
© 2010 The Psychonomic Society, Inc. 212
PS

In behavioral studies, response times (RTs) provide
valuable measures of human performance (Jastrow, 1890;
Luce, 1991). Defined as the lapse of time between stimu-
lus or task onset and a subject’s response, RTs have been
measured in a variety of tasks, ranging from simple visual
and auditory detection (Arieh & Marks, 2008), choice re-
action (Brown, Marley, Donkin, & Heathcote, 2008), and
object recognition (Lu, Morrison, Hummel, & Holyoak,
2006) tasks to more complex lexical decision tasks (Yap,
Balota, Cortese, & Watson, 2006). RT is also a key com-
ponent in speed–accuracy trade-off paradigms (Dosher,
1976; Ratcliff & Smith, 2004). In this article, we describe
the design, implementation, and test results of a new de-
vice, the RTbox, for accurate RT measurements in behav-
ioral experiments. We focus on the most commonly used
response mode, button responses.

Accurate measurements of RTs require recording of
two time stamps, the onset time of a stimulus or task and
the time of a subject’s response, with millisecond accu-
racy. It would be ideal that both time stamps are repre-
sented in the same time base—that is, according to the

same clock. They should also be reliable, free of system-
atic bias and excessive measurement noise, and not af-
fected by any timing jitter caused by standard computer
hardware and operating systems. For an RT measurement
device to be widely applicable, it must be (1) compatible
with the standard, widely used computer hardware, such
as Intel PC-compatible computers and Apple Macintosh
computers; (2) compatible with the commonly used op-
erating systems, including Microsoft Windows, Apple
Mac OS X, and GNU/Linux; (3) easy to use and control
from stimulus presentation software; and (4) easy to set up
(only a minimal amount of work is required to integrate
the device into common experimental setups). To reduce
the impact of other component devices in experimental
setups on RT measurements, it is also essential that the
device can collect a subject’s responses asynchronously: It
should be capable of storing the timing of all the response
events until it is convenient for the user software to re-
trieve them. The ability to detect and time stamp signals
from external devices—for example, transistor–transistor
logic trigger signals from a stimulus or data acquisition

RTbox: A device for highly accurate
response time measurements

XIANGRUI LI
University of Southern California, Los Angeles, California

ZHEN LIANG
University of Science and Technology of China, Hefei, China

and Anhui Medical University, Hefei, China

MARIO KLEINER
Max Planck Institute for Biological Cybernetics, Tübingen, Germany

AND

ZHONG-LIN LU
University of Southern California, Los Angeles, California

Although computer keyboards and mice are frequently used in measuring response times (RTs), the accuracy
of these measurements is quite low. Specialized RT collection devices must be used to obtain more accurate
measurements. However, all the existing devices have some shortcomings. We have developed and implemented
a new, commercially available device, the RTbox, for highly accurate RT measurements. The RTbox has its own
microprocessor and high-resolution clock. It can record the identities and timing of button events with high ac-
curacy, unaffected by potential timing uncertainty or biases during data transmission and processing in the host
computer. It stores button events until the host computer chooses to retrieve them. The asynchronous storage
greatly simplifies the design of user programs. The RTbox can also receive and record external signals as trig-
gers and can measure RTs with respect to external events. The internal clock of the RTbox can be synchronized
with the computer clock, so the device can be used without external triggers. A simple USB connection is suf-
ficient to integrate the RTbox with any standard computer and operating system.

Behavior Research Methods
2010, 42 (1), 212-225
doi:10.3758/BRM.42.1.212

Z.-L. Lu, zhonglin@usc.edu

RESPONSE TIME DEVICE 213

3. Scanning. To save manufacturing costs, there is
not a dedicated electric connection from each key on a
keyboard to an input of the encoder chip. Instead, the
electrical contacts are arranged in a matrix form, with
the switches placed at the intersections of the rows and
columns in the matrix. A keyboard with up to 128 keys
typically uses 24 connections on the chip and an 8
16 matrix. Pressing a key closes the electric circuit in one
row and one column of the matrix. The keyboard encoder
sequentially and periodically scans the connections in all
the columns and rows and uses the state of the matrix to
identify the key/button pressed/released. Keys connected
to different rows and columns are checked at different
times in the cycle. Depending on the keyboard encoder,
the scan cycle typically takes 5–20 msec and may intro-
duce a 5- to 20-msec timing bias among keys (Shimizu,
2002) if multiple keys at different rows/columns of the
matrix are used in an experiment. A mouse typically has
only one to three buttons, so it is not vulnerable to scan-
ning bias. However, some mice may have up to a 70-msec
delay and variations due to other design issues (Plant,
Hammond, & Whitehouse, 2003).

4. Polling. Mice and keyboards are usually connected
to their host computers via the USB using the USB–HID
protocol—an inexpensive, flexible, and standardized com-
munication protocol. USB–HID, like all USB protocols, is
based on periodic polling. The host computer periodically
queries input devices for state changes—for example,
mouse movements or keyboard buttonpresses. Detection
of any keyboard or mouse event is quantized in time to the
boundary between successive polling cycles. The standard
polling interval for mice and keyboards is typically fixed
at 8 msec. This introduces an additional uncertainty of
8 msec, independently of the type of the host computer,
operating system, or software toolkit.

5. Event handling. Additional uncertain delays could
arise due to the variability in the latency between event
detection by the USB controller and the handling of the
event by the operating system, as well as event registration
by the user program. These delays depend mostly on the
operating system, the user software toolkit, and program,
as well as the computational load on the host computer’s
central processing unit (CPU). It can vary from being neg-
ligibly short to lasting hundreds of milliseconds or even
longer. General-purpose operating systems, not designed
for reliable real-time control, do not provide any correc-
tive mechanisms against any of these software-induced
variable delays. In some software toolkits, the user pro-
gram needs to control the stimulus, such as refreshing the
visual display in each video frame, and, therefore, may
increase the response check interval, thus making the time
measurements less accurate.

Generally speaking, regular computer keyboards and
mice are optimized for daily use and low manufacturing
costs, not for scientific experiments with highly accurate
timing, which is also the case for the standard USB or any
general-purpose operating systems. Putting together the
various sources of timing errors in keyboard responses
can add up to create delays and uncertainties of between
20 and 70 msec, comparable to or greater than the vari-

device—is also a very useful feature. Before describing
our RTbox, we review a few commonly used RT collection
methods and devices.

Computer keyboards and mice are widely used for RT
measurements. These devices are cheap, do not require
any special hardware setup or programming, and naturally
work with any computer hardware, operating system, and
standard software toolkit. However, the use of a keyboard
and mouse often leads to huge variations and biases in
RT measurements. Figure 1 shows a typical sequence of
events involved in obtaining a buttonpress response with
a regular computer keyboard. There are several sources of
timing error in keyboard responses.

1. Mechanical lag. Typical keyboard and mouse buttons
are implemented as electrical contacts that close and open
an electronic circuit when the subject presses and releases
a key or button. A keyboard encoder chip is used to register
each closing of the electric circuit as a key-/ buttonpress.
Depending on the mechanics of the keys/ buttons, there is
some delay between key/button press/ release and circuit
switch on/off. This kind of delay cannot be eliminated
totally, but some keyboards and mice may introduce un-
known long delays.

2. Debouncing. Due to mechanical imperfections,
button bouncing—that is, an electrical contact opening
and closing the circuit multiple times in quick succes-
sion for a single key-/buttonpress—often happens. To
eliminate the errors caused by button bouncing, the en-
coder chip performs debouncing—treating switch-on and
switch-off events within a certain time window as a single
event. Although the length of the time window and the
exact implementation of the debouncing algorithm vary
across keyboard models and manufacturers, a 20-msec
delay due to debouncing is not uncommon. This intro-
duces a systematic delay but does not affect relative RT
measurements.

Encoder detects key or

button event

Computer system gets

event from encoder

User code reads event

from computer system

User code reads system

time

Mechanical lag and

debouncing delay

Scanning bias: 5–20 msec

Operating system, CPU

load, and user program-

dependent variable delay

Figure 1. A diagram showing the steps involved in measuring
response times with a regular computer keyboard/mouse. Each
step may introduce some timing error, as summarized on the
right side of the figure.

214 LI, LIANG, KLEINER, AND LU

software must be specifically written to perform button
events polling with high precision and reliability, which is
not an easy task on general-purpose multitask operating
systems, where any piece of regular user software can be
interrupted or delayed in its execution by the operating
system for an unbounded amount of time.

In order to reduce timing uncertainty caused by pro-
cessing delays within the host computer system and ex-
periment toolkit and to simplify the implementation of
user programs, a response device should have its own
clock and microprocessor to record button event times in-
dependently of activities on the host computer.

The PsyScope Button Box (http://psyscope.psy.cmu
.edu/bbox/index.html) is designed to have its own clock,
but according to its manual, its clock mechanism has
never worked properly, so this feature is not usable. The
RB Series Response Pads from Cedrus Corporation
(www.cedrus.com/support/rb_series) is the closest to our
definition of a suitable response box. The RB device has
its own clock and microprocessor for independent event
detection, time stamp assignment, and buffering with mil-
lisecond accuracy. It can be connected to a standard USB
port and can communicate with experimental software via
a serial port protocol emulated on top of the USB connec-
tion. This allows any experimental software with support
for serial ports to communicate with the devices. The de-
vice can receive external TTL signals indicating stimulus
onsets, and there are different button designs for different
purposes. This is a well-designed device for accurate RT
measurement. However, one of the authors (M.K.) found
that it is not easy to accurately synchronize the clock of
the box with the computer clock, making it difficult to
compare stimulus onset time stamps created by the host
computer software and response time stamps created by
the box.

We have designed and implemented a device, the
RTbox, for highly accurate RT measurements, to satisfy all
the considerations of an ideal response device described
in the beginning of this section. The RTbox has its own
microprocessor and high-resolution clock, so it can record
the identities and timing of button events with high accu-
racy, unaffected by potential timing uncertainty or biases
during data transmission and processing in the host com-
puter. It stores button events until the host computer re-
trieves them. The asynchronous storage greatly simplifies
the design of user programs. The RTbox can also receive
and record external signals as triggers, measure RTs with
respect to external events, and synchronize other equip-
ment with the device. The internal clock of the RTbox can
be synchronized with the computer clock. A simple USB
connection is sufficient to integrate the RTbox with any
standard computer and operating system.

DESIGN

The RTbox is a USB 1.1 and 2.0 compatible device with
four response buttons. In the simplest setup, the user needs
only to plug it into a USB port. The RTbox also has two
external input ports for receiving TTL and light triggers.

ability of human RTs, which is typically about 20 msec
in simple detection tasks. Perhaps more important, vari-
ability in human RTs is normally distributed (Luce, 1991),
but some of the timing variability in keyboard/mouse
responses is biased. The bias may make comparisons of
RTs between multiple conditions invalid. In situations in
which the possible RT difference is small, the additional
variability from the measurement device may make the
difference undetectable. A dedicated solution, other than
keyboard and mouse, is needed for high-accuracy RT
measurements.

There exist several commercial and custom-made RT
measurement devices, although detailed descriptions of
the design principles for most of them are not publicly
available. As an example of a do-it-yourself solution,
Stewart (2006) described an inexpensive button box with
millisecond accuracy under the Linux operating system.
Although his solution can also be implemented in the
Windows operating system, its requirement of a parallel
port can no longer be satisfied with most current com-
puter hardware. A PCI card with a parallel port must be
added to the computer.

Some commercial RT devices are essentially improved
computer keyboards. The advantage is that they work with
minimal setup and across all software and hardware plat-
forms. For example, the button box and keyboard from
Empirisoft Corporation (www.empirisoft.com/directin
.aspx) utilize high-quality keys with good mechanical
properties in combination with a specially designed key-
board encoder, but with a standard USB connection and
the standard keyboard device drivers of the host operat-
ing systems. The keyboard encoder employs a debounc-
ing method optimized for low timing bias and high-speed
scanning to reduce the delay between a keypress and its
detection by the host computer to about 1 msec. If a poll-
ing interval of 1 msec can be achieved, the device is ca-
pable of transmitting a key event to the host computer with
a timing uncertainty of 1–3 msec. However, the 1-msec
polling interval is not widely available for USB 1.1 com-
pliant devices. The typical polling interval is 8 msec.

Many button boxes use a native serial port connection
to transmit buttonpress events to the host computer. Upon
detecting a buttonpress event, a byte is sent to the host
computer with a delay that is typically less than 1 msec.
The host computer waits or polls for receipt of such single
event bytes and calculates an event time stamp on receipt.
Examples are the response box from Engineering Solu-
tions, Inc. (www.response-box.com/tools.shtml) and the
PST Serial Response Box from Psychology Software
Tools Inc. (www.pstnet.com/products/SRBOX/default
.htm). Although the manufacturers claim that these de-
vices are capable of reducing the mechanical lag, de-
bouncing time, and scanning bias, standard serial ports
are not commonly available on commercial computers.
Serial ports emulated over USB connections usually have
a longer latency than do native serial ports. Both emulated
keyboards and serial port response boxes are also vulner-
able to timing uncertainty due to processing delays of the
operating system. In addition, the response collection

RESPONSE TIME DEVICE 215

for each event, is stored by the serial buffer of the host
computer. The user program is free to retrieve the data
whenever it is convenient—for example, at the end of
each experimental trial.

Selective Event Detection
The RTbox is also designed to detect both buttonpress

and release events. Some researchers prefer to measure
RTs using button releases, instead of buttonpresses, be-
cause the mechanical lag in button releases is shorter for
some buttons. In a given experiment, the user is usually
interested in only a subset of events. Detection of specific
events can be enabled and disabled by a simple serial com-
mand from the user program. The disable mode can be
used to reduce the amount of data if no event detection is
necessary during certain periods of an experiment.

Button Events and Debouncing
In the RTbox, the button-scanning interval is less than

0.1 msec if the microprocessor is not writing data. For
button debouncing, we use a combined hardware and
software approach. In the hardware, we use a 0.1-msec
resistor– capacitor circuit (Figure 2) to filter out quick
button on/off switches. In the firmware, we treat three
consecutive identical results of the button-scanning loop
as a valid button event. Since our scanning interval and
debouncing time are very short, their time delay is negli-
gible. This is ideal for accurate RT measurements, but it is
still too short to avoid button bouncing. However, unlike
problematic multiple events for keyboards and mice, it is
not a problem for the RTbox. When repeated events are
detected within a given time window, such as 50 msec,
we can simply use the first buttonpress event or the last
button release event in the host computer driver, without
introducing additional delay or uncertainty.

External Trigger Inputs
The RTbox can receive external triggers that mark

stimulus onsets to obtain RT measurements completely
independently of the host computer and its software. Used
in this way, the accuracy of RT measurements depends

Compatibility and Choice of Interface
To design a device that would work with both PC and

Apple Macintosh hardware, both desktop and portable
computers, and all the popular operating systems, its in-
terface can be either USB or Ethernet ports. However,
most computers have only one Ethernet port; some recent
portable computers do not have any Ethernet ports. USB
ports are available on all commercial computers as the
preferred choice for connecting peripheral devices, and
the number of USB ports on a computer can be easily
extended with a USB hub, if needed. Thus, we chose USB
as the interface for the RTbox.

Implementing custom communication protocols as
native USB protocols is complex and would require de-
velopment of dedicated low-level device drivers for each
supported operating system, as well as development of
special interface routines for each supported experimen-
tal software toolkit. To avoid this overhead, we adopted a
simple and popular solution by implementing a standard
serial bus protocol on top of the USB protocol by use of
a USB-to-serial converter chip. The serial port data trans-
mission protocol is well supported by all the commonly
used operating systems and most experimental toolkits.
The disadvantage of the serial data transmission protocol
is its slow speed, but this is not an issue, since the amount
of data is only several bytes for an event and transfer of
event data to the host computer is not time critical for an
asynchronous device.

In the RTbox, we use the FT232BM USB-to-serial con-
verter chip from Future Technology Devices International
Limited (www.ftdichip.com). This chip is supported by
Microsoft Windows, Apple Mac OS X, and GNU/Linux
operating system families and is compatible with all com-
puters with a USB 1.1 or 2.0 host controller.

Implementation of Event Detection,
Time Stamping, and Recording

To eliminate the unpredictable and variable delays dur-
ing event data transfer to the host computer and process-
ing of the data by the operating system and user programs,
an ATmega16L microprocessor from Atmel (www.atmel
.com), with a clock temporal resolution of 8.68 sec, is
incorporated into the RTbox to time stamp button events,
independently of the host computer. The design is simi-
lar to those using a second slave computer (De Clercq,
Crombez, Buysse, & Roeyers, 2003) or an external timer
(Chambers & Brown, 2003; McKinney, MacCormac, &
Welsh-Bohmer, 1999) for time stamping.

In the RTbox, the microprocessor is connected to the
USB-to-serial converter chip for serial port communica-
tion with the host computer and, via digital input interface
electronics, to the buttons and the two external input ports
(Figure 2). The firmware on the microprocessor periodi-
cally monitors the states of the TTL port, light port, serial
port, and four response buttons at an interval shorter than
0.1 msec. If a state change is detected on any of them,
the firmware reads the current clock time of the micro-
processor, assigns it as the time stamp to the event, and
writes the corresponding event code and time stamp to
the serial output port. The complete event packet, 7 bytes

USB–Serial
Converter

VCC

Microprocessor Computer
USB port

VCC

Clock
Light TTL Buttons

0.1 msec

Figure 2. A diagram illustrating the basic hardware compo-
nents of the response box. An external oscillator (7.3728 MHz)
is used in the microprocessor and is scaled down by 64 to per-
form time stamping. A resistor–capacitor circuit (time constant,
0.1 msec; shown for only one of the four buttons) is used for but-
tonpress and release debouncing. The microprocessor can detect
TTL pulses and light signals generated by a photodiode (shown
as an adjustable resistor). The serial port of the microprocessor
performs serial communication with the host computer through
the USB-to-serial converter chip.

216 LI, LIANG, KLEINER, AND LU

 tcomputer tdevice tdiff. (2)

The accuracy of tdiff is crucial for accurate mapping of
RTbox time stamps to the host computer time. Figure 3
shows the steps of clock synchronization and possible
timing errors each step may introduce. In Steps 1 and 2,
the host computer writes the trigger to the serial port and
acquires the time it sends out the trigger tsend. The serial
data transmission between Steps 2 and 3 takes time, but
the time is less than 0.1 msec to transmit a single trigger
byte at the baud rate of 115,200 bits/sec. The detection of
the trigger arrival at the microprocessor (Step 3) can be
delayed by up to one scanning interval, which is shorter
than 0.01 msec when the microprocessor is idle. The de-
vice takes about 0.06 msec to read the treceive time stamp
from its clock (Step 4). As we can see, the possible error
of treceive is very small and relatively stable. Data transmis-
sion of treceive from the RTbox to the host computer may
take up to 16 msec, but because this happens after all the
time stamps have been acquired, it will not affect accuracy
of clock synchronization. The limiting factor in clock syn-
chronization is the accuracy of tsend.

The delay between Steps 1 and 2 may vary from com-
puter to computer and from time to time, because it de-
pends on the host computer CPU load and the operation
of the USB controller. In fact, we do not have a direct way
to get tsend. Instead, in Step 1, we take a time stamp, tpre, of
the computer clock right before submitting the write oper-
ation. Then we wait until the operating system signals the
completion of the operation and take another time stamp,
tpost. We have verified that, in all the common operating
systems, tpost is after the write completion and a USB duty

mostly on the timing accuracy of the external trigger. The
RTbox can receive two types of external triggers: standard
TTL pulses and light signals generated by a photodiode.
The TTL triggers can be generated by a wide range of
devices. A photodiode attached to an unused region of
the computer monitor can also generate trigger events by
detecting luminance changes synchronized to the onsets
of visual stimuli. By recording both trigger and button-
press events in the RTbox, accurate RTs can be calculated
by subtraction of the trigger time stamp from the button
time stamp. This feature is especially useful when it is
implemented with presentation software that is incapable
of computing exact stimulus onset time stamps.

In the RTbox, the detection of a light trigger event auto-
matically disables detection of further light triggers until
the host computer enables it again with a special command.
Cathode ray tube (CRT) monitors, which are widely used
in vision experiments, are impulse type displays: Static
images are not displayed continuously on the screen but
are redrawn at every video refresh cycle (Brainard, Pelli,
& Robson, 2002). Although the refresh is not perceived by
humans, because of the relative slow temporal modulation
transfer function of the visual system, photodiodes can de-
tect the luminance change at each refresh cycle and cause
the response box to record large numbers of redundant
light events for a single static stimulus. The autodisable
feature prevents this unwanted effect.

Another important use of external triggers is for cali-
brating experimental setups. External triggers can be used
to mimic button responses of an ideal subject with no re-
sponse delay or variability, so it is extremely useful for
testing the timing accuracy of experimental setups and the
timing of experimental stimuli.

Synchronization of the Clocks
In some experimental setups, it is not possible or conve-

nient to generate accurate external triggers for the RTbox
to use. User programs can often acquire or calculate time
stamps for stimulus onsets on the basis of time measured
with the clock of the host computer. The complication is
that the event time stamps received from the RTbox must
be converted and expressed in the time of the host com-
puter. The clocks of the RTbox and the host computer
must be synchronized.

The computer clock usually measures elapsed time
since system startup or since a fixed reference point in the
past, whereas the clock of the RTbox measures elapsed
time since it has been powered up. We synchronize the two
clocks by measuring the offset between the two clocks.
Ideally, the offset should be a constant. The RTbox is de-
signed to accept a special trigger from the host computer
via the USB–serial port. The computer sends out the trig-
ger at tsend measured with its own clock. When the RTbox
receives this trigger, it sends its current time, treceive, to the
host computer. We use this serial trigger event to measure
the offset between the two clocks:

 tdiff tsend treceive. (1)

Any time stamp from the RTbox can be converted and ex-
pressed in the computer time by adding this offset to it:

Computer sends trigger
to device

Issue trigger write, and
get computer time tsend

(1)

Operating system and
CPU load-dependent
delay

(2)

Serial transmission delay

Microprocessor task and
speed-related delay

Device receives the
trigger

(3)

Device gets its time
 treceive

(4)

Figure 3. Steps for clock synchronization over the USB–serial
link and possible time errors. The microprocessor is single-task
oriented, so its delays in Steps 3 and 4 are very short and very
stable. The serial data transmission takes a very short time for a
single-byte trigger. The time difference between the receiving time
stamp of the device (treceive) and tsend is used to convert the RTbox
time into computer time. The details about how to get a reliable
tsend are discussed in the text.

RESPONSE TIME DEVICE 217

puting the stimulus is finished in Step 1, a function call to
the driver in Step 2 clears the serial buffer to remove any
possible irrelevant button events from the subject during
the nonresponse period of the previous trial. This function
call also performs clock synchronization to get tdiff (Equa-
tion 1). Step 3 is to issue the stimulus and return its onset
time (tonset) on the basis of the computer clock. In Step 4,
subject response is read from the RTbox: which button is
pressed/released at what time. Normally, a response pe-
riod is specified in this step because an invalid long RT is
often not useful. Because the setup can buffer hundreds
of events, it is not critical that we read the response from
the RTbox immediately. One can optionally prepare for
stimulus of the next trial before Step 4. The returned but-
ton time (tbutton) is represented in the host computer time,
converted from device time by the driver on the basis of
clock synchronization in Step 2, using Equation 2. Step 5
calculates the RT from the two time stamps:

 tresp tbutton tonset. (3)

Normally, in Step 6, the user can check whether the subject
had missed the trial or made multiple responses and can
also apply some criteria to check whether the response is
valid. For example, if the RT is too short or even negative,
one would treat it as an invalid response. If the response is
valid, the result is recorded. Then the procedure is iterated
for the execution of the next trial.

If external triggers marking stimulus onsets are avail-
able, either as TTL pulses or light signals, the RTbox can
be used in another mode (Figure 4B) in which clock syn-
chronization is not necessary. In Step 3, instead of return-
ing the stimulus onset time, a trigger signal is sent to the
RTbox by the stimulus generator. In Step 4, in addition to
the button event and time (tbutton), the trigger event and
time (ttrigger) will also be read from the RTbox. Here, the
event times do not need to be converted into the com-
puter time, since we will compute their time difference in
Step 5. Actually, our code can return the RT (tresp) directly,
so Steps 4 and 5 are actually combined into a single func-
tion call.

The Appendix also contains some example MATLAB
programs based on Psychtoolbox for measuring RTs with
and without external triggers.

RESULTS

We performed several tests to verify the accuracy of the
RTbox, both with and without external triggers. Some of
the tests can also be used to calibrate RT measurements.

Measuring RTs With External Triggers
We used the RTbox to measure the RTs of a human

subject to a square flashed in the center of the computer
screen (Figure 5D), with either TTL or light triggers in-
dicating its onsets, on three computer systems: Microsoft
Windows XP (Win), Mac OS X (Mac), and OpenSUSE
Linux (Lnx). The subject’s task was to press a button on
the RTbox as soon as he saw the square. The TTL triggers
were generated by a Video Switcher (Li, Lu, Xu, Jin, &

cycle, which is 1 msec for most USB controllers (www
.usb.org/developers/docs). Thus, we can be certain that
the correct tsend must be between tpre and tpost. Since both
tpre and tpost can be affected by the computer load and user
program, we repeat the measurement many times and get
three time stamps—tpre, tpost, and treceive—for each repeat.
Then we have three different methods to select the best
estimate of tsend.

Method 1. Because treceive is reliable, the tpre associated
with the minimum treceive tpre is the tpre closest to the
write operation and, therefore, the best estimate of tsend.
In other words, we can use max(tpre treceive) among the
repeats as the estimation of tdiff in Equation 1.

Method 2. The tpost associated with the minimum tpost
treceive gives the tpost that is closest to the write operation
and, therefore, the best estimate of tsend. This means that
we can use min(tpost treceive) as the estimation of tdiff.
Because tpost can be obtained only after a USB duty cycle,
a random time jitter from 0 to 1 msec is inserted between
repeated measurements to reduce the impact of the USB
duty cycle. The random jitter allows us to obtain a distri-
bution of tpost treceive from which to select the best tpost.

Method 3. The random jitter also allows us to obtain
a distribution of tpost tpre. The minimum of this distri-
bution provides the minimum time interval that contains
tsend. When this time window is small enough (~0.2 msec),
we can use the average of the corresponding tpre and tpost
as the estimate of tsend.

We also take some extra care in measuring tsend. First,
real-time priority scheduling of the write and receive op-
erations from the operating system should be used during
clock synchronization to minimize the probability and
duration of potential interruptions by other computer pro-
cesses. Second, detection of button and other events on
the RTbox is disabled to reduce the load on its micropro-
cessor and the USB system. The difference between tpost
and tpre provides the upper bound accuracy for tsend. If this
difference is too big, such as greater than 2 msec, the syn-
chronization is unreliable. This typically indicates that the
host computer is overloaded, and other time stamps from
the host computer are probably also inaccurate. When this
happens, the user should reduce the processing load of the
host computer.

Using the RTbox
We have written a driver to control the RTbox in

MATLAB, based on Psychtoolbox-3 extensions (http://
psychtoolbox.org/). The driver is compatible with all
computer systems supported by Psychtoolbox, including
PCs running either Windows or Linux operating system
and Macintosh computers. Once the RTbox is connected
to the host computer via a USB connection, the driver can
automatically detect it and control/execute all its function-
alities. The link to download the driver code can be found
in the Appendix. Users of other toolkits can use the code
as an example in developing their own drivers.

Figure 4 illustrates the steps involved in measuring
RTs using the RTbox and its MATLAB driver. In the first
mode, no external trigger is used (Figure 4A). After com-

218 LI, LIANG, KLEINER, AND LU

settings (resolution of 1,024 768 pixels, refresh rate of
85 Hz) and the same light sensor location. The nonzero
RTs of the ideal observer resulted from the experimental
setup: The TTL triggers from the Video Switcher signified
the first scan line of the stimulus square on the CRT, and
the photodiode was placed roughly at the center of the
square (100 100 pixels). With the monitor setting we
used, 50 scan lines take about 0.54 msec, which accounts
for the nonzero time difference between light and TTL.
The capability of detecting such a small time difference
further verifies the precision of the RTbox.

Accuracy of Clock Synchronization
To use the RTbox without external triggers, we must

obtain accurate clock synchronization. Figure 6 shows
synchronization results on three computer systems. We
measured tdiff (Equation 1) once every 10 sec for a total
of 30 min on each system. To verify the clock synchroni-
zation methods described in the Synchronization of the
Clocks section, each tdiff was selected from 100 repeats of
the write operation, which took about 0.5 sec to run.

The three plots in Figure 6A show tdiff estimated with
three different methods on a Windows system. For visu-
alization purpose, the tdiffs are plotted relative to the first

Zhou, 2003). Twenty trials were measured in each trigger
mode and on each of the three computer systems.

The bold bars in Figures 5A and 5B indicate the median
RTs from 20 trials, and each thin bar represents a single
trial. The median RT ranges from 150 to 180 msec. The
RTs are very similar across the two different trigger modes
and all three computer systems (p .05, Kruskal–Wallis
test; the same for all the tests, unless noted otherwise).

Due to the large variation of human RTs, it is hard to
tell, from Figures 5A and 5B, how accurate the device is.
In Figure 5C, we measured the “RT” of an ideal observer,
simulated using the photodiode. In this setup, TTL pulses
served as the external triggers. The light signals served as
button responses; the photodiode was used to detect the
square on the computer screen, and its responses were used
to simulate button responses. The result reflects the time
difference between the TTL and light triggers. As is shown
in Figure 5C, the variability among 100 repeats is very
small: The maximum variability is only 26 sec, which
equals to three quantizations of the clock in the RTbox.
This extremely small variability illustrates the high preci-
sion of the RTbox. The median RT for all three computer
systems is 0.521 msec. The time for different systems are
the same because we used the same CRT with identical

A B

Prepare for stimulus,
record, etc.

Prepare for stimulus,
record, etc.

Clear buffer

Issue stimulus, send
trigger to the RTbox

Read trigger and button
time, ttrigger and tbutton

Is response valid?
No

Keep response record

Yes

(1)

(2)

(3)

(4)

Clear buffer,
synchronize clocks

Issue stimulus,
get tonset

Read computer-based
button time, tbutton

(5) tresp tbutton tonset tresp tbutton ttrigger

(6) Is response valid?

Yes

Keep response record

No

(7)

Figure 4. Flowchart of a typical response time (RT) experiment using the RTbox.
(A) Steps to measure RT without an external trigger. The button time (tbutton) at
Step 4 is computed from the RTbox time and the clock difference measured in Step 2.
(B) Steps to measure RTs using external triggers.

RESPONSE TIME DEVICE 219

so it is not a major inconvenience to perform it just before
each trial. It is also very easy to correct the clock speed.
Our driver software can also take some samples in a pe-
riod of time, such as 30 sec, compute the slope of drift,
and remove the linear drift. Suppose that the slope of the
drift is m; the driver can be used to remove the drift by
computing the corrected device time:

 tcorrected tuncorrected(1 m), (4)

where tuncorrected is the uncorrected device time based on
the device clock. The driver software can automatically
apply the correction to all measured RTbox times, such as
treceive and tdevice in Equations 1 and 2.

Although all three synchronization methods are very
good, each of them has some advantages and disadvan-
tages. From Figure 6B through 6D, Method 1 [tdiff
max(tpre treceive)] gives the smallest variation over time
on all three tested systems. This is because, on a computer
system with a normal CPU load, the write operation of
the trigger byte is very close to tpre most of the time, so
it is easy to get a tpre that is very close to the real write
operation. Actually, 20 repeats in 0.2 sec are sufficient to
obtain good clock synchronization. However, this method
is based on time stamps from two clocks: tpre from the host
computer clock and treceive from the RTbox clock. So, it re-
lies on the assumption that the RTbox time stamp treceive is
very reliable. Although this is true in most circumstances,
the linear drift (Figure 6A) due to clock speed difference
can affect repeated measurements of tpre treceive and,
therefore, the selection of the best sample from them.
Figure 6E shows the variability of tdiff with and without
correcting the clock speed on the Mac system. Although
the difference is small, clearly the best tdiffs are different.
The range of variation is 0.040 and 0.021 msec before

measurement. Clearly, tdiff is not a constant but shows a
linear drift (absolute values of Pearson’s linear correlation
coefficients greater than .9999999) over time for all the
three methods. Within 30 min, the drift can be as high as
240 msec, because the host computer clock and the RTbox
clock do not operate at the same speed, usually caused by
imperfections in the manufacturing of the quartz oscilla-
tor crystals within the clock hardware. The slope of linear
drift is 1.37 10 4 sec/sec, and the slope differences
among the three methods are extremely small, only on
the fifth significant digit. After correcting the clock speed
difference by removing the linear drift, the variation of tdiff
over time is shown in Figure 6B. With clock speed cor-
rected, the clock difference is almost a constant over time.
The nonlinear component is very small, within 0.1 msec
for all three methods. This nonlinear drift is probably due
to environmental effects—for example, fluctuations in
power supply and operating temperature—on the clocks.

Figures 6C and 6D show the variation of tdiff after clock
speed correction for the Mac and Lnx systems. The slopes
from the three tdiff selection methods are the same for
each system (1.75 10 4 sec/sec for Mac; 7.95
10 5 sec/ sec for Lnx). The Mac system does not show
visible nonlinear drift. Although we see some outliers on
the Lnx system, the maximum variation range is less than
0.2 msec, which is good enough for most RT experiments.

In an experiment, the linear and nonlinear drifts of the
clocks are normally not a problem if we perform clock
synchronization right before the onset of each stimulus
(Step 2 in Figure 4A). The total accumulated drift and,
therefore, the measurement error are very small within a
typical response interval (less than 0.2 msec within a sec-
ond; see the slopes of the linear drift on the three systems).
Clock synchronization normally takes less than 200 msec,

Win Mac Lnx
0

200

400

RT
 (m

se
c)

Win Mac Lnx

0.60

0.55

0.50

0.45

Li
g

h
t

Ti
m

e
(m

se
c)

Win Mac Lnx

A B C

Trigger: TTL Trigger: light Trigger: TTL

D

VGA

Response Box

VGA
CRT

Light
USB

Video Switcher

Computer TTL

Figure 5. Response times (RTs) to a square flashed in the center of the monitor, with external trig-
gers, on three computer systems: Microsoft Windows XP (Win), Mac OS X (Mac) and OpenSUSE
Linux (Lnx). Each thinner bar represents a trial. The bold bars indicate median RTs. (A) RTs
measured using TTL pulse triggers from a Video Switcher. (B) RTs measured using the light trig-
ger at the same horizontal screen location. (C) The time of the light signals relative to TTL triggers.
(D) A diagram showing the hardware setup of the tests.

220 LI, LIANG, KLEINER, AND LU

Since we can rely on the accuracy of the device time
treceive in Equation 1, if we performed clock speed cor-
rection, we know that the real tdiff is between max(tpre
treceive) and min(tpost treceive). So min(tpost treceive)
max(tpre treceive) gives us the confidence interval of tdiff.
In the middle rows of Figures 6F, 6G, and 6H, the differ-
ence of tdiff between Methods 3 and 1 tells us how small
tdiff could be if we use Method 1 and how large it could be
if we use Method 3.

RT Measurements Without External Triggers
To verify the accuracy of RT measurements without

external triggers, we measured the “RT” of an ideal ob-
server, the photodiode, without external triggers. The
stimulus onset time tonset (see Figure 4A) was returned by
the Screen(‘Flip’) function of PsychToolbox Version 3 on
the basis of the computer clock. It is the predicted time at
which the video display starts displaying the video frame
that contains the stimulus. Figure 7 shows a histogram of
the RTs of the ideal subject. We used Method 1 with 20
repeats for clock synchronization on all the three systems.
The median RTs, the light time relative to tonset, are 5.79,
5.64, and 5.67 msec for the three systems. Since the test
stimulus was located in the center of the computer screen,
at the 85-Hz refresh rate we used, the expected time dif-
ference between the light signal and tonset is about half of
a video refresh interval—that is, 1,000/85/2 5.88 msec.

and after clock speed correction, respectively. With an en-
larged vertical scale, we can also see a very small nonlin-
ear drift that is not visible in Figure 6C.

Method 3 [selection based on min(tpost tpre)] uses
only the time stamps from the computer clock to choose
the best sample, so the clock speed difference does not
affect the sample selection. Because the method relies on
the random time jitter between repeats, a relatively large
number of repeats (100, e.g.) are necessary to increase the
possibility that at least one of the samples is very close to
the end of a USB duty cycle. Method 2 [tdiff min(tpost
treceive)] relies on both the random waiting jitter and the ac-
curacy of device time stamps, so it is inferior to the other
two methods, although it could get the best sample whose
write operation is delayed from tpre but happens to be close
to the end of a USB duty cycle.

Figures 6F, 6G, and 6H show the differences of tdiff
(Equation 1) estimated with the three different methods on
the three computer systems. If all three methods were reli-
able, any difference between them would be very small.
The tdiff from Method 1 is the smallest, and the tdiff from
Method 3 is the largest. The largest difference is less than
0.16 msec on all the three computer systems. This means
that, by choosing different methods, we may introduce a
systematic error of up to 0.16 msec. On the other hand,
because the maximum difference is so small, all three
methods are reliable enough for RT measurements.

30201003020100

–0.2

0.0

3020100

–0.2

0.0

Ti
m

e
V

ar
ia

b
ili

ty
 (m

se
c)

–0.2

0.0

–0.3

0.0

3020100

–0.3

0.0

C
lo

ck
 D

iff
er

en
ce

 (s
ec

)

–0.3

0.0
Method 3

Method 2

Method 1

WinA B C D

E F G H

Win Mac Lnx

Measurement Time (min)

–0.05

0.00

0.05

3020100

–0.05

0.00

0.05

Ti
m

e
V

ar
ia

b
ili

ty
 (m

se
c) Before correction

After correction

Mac Win Mac Lnx

3020100

–0.2
0.0
0.2

3020100

–0.2
0.0
0.2

–0.2
0.0
0.2

3020100

(3) – (2)

(3) – (1)

(2) – (1)

Figure 6. Clock synchronization results on the three computer systems. (A) Clock time difference between the
host computer and the RTbox over time on a Win system. The test was repeated 180 times in 30 min, once every
10 sec. For visualization purposes, the differences are relative to the first repeat. The horizontal axis represents
the time of the measurements. (B, C, D) Clock difference variability from three different estimating procedures,
on the three systems. (E) Clock difference variability on the Mac system before and after clock speed correction.
(F, G, H) Possible systematic differences among different synchronization methods on the three systems.

RESPONSE TIME DEVICE 221

a synchronized TTL trigger, the RT measurements are
totally independent of the host computer. A 0.1-msec ac-
curacy can be achieved. For visual stimuli, a built-in light
port is used to receive trigger signals from a photodiode
to guarantee the high accuracy. The TTL and light inputs
can also be used for calibration purposes.

If external triggers are not available, our test results
(Figure 6) indicate that we can get very good clock syn-
chronization on all major computer systems. However,
because the accuracy of clock synchronization depends on
the particular host computer system and user program, it
is necessary to verify the accuracy for a specific hardware
and software setup. Our MATLAB driver gives a warning
message if the synchronization is not accurate.

Although the methods we used to verify the accuracy
of the RTbox are a little complicated, using the RTbox in
experiments is actually very easy. If external triggers are
available, clock synchronization is not necessary, and the
accuracy of RT measurements is guaranteed. If no exter-
nal trigger is available, clock synchronization is needed.
The driver program can detect and report possible inac-
curacies, so users can adjust the experimental setup to im-
prove the timing accuracy.

Here, we discuss some limitations of the RTbox and
possible solutions and improvements.

The microprocessor in the RTbox detects port and but-
ton events within a 0.1-msec interval. When an event is
detected, it gets its time stamp and sends the data to the
host computer. This process takes time and may slow down
the detection of subsequent events. Theoretically, this is a
problem because it may introduce timing errors. However,
this is not a practical problem. One reason is that the time
delay is very short (less than 1 msec to transmit the data
of an event). Another reason is that, even if a trigger and a
response or any two responses are so close in time, we do
not normally treat them as valid responses. The refractory
time could be a problem during calibration (such as those
in Figure 5C), since we may try to detect two events that
are very close in time.

The RTbox is designed with four buttons. Some experi-
ments may need more buttons. The microprocessor chip
is capable of detecting more than four buttons. Building
an RTbox with more buttons requires changes to its hard-
ware, firmware, and MATLAB driver code.

In some experiments, the user may want to measure
RTs to auditory stimuli. Using the autodisable feature
of the RTbox, we can easily deal with the fluctuations in
sound waves and use them as triggers. We have already
designed a new RTbox that will include a sound port to
detect onsets of auditory stimuli.

The mechanical lag of buttons is another important fac-
tor in designing RT measurement devices. If a button has
shorter RTs for presses, it normally has longer RTs for re-
leases, and vice versa. This makes it hard to have buttons
with short responding times for both buttonpresses and
releases. In the next version, we will design a port to allow
users to connect their specialized buttons, or button-driven
TTL signals, to the RTbox for their special needs, such
as an MRI-compatible keypad. We have also designed a

This accounts for the nonzero time we got. The extreme
small variability (less than 0.05 msec) among the 100 tri-
als for each system indicates that the measurements are
very precise. The nonzero “RT” (tdelay) can be used to cor-
rect human subject RTs:

 tresp tbutton tonset tdelay. (5)

If users care about the absolute RT, Equation 5 should
be used instead of Equation 3. The procedure used here
also serves as an example of how to do calibration using
the light signal—that is, how to measure the time offset
between the nominal stimulus onset time (tonset) and the
real onset time (light time). The principle is similar to that
used by Black Box Toolkit (Plant, Hammond, & Turner,
2004), which can be used to verify timing accuracy and
provide necessary corrections where practicable.

It is also interesting to compare the difference of “light
RT” among the three systems. Although the differences
are very small, with a maximum of 0.15 msec between the
Win and Mac systems, all three “RTs” are significantly
different (p 0). Since we used the same CRT without
changing photodiode location when we switched from
one system to another, we would expect the “light RT” to
be the same across three systems. There are several pos-
sible sources that may contribute to the small differences.
The first is different refresh rates among the systems.
The nominal rates are 85 Hz for all systems. However,
the exact rate may be slightly different from 85 Hz. The
second source may be the systematic time difference re-
turned by Screen(‘Flip’) on different systems. Whatever
the reason is, this result demonstrates the power of the
RTbox to detect small time differences. However, we can-
not exclude the possibility of small systematic differences
among the systems during clock synchronization.

DISCUSSION

Our tests indicate that the RTbox is a reliable tool for
measuring RTs with very high accuracy. If a stimulus has

40

20

0

Pe
rc

en
ta

g
e

(%
)

5.79 5.675.64

Light Time (msec)

Win Mac Lnx

0.05 msec

Figure 7. “Response time” measured without external trigger.
The histogram shows the percentage of light signal time mea-
sured from the light port, relative to stimulus onset returned by
the Screen(‘Flip’) function of PsychToolbox 3. One hundred trials
were collected on each computer system. The tick at each hori-
zontal axis indicates the median of the samples.

222 LI, LIANG, KLEINER, AND LU

Jastrow, J. (1890). The time relations of mental phenomena. New York:
Hodges.

Li, X., Lu, Z. L., Xu, P., Jin, J., & Zhou, Y. (2003). Generating high
gray-level resolution monochrome displays with conventional com-
puter graphics cards and color monitors. Journal of Neuroscience
Methods, 130, 9-18.

Lu, H., Morrison, R. G., Hummel, J. E., & Holyoak, K. J. (2006).
Role of gamma-band synchronization in priming of form discrimina-
tion for multiobject displays. Journal of Experimental Psychology:
Human Perception & Performance, 32, 610-617.

Luce, R. D. (1991). Response times: Their role in inferring elementary
mental organization. New York: Oxford University Press.

McKinney, C. J., MacCormac, E. R., & Welsh-Bohmer, K. A. (1999).
Hardware and software for tachistoscopy: How to make accurate mea-
surements on any PC utilizing the Microsoft Windows operating system.
Behavior Research Methods, Instruments, & Computers, 31, 129-136.

Plant, R. R., Hammond, N., & Turner, G. (2004). Self-validating
presentation and response timing in cognitive paradigms: How and
why? Behavior Research Methods, Instruments, & Computers, 36,
291-303.

Plant, R. R., Hammond, N., & Whitehouse, T. (2003). How choice of
mouse may affect response timing in psychological studies. Behavior
Research Methods, Instruments, & Computers, 35, 276-284.

Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sam-
pling models for two-choice reaction time. Psychological Review,
111, 333.

Shimizu, H. (2002). Measuring keyboard response delays by comparing
keyboard and joystick inputs. Behavior Research Methods, Instru-
ments, & Computers, 34, 250-256.

Stewart, N. (2006). A PC parallel port button box provides millisec-
ond response time accuracy under Linux. Behavior Research Meth-
ods, 38, 170-173.

Yap, M. J., Balota, D. A., Cortese, M. J., & Watson, J. M. (2006).
Single- versus dual-process models of lexical decision performance:
Insights from response time distributional analysis. Journal of Ex-
perimental Psychology: Human Perception & Performance, 32, 1324-
1344.

TTL output port to register all trigger and button events.
This is very useful for EEG recording. The newly designed
RTbox will also detect TR (repetition time) triggers from
MRI scanners and pass them to the TTL output port. This is
useful for simultaneous MRI and EEG recording. So in ad-
dition to its functionality in accurate RT measurements, the
next version of the RTbox will also serve as an interface for
EEG and simultaneous EEG/MRI recording systems.

AUTHOR NOTE

We thank Jie Zheng for valuable suggestions and for writing the first
version of the firmware. This research was supported by NEI and NIMH.
Correspondence concerning this article should be addressed to Z.-L.
Lu, Department of Psychology, University of Southern California, Los
Angeles, CA 90089-1061 (e-mail: zhonglin@usc.edu).

REFERENCES

Arieh, Y., & Marks, L. E. (2008). Cross-modal interaction between
vision and hearing: A speed–accuracy analysis. Perception & Psycho-
physics, 70, 412-421.

Brainard, D. H., Pelli, D. G., & Robson, T. (2002). Display charac-
terization. In J. P. Hornak (Ed.), Encyclopedia of imaging science and
technology (pp. 172-188). New York: Wiley.

Brown, S. D., Marley, A. A., Donkin, C., & Heathcote, A. (2008).
An integrated model of choices and response times in absolute identi-
fication. Psychological Review, 115, 396-425.

Chambers, C. D., & Brown, M. (2003). Timing accuracy under Mi-
crosoft Windows revealed through external chronometry. Behavior
Research Methods, Instruments, & Computers, 35, 96-108.

De Clercq, A., Crombez, G., Buysse, A., & Roeyers, H. (2003). A
simple and sensitive method to measure timing accuracy. Behavior
Research Methods, Instruments, & Computers, 35, 109-115.

Dosher, B. A. (1976). The retrieval of sentences from memory: A
speed–accuracy study. Cognitive Psychology, 8, 291-310.

APPENDIX

The latest information about the response box can be found at http://lobes.usc.edu/RTBox/. Users can down-
load the MATLAB driver code, demo code, and firmware from the Web site.

MATLAB demo codes are RTBoxdemo.m for response time measurement without an external trigger and
RTBoxdemo_lightTrigger.m for measurement using a light trigger.

function RTBoxdemo(scrn)

% This is a demo showing how to measure reaction time using RTBox.
% Run the program. When you see flash on screen, press a button.
% Your RT will be plotted after the assigned number of trials.
% Xiangrui Li, 3/2008

if nargin 1, scrn max(Screen('screens')); end % find last screen
ntrials 10; % # of trials
timeout 1; % timeout for RT reading
sq [0 0 100 100]; % square
rt nan(ntrials,1);
RTBox('clear'); % in case it has not been initialized

try % avoid dead screen in case of error
 [w rect] Screen('OpenWindow',scrn,0); % open a dark screen
 sq CenterRect(sq,rect);
 HideCursor;
 ifi Screen('GetFlipInterval',w); % flip interval

 % print some instruction
 Screen('TextSize',w,24); Screen('TextFont',w,'Times');
 str 'This will test your response time to flash at the center of the screen.';

RESPONSE TIME DEVICE 223

 DrawFormattedText(w,str,'center',rect(4)*0.4,[255 0 0]);
 str sprintf('We will do %d trials. When you see a flash, press a button as soon as possible.',ntrials);
 DrawFormattedText(w,str,'center',rect(4)*0.45,[255 0 0]);
 DrawFormattedText(w,'Press any button to start', 'center', rect(4)*0.55, 255);
 Screen('Flip',w); % show instruction

 Priority(MaxPriority(w)); % raise priority for better timing
 RTBox(1000); % wait 1000 s, or till any enabled event
 vbl Screen('Flip',w); %#ok turn off instruction

 for i 1:ntrials
 WaitSecs(1 rand*2); % random interval for subject
 Screen('FillRect',w,255,sq);
 RTBox('clear'); % clear buffer and sync clocks before stimulus onset
 vbl Screen('Flip',w); % show stim, return stim start time
 Screen('Flip',w,vbl ifi*1.5); % turn off square after 2 frames

 % here you can prepare stim for next trial before you read RT
 t RTBox(timeout); % computer time of button response

 % check response
 if isempty(t), continue; end % no response, skip it
 t t-vbl; % response time
 if length(t) 1 % more than 1 response
 fprintf(' trial %2g: RT ',i); fprintf('%8.4f',t); fprintf('\n');
 ind find(t 0,1); % take the first proper rt in case of more than 1 response
 if isempty(ind), continue; end % no reasonable response, skip it
 t t(ind);
 end
 rt(i) t; % record the RT
 end
catch %#ok
 Screen('CloseAll'); Priority(0);
 rethrow(lasterror); %#ok
end
Screen('CloseAll');
Priority(0); % restore normal priority

rt rt-ifi/2; % rough calibration: stim was at the center of screen

% plot result
h figure(9); set(h,'color',[1 1 1]);
plot(rt,' -');
set(gca,'box','off ','tickdir','out');
ylabel('Response Time (s)'); xlabel('Trials');
rt(isnan(rt)) []; % remove NaNs due to missed trials
str sprintf('Your median RT: %.3f %s %.3f s',median(rt),char(177),std(rt));
title(str);

function RTBoxdemo_lightTrigger(scrn)
% This is a demo showing how to generate a flash as light trigger,
% and use RTBox to measure reaction time.
% In this demo, the stimulus is random noise at the center of screen,
% and light trigger is a 1-frame flash at right edge. You need to mount the
% light sensor to the flash position for this to work.

% Xiangrui Li, 3/2008

if nargin 1, scrn max(Screen('screens')); end % find last screen
ntrials 10 ; % # of trials
timeout 1; % timeout for RT reading
trigsz [40 80]; % trigger height and width
stimsz 120; % stim square size
efactor 3; % larger noise checkers

APPENDIX (Continued)

224 LI, LIANG, KLEINER, AND LU

APPENDIX (Continued)

stimdur 0.2; % stimulus duration
trigsq ones(trigsz)*255; % bright trigger square
csz round(stimsz/efactor); % # of checkers
stim uint8(rand(stimsz^2*2,1)*255); % random noise stimulus
rt nan(ntrials,1);
RTBox('enable','light'); % enable light detection for trigger, also open device if needed

try % avoid dead screen in case of error
 [w r] Screen('OpenWindow',scrn,0); % open a dark screen
 ifi Screen('GetFlipInterval',w);% flip interval

 % print some instruction
 Screen('TextSize',w,24); Screen('TextFont',w,'Times');
 str 'This will measure your RT to noise square at the center of the screen.';
 DrawFormattedText(w,str,'center',r(4)*0.4,[255 0 0]);
 str sprintf('We will do %d trials. When you see the noise, press a button as soon as possible.',ntrials);
 DrawFormattedText(w,str,'center',r(4)*0.45,[255 0 0]);
 DrawFormattedText(w,'Press any button to start', 'center', r(4)*0.55, 255);
 Screen('Flip',w); % show instruction

 trig_tex Screen('MakeTexture',w,trigsq); % make trigger texture
 % trigger position
 % trigrect [r(3)-trigsz(2)-10 50 r(3)-10 trigsz(1) 50]; % top-right
 trigrect [r(3)-trigsz(2)-10 r(4)/2-trigsz(1)/2 r(3)-10 r(4)/2 trigsz(1)/2]; % middle-right
 % trigrect [r(3)-trigsz(2)-10 r(4)-trigsz(1)-50 r(3)-10 r(4)-50]; % bottom-right

 nframe round(stimdur/ifi); % # of frames of stim
 ClockRandSeed; % set random seed
 for im 1:nframe % make stim textures for first trial
 stimsq Expand(RandSample(stim,[csz csz]),efactor);
 tex(im) Screen('MakeTexture',w,stimsq);
 end

 Priority(MaxPriority(w)); % raise priority for better timing
 RTBox(1000); % wait 1000s, or till any enabled event
 Screen('Flip',w); % remove instruction

 for i 1:ntrials
 WaitSecs(1 rand*3); % wait for 1 to 4 s randomly
 RTBox('clear',0); % clear buffer before stim onset
 Screen('DrawTexture',w,tex(1)); % draw stim for 1st frame
 Screen('DrawTexture',w,trig_tex,[],trigrect); % draw trigger
 Screen('Flip',w); % show first frame: stim trigger

 for im 2:nframe % draw noise for each frame
 Screen('DrawTexture',w,tex(im)); % draw frames
 Screen('Flip',w); % show stim, no trigger anymore
 end
 Screen('Flip',w); % turn off stim

 % prepare stim for next trial before reading RT
 Screen('Close',tex(:)); % release memory
 for im 1:nframe
 stimsq RandSample(stim,[csz csz]);
 stimsq Expand(stimsq,efactor);
 tex(im) Screen('MakeTexture',w,stimsq);
 end

 t RTBox('light',timeout); % read RT, relative to light trigger
 if isempty(t), continue; end % no response, skip it
 if length(t) 1
 fprintf(' trial %2g: RT ',i); fprintf('%8.4f ',t); fprintf('\n');
 ind find(t 0,1); % find the first proper rt in case of more than 1 response
 if isempty(ind), continue; end % no reasonable response, skip it

RESPONSE TIME DEVICE 225

(Manuscript received April 20, 2009;
revision accepted for publication June 20, 2009.)

 t t(ind);
 end
 rt(i) t;
 end
catch
 Screen('CloseAll'); Priority(0);
 rethrow(lasterror);
end
Screen('CloseAll');
Priority(0); % restore normal priority

% plot result
h figure(1); set(h,'color',[1 1 1]);
plot(rt,' -');
set(gca,'ylim',[0 0.4],'box','off ','tickdir','out');
ylabel('Response Time (s)'); xlabel('Trials');
rt(isnan(rt)) []; % remove NaNs due to missed trials
str sprintf('Your median RT: %.3f %s %.3f s',median(rt),char(177),std(rt));
title(str);

APPENDIX (Continued)

