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Hays (1963) challenged psychologists to report mea-
sures of effect size in addition to the usual tests of signifi-
cance. Later in the decade, Vaughan and Corballis (1969) 
lamented the inattention paid to the problem described by 
Hays. The fourth edition of the Publication Manual of the 
American Psychological Association (APA; 1994) sug-
gested that tests of statistical significance be accompanied 
by measures of effect size. That language was strength-
ened with the publication of the fifth edition of the Publi-
cation Manual of the American Psychological Association 
(2001) and a call to make measures of effect size an inte-
gral part of publishing in APA journals. Consequently, a 
number of academic journals, both APA and others, began 
requiring measures of effect size as a condition of pub-
lication (Capraro & Capraro, 2002; Rosnow, Rosenthal, 
& Rubin, 2000; Thompson, 2002; Vacha-Haase, Nilsson, 
Reetz, Lance, & Thompson, 2000). Measures of effect 
size provide essential information about the substantive 
import of experimental results. Thus, it is important to 
explore new measures of effect size while continuing to 
reassess and refine existing measures.

It is often important in psychological research to analyze 
the relationship between two variables measured on ordi-
nal scales, such as Likert scales (“Strongly Agree,” . . . , 
“Strongly Disagree”), letter grades (A, B, . . . , F), self-
ratings (pain, depression, etc.), meteorological ratings 
(tornadoes, tropical cyclones, etc.), socioeconomic status 
(upper, middle, lower), power/influence (high, medium, 
low), prestige ( journals, celebrities, colleges, etc.), rank-
ings (academic, military, organizational, etc.), orders 

(birth order, order of finish in a race, biological taxon-
omy, etc.), and psychological scales (alienation, anxiety, 
authoritarianism, anomie, etc.). Indeed, it has long been 
recognized that “most of the scales used . . . by psycholo-
gists are ordinal scales” (Stevens, 1946, p. 679).

Kendall (1938, 1945) developed the a and b measures 
of rank correlation that are now widely used as measures of 
effect size when two ordinal variables are cross- tabulated 
into an r c contingency table, where r and c denote the 
number of rows and columns, respectively. Stuart (1953) 
introduced a third measure of rank correlation, c, which 
in a classic case of Stigler’s (1980) law of eponymy is 
often erroneously referred to as Kendall’s c. Stuart’s c 
measure of ordinal association was designed to replace 
Kendall’s a and b and was specifically designed for or-
dinal contingency tables where r c and some values are 
tied. Under many circumstances, c reduces to b when 
r c and always reduces to a when r c and no values 
are tied. When r c, c may not properly norm between 

1 and 1. This article introduces a Monte Carlo resam-
pling method to properly norm Stuart’s c.

Measures of Effect Size
In recent years, there has been increased emphasis on 

reporting measures of effect size in addition to tests of 
significance, recognizing that determination of a signifi-
cant treatment effect does not necessarily translate into a 
substantial treatment effect (Hunter, 1997; Killeen, 2005; 
Loftus, 1996). The increased attention to effect size high-
lighted two problems: First, measures of effect size do 
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F(a, b) to find an exact solution is computationally prohib-
itive and impractical, since the reference set, M, is usually 
very large even for modest values of r and c. An alternative 
to an exact solution is a Monte Carlo resampling algorithm 
that enumerates a random sample of size L from all the M 
members of F(a, b). If T denotes the statistic of interest, a 
resampling algorithm is constructed as follows.1

1. Let L denote a random sample with replacement of a 
large number of the possible arrangements of the nij cell 
frequencies for i  1, . . . , r and j  1, . . . , c with fixed 
marginals {n1 , . . . , nr } and {n 1, . . . , n c}.

2. Set counter k and the maximum value of statistic 
T (Tmax) to zero.

3. If each {n1 , . . . , nm } or {n 1, . . . , n m} marginal 
corresponding to m  min(r, c) equals n/m, go to 4; oth-
erwise, go to 5.

4. Set w  max(r, c). If w  c and any sequence of mar-
ginals beginning with column 1 or column w sums to n/m, 
or if w  r and any sequence of marginals beginning with 
row 1 or row w sums to n/m, then set Tmax  n2(m  1)/
(2m) and go to 9; otherwise, go to 5.

5. Generate a random arrangement of the nij cell fre-
quencies for i  1, . . . , r and j  1, . . . , c satisfying the 
fixed marginals {n1 , . . . , nr } and {n 1, . . . , n c}. An al-
gorithm by Patefield (1981) ensures random arrangements 
of the nij cell frequencies, given the fixed marginals.

6. Compute statistic T on the random arrangement of 
the nij values and set counter k  k  1.

7. If T  Tmax, Tmax is replaced by T.
8. If k  L, the maximum resampled value of T is Tmax, 

go to 9; otherwise, go to 5.
9. Exit
Stuart’s c examples. Determination of the exact 

maximum value of S is impractical for many r c contin-
gency tables. However, generation of all M arrangements 
of F(a, b) is possible when r and c are small (cf. Mielke & 
Berry, 1992). Table 1 contains maximum S values utilizing 
exact, resampling, and Stuart’s procedures for 2 2, 2 3, 
2 4, 2 5, 2 6, 3 3, 3 4, and 4 4 contingency tables. 
Because the true maximum value of S is dependent on the 
marginal frequency distributions, a variety of uniform and 
skewed marginal frequency distributions are utilized in 
Table 1. Uniform marginal frequency distributions imply 
that the probability of an observation falling into row i 
is 1/r and the probability of an observation falling into 
column j is 1/c. On the other hand, the skewed marginal 
frequency distributions in Table 1 imply that the probabil-
ity of an observation falling into row i is (2i)/[r(r  1)] 
and the probability of an observation falling into column 
j is (2j)/[c(c  1)]. The various values of n  18, 36, 60, 
90, and 126 for the 29 contingency tables in Table 1 were 
obtained from n  3max[r(r  1), c(c  1)], thus ensur-
ing integral values for the r  2, 3, 4 and c  2, 3, 4, 5, 6 
marginals. The “Exact” column in Table 1 lists maximum 
values of S based on all M members of F(a, b); the “Re-
sampling” column lists maximum values of S based on 
L  1,000,000 resampled arrangements of cell frequen-
cies, given fixed marginals; and the “Stuart” column lists 
maximum values of S based on n2(m  1)/(2m).

not exist for all tests of significance (Johnston, Berry, & 
Mielke, 2004); second, measures of effect size that are 
in routine use may over- or underestimate the real effect 
size.

Stuart’s c is based on an unstandardized measure of 
effect size, commonly termed S. Consider n bivariate ob-
servations. Let (xi, yi) and (xj, yj) represent a pair of obser-
vations, i, j  1, . . . , n. If (xj  xi) and ( yj  yi) have the 
same sign, the pair is concordant; if the signs are opposite, 
the pair is discordant. A simple way to measure strength 
of relationship is to compute the number of concordant 
pairs minus the number of discordant pairs, S, ignoring all 
tied x and y values. A predominance of concordant pairs 
results in a large positive value of S and indicates a strong 
positive relationship between x and y. A predominance 
of discordant pairs results in a large negative value of S 
and indicates a strong negative relationship between x 
and y. As a measure of effect size—that is, strength of 
 relationship—S has a distinct disadvantage. Its range de-
pends on the sample size n and needs to be standardized 
so that it norms between 1 and 1.

Several possibilities exist to bound S between 1 and 
1, representing complete dissociation and complete as-

sociation of x and y, respectively. Stuart (1953) proposed 
the maximum value of S be defined as n2(m  1)/(2m), 
where m  min(r, c) and provided n mod m  0. Given the 
maximum value of S proposed by Stuart, c is a general-
ized measure of effect size for two cross-classified ordinal 
variables, where c  (2mS)/[n2(m 1)].

In order for S to equal n2(m  1)/(2m) and, thus, for 
c to attain the maximum value when 1  c  1, two 

conditions must be met. For simplicity, consider an r c 
contingency table with r  c, then r  min(r, c) and c  
max(r, c). First, each row marginal must equal n/m, im-
plying n mod m  0 (Stuart, 1953). Second, some sum 
of 1 to c column marginals must equal n/m, summing se-
quentially either from left to right, beginning with the first 
column, or from right to left, beginning with column c.

Thus, the problem with c lies in the definition for the 
maximum value for S provided by Stuart (1953). The de-
nominator, n2(m  1)/(2m), provides only an upper bound 
for S computed on an idealized r c contingency table. 
In most cases, however, n2(m  1)/(2m) yields a higher 
value than the maximum possible value of S calculated on 
the observed contingency table. Consequently, the effect 
size is often underestimated. For an r c table with r  c, 
n2(m  1)/(2m) is always equal to n2(r  1)/(2r), since it 
is based solely on n and min(r, c). The solution is to find a 
sharper bound for the maximum value of c than Stuart’s 
n2(m  1)/(2m) provides.

Resampling
An alternative to Stuart’s n2(m  1)/(2m) is provided 

by a Monte Carlo resampling algorithm. Given two inte-
gral marginal vectors, the set of all r c contingency tables 
with row marginals {n1 , . . . , nr } and column marginals 
{n 1, . . . , n c} is a Fréchet class of matrices of nonnega-
tive integer elements given fixed marginals and denoted 
by F(a, b) (Fréchet, 1951). Enumerating all M members of 
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all five tables have similar skewed column marginal fre-
quency distributions of {6, 12, 18, 24}, {6, 12, 18, 24, 30}, 
or {6, 12, 18, 24, 30, 36}. Consequently, the number of 
possible cell frequency configurations yielding the maxi-
mum value of S is severely circumscribed, other factors 
being equal. Table 2 lists the table numbers from Table 1 
for those tables where the resampling and exact maximum 
values of S did not agree, the exact number of possible cell 
frequency configurations given the fixed marginals, the 
exact maximum value of S, the point probability value of 
each table yielding the maximum value of S, and a listing 
of the cell frequency configurations yielding the maxi-
mum value of S.

To illustrate, consider table number 11, in Table 2, for 
which there are M  1,088 possible cell frequency configu-
rations given the fixed marginals of {20, 40} and {6, 12, 18, 
24}, the maximum value of S is 768, the point probability 
value is only 0.3650 10 13, and only one of the M  
1,088 possible cell configurations yields a maximum S 
value of 768. Note that for contingency table 13 in Table 2, 
there are two cell frequency configurations yielding a maxi-
mum value of 1,890, because the row marginal frequencies 
are both equal to n/m  45. For the five tables listed in 
Table 2, it is not surprising that the exact and resampling 
values of S differ, given L  1,000,000, the large number 
of possible cell frequency configurations, the skewed mar-
ginal frequency distributions, the limited number(s) of cell 

As is evident in Table 1, the maximum S values based 
on resampling are always less than those obtained by 
the maximum proposed by Stuart (1953) except in 
six cases: the 2 2 table with marginals of {9, 9} and 
{9, 9}; the 2 3 table with marginals of {18, 18} and 
{6, 12, 18}; the 2 4 table with marginals of {30, 30} and 
{15, 15, 15, 15}; the 2 6 table with marginals of {63, 63} 
and {21, 21, 21,  21, 21, 21}; the 3 3 table with marginals 
of {12, 12, 12} and {12, 12, 12}; and the 4 4 table with 
marginals of {15, 15, 15, 15} and {15, 15, 15, 15}. All six 
cases satisfy the two conditions for n2(m  1)/(2m)—that 
is, row marginals equal to n/m and some sequential sum 
of column marginals equal to n/m.

Proper comparisons are between the resampled maxi-
mum values of S and Stuart’s maximum values of S. The 
purpose of these analyses is to obtain sharper bounds on 
maximum S through resampling; the exact values of S are 
listed in Table 1 only to demonstrate optimal results, and 
for the example analyses in Table 1 constitute a gold stan-
dard for purposes of comparison.

Stuart’s procedure matches the exact maximum value 
of S for only 6 of the 29 marginal conditions specified in 
Table 1. Thus, Stuart’s procedure often overestimates the 
maximum value of S and, consequently, underestimates 
effect size. As can be seen in Table 1, there are five tables 
where the resampling and exact procedures differ on the 
maximum value of S: 11, 13, 17, 24, and 28. Note that 

Table 1 
Maximum S Values Based on Exact, Resampling, and Stuart’s Procedures for  

2 2, 2 3, 2 4, 2 5, 2 6, 3 3, 3 4, and 4 4 Contingency Tables With  
Uniform and Skewed Row and Column Marginal Frequency Totals

Table Table Marginal Procedure

Number  Size  Row  Column   Exact  Resampling  Stuart

 1 2 2 {9, 9} {9, 9} 81 81 81
 2 (n  18) {9, 9} {6, 12} 54 54 81
 3 {6, 12} {6, 12} 72 72 81

 4 2 3 {18, 18} {12, 12, 12} 288 288 324
 5 (n  36) {18, 18} {6, 12, 18} 324 324 324
 6 {12, 24} {12, 12, 12} 288 288 324
 7 {12, 24} {6, 12, 18} 252 252 324

 8 2 4 {30, 30} {15, 15, 15, 15} 900 900 900
 9 (n  60) {30, 30} {6, 12, 18, 24} 828 828 900
10 {20, 40} {15, 15, 15, 15} 750 750 900
11 {20, 40} {6, 12, 18, 24} 768 708 900

12 2 5 {45, 45} {18, 18, 18, 18, 18} 1,944 1,944 2,025
13 (n  90) {45, 45} {6, 12, 18, 24, 30} 1,890 1,764 2,025
14 {30, 60} {18, 18, 18, 18, 18} 1,728 1,728 2,025
15 {30, 60} {6, 12, 18, 24, 30} 1,728 1,728 2,025

16 2 6 {63, 63} {21, 21, 21, 21, 21, 21} 3,969 3,969 3,969
17 (n  126) {63, 63} {6, 12, 18, 24, 30, 36} 3,888 3,042 3,969
18 {42, 84} {21, 21, 21, 21, 21, 21} 3,528 3,528 3,969
19 {42, 84} {6, 12, 18, 24, 30, 36} 3,420 3,420 3,969

20 3 3 {12, 12, 12} {12, 12, 12} 432 432 432
21 (n  36) {12, 12, 12} {6, 12, 18} 324 324 432
22 {6, 12, 18} {6, 12, 18} 396 396 432

23 3 4 {20, 20, 20} {15, 15, 15, 15} 1,100 1,100 1,200
24 (n  60) {20, 20, 20} {6, 12, 18, 24} 1,088 876 1,200
25 {10, 20, 30} {15, 15, 15, 15} 1,050 1,050 1,200
26 {10, 20, 30} {6, 12, 18, 24} 996 996 1,200

27 4 4 {15, 15, 15, 15} {15, 15, 15, 15} 1,350 1,350 1,350
28 (n  60) {15, 15, 15, 15} {6, 12, 18, 24} 1,116 1,035 1,350
29    {6, 12, 18, 24}  {6, 12, 18, 24}  1,260  1,260  1,350
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Although Table 1 documents the possible limitations 
of Stuart’s proposed maximum value of S, the question 
remains as to the effect of the maximum value on the stan-
dardized measure of effect size, c. It is obvious that dif-
ferent maximum values of S obtained by the resampling 
and Stuart’s procedures have little effect on the value of 

c when the observed value of S is zero or close to zero. 
Moreover, researchers care little about small effect sizes. 
Table 3 lists four 2 2, four 2 3, and four 2 4 contin-
gency tables, with the column marginals, observed cell 
frequencies, maximum values of S based on resampling, 
maximum values of S based on Stuart’s n2(m  1)/(2m), 
observed values of c based on the resampled maximum 

frequency configurations yielding the maximum value of S, 
and the very small point probability values of the cell fre-
quency configuration(s) yielding the maximum value of S.

Although it is constructive to specify under what con-
ditions the resampling and exact procedures sometimes 
lead to different results, it is important to bear two things 
in mind: First, exact solutions are impractical for most 
applications and are included here only to establish the ac-
curacy of the resampling procedure with L  1,000,000; 
second, the proper comparison to be made in Table 1 is 
between the resampling and Stuart procedures, where the 
resampling procedure is clearly superior in finding the 
maximum value of S.

Table 3 
Example 2 2, 2 3, and 2 4 Contingency Tables With n  60, Row Marginals of {30, 30}, 

and Observed Cell Frequencies Chosen to Maximize the Observed Value of S

Table Column Observed Cell Maximum S Value Observed c Value

Size  Marginals  Frequencies  Resampling  Stuart  Resampling  Stuart

2 2 {30, 30} 30  0 900 900 1.000 1.000
 0 30

{20, 40} 20 10 600 900 1.000 0.667
 0 30

{10, 50} 10 20 300 900 1.000 0.333
 0 30

{5, 55}  5 25 150 900 1.000 0.167
 0 30

2 3 {10, 20, 30} 10 20  0 900 900 1.000 1.000
 0  0 30

{20, 20, 20} 20 10  0 800 900 1.000 0.889
 0 10 20

{5, 20, 35}  5 20  5 750 900 1.000 0.833
 0  0 30

{5, 15, 40}  5 15 10 600 900 1.000 0.667
 0  0 30

2 4 {15, 15, 15, 15} 15 15  0  0 900 900 1.000 1.000
 0  0 15 15

{10, 15, 15, 20} 10 15  5  0 850 900 1.000 0.944
 0  0 10 20

{5, 15, 15, 25}  5 15 10  0 850 900 1.000 0.944
 0  0  5 25

{5, 10, 10, 35}  5 10 10  5 750 900 1.000 0.833
     0   0   0  30         

Table 2 
Tables 11, 13, 17, 24, and 28 From Table 1 With Total Number of Possible Cell 

Frequency Configurations, Maximum S Values, and Probability Values and Cell 
Frequency Configurations Corresponding to the Maximum S Value

Table Number of Maximum Point
Number  Configurations  S Value  Probability  Cell Frequencies

11 1,088 768 0.3650  10 13 6 12 2 0
0 0 16 24

13 37,775 1,890 0.1259  10 19 6 12 18 9 0
0 0 0 15 30

0.1259  10 19 0 0 0 15 30
6 12 18 9 0

17 1,102,967 3,888 0.6727  10 33 6 12 18 24 3 0
0 0 0 0 27 36

24 358,267 1,088 0.2814  10 20 6 12 2 0
0 0 16 4
0 0 0 20

28 28,904,292 1,116 0.1877  10 20 6 9 0 0
0 3 12 0
0 0 6 9

            0  0  0  15
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value of S, and observed values of c based on Stuart’s 
maximum value of S for each of the 12 tables.

In order to isolate the effect of skewed marginals on 
the value of c, each of the 12 tables in Table 3 has n  
60, r  2 rows, identical uniform row marginals of n/m  
60/2  {30, 30}, and observed cell frequencies designed 
to ensure a maximum value of S, thus controlling for 
n, r, ni  for i  1, . . . , 2, and S. The fourth and fifth col-
umns in Table 3 list the maximum values of S obtained by 
the resampling and Stuart procedures. It should be noted 
that the resampling and exact maximum values of S are 
the same in these examples. Since Stuart’s procedure is 
based solely on n  60 and m  2, the maximum value is 
identical for all 12 tables. The last two columns of Table 3 
list the observed values of c on the basis of the resam-
pling and Stuart procedures. Comparison of the last two 
columns reveals that, whereas differences between the 
two procedures are at times nonexistent or insignificant, 
at other times the differences can be quite large, due to 
skewed column marginal distributions that neither equal 
n/m nor sum sequentially to one of the row marginals, 
the most extreme example being the 2 2 contingency 
table with highly skewed column marginals of {5, 55}, 
where c is 1.000 under the resampling procedure and 
only 0.167 under the Stuart procedure.

Discussion
The resampling method for calculating sharper bounds 

for c is an example of a relatively new technique, Monte 
Carlo resampling, applied to an existing statistic that en-
ables improvement in measurement accuracy. The Monte 
Carlo resampling permutation procedure provides sharper 
bounds for the maximum value of S, permitting better 
estimation of effect sizes than can be accomplished with 
Stuart’s maximum value of S based on n2(m  1)/(2m). 
Table 1 demonstrates the effectiveness of resampling in 
providing sharper bounds for maximum S than Stuart’s 
n2(m  1)/(2m) over a variety of table sizes, sample sizes, 
and marginal distributions. Stuart’s procedure systemati-
cally deflates effect sizes by overestimating the maximum 
value of S in 23 of the 29 marginal conditions specified. 
Table 2 provides some rationale for those instances when 
the exact and resampling maximum values of S do not 
agree. Finding the maximum value of S with resampling 
is not a simple matter of finding one out of M possible cell 
frequency configurations, since the probabilities of dif-
ferent configurations differ. In general, the success of the 
resampling procedure depends on the size of M, the skew-
ness of the marginal frequency distributions, the number 
of cell frequency configurations yielding the maximum 
value of S, and the point probability of the cell frequency 
configuration(s) yielding the maximum value of S. Table 3 
explores the impact of the wrong maximum value of S on 
the value of c, while controlling for n, r, ni  for i  1, . . . , 
r, and S. Inspection of Table 3 reveals that skewed margin-
als often lead to inflated values of S and generate c values 
that are too small, sometimes by a substantial amount.




