detection of specific 
events can be enabled and disabled by a simple serial com-
mand from the user program. The disable mode can be 
used to reduce the amount of data if no event detection is 
necessary during certain periods of an experiment.

Button Events and Debouncing
In the RTbox, the button-scanning interval is less than 

0.1 msec if the microprocessor is not writing data. For 
button debouncing, we use a combined hardware and 
software approach. In the hardware, we use a 0.1-msec 
resistor– capacitor circuit (Figure 2) to filter out quick 
button on/off switches. In the firmware, we treat three 
consecutive identical results of the button-scanning loop 
as a valid button event. Since our scanning interval and 
debouncing time are very short, their time delay is negli-
gible. This is ideal for accurate RT measurements, but it is 
still too short to avoid button bouncing. However, unlike 
problematic multiple events for keyboards and mice, it is 
not a problem for the RTbox. When repeated events are 
detected within a given time window, such as 50 msec, 
we can simply use the first buttonpress event or the last 
button release event in the host computer driver, without 
introducing additional delay or uncertainty.

External Trigger Inputs
The RTbox can receive external triggers that mark 

stimulus onsets to obtain RT measurements completely 
independently of the host computer and its software. Used 
in this way, the accuracy of RT measurements depends 

Compatibility and Choice of Interface
To design a device that would work with both PC and 

Apple Macintosh hardware, both desktop and portable 
computers, and all the popular operating systems, its in-
terface can be either USB or Ethernet ports. However, 
most computers have only one Ethernet port; some recent 
portable computers do not have any Ethernet ports. USB 
ports are available on all commercial computers as the 
preferred choice for connecting peripheral devices, and 
the number of USB ports on a computer can be easily 
extended with a USB hub, if needed. Thus, we chose USB 
as the interface for the RTbox.

Implementing custom communication protocols as 
native USB protocols is complex and would require de-
velopment of dedicated low-level device drivers for each 
supported operating system, as well as development of 
special interface routines for each supported experimen-
tal software toolkit. To avoid this overhead, we adopted a 
simple and popular solution by implementing a standard 
serial bus protocol on top of the USB protocol by use of 
a USB-to-serial converter chip. The serial port data trans-
mission protocol is well supported by all the commonly 
used operating systems and most experimental toolkits. 
The disadvantage of the serial data transmission protocol 
is its slow speed, but this is not an issue, since the amount 
of data is only several bytes for an event and transfer of 
event data to the host computer is not time critical for an 
asynchronous device.

In the RTbox, we use the FT232BM USB-to-serial con-
verter chip from Future Technology Devices International 
Limited (www.ftdichip.com). This chip is supported by 
Microsoft Windows, Apple Mac OS X, and GNU/Linux 
operating system families and is compatible with all com-
puters with a USB 1.1 or 2.0 host controller.

Implementation of Event Detection,  
Time Stamping, and Recording

To eliminate the unpredictable and variable delays dur-
ing event data transfer to the host computer and process-
ing of the data by the operating system and user programs, 
an ATmega16L microprocessor from Atmel (www.atmel 
.com), with a clock temporal resolution of 8.68 sec, is 
incorporated into the RTbox to time stamp button events, 
independently of the host computer. The design is simi-
lar to those using a second slave computer (De Clercq, 
Crombez, Buysse, & Roeyers, 2003) or an external timer 
(Chambers & Brown, 2003; McKinney, MacCormac, & 
Welsh-Bohmer, 1999) for time stamping.

In the RTbox, the microprocessor is connected to the 
USB-to-serial converter chip for serial port communica-
tion with the host computer and, via digital input interface 
electronics, to the buttons and the two external input ports 
(Figure 2). The firmware on the microprocessor periodi-
cally monitors the states of the TTL port, light port, serial 
port, and four response buttons at an interval shorter than 
0.1 msec. If a state change is detected on any of them, 
the firmware reads the current clock time of the micro-
processor, assigns it as the time stamp to the event, and 
writes the corresponding event code and time stamp to 
the serial output port. The complete event packet, 7 bytes 

USB–Serial
Converter

VCC

Microprocessor Computer
USB port

VCC

Clock
Light TTL Buttons 

0.1 msec

Figure 2. A diagram illustrating the basic hardware compo-
nents of the response box. An external oscillator (7.3728 MHz) 
is used in the microprocessor and is scaled down by 64 to per-
form time stamping. A resistor–capacitor circuit (time constant, 
0.1 msec; shown for only one of the four buttons) is used for but-
tonpress and release debouncing. The microprocessor can detect 
TTL pulses and light signals generated by a photodiode (shown 
as an adjustable resistor). The serial port of the microprocessor 
performs serial communication with the host computer through 
the USB-to-serial converter chip.
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 tcomputer  tdevice  tdiff. (2)

The accuracy of tdiff is crucial for accurate mapping of 
RTbox time stamps to the host computer time. Figure 3 
shows the steps of clock synchronization and possible 
timing errors each step may introduce. In Steps 1 and 2, 
the host computer writes the trigger to the serial port and 
acquires the time it sends out the trigger tsend. The serial 
data transmission between Steps 2 and 3 takes time, but 
the time is less than 0.1 msec to transmit a single trigger 
byte at the baud rate of 115,200 bits/sec. The detection of 
the trigger arrival at the microprocessor (Step 3) can be 
delayed by up to one scanning interval, which is shorter 
than 0.01 msec when the microprocessor is idle. The de-
vice takes about 0.06 msec to read the treceive time stamp 
from its clock (Step 4). As we can see, the possible error 
of treceive is very small and relatively stable. Data transmis-
sion of treceive from the RTbox to the host computer may 
take up to 16 msec, but because this happens after all the 
time stamps have been acquired, it will not affect accuracy 
of clock synchronization. The limiting factor in clock syn-
chronization is the accuracy of tsend.

The delay between Steps 1 and 2 may vary from com-
puter to computer and from time to time, because it de-
pends on the host computer CPU load and the operation 
of the USB controller. In fact, we do not have a direct way 
to get tsend. Instead, in Step 1, we take a time stamp, tpre, of 
the computer clock right before submitting the write oper-
ation. Then we wait until the operating system signals the 
completion of the operation and take another time stamp, 
tpost. We have verified that, in all the common operating 
systems, tpost is after the write completion and a USB duty 

mostly on the timing accuracy of the external trigger. The 
RTbox can receive two types of external triggers: standard 
TTL pulses and light signals generated by a photodiode. 
The TTL triggers can be generated by a wide range of 
devices. A photodiode attached to an unused region of 
the computer monitor can also generate trigger events by 
detecting luminance changes synchronized to the onsets 
of visual stimuli. By recording both trigger and button-
press events in the RTbox, accurate RTs can be calculated 
by subtraction of the trigger time stamp from the button 
time stamp. This feature is especially useful when it is 
implemented with presentation software that is incapable 
of computing exact stimulus onset time stamps.

In the RTbox, the detection of a light trigger event auto-
matically disables detection of further light triggers until 
the host computer enables it again with a special command. 
Cathode ray tube (CRT) monitors, which are widely used 
in vision experiments, are impulse type displays: Static 
images are not displayed continuously on the screen but 
are redrawn at every video refresh cycle (Brainard, Pelli, 
& Robson, 2002). Although the refresh is not perceived by 
humans, because of the relative slow temporal modulation 
transfer function of the visual system, photodiodes can de-
tect the luminance change at each refresh cycle and cause 
the response box to record large numbers of redundant 
light events for a single static stimulus. The autodisable 
feature prevents this unwanted effect.

Another important use of external triggers is for cali-
brating experimental setups. External triggers can be used 
to mimic button responses of an ideal subject with no re-
sponse delay or variability, so it is extremely useful for 
testing the timing accuracy of experimental setups and the 
timing of experimental stimuli.

Synchronization of the Clocks
In some experimental setups, it is not possible or conve-

nient to generate accurate external triggers for the RTbox 
to use. User programs can often acquire or calculate time 
stamps for stimulus onsets on the basis of time measured 
with the clock of the host computer. The complication is 
that the event time stamps received from the RTbox must 
be converted and expressed in the time of the host com-
puter. The clocks of the RTbox and the host computer 
must be synchronized.

The computer clock usually measures elapsed time 
since system startup or since a fixed reference point in the 
past, whereas the clock of the RTbox measures elapsed 
time since it has been powered up. We synchronize the two 
clocks by measuring the offset between the two clocks. 
Ideally, the offset should be a constant. The RTbox is de-
signed to accept a special trigger from the host computer 
via the USB–serial port. The computer sends out the trig-
ger at tsend measured with its own clock. When the RTbox 
receives this trigger, it sends its current time, treceive, to the 
host computer. We use this serial trigger event to measure 
the offset between the two clocks:

 tdiff  tsend  treceive. (1)

Any time stamp from the RTbox can be converted and ex-
pressed in the computer time by adding this offset to it:

Computer sends trigger
to device

Issue trigger write, and
get computer time tsend

(1)

Operating system and
CPU load-dependent
delay

(2)

Serial transmission delay

Microprocessor task and
speed-related delay

Device receives the
trigger

(3)

Device gets its time
 treceive

(4)

Figure 3. Steps for clock synchronization over the USB–serial 
link and possible time errors. The microprocessor is single-task 
oriented, so its delays in Steps 3 and 4 are very short and very 
stable. The serial data transmission takes a very short time for a 
single-byte trigger. The time difference between the receiving time 
stamp of the device (treceive) and tsend is used to convert the RTbox 
time into computer time. The details about how to get a reliable 
tsend are discussed in the text.
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puting the stimulus is finished in Step 1, a function call to 
the driver in Step 2 clears the serial buffer to remove any 
possible irrelevant button events from the subject during 
the nonresponse period of the previous trial. This function 
call also performs clock synchronization to get tdiff (Equa-
tion 1). Step 3 is to issue the stimulus and return its onset 
time (tonset) on the basis of the computer clock. In Step 4, 
subject response is read from the RTbox: which button is 
pressed/released at what time. Normally, a response pe-
riod is specified in this step because an invalid long RT is 
often not useful. Because the setup can buffer hundreds 
of events, it is not critical that we read the response from 
the RTbox immediately. One can optionally prepare for 
stimulus of the next trial before Step 4. The returned but-
ton time (tbutton) is represented in the host computer time, 
converted from device time by the driver on the basis of 
clock synchronization in Step 2, using Equation 2. Step 5 
calculates the RT from the two time stamps:

 tresp  tbutton  tonset. (3)

Normally, in Step 6, the user can check whether the subject 
had missed the trial or made multiple responses and can 
also apply some criteria to check whether the response is 
valid. For example, if the RT is too short or even negative, 
one would treat it as an invalid response. If the response is 
valid, the result is recorded. Then the procedure is iterated 
for the execution of the next trial.

If external triggers marking stimulus onsets are avail-
able, either as TTL pulses or light signals, the RTbox can 
be used in another mode (Figure 4B) in which clock syn-
chronization is not necessary. In Step 3, instead of return-
ing the stimulus onset time, a trigger signal is sent to the 
RTbox by the stimulus generator. In Step 4, in addition to 
the button event and time (tbutton), the trigger event and 
time (ttrigger) will also be read from the RTbox. Here, the 
event times do not need to be converted into the com-
puter time, since we will compute their time difference in 
Step 5. Actually, our code can return the RT (tresp) directly, 
so Steps 4 and 5 are actually combined into a single func-
tion call.

The Appendix also contains some example MATLAB 
programs based on Psychtoolbox for measuring RTs with 
and without external triggers.

RESULTS

We performed several tests to verify the accuracy of the 
RTbox, both with and without external triggers. Some of 
the tests can also be used to calibrate RT measurements.

Measuring RTs With External Triggers
We used the RTbox to measure the RTs of a human 

subject to a square flashed in the center of the computer 
screen (Figure 5D), with either TTL or light triggers in-
dicating its onsets, on three computer systems: Microsoft 
Windows XP (Win), Mac OS X (Mac), and OpenSUSE 
Linux (Lnx). The subject’s task was to press a button on 
the RTbox as soon as he saw the square. The TTL triggers 
were generated by a Video Switcher (Li, Lu, Xu, Jin, & 

cycle, which is 1 msec for most USB controllers (www 
.usb.org/developers/docs). Thus, we can be certain that 
the correct tsend must be between tpre and tpost. Since both 
tpre and tpost can be affected by the computer load and user 
program, we repeat the measurement many times and get 
three time stamps—tpre, tpost, and treceive—for each repeat. 
Then we have three different methods to select the best 
estimate of tsend.

Method 1. Because treceive is reliable, the tpre associated 
with the minimum treceive  tpre is the tpre closest to the 
write operation and, therefore, the best estimate of tsend. 
In other words, we can use max(tpre  treceive) among the 
repeats as the estimation of tdiff in Equation 1.

Method 2. The tpost associated with the minimum tpost  
treceive gives the tpost that is closest to the write operation 
and, therefore, the best estimate of tsend. This means that 
we can use min(tpost  treceive) as the estimation of tdiff. 
Because tpost can be obtained only after a USB duty cycle, 
a random time jitter from 0 to 1 msec is inserted between 
repeated measurements to reduce the impact of the USB 
duty cycle. The random jitter allows us to obtain a distri-
bution of tpost  treceive from which to select the best tpost.

Method 3. The random jitter also allows us to obtain 
a distribution of tpost  tpre. The minimum of this distri-
bution provides the minimum time interval that contains 
tsend. When this time window is small enough (~0.2 msec), 
we can use the average of the corresponding tpre and tpost 
as the estimate of tsend.

We also take some extra care in measuring tsend. First, 
real-time priority scheduling of the write and receive op-
erations from the operating system should be used during 
clock synchronization to minimize the probability and 
duration of potential interruptions by other computer pro-
cesses. Second, detection of button and other events on 
the RTbox is disabled to reduce the load on its micropro-
cessor and the USB system. The difference between tpost 
and tpre provides the upper bound accuracy for tsend. If this 
difference is too big, such as greater than 2 msec, the syn-
chronization is unreliable. This typically indicates that the 
host computer is overloaded, and other time stamps from 
the host computer are probably also inaccurate. When this 
happens, the user should reduce the processing load of the 
host computer.

Using the RTbox
We have written a driver to control the RTbox in 

MATLAB, based on Psychtoolbox-3 extensions (http:// 
psychtoolbox.org/). The driver is compatible with all 
computer systems supported by Psychtoolbox, including 
PCs running either Windows or Linux operating system 
and Macintosh computers. Once the RTbox is connected 
to the host computer via a USB connection, the driver can 
automatically detect it and control/execute all its function-
alities. The link to download the driver code can be found 
in the Appendix. Users of other toolkits can use the code 
as an example in developing their own drivers.

Figure 4 illustrates the steps involved in measuring 
RTs using the RTbox and its MATLAB driver. In the first 
mode, no external trigger is used (Figure 4A). After com-
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settings (resolution of 1,024  768 pixels, refresh rate of 
85 Hz) and the same light sensor location. The nonzero 
RTs of the ideal observer resulted from the experimental 
setup: The TTL triggers from the Video Switcher signified 
the first scan line of the stimulus square on the CRT, and 
the photodiode was placed roughly at the center of the 
square (100  100 pixels). With the monitor setting we 
used, 50 scan lines take about 0.54 msec, which accounts 
for the nonzero time difference between light and TTL. 
The capability of detecting such a small time difference 
further verifies the precision of the RTbox.

Accuracy of Clock Synchronization
To use the RTbox without external triggers, we must 

obtain accurate clock synchronization. Figure 6 shows 
synchronization results on three computer systems. We 
measured tdiff (Equation 1) once every 10 sec for a total 
of 30 min on each system. To verify the clock synchroni-
zation methods described in the Synchronization of the 
Clocks section, each tdiff was selected from 100 repeats of 
the write operation, which took about 0.5 sec to run.

The three plots in Figure 6A show tdiff estimated with 
three different methods on a Windows system. For visu-
alization purpose, the tdiffs are plotted relative to the first 

Zhou, 2003). Twenty trials were measured in each trigger 
mode and on each of the three computer systems.

The bold bars in Figures 5A and 5B indicate the median 
RTs from 20 trials, and each thin bar represents a single 
trial. The median RT ranges from 150 to 180 msec. The 
RTs are very similar across the two different trigger modes 
and all three computer systems ( p  .05, Kruskal–Wallis 
test; the same for all the tests, unless noted otherwise).

Due to the large variation of human RTs, it is hard to 
tell, from Figures 5A and 5B, how accurate the device is. 
In Figure 5C, we measured the “RT” of an ideal observer, 
simulated using the photodiode. In this setup, TTL pulses 
served as the external triggers. The light signals served as 
button responses; the photodiode was used to detect the 
square on the computer screen, and its responses were used 
to simulate button responses. The result reflects the time 
difference between the TTL and light triggers. As is shown 
in Figure 5C, the variability among 100 repeats is very 
small: The maximum variability is only 26 sec, which 
equals to three quantizations of the clock in the RTbox. 
This extremely small variability illustrates the high preci-
sion of the RTbox. The median RT for all three computer 
systems is 0.521 msec. The time for different systems are 
the same because we used the same CRT with identical 
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Figure 4. Flowchart of a typical response time (RT) experiment using the RTbox. 
(A) Steps to measure RT without an external trigger. The button time (tbutton) at 
Step 4 is computed from the RTbox time and the clock difference measured in Step 2. 
(B) Steps to measure RTs using external triggers.
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so it is not a major inconvenience to perform it just before 
each trial. It is also very easy to correct the clock speed. 
Our driver software can also take some samples in a pe-
riod of time, such as 30 sec, compute the slope of drift, 
and remove the linear drift. Suppose that the slope of the 
drift is m; the driver can be used to remove the drift by 
computing the corrected device time:

 tcorrected  tuncorrected(1  m), (4)

where tuncorrected is the uncorrected device time based on 
the device clock. The driver software can automatically 
apply the correction to all measured RTbox times, such as 
treceive and tdevice in Equations 1 and 2.

Although all three synchronization methods are very 
good, each of them has some advantages and disadvan-
tages. From Figure 6B through 6D, Method 1 [tdiff  
max(tpre  treceive)] gives the smallest variation over time 
on all three tested systems. This is because, on a computer 
system with a normal CPU load, the write operation of 
the trigger byte is very close to tpre most of the time, so 
it is easy to get a tpre that is very close to the real write 
operation. Actually, 20 repeats in 0.2 sec are sufficient to 
obtain good clock synchronization. However, this method 
is based on time stamps from two clocks: tpre from the host 
computer clock and treceive from the RTbox clock. So, it re-
lies on the assumption that the RTbox time stamp treceive is 
very reliable. Although this is true in most circumstances, 
the linear drift (Figure 6A) due to clock speed difference 
can affect repeated measurements of tpre   treceive and, 
therefore, the selection of the best sample from them. 
Figure 6E shows the variability of tdiff with and without 
correcting the clock speed on the Mac system. Although 
the difference is small, clearly the best tdiffs are different. 
The range of variation is 0.040 and 0.021 msec before 

measurement. Clearly, tdiff is not a constant but shows a 
linear drift (absolute values of Pearson’s linear correlation 
coefficients greater than .9999999) over time for all the 
three methods. Within 30 min, the drift can be as high as 
240 msec, because the host computer clock and the RTbox 
clock do not operate at the same speed, usually caused by 
imperfections in the manufacturing of the quartz oscilla-
tor crystals within the clock hardware. The slope of linear 
drift is 1.37  10 4 sec/sec, and the slope differences 
among the three methods are extremely small, only on 
the fifth significant digit. After correcting the clock speed 
difference by removing the linear drift, the variation of tdiff 
over time is shown in Figure 6B. With clock speed cor-
rected, the clock difference is almost a constant over time. 
The nonlinear component is very small, within 0.1 msec 
for all three methods. This nonlinear drift is probably due 
to environmental effects—for example, fluctuations in 
power supply and operating temperature—on the clocks.

Figures 6C and 6D show the variation of tdiff after clock 
speed correction for the Mac and Lnx systems. The slopes 
from the three tdiff selection methods are the same for 
each system ( 1.75  10 4 sec/sec for Mac; 7.95 
10 5  sec/ sec for Lnx). The Mac system does not show 
visible nonlinear drift. Although we see some outliers on 
the Lnx system, the maximum variation range is less than 
0.2 msec, which is good enough for most RT experiments.

In an experiment, the linear and nonlinear drifts of the 
clocks are normally not a problem if we perform clock 
synchronization right before the onset of each stimulus 
(Step 2 in Figure 4A). The total accumulated drift and, 
therefore, the measurement error are very small within a 
typical response interval (less than 0.2 msec within a sec-
ond; see the slopes of the linear drift on the three systems). 
Clock synchronization normally takes less than 200 msec, 
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Since we can rely on the accuracy of the device time 
treceive in Equation 1, if we performed clock speed cor-
rection, we know that the real tdiff is between max(tpre  
treceive) and min(tpost  treceive). So min(tpost  treceive)  
max(tpre  treceive) gives us the confidence interval of tdiff. 
In the middle rows of Figures 6F, 6G, and 6H, the differ-
ence of tdiff between Methods 3 and 1 tells us how small 
tdiff could be if we use Method 1 and how large it could be 
if we use Method 3.

RT Measurements Without External Triggers
To verify the accuracy of RT measurements without 

external triggers, we measured the “RT” of an ideal ob-
server, the photodiode, without external triggers. The 
stimulus onset time tonset (see Figure 4A) was returned by 
the Screen(‘Flip’) function of PsychToolbox Version 3 on 
the basis of the computer clock. It is the predicted time at 
which the video display starts displaying the video frame 
that contains the stimulus. Figure 7 shows a histogram of 
the RTs of the ideal subject. We used Method 1 with 20 
repeats for clock synchronization on all the three systems. 
The median RTs, the light time relative to tonset, are 5.79, 
5.64, and 5.67 msec for the three systems. Since the test 
stimulus was located in the center of the computer screen, 
at the 85-Hz refresh rate we used, the expected time dif-
ference between the light signal and tonset is about half of 
a video refresh interval—that is, 1,000/85/2  5.88 msec. 

and after clock speed correction, respectively. With an en-
larged vertical scale, we can also see a very small nonlin-
ear drift that is not visible in Figure 6C.

Method 3 [selection based on min(tpost  tpre)] uses 
only the time stamps from the computer clock to choose 
the best sample, so the clock speed difference does not 
affect the sample selection. Because the method relies on 
the random time jitter between repeats, a relatively large 
number of repeats (100, e.g.) are necessary to increase the 
possibility that at least one of the samples is very close to 
the end of a USB duty cycle. Method 2 [tdiff  min(tpost  
treceive)] relies on both the random waiting jitter and the ac-
curacy of device time stamps, so it is inferior to the other 
two methods, although it could get the best sample whose 
write operation is delayed from tpre but happens to be close 
to the end of a USB duty cycle.

Figures 6F, 6G, and 6H show the differences of tdiff 
(Equation 1) estimated with the three different methods on 
the three computer systems. If all three methods were reli-
able, any difference between them would be very small. 
The tdiff from Method 1 is the smallest, and the tdiff from 
Method 3 is the largest. The largest difference is less than 
0.16 msec on all the three computer systems. This means 
that, by choosing different methods, we may introduce a 
systematic error of up to 0.16 msec. On the other hand, 
because the maximum difference is so small, all three 
methods are reliable enough for RT measurements.
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a synchronized TTL trigger, the RT measurements are 
totally independent of the host computer. A 0.1-msec ac-
curacy can be achieved. For visual stimuli, a built-in light 
port is used to receive trigger signals from a photodiode 
to guarantee the high accuracy. The TTL and light inputs 
can also be used for calibration purposes.

If external triggers are not available, our test results 
(Figure 6) indicate that we can get very good clock syn-
chronization on all major computer systems. However, 
because the accuracy of clock synchronization depends on 
the particular host computer system and user program, it 
is necessary to verify the accuracy for a specific hardware 
and software setup. Our MATLAB driver gives a warning 
message if the synchronization is not accurate.

Although the methods we used to verify the accuracy 
of the RTbox are a little complicated, using the RTbox in 
experiments is actually very easy. If external triggers are 
available, clock synchronization is not necessary, and the 
accuracy of RT measurements is guaranteed. If no exter-
nal trigger is available, clock synchronization is needed. 
The driver program can detect and report possible inac-
curacies, so users can adjust the experimental setup to im-
prove the timing accuracy.

Here, we discuss some limitations of the RTbox and 
possible solutions and improvements.

The microprocessor in the RTbox detects port and but-
ton events within a 0.1-msec interval. When an event is 
detected, it gets its time stamp and sends the data to the 
host computer. This process takes time and may slow down 
the detection of subsequent events. Theoretically, this is a 
problem because it may introduce timing errors. However, 
this is not a practical problem. One reason is that the time 
delay is very short (less than 1 msec to transmit the data 
of an event). Another reason is that, even if a trigger and a 
response or any two responses are so close in time, we do 
not normally treat them as valid responses. The refractory 
time could be a problem during calibration (such as those 
in Figure 5C), since we may try to detect two events that 
are very close in time.

The RTbox is designed with four buttons. Some experi-
ments may need more buttons. The microprocessor chip 
is capable of detecting more than four buttons. Building 
an RTbox with more buttons requires changes to its hard-
ware, firmware, and MATLAB driver code.

In some experiments, the user may want to measure 
RTs to auditory stimuli. Using the autodisable feature 
of the RTbox, we can easily deal with the fluctuations in 
sound waves and use them as triggers. We have already 
designed a new RTbox that will include a sound port to 
detect onsets of auditory stimuli.

The mechanical lag of buttons is another important fac-
tor in designing RT measurement devices. If a button has 
shorter RTs for presses, it normally has longer RTs for re-
leases, and vice versa. This makes it hard to have buttons 
with short responding times for both buttonpresses and 
releases. In the next version, we will design a port to allow 
users to connect their specialized buttons, or button-driven 
TTL signals, to the RTbox for their special needs, such 
as an MRI-compatible keypad. We have also designed a 

This accounts for the nonzero time we got. The extreme 
small variability (less than 0.05 msec) among the 100 tri-
als for each system indicates that the measurements are 
very precise. The nonzero “RT” (tdelay) can be used to cor-
rect human subject RTs:

 tresp  tbutton  tonset  tdelay. (5)

If users care about the absolute RT, Equation 5 should 
be used instead of Equation 3. The procedure used here 
also serves as an example of how to do calibration using 
the light signal—that is, how to measure the time offset 
between the nominal stimulus onset time (tonset) and the 
real onset time (light time). The principle is similar to that 
used by Black Box Toolkit (Plant, Hammond, & Turner, 
2004), which can be used to verify timing accuracy and 
provide necessary corrections where practicable.

It is also interesting to compare the difference of “light 
RT” among the three systems. Although the differences 
are very small, with a maximum of 0.15 msec between the 
Win and Mac systems, all three “RTs” are significantly 
different ( p  0). Since we used the same CRT without 
changing photodiode location when we switched from 
one system to another, we would expect the “light RT” to 
be the same across three systems. There are several pos-
sible sources that may contribute to the small differences. 
The first is different refresh rates among the systems. 
The nominal rates are 85 Hz for all systems. However, 
the exact rate may be slightly different from 85 Hz. The 
second source may be the systematic time difference re-
turned by Screen(‘Flip’) on different systems. Whatever 
the reason is, this result demonstrates the power of the 
RTbox to detect small time differences. However, we can-
not exclude the possibility of small systematic differences 
among the systems during clock synchronization.

DISCUSSION

Our tests indicate that the RTbox is a reliable tool for 
measuring RTs with very high accuracy. If a stimulus has 
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TTL output port to register all trigger and button events. 
This is very useful for EEG recording. The newly designed 
RTbox will also detect TR (repetition time) triggers from 
MRI scanners and pass them to the TTL output port. This is 
useful for simultaneous MRI and EEG recording. So in ad-
dition to its functionality in accurate RT measurements, the 
next version of the RTbox will also serve as an interface for 
EEG and simultaneous EEG/MRI recording systems.
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APPENDIX

The latest information about the response box can be found at http://lobes.usc.edu/RTBox/. Users can down-
load the MATLAB driver code, demo code, and firmware from the Web site.

MATLAB demo codes are RTBoxdemo.m for response time measurement without an external trigger and 
RTBoxdemo_lightTrigger.m for measurement using a light trigger.

function RTBoxdemo(scrn)

% This is a demo showing how to measure reaction time using RTBox.
% Run the program. When you see flash on screen, press a button.
% Your RT will be plotted after the assigned number of trials.
% Xiangrui Li, 3/2008

if nargin 1, scrn max(Screen('screens')); end % find last screen
ntrials 10;  % # of trials
timeout 1;   % timeout for RT reading
sq [0 0 100 100];   % square
rt nan(ntrials,1);
RTBox('clear');  % in case it has not been initialized

try    % avoid dead screen in case of error
    [w rect] Screen('OpenWindow',scrn,0);  % open a dark screen
    sq CenterRect(sq,rect);
    HideCursor;
    ifi Screen('GetFlipInterval',w); % flip interval

    % print some instruction
    Screen('TextSize',w,24); Screen('TextFont',w,'Times');
    str 'This will test your response time to flash at the center of the screen.';
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    DrawFormattedText(w,str,'center',rect(4)*0.4,[255 0 0]);
    str sprintf('We will do %d trials. When you see a flash, press a button as soon as possible.',ntrials);
    DrawFormattedText(w,str,'center',rect(4)*0.45,[255 0 0]);
    DrawFormattedText(w,'Press any button to start', 'center', rect(4)*0.55, 255);
    Screen('Flip',w); % show instruction

    Priority(MaxPriority(w));   % raise priority for better timing
    RTBox(1000);  % wait 1000 s, or till any enabled event
    vbl Screen('Flip',w);  %#ok turn off instruction

    for i 1:ntrials
        WaitSecs(1 rand*2); % random interval for subject
        Screen('FillRect',w,255,sq);
        RTBox('clear'); % clear buffer and sync clocks before stimulus onset
        vbl Screen('Flip',w);  % show stim, return stim start time
        Screen('Flip',w,vbl ifi*1.5); % turn off square after 2 frames

        % here you can prepare stim for next trial before you read RT
        t RTBox(timeout);  % computer time of button response

        % check response
        if isempty(t), continue; end % no response, skip it
        t t-vbl;  %  response time
        if length(t) 1 % more than 1 response
            fprintf(' trial %2g: RT ',i); fprintf('%8.4f',t); fprintf('\n');
            ind find(t 0,1);  % take the first proper rt in case of more than 1 response
            if isempty(ind), continue; end  % no reasonable response, skip it
            t t(ind);
        end
        rt(i) t; % record the RT
    end
catch %#ok
    Screen('CloseAll'); Priority(0);
    rethrow(lasterror); %#ok
end
Screen('CloseAll');
Priority(0); % restore normal priority
 
rt rt-ifi/2; % rough calibration: stim was at the center of screen
 
% plot result
h figure(9); set(h,'color',[1 1 1]); 
plot(rt,' -');
set(gca,'box','off ','tickdir','out');
ylabel('Response Time (s)'); xlabel('Trials');
rt(isnan(rt)) []; % remove NaNs due to missed trials
str sprintf('Your median RT: %.3f %s %.3f s',median(rt),char(177),std(rt));
title(str);

function RTBoxdemo_lightTrigger(scrn)
% This is a demo showing how to generate a flash as light trigger,
% and use RTBox to measure reaction time.
% In this demo, the stimulus is random noise at the center of screen, 
% and light trigger is a 1-frame flash at right edge. You need to mount the
% light sensor to the flash position for this to work.
 
% Xiangrui Li, 3/2008
   
if nargin 1, scrn max(Screen('screens')); end % find last screen
ntrials 10 ;  % # of trials
timeout 1;    % timeout for RT reading
trigsz [40 80]; % trigger height and width
stimsz 120; % stim square size
efactor 3;  % larger noise checkers

APPENDIX (Continued)
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APPENDIX (Continued)

stimdur 0.2; % stimulus duration
trigsq ones(trigsz)*255;   % bright trigger square
csz round(stimsz/efactor); % # of checkers
stim uint8(rand(stimsz^2*2,1)*255); % random noise stimulus 
rt nan(ntrials,1);
RTBox('enable','light'); % enable light detection for trigger, also open device if needed
 
try    % avoid dead screen in case of error
    [w r] Screen('OpenWindow',scrn,0);  % open a dark screen
    ifi Screen('GetFlipInterval',w);% flip interval
 
    % print some instruction
    Screen('TextSize',w,24); Screen('TextFont',w,'Times');
    str 'This will measure your RT to noise square at the center of the screen.';
    DrawFormattedText(w,str,'center',r(4)*0.4,[255 0 0]);
    str sprintf('We will do %d trials. When you see the noise, press a button as soon as possible.',ntrials);
    DrawFormattedText(w,str,'center',r(4)*0.45,[255 0 0]);
    DrawFormattedText(w,'Press any button to start', 'center', r(4)*0.55, 255);
    Screen('Flip',w); % show instruction
 
    trig_tex Screen('MakeTexture',w,trigsq); % make trigger texture
    % trigger position
    % trigrect [r(3)-trigsz(2)-10 50 r(3)-10 trigsz(1) 50]; % top-right
    trigrect [r(3)-trigsz(2)-10 r(4)/2-trigsz(1)/2 r(3)-10 r(4)/2 trigsz(1)/2]; % middle-right
    % trigrect [r(3)-trigsz(2)-10 r(4)-trigsz(1)-50 r(3)-10 r(4)-50]; % bottom-right
 
    nframe round(stimdur/ifi);  % # of frames of stim
    ClockRandSeed;   % set random seed
    for im 1:nframe % make stim textures for first trial
        stimsq Expand(RandSample(stim,[csz csz]),efactor);
        tex(im) Screen('MakeTexture',w,stimsq);
    end
 
    Priority(MaxPriority(w));   % raise priority for better timing
    RTBox(1000);  % wait 1000s, or till any enabled event
    Screen('Flip',w); % remove instruction
    
    for i 1:ntrials
        WaitSecs(1 rand*3); % wait for 1 to 4 s randomly
        RTBox('clear',0); % clear buffer before stim onset
        Screen('DrawTexture',w,tex(1));  % draw stim for 1st frame
        Screen('DrawTexture',w,trig_tex,[],trigrect); % draw trigger
        Screen('Flip',w); % show first frame: stim trigger
        
        for im 2:nframe % draw noise for each frame
            Screen('DrawTexture',w,tex(im));  % draw frames
            Screen('Flip',w); % show stim, no trigger anymore
        end
        Screen('Flip',w); % turn off stim
        
        % prepare stim for next trial before reading RT
        Screen('Close',tex(:)); % release memory
        for im 1:nframe
            stimsq RandSample(stim,[csz csz]);
            stimsq Expand(stimsq,efactor);
            tex(im) Screen('MakeTexture',w,stimsq);
        end
        
        t RTBox('light',timeout);  % read RT, relative to light trigger
        if isempty(t), continue; end % no response, skip it
        if length(t) 1 
            fprintf(' trial %2g: RT ',i); fprintf('%8.4f ',t); fprintf('\n');
            ind find(t 0,1);  % find the first proper rt in case of more than 1 response
            if isempty(ind), continue; end  % no reasonable response, skip it
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            t t(ind);
        end
        rt(i) t;
    end
catch
    Screen('CloseAll'); Priority(0);
    rethrow(lasterror);
end
Screen('CloseAll');
Priority(0);                % restore normal priority
 
% plot result
h figure(1); set(h,'color',[1 1 1]); 
plot(rt,' -');
set(gca,'ylim',[0 0.4],'box','off ','tickdir','out');
ylabel('Response Time (s)'); xlabel('Trials');
rt(isnan(rt)) []; % remove NaNs due to missed trials
str sprintf('Your median RT: %.3f %s %.3f s',median(rt),char(177),std(rt));
title(str);
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