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Word associations:
Network and semantic properties

SIMON DE DEYNE AND GERr STORMS
University of Leuven, Leuven, Belgium

A number of properties of word associations, generated in a continuous task, were investigated First, we investi-
gated the correspondence of word class in association cues and responses. Nouns were the modal word class response,
regardless of the word class of the cue, indicating a dominant paradigmatic response style. Next, the word association
data were used to build an associative network to investigate the centrality of nodes. The study of node centrality
showed that central nodes in the network tended to be highly frequent and acquired early. Small-world properties
of the association network were investigated and compared with a large English association network (Steyvers &
Tenenbaum, 2005). Networks based on a multiple association procedure showed small-world properties despite being
denser than networks based on a discrete task. Finally, a semantic taxonomy was used to investigate the composition
of semantic types in association responses. The majority of responses were thematically related situation responses
and entity responses referring to parts, shape, or color. Since the association task required multiple responses per cue,
the interaction between generation position and semantic role could be investigated and discussed in the framework
of recent theories of natural concept representations (Barsalou, Santos, Simmons, & Wilson, in press).

Recently, the study of the representation of concepts
and word associations has regained interest. Three differ-
ent lines of research characterize studies of this issue. First,
a number of studies have explored the distributional and
structural properties of word association networks. It has
been shown that the structure of connections between as-
sociations adheres to special topological laws, commonly
found in many natural networks (Steyvers & Tenenbaum,
2005), such as small-would properties. Examples of these
natural networks include, citation networks (e.g., Redner,
1998) the World Wide Web (e.g., Albert, Jeong, & Ba-
rabäsi,^1999), metabolic networks (e.g., Jeong, Tombor, Al-
bert, Oltvai, & Barabäsi, 2000), and the network of human
sexual contacts (e.g., Liljeros, Edling, Amaral, Stanley,
& Aberg, 2001). The network topology of word associ-
ates has also been used to explain semantic neighborhood
effects on the recognition of words (Locker, Simpson, &
Yates, 2003) and recognition success in list-learning ex-
periments (Nelson, Zhang, & McKinney, 2001).

In a second line of research, spatial models based on
association data have been used to explain the function of
semantic memory in tasks such as semantic similarity rat-
ings. With this approach, free association norms are used to
derive proximity measures in a high-dimensional represen-
tation. These measures have been successful in predicting
semantic similarity ratings of words and in free-recall and
cued-recall tasks (Steyvers, Shiffrin, & Nelson, 2004).

Third, besides the application of word associations in
spatial and network models, word associations play a cen-
tral role in theories of language and concept processing,
such as the dual coding theory (Paivio, 1986). This line of

research has focused on further adapting and improving
theoretical accounts of the function of word associations
in a larger system for representing meaning. A more re-
cently advanced account of the dual coding theory is the
language and situated simulation of conceptual process-
ing (LASS—Barsalou, Santos, Simmons, & Wilson, in
press) theory, which will be considered in further detail in
a later section of this article. According to LASS, multiple
systems are used for representations of concepts. One of
these systems comprises linguistically grounded informa-
tion similar to representations proposed by Burgess and
Lund (1997) and by Landauer and Dumais (1997). Word
associations are assumed to capture most of the repre-
sentations in this language system. When a word is read,
associations become automatically activated. The infor-
mation activated by the word associations spreads to a sec-
ond system, where conceptual information is stored. This
system consists of situated simulations where knowledge
is grounded in a modality-specific manner (Allport, 1985;
Barsalou, 1999; Glenberg, 1997). According to this ac-
count, word associations act as pointers or heuristics that
aid in the retrieval of related conceptual knowledge.

In our companion article (De Deyne & Storms, 2008),
a multiple response procedure was used in which each
participant responded with three associations for the cues
that were presented to them. The procedure differed from
those used in other recent large association studies, which
employed a discrete response procedure in which only
one response was collected per cue. The use of a multiple-
production procedure allows weak associations to be repre-
sented in the norms and thus results in a denser representa-
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tion of word associations. Apart from the representational
properties that capture association responses, an additional
hypothesis can be derived that focuses on the generation
process, since the present task used a multiple response
procedure. Since, unlike in most studies, participants were
asked to generate three associates instead of one, it is pos-
sible that second and third association responses reflect dif-
ferent information. The reasoning behind this hypothesis
is that the second and third association responses are pre-
sumably less available and require different processing than
fast associates. For instance, it is possible that certain as-
sociation responses are generated late (i.e., second or third
response) because of their semantic role. To investigate this,
the semantic role of the first, second, and third association
responses from the multiple response procedure will be sys-
tematically compared in this article. Similarly, the tendency
to give responses that belong to the same word class as the
cue (i.e., paradigmatic responses) can be attenuated when
responses given early are compared with those given late.

The goal of the present study is to apply the different
research lines described above to this large set of word
associations (De Deyne & Storms, 2008) in order to pro-
vide more insight into the nature of word associations in
the following ways. First, the current Dutch norms allow
researchers to generalize their findings to languages other
than English. For instance, Steyvers and Tenenbaum
(2005) noted that it would be desirable to verify whether
the large-scale statistical patterns found in associative
networks correspond in different languages. Second, the
methodology used in the present study allows a different
approach to address questions about the origin and status
of the associations themselves and their functions in se-
mantic representations in general. For instance, the LASS
theory has concrete predictions on how the time course of
the generation of continuous associations interacts with
the semantic content of these associations.

Association responses are characterized by a number
of factors that all capture different but related aspects of
word representations. In this article, three word representa-
tion aspects are considered. The first aspect concerns the
influence of the word class of the cue on the association
response. Previous studies of word associations have found
that cues generally evoke paradigmatic responses (i.e., re-
sponses from the same word class) instead of responses
that are syntagmatically related. Most of these studies were
based on discrete tasks, which could give rise to a different
pattern of results than continuous tasks would.

Second, we present a macroscopic description of the gen
-eral network topology of word associations. More specifi-

cally, we investigated whether the availability properties of
words render a specific topology called small-world net-
works (Steyvers & Tenenbaum, 2005). An important prop-
erty of small-world networks is that only a small minority
of the words are connected with a significant portion of the
other words in the network. The connectivity and central-
ity of certain nodes that result from this topology can also
explain processing advantages of words in terms of well-
known availability measures such as word frequency. For
instance, it is possible that words that occur frequently in
language also have many word associates. This hypothesis

refers to the connectivity characteristics of the nodes in rela-
tion to the availability of words in tasks requiring word pro-
cessing. Of course, word frequency is not the only measure
that determines the centrality of words. We also compared
the effect of word frequency with two other availability mea-
sures: age of acquisition (AoA) and word imageability.

Third, the associations are described in terms of their
semantic properties. The number of studies that have in-
vestigated the semantic composition of word associates
is quite small, whereas there is an abundance of semantic
tasks that use word associates in one form or another. For
instance, in the literature on semantic priming, a long-
lasting debate has focused on the distinction between se-
mantic priming and associative priming (e.g., Livesay &
Burgess, 1999; Lupker, 1984; Shelton & Martin, 1992).
One of the problems is that semantic relations and the in-
terpretation of associations is often underspecified.

Although it has previously been suggested that word
associations comprise semantic responses, further distinc-
tions between these semantic responses along the lines pro-
posed by Barsalou and colleagues (see, e.g., Barsalou et al.,
in press) could have extensive consequences for our un-
derstanding of semantic or conceptual processing. Before
turning to the semantic analysis of word associations, the
word class properties of these associations will be investi-
gated. The distinction along word class also forms the basis
of some of the analyses in the second section of this article,
which deals with the analysis of network connectivity.

PARADIGMATIC AND
SYNTAGMATIC ASSOCIATIONS

In early research concerning the nature of word asso-
ciations, the distinction between paradigmatic and syn-
tagmatic associations was the subject of extensive study
(Deese, 1962; Glanzer, 1962). Paradigmatic associations
are responses that belong to the same word class as the cue
(e.g., noun—noun, verb—verb). Syntagmatic responses, in
contrast, do not preserve the stimulus's word class and in-
clude, for instance, cue—response pairs with noun—verb or
adjective—verb form class relations. In a review of the lit-
erature, Cramer (1968) came to the conclusion that in most
association tasks, paradigmatic responses are the modal
response. In terms of frequency of paradigmatic responses,
the following order was observed: nouns > pronouns > ad-
jectives > adverbs > verbs. Of course, to some extent syn-
tagmatic responses also occur. The syntagmatic responses
that did occur were found most frequently in the following
order: adverbs > adjectives > verbs > ,nouns (Cramer,
1968). This means that when the cue is an Adverb, there is a
tendency to respond with other parts of speech (POSs), and
this tendency is stronger for this word class than for other
word classes, such as adjectives, verbs, or nouns. Most of
the research on paradigmatic and syntagmatic associations
has focused on a discrete association task (Cramer, 1968).
Since more than one association response is given in our
data, it is possible that a shift from paradigmatic to syn-
tagmatic associations occurred for the second and third
responses. In the present analysis, two hypotheses are of
importance. First, we investigate whether the dominant re-
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sponse type is paradigmatic or syntagmatic. Second, we
investigate whether this pattern holds in comparisons of
first, second, and third word association responses.

Method
Materials and Procedure. A detailed description of the data and

the procedure is presented in De Deyne and Storms (2008). For ease
of understanding, a short summary of the procedure is represented
here. The word associations were collected for a total of 1,424 words
in two phases. During the fast phase, word associations were col-
lected for cues belonging to numerous semantic categories. In the
second phase, the most generated association responses were pre-
sented as cues to a new group of subjects. These cues thus covered
a wide variety of words. For each cue, the participants had to give
three different word associations resulting in minimum 246 (3 X
82) and maximum 591 (3 X 197) association responses. The result-
ing data set of 381,909 responses is the starting point for analyzing
the paradigmatic and syntagmatic properties of the association re-
sponses. To identify the POS of the associations in the De Deyne and
Storms (2008) data set, we used the CELEX (Baayen, Piepenbrock,
& van Rijn, 1993) POS tags. In cases in which more than one POS
tag was available, the most frequent tag was used. Although this
method is not perfect, it is sufficient for the present purposes.

Results and Discussion
For 327,833 responses (i.e., 86% of the association re-

sponses), the word class could be determined. The large
majority of response tokens were nouns (72%) and adjec-
tives (18%). Less frequently generated were verbs (9%),
adverbs (0.4%), prepositions (0.34%), pronouns (0.13%),
numerals (including quantifiers such as more and words
referring to numeric values) (0.10%), interjections (e.g.,
congratulations) (0.08%), and expressions (0.08%). To
investigate paradigmatic and syntagmatic responses, the
contingencies between different POSs are investigated. We
will limit this analysis toinouns, adjectives, and verbs. Since
the cue set includes nou4s, verbs, and adjectives, the 3 X 3
contingency table represents paradigmatic associations in
the diagonal entries and syntagmatic associations in the off-
diagonal entries. These contingencies are shown in Figure 1
for first (R1), second (R2), and third (R3) responses.

From Figure 1, it can be seen that nouns are given often
as an initial response irrespective of whether the cue is a
verb or an adjective. Additional evidence for syntagmatic
associations is found for nouns when first, second, and
third responses are compared. These responses show a de-

crease of noun responses in favor of adjectives and verbs.
This finding provides evidence that a paradigmatic to syn-
tagmatic shift occurs among the total numbers of first,
second, and third responses. In order to investigate these
contingencies, a 3 (cue word class) X 3 (response word
class) X 3 (response position) log-linear model was for-
mulated. The only fitting three-way log-linear model was
a saturated model (G2 = 0, df = 0). A more parsimonious
model did not fit the data well, which is not surprising
given the large number of observations in this data set. In
other words, all possible main effects as well as all pos-
sible interaction effects were significant. Therefore, these
effects will not be discussed in more detail.

In conclusion, nouns constitute the most frequent word
class for the responses even if the cues are adjectives or
verbs. The results for adjectives and verbs thus support
the syntagmatic hypothesis and are in line with the results
reported by Deese (1962), who also found that adjective
and verb cues produce a majority of noun responses. Since
nouns elicit mostly noun responses, this indicates that for
this word class, paradigmatic responses are the modal re-
sponse. The resulting pattern is more subtle when later
responses (second and third), which are less paradigmatic
and shift toward syntagmatic responses, are taken into
account. In summary, the present findings contradict the
previously reported results (Cramer, 1968) that paradig-
matic responses dominate association responses for verbs
and adjectives. On the other hand, the pattern observed for
syntagmatic responses for verbs and adjectives was simi-
lar to the patterns of previous findings (Cramer, 1968).

The following section deals with different properties of
centrality and connectivity in a word association network
and goes into further detail on how the word class of word
associations and cues interacts with the connectivity in a
word association network.

SMALL-NETWORK ANALYSIS

Steyvers and Tenenbaum (2005) have examined the
large-scale structure of semantic networks using data from
word associations, WordNet, and Roget's Thesaurus. One
of the major findings was the small-world network struc-
ture, characterized by sparse connectivity, short average 
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Figure 1. Contingency relationships between nouns (N), verbs (V), and adjectives (A) as cues and association responses,
separately for first (RI), second (R2), and third (R3) responses.
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path lengths between words, and strong local clustering
in networks built upon these data. These network proper-
ties provided fundamental insights into the structure and
processes in semantic memory. For example, Steyvers and
Tenenbaum used the small-world network properties of
associations to propose a model of semantic growth. On
the basis of this model, an intuitive account was given for
the origin of word frequency or AoA. In a similar analysis
of our association data, we investigated the generalizabil-
ity of these finds to a different language (Dutch vs. En-
glish) and to data from a continuous (instead of discrete)
association task.

A Short Introduction to Network Analysis
First, a brief description of the relevant concepts of net-

work analysis is given (see Newman, 2003, for a recent
overview). A real example of a portion of the semantic
network built from our word association data is shown in

Figure 2. This figure also illustrates some of the concepts
that are discussed below.

An associative network is a graph (G) that consists of
nodes or vertices (V) linked by connections or edges (E).
In this case, the nodes correspond to cues connected by a
weighted (directed) arc or (undirected) edge to other associ-
ated cues. A weight can be assigned to both the nodes as well
as to the edges and arcs. However, for present purposes only
the edges and arcs will be weighted by the frequency of as-
sociation. Two nodes are neighbors if they are directly con-
nected by an arc or edge. Nonadjacent nodes are connected
by paths. These paths connect two edges or arcs with the
restriction that the nodes on this path occur only once. There
are many possible paths between two nodes, but the shortest
path connecting two nodes is called the geodesic path.

From each graph, a number of statistics can be derived
for the nodes and the connections. Each node has an in-
degree kin and an out-degree kout corresponding to the

Figure 2. Examples of networks with strong (A) and weak (B) local clustering, and
example calculations of network statistics for these networks. The statistics Include
node degree and average path length (B), clustering coefficients (A, B), and closeness
and betweenness (C).
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number of incoming and outgoing arcs in a directed net-
work. For the corresponding undirected network, nodes
have a certain degree, k, which is the number of edges of a
node. The degree of the nodes is therefore also a measure
of the importance and centrality of a certain node in the
network. More advanced measures for the centrality of
nodes in the network are the closeness and betweenness of
a node or vertex. To make these measures easier to under-
stand, Figure 2 provides an illustration and some example
calculations of the measures that are discussed below.

Closeness centrality of a vertex is the number of other
vertices divided by the sum of all shortest path lengths be-
tween the vertex and these others vertices. In comparison
with degree centrality, closeness centrality has the advan-
tage that it takes into account direct and indirect connections
between nodes. The normalized form (Freeman, 1977) is

_ (n —1) ( 1 )

	

d(u,v)'	 ( )
VEV

where d(u, v) is the geodesic (i.e., length of the shortest
path) from u to v. The values of cl(u) are bounded between
0 and 1. In a directed network, two closeness measures can
be calculated: the first version is based on the incoming
arcs, and the second version is based on the outgoing arcs.

Betweenness centrality measures how often a node is
located on the geodesic path between other nodes in the
network. If a node with a high level of betweenness were
to be deleted from a network, the network would fall apart
into otherwise coherent clusters. Unlike degree, which is
a count, betweenness is normalized, by definition, as the
proportion of all geodesics that include the vertex under
study. The betweenness 4entrality (b) for a vertex u is de-
fined as (adapted from Freeman, 1977):

b(u)=1Egu`^,withi*j*u. (2)
i j gi

In this formula, gy is defined as the number of geodesic
paths between i and j, and gi,,j is the number of paths be-
tween i and j that pass through u. The measure b(u) has
values between 0 and 1.

A final measure of centrality is the clustering coeffi-
cient, which is an important way to identify small-world
properties of a network. For each node, a clustering coef-
ficient (CC) can be calculated. For a node u, this is the
proportion of edges with neighboring nodes divided by
the maximal number of edges within this neighborhood.
Intuitively, the clustering coefficient measures the likeli-
hood that two nodes that have a mutual neighbor are them-
selves neighbors. The neighborhood is defined for direct
adjacent neighbors (CC1) and neighbors that are related
through an intermediate node (CC2). For a given undi-
rected graph G = (V, E), CC 1 is derived as follows:

CCl = 2{E[G'(u)]} (3)
^U ) deg(u) • [deg(u) — 1]

The Neighborhood 2 clustering coefficient CC2 follows
from the previous equation:

CC2(u) = E[G'(u)] 	(4)
E[G2(u)]

The numerator corresponds to the number of lines among
vertices in Neighborhood 1 of u, and the denominator cor-
responds to the number of lines among vertices in Neighbor-
hoods I and 2 of u. Normalized coefficients CC 1' and CC2'
are obtained by multiplication with the degree of u divided
by the maximal possible degree of u. Figure 3 illustrates di-
rect neighbors as well as nodes in Neighborhoods 2 and 3 for
the example of the word strawberry based on actual data.

The remaining statistics pertain to the distribution of
edges or arcs in the network. Networks are described in
terms of their density, or the proportion between the num-
ber of edges between the nodes and all possible edges if
all these nodes were connected to each other. A second
measure is the average distance L between two nodes.
This is the average of the shortest path lengths between all
node pairs in a network. A calculation example is shown
in Figure 2. The measure is related to the diameter D of
the network, which gives the maximum distance between
any two nodes in the network. Finally, each network has
a certain distribution P(k), which is the probability that a
random node will have degree k.

With the eight statistics introduced above, properties
(e.g., small-world networks) that are typical for certain
types of networks can be identified. Recent studies have
shown that associative networks contain clusters of nodes
with tightly coupled neighborhoods. These clusters or hubs
of nodes differ from other nodes in that they maintain very
short distances among nodes across the entire network. This
pattern of connections is said to give rise to a small-world
architecture. The degree k to which nodes are connected
forms a distribution that decays as a power law, producing
a scale-free architecture characterized by the existence of
highly connected nodes or hubs (Barabäsi & Albert, 1999).

In summary, semantic networks have small-world prop-
erties if they exhibit short average path lengths and high
clustering. A specific form of these small-world networks
is scale free if the distribution of the degrees follows a
power-law distribution. Using the previously introduced
terminology for graphs and the above statistics, the small-
world properties of our association network can be inves-
tigated and compared with the Steyvers and Tenenbaum
(2005) analysis of the English association data collected
by Nelson, McEvoy, and Schreiber (2004).

Small-World Properties
The first aim of the following analysis was to replicate

the small-world network properties found by Steyvers and
Tenenbaum (2005). Since the cues in our study had a fixed
presentation rate (minimum 80 participants for each cue),
cues and associations should not be presented simultane

-ously in one network. These cues and associations form a
two-mode network and will have different properties. If no
distinction between cues and associations is made, the cue
representations will be biased due to their fixed presentation
frequency and will make the comparison between nodes for
cues and nodes for associations impossible. For example,
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Figure 3. Second- and third-degree associates for strawberry. Sizes of the vertices indicate the fre-
quencies in the network. Darker lines indicate stronger connections. Black vertices are first-degree
associates (Neighborhood 1), gray vertices are second-degree associates (Neighborhood 2), and white
vertices are third-degree associates.

the response oscar to the cue actor was not a presented cue
itself, and therefore will not only have no outgoing connec-
tions, but will also have a lower connectivity, since each cue
was presented to at least 82 participants. This makes it hard
to compare the connectivity for oscar with other words in
the network. One strategy is to limit the network analysis
to the associated one-mode network of cues (a method that
was applied by Steyvers & Tenenbaum, 2005).

The hypotheses focus on the presence of a small-world
structure in the continuous association data. Watts and
Strogatz (1998) showed that small-world networks differ
from comparable random networks (with an equal size and
equal mean connectivity k). The small-world networks have
much shorter internode distances than would be expected
in equally dense random graphs. The crucial measure that
differentiates these types of network is CC 1. Short path
distances and strong local clustering measured by CC 1 are
indicative of small-world properties in the network.

Method
Materials and Procedure. To construct the word association

network without introducing a frequency bias, only the associations
between cues were considered. The nodes in the network corre-
sponded to the 1,424 cues presented to the participants in the study
of De Deyne and Storms (2008). This network, built with Dutch
associations, will be referred to as the Leuven network. In this net-
work, the strength of the connection between two cues was the fre-
quency with which one cue was given as a response to another cue,
regardless of whether this response occurred as the first, second,
or third association in the continuous task. Next, a second network
was constructed for the English association norms of Nelson et al.
(2004, gathered at the University of South Florida), using a similar
procedure. Again, this network consisted only of nodes that were
presented as cues and the edges between them. This network will

be referred to as the Florida network. In both networks, two nodes
are connected if the strength of the connection is at least 2. In other
words, at least 2 participants have generated an association response
for a certain cue. Finally, to investigate the small-world properties,
two random networks were built with a size and mean connectivity
k equal to those of the Leuven and Florida networks.

Within networks with a small-world structure, two different classes
can be distinguished, depending on a power law or exponential shape
of the P(k) distribution (Amaral, Scala, Barthelemy, & Stanley, 2000).
In contrast to exponential distributions, power-law distributions have
a small but significant number of nodes, called hubs, which are con-
nected to a very large number of other nodes. These networks are
called scalefine because the power-law degree distributions have no
characteristic scale of node degree, but instead exhibit all scales of
connectivity simultaneously (Barabäsi & Albert, 1999; Steyvers &
Tenenbaum, 2005). It has been argued that the scale-free structure
poses strong constraints on the process that generates a network's
connectivity and, thus, on the neural hardware that can or cannot
implement these semantic networks (Steyvers & Tenenbaum, 2005).
To identify the scale-free properties of the network, the power-law
distribution plotted on a log/log scale will be investigated. If the dis

-tribution follows a straight line, then this means that there is a small
number of nodes, called hubs, that have many neighbors and a large
number of nodes that have only a few neighbors.

Results and Discussion
The results show that the present network is compara-

ble to the network presented by Steyvers and Tenenbaum
(2005). The coverage of the present network is not as large
as that of their network, but the number of associations
per cue is higher.

First, we calculated the density or sparseness of the
Dutch network. As can be seen in Table 1, the densities
for both the undirected (2%) and the directed (1%) ver-
sions of the Dutch network are very low. Accordingly, in
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Table 1
Network Statistics for the Undirected and Directed Associative and Comparable Random

Networks for the Leuven (De Deyne & Storms, 2008) and Florida (Nelson et ai., 2004) Data Sets
Data Set Density k k L D CC1 CC2 d cl0 b

Leuven (N = 1,424)
Original

Undirected 0.020 29 - 2.46 4 0.226 0.001 0.409 - 0.001
Directed 0.012 17 17 3.43 9 0.147 0.002 0.267 0.257 0.001

Random
Undirected 0.020 29 - 2.52 4 0.020 0.001 0.397 - 0.001
Directed 0.012 17 17 2.86 4 0.012 0.001 0.350 0.012 0.001

Florida (N = 5,018)
Original

Undirected 0.004 22 - 3.04 5 0.186 0.001 0.330 - 0.000
Directed 0.003 13 13 4.26 10 0.121 0.000 0.236 0.228 0.001

Random
Undirected 0.004 22 - 3.03 4 0.004 0.001 0.330 - 0.000
Directed 0.003 13 13 3.63 6 0.003 0.001 0.276 0.276 0.001

Note-See the text for an explanation of abbreviations.

both networks less than 2% of all possible associations
between words are instantiated. This shows the extreme
sparseness of these networks. The Florida network has
an even sparser density (0.4% for the undirected version,
0.3% for the directed version), which can be explained by
the larger variety in the cue set and the use of a discrete
procedure for collecting the association responses. The
average degree or number of different connections in the
network was between 17 (directed) and 29 (undirected),
and each node was reachable through on average of three
connections (i.e., there was average path lengths L of 2.46
for the directed network and 3.43 for the undirected net-
work). Analysis of the network diameter D showed that
the most distant nodes were separated by four (undirected)
and nine (directed) cone ections. The values for L and D
founq in the Florida net'vork are slightly higher, which is
hardly surprising due to lower density of the network.

The remaining statistics measure the average centrality
of the nodes in the network, which allowed us to identify
the small-world properties by comparison with a compa-
rable random network. The neighborhood clustering co-
efficients CC 1 show that the associates of a word were
directly associated with each other as well. For the undi-
rected network, this happened approximately 23% of the
time, whereas for the directed network it occurred about
14% of the time. Again, Table 1 shows that these values
were higher in the Leuven network than in the Florida net-
work. Due to the high increase of neighboring nodes, the
average clustering coefficient that includes indirect as-
sociations in Neighborhood 2 were still quite small. Both
the directed and the undirected networks indeed showed
a much higher clustering coefficient than did the corre-
sponding random graph. Together with the average short
path lengths L, the present network statistics corresponded
closely to Steyvers and Tenenbaum's (2005) conclusion
that the Florida network exhibits small-world properties.

To investigate the scale-free structure of the networks,
the distribution P(k) can be plotted as function of k. In
the case of the undirected network, k is equal to the num-
ber of neighbors and does not make a distinction between
incoming arcs (in-degree) or outgoing arcs (out-degree).

The plot of the degree distribution, together with the dis
-tribution in the Nelson data set, is shown in Figure 4. 1

The plot in Figure 4 shows the best-fitting regression line
of the power-law distribution for the directed network based
on the in-degree distribution. 2 The distributions were esti-
mated by grouping all values of k into bins of consecutive
values and computing the mean value of k for each bin. The
mean value of each bin corresponds to one point, whereas
the boundaries were spaced logarithmically to ensure ap-
proximately equal numbers of observations per bin. 3 As can
be seen in Figure 4, the value of the gamma parameter (1.86)
was around the same value (1.79) that was originally re-
ported by Steyvers and Tenenbaum (2005). However, in our
own simulation of the Florida network, we obtained slightly
larger gammas, which could be due to small variations in
setting up the network. The plot shows a slight deviation
from a power-law distribution, since the points in both net-
works did not follow a straight line. These small deviations
might be explained by the fact that our network was denser
and conceptually more coherent than the Florida network.

In the analysis of Steyvers and Tenenbaum (2005), no
differentiation was made between nodes from different
word classes. One possibility is that the hubs observed
in these networks are primarily members of a certain
word class, such as nouns or adjectives. We investigated
the grammatical class of the most connected nodes in the
network. The hubs were identified as the nodes that corre-
sponded to the 10% most connected nodes based on their
cumulative in-degree distribution. As can be expected, the
number of these hubs was fairly low: 53 out of a total of
1,424 nodes. From these 53 nodes, 28 were adjectives,
24 were nouns, and 1 was a verb. The finding of a high
proportion of adjectives is even more pronounced when
one considers that the cues selected in the association task
were primarily nouns, and that it has been shown that, in
making their responses, people tend to generate nouns
from the same word class (Cramer, 1968). One explana-
tion for this finding can be found in the large variability
in occurrences for the different word classes. For instance,
the CELEX count for Dutch words contains 95,657 nouns,
13,912 adjectives, and 11,837 verbs. When a response is
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Figure 4. The degree distribution for the directed network in log—log coordinates
and best-fitting power-law distribution regression line for the present (Leuven) and
Nelson et al. (2004) association networks.

made, the number of choices of adjectives and verbs is
limited in comparison with that of the nouns. This can
explain the hub qualities of the adjectives. On the other
hand, a different explanation might be needed to interpret
the findings for the verbs, since members of this word
class did not occur as hubs, although the size of the word
class is also considerably smaller than that of nouns.

In the following section, the cue centrality statistics of
the network are compared with measures of word avail-
ability based on word frequency, ADA, and imageability.
A different but complementary analysis of the relation-
ship between these word availability measures and the
frequency of association responses can be found in the
companion article (De Deyne & Storms, 2008).

CUE CENTRALITY

In this section, we investigate the relationship between
centrality and three language utility properties of the
nodes: word frequency, AoA, and imageability.

Theories of word representation hold contrasting views
on which words are central in networks. A first account of
the organization of semantic networks is based upon the
abstract-versus-concrete distinction for words. For instance,
Lambert (1955) found, for both French and English, that
more responses to concrete nouns were available than re-
sponses to abstract ones. However, these results are not in
line with the predictions from network models of memory

(Schwanenflugel & Shoben, 1983; Wattenmaker & Sho-
ben, 1987). In these memory models, concrete or high-
imageability words and abstract or low-imageability words
are differentially represented in such a way that abstract
concepts contain more information than concrete concepts.
In other words, nodes representing abstract concepts have
a higher number of connections and are thus more central.
This view is supported by the observation that abstract con-
cepts occur in a greater variety of contexts than do concrete
concepts (Galbraith & Underwood, 1973). Further empirical
support comes from de Groot (1989), who asked participants
to generate word associations for high- and low-frequency
words and for high- and low-imageability words. It was
found that word imageability exerted a strong influence on
word association, whereas the effect of word frequency was
negligibly small. Associations to concrete, words were made
more quickly than those to abstract words. Furthermore, the
association frequency of the responses to concrete words
was larger, whereas the response heterogeneity was smaller.
In other words, concrete words had fewer connections. In
summary, different theories have given opposing views on
the processing advantage of concrete over abstract words.
However, regardless of which theory is correct, word con-
creteness or imageability might not be the only determinant
of the organization of semantic knowledge.

A different account is given by van Loon-Vervoorn
(1989), who suggested that the order of acquisition is the
most important organizational principle in the semantic
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system. Meanings of words acquired later are built upon
the meanings of words acquired earlier. This conclusion
was based on a timed association task in which van Loon-
Vervoorn found that words acquired early had faster (RT =
1,440 msec) associations than words acquired later (RT =
1,681 msec). Although a similar effect was found for
highly imageable words (RT = 1,445 msec) in comparison
with abstract words (RT = 1,677 msec), this effect was not
as strong. In addition, possible effects of word frequency
were investigated but found not to be significant. Further
support for the idea that the AoA of concepts reflects the
centrality of words acquired early has been found in nu-
merous studies (Brysbaert, Van Wijnendaele, & De Deyne,
2000; De Deyne & Storms, 2007; Steyvers & Tenenbaum,
2005). Many of these accounts have been based on rela-
tively straightforward measures for cue centrality, such as
the number of different associations or the strength of the
primary response. In the following section, cue centrality
measures are used to test contrasting views on word avail-
ability in directed and undirected networks. First, we inves-
tigate the extent to which these language utility properties
correspond to connectivity properties in the association
network, using a number of different centrality measures.
Next, a qualitative comparison is made for the different
centrality measures for the highest connected nodes or
hubs, followed by a brief comparison with hubs from a
similar network based on English word associations.

Method
Materials and Procedure. The networks used in this investiga-

tion were identical to the directed network and the undirected net-
work introduced in the previous section, each consisting of the 1,424
nodes. Calculated for eac^t vertex were degree, clustering coeffi-
cients, closeness, and betWeenness. Word frequency measures were
selected from the Dutch C LEX (Baayen et al., 1993). AoA ratings
were'compiled from Ghyselinck, De Moor, and Brysbaert (2000),
Ghyselinck, Custers, and Brysbaert (2003), Ruts et al. (2004), and
De Deyne and Storms (2007) and measured the subjective rating
(in years) of the age at which a word is learned. Imageability rat-
ings were taken from Ghyselinck et al. (2000), van Loon-Vervoorn
(1985), and newly collected ratings. The newly collected imageabil-
ity judgments were ratings on a 7-point scale and are described in
the companion article (De Deyne & Storms, 2008).

Results and Discussion
The resulting set, in which values for word frequency,

AoA, and imageability overlapped, consisted of 1,117 ver-
tices. The results are shown in Table 2. Note that the degree

for the undirected network is the sum of the in-degree and
the out-degree. The closeness centrality measure makes
the same distinction, thus providing additional columns in
the upper panel of Table 2. The most important differences
between the directed network and the undirected network
are the different results for the in-degree and out-degree
in the directed network, and the degree of the undirected
network.

There was a strong correlation between the number of
incoming arcs and the word availability measures of word
frequency, AoA, and imageability. However, the negative
correlation for the out-degree showed that a large number
of outgoing arcs was weakly associated with lower values
of word availability. Further elaborating on these findings,
it becomes clear that cues with many different associates-
that is, cues with a high out-degree--tended to have nega-
tive correlations, because there was a low agreement in
responses. Summing the in-degree and out-degree damp-
ens the correlations for the undirected network. A similar
effect could be found for the closeness centrality. These
findings correspond with earlier reports that found either
no relationship or an inverse relationship between response
heterogeneity and word frequency (Cramer, 1965; Post-
man, 1964). The findings also correspond to Nelson and
McEvoy (2000), who found that the connections that com-
mon words have from other words tend to be more numer-
ous than the connections they make to other words. The
clustering coefficients4 were only calculated for the simple
case of undirected networks. The clustering based on direct
neighbors in CC 1' shows that most dense clustering nodes
were concrete and early acquired, although the magnitude
of this correlation was weak. The size of the neighborhood
increased greatly when neighbors of neighbors were con-
sidered (CC2'). This centrality statistic closely resembled
the results of the betweenness statistic.

The lemma and word-frequency correlations were simi-
lar in magnitude to each other, as well as to the AoA cor-
relations to most of the centrality measures. However, the
low correlations for imageability did not support the hy-
pothesis that word concreteness determines the network's
structure (de Groot, 1989).

When looking at the relation between word measures
and the different centrality measures in the association
network, a clear division between word frequency mea-
sures and AoA on the one hand and word imageability on
the other is observable. Moderate correlations with the

Table 2
Correlation Between Network Centrality Measures for the Directed and Undirected Networks--k, kin,
kit, Clustering Coefficients in Neighborhood 1 (CC!) and Neighborhood 2 (CC2), Betweenness (b),

Closeness for Directed Networks (din, d°")-and Word Accessibility Measures
Directed Network Undirected Network

Measure k1n k cri" c11 b k c b CCI CC2
WF .70" -.14" .61" -.21" .61" .48" .16" .50" .02 .46"
LF .70" -.11" .61" -.18" .61" .49" .19" .50" .03 .46"
IMA .30" -.01 .35" -.05" .21" .13" .08" .10" .08" .13"
AoA -.64" -.02 -.61" .03 -.55" -.47" -.30" -.43" -.12" -.43"

Note-N = 1,130. k, ki", k°, and b were log-transformed to reduce the effect of skew in the data. WF, CELEX log-transformed word
frequency; LF, CELEX log-transformed lemma frequency; IMA, imageability; AoA, log-transformed age of acquisition. "Sig-
nificant at the .01 level (two-tailed).
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centrality measures were found for word frequency and
AoA, but not for imageability. Although the correlations
point toward a higher degree of centrality for early words,
this effect also occurred for highly frequent words. In con-
clusion, the central network nodes tended to be early ac-
quired and highly frequent, but were not necessarily asso-
ciated with mental imagery. This supports the theoretical
proposals by van Loon-Vervoorn (1989) and Brysbaert,
Van Wijnendaele, and De Deyne (2000) and corroborates
the findings of Steyvers and Tenenbaum (2005), but it
contradicts de Groot's (1989) findings of imageability ef-
fects in the absence of word frequency effects. Notably,
the strongest correlation between imageability and mea-
sures of node centrality was found for the node in-degree
(r = .30). Nodes that frequently occurred as an associa-
tion response (i.e., those with many incoming arcs) tend
to be more concrete. However, the absence of a significant
correlation of the out-degree also shows that word image-
ability does not imply that a concrete word has a larger
number of different associations. Differentiating between
incoming and outgoing arcs provides evidence against the
claim that concrete words have more information associ-
ated with them than abstract words do (de (iroot, 1989).

The global account given above does not provide any
specific information about which nodes were central in
the network. In addition, it did not show how measures
of centrality differ. To be able to appreciate which words
correspond to the central nodes, the 10 most central nodes
were calculated according to previously introduced mea-
sures of centrality. Table 3 shows the results for in-degree
and closeness from a directed network, since the findings
reported above indicate that the interpretation based on
node in-degree provided the clearest case. Since the clus-
ter and betweenness coefficients have an easy interpreta-
tion only for undirected networks, CC! and CC2 calcula-
tions were restricted to the undirected network.

Despite the different ways in which centrality can be for-
malized, there was considerable overlap concerning which
nodes were most central. Many of these hubs were adjec-
tives or corresponded to an ontological category such as ani-
mal. Without doubt, this topic is worthy of an entire study in
itself, and could benefit from additional behavioral data.

To investigate how these results relate to the English
association norms in the Florida network, the highest con-
nected nodes were calculated in the undirected network.
The 10 words with the highest degrees were food, money,
water, car, good, bad, work, school, house, and love. It is
interesting to see that some hubs correspond in English and
Dutch, but it is also clear that there are important differ-
ences. Clearly, the identification of universal hubs across
languages is a topic that needs further investigation.

SEMANTIC PROPERTIES

What qualifies as a semantic relationship has been the
focus of much debate. Some researchers (e.g., Joordens
& Becker, 1997) propose that only word pairs such as
dog—cat are semantically related, whereas words such
as dog—house are not. According to this view, words
are semantically related if they significantly overlap in
terms of their physical properties. At the other side of
the spectrum, words are considered to be meaningfully
related if they share similar contexts (e.g., Barsalou et al.,
in press; Buchanan, Westbury, & Burgess, 2001). Most
likely, both types of semantic relationships are preva-
lent in tasks that involve the processing of words. This
view closely resembles the idea behind the LASS theory
(Barsalou et al., in press). In order to further study what
qualifies as a semantic relationship, we investigated the
semantic relationships that appear in word associations
and studied their relative occurrence. Such an analysis
shows the extent to which associations involve physical—
conceptual semantic relation types or contextual seman-
tic relations. For this purpose, semantic properties of the
associations were coded using a taxonomy previously
introduced by McRae and Cree (2002), which is an adap-
tation of a scheme used by Wu and Barsalou (2007). The
coding scheme has a taxonomic structure that consists of
four feature classes: entity features, situation features,
taxonomic categories, and introspective features. Since
this taxonomy is very fine-grained and hierarchical, it al-
lows us to investigate small differences, as well as more
general differences, by collapsing feature classes in one
branch of the taxonomy.

Table 3
Overview of the 10 Most Central Network Nodes

Node	 km Node	 c Node	 CC 1' Node	 CC2'	 Node b
food	 332 food	 516 food	 48 food	 150	 food 48
white	 261 white	 514 tasty	 47 tasty	 80	 white 47
tasty	 257 pretty	 514 sweet	 39 water	 46	 red 38
water	 253 red	 509 fruit	 39 white	 29	 pretty 33
red	 230 warm	 504 orchestra	 38 pretty	 26	 black 33
pretty	 215 summer	 495 weapon	 37 red	 22	 water 32
black	 214 water	 495 cake	 36 summer	 21	 pain 26
hot	 199 black	 493 fruit'	 35 hot	 21	 hot 25
green	 198 green	 492 dessert	 35 green	 20	 brown 24
summer	 192 brown	 486 summer	 35 animal	 18	 green 22
Note—Centrality was measured as the network in-degree (kin), closeness (clm based on incoming
connections), corrected clustering coefficient within Neighborhood 1 (CC 1'), corrected clustering
coefficient within Neighborhood 2 (CC2'), and betweenness (b). For ease of reading, cl1", CC1',
CC2', and b are multiplied by 1,000. 'This entry refers to the Dutch vrucht, which has a similar
meaning to the Dutch fruit but refers to the part of a plant containing seeds.
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Two questions are of particular interest in this study.
First, the taxonomy should give a detailed account of the
kinds and importance of semantic entities and relations
given as association responses. Second, the taxonomic
coding should allow us to identify qualitatively different
processes underlying the generation of primary
and tertiary association responses. The general hypothesis
for these process differences is that later responses are less
automatic and more elaborate, indicating a contribution
from the situated conceptual representations that is not
available in the associative—semantic network. Under the
assumption that the linguistic system produces responses
faster than the simulation system, we expect to find rela-
tively more linguistic responses for the primary associa-
tions than for the secondary and tertiary associations.
According to LASS (Barsalou et al., in press), situation
and entity responses should be statistically more likely to
originate from describing situated simulations than from
retrieving linguistic forms. The LASS theory is less clear
about introspective and taxonomic features. Most often,
taxonomic categories are viewed as a part of the concep-
tual system. However, taxonomic category labels and their
subordinates are well imbedded in language as collocates
(e.g., an apple is a fruit). Therefore, taxonomic properties
could be part of the linguistic system or the situated system
(Barsalou et al., in press). Introspective properties involve
situated representations to some extent, but they differ in
that they contain affective and evaluative content.

Method
Materials and Procedure. Since the entire set ofassociation cues

was too large to code exhaustively, a subset of 458 items was chosen.
The items were chosen to fckm a representative set of concepts from a
wide range of categories. The coded set consisted of two activity cat-
egories (professions [32] aid sports [30]), four food categories (gen

-eral Jood and drinks [ 14], fruit [31], and vegetables [32]), five animal
categories (insects [26], reptiles [20], birds [30], mammals [34], and
fish [22]), and six artifact categories (kitchen utensils [29], clothing
[29], musical instruments [27], vehicles [29], weapons [17], and tools
[27]). This set corresponded to the concepts in Ruts et al. (2004), with
the additional categories weapons, kitchen utensils, clothing, food,
and drinks. Besides these basic categories, 31 words corresponding to
superordinate concepts, such as fruit or insect, completed our set.

The words were limited to nouns and verbs, since it is unclear
how the existing taxonomies provide a semantic ontology for ad-
jectives. The coding was completed during a first round by 2 in-
dependent coders. In a second round, diverging codes were solved
through discussion. All cue—response pairs had at least one and at
most three codes, since the semantic features do not always indi-
cate exclusive categories. For example, the Dutch cue—response pair
appel <eten> (apple <food/to eat>) had two codes: superordinate
and situated action, corresponding to the two senses in Dutch of
the associate <eten>: food and to eat. The coding definitions and
examples for each coding instance can be found in the Appendix.
Some small adaptations had to be made to make the Wu and Barsa-
lou (2007) taxonomy appropriate for associations . 5 Two particular
types of responses that were obtained through word associations
but that do not occur much in feature data are word completion and
rhymes. To account for these phenomena and to have a taxonomy
with complete coverage of the data, a fifth class of linguistic fea-
tures was introduced. This class consisted of forward compound
continuations (<sun> set), backward compound continuations
(star <fruit>), word fragments (swordfish <sword>), words with
similar orthography (worm <dorm>), and mediated relations. The

mediation could be a virtue of a shared property that connects to oth-
erwise completely different concepts (apricot <tiger>) or a mediat-
ing concept (beaver <toothpaste> mediated through <teeth>).

Results and Discussion
A total of 39,359 unique response pairs, which amounts

to 30% of the total response pairs, were coded. First, the
general distribution of the entity, situation, taxonomic, in-
trospective, and lexical properties will be addressed regard-
less of the specific subtypes of these properties. For each
of these types, the proportion of codes for the indicated
cue—response pairs was calculated. Next, separate analyses
were performed on the subtypes of each property type.

The distribution of the main property types is shown in
Figure 5. The figure illustrates two main findings. First, it
shows that the majority of codes for a total count of 128,929
association responses refer to situation properties. Second,
it indicates that taxonomic responses are most often given
as first responses. The conceptual content, coded in the en-
tity and situational property types, becomes more available
during second and third responses. Further evidence for the
hypothesis of superficial processing comes from the lexical
feature distribution, which drops off in the second and third
responses. The corresponding log-linear model that corrobo-
rates these claims yields a saturated model (G2 = 0, df= 0).
To see whether the interaction between response position and
feature type also occurred in the less frequent introspective
and lexical features, a similar response position X feature
type log-linear model was composed for a subset consisting
of introspective and lexical features only. Again, only the
saturated model gave an adequate fit of the data.

For each of the basic semantic features, the subfeature
distributions are shown in Figures 6, 7, 8, 9, and 10. Fig-
ure 6 shows the distribution of the entity properties. This
figure shows that visual information about color, shape,
and texture is very prominent regardless of whether the
response was the first, second or third association.

Figure 7 shows that the most frequent taxonomic re-
sponses were superordinates and coordinates. This is not
surprising given the fact that most of the concepts are
basic-level concepts. For the superordinate concepts that
were included in the materials, the result obviously devi-
ated from this pattern and the most frequent taxonomic
responses were subordinates. This pattern indicates that
unmarked information, such as superordinates, is readily
evoked when participants are asked to give associations.
The number of synonyms and antonyms was a lot smaller
than the numbers of super- and subordinate responses.
Although the present coding protocol was not designed
to code for adjectives, previous research by Deese (1965)
showed that these two semantic types are the modal re-
sponse for adjectives and would occur more frequently
when more adjectives are represented in the data set.

Figure 8 contains the distribution of the situation prop-
erties. These properties represent the largest portion of the
association responses. Responses referring to information of
concrete objects especially, but also responses regarding lo-
cations embedded in a specific context, are often generated.

The distribution of the lexical codes in Figure 9 shows
a small number of mediated responses. Assuming that
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Figure 5. Three-dimensional bar chart with the percentages of each of the main
features in the adapted Wu and Barsaiou (2007) taxonomy.

all mediated responses indicate chaining in the associa-
tion data (a very unlikely assumption, since mediated re-
sponses can occur in discrete tasks as well), the present
data indicate that this is of little concern. Only 2% of the
first, second, and third responses were related to the cue
through a mediating concept or property. This accounts
for 0.24% of the complete coded data.

The taxonomy of the introspective features in Figure 10
includes many types that code for information typically

found in word feature generation tasks (e.g., McRae & Cree,
2002), such as representational states, contingencies, cogni-
tive operations, and negations. Due to the nature of the task,
these types hardly occur at all in the association responses.
The introspective responses largely consist of evaluations
and emotion responses. The pattern of their distributions is
on a par with the conceptual branches of the taxonomy that
code for entity and situation information, and suggests the
recruitment of additional sources from memory.
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Figure 6. Bar chart with the percentages of occurrences of situation properties in the association responses.
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Figure 7. Bar chart with the percentages of occurrences of taxonomic properties in
the association responses.

The global picture that emerges indicates that the con-
tinuous association task adds response types that are tra-
ditionally more attributed to the retrieval of information
from conceptual representations. However, this evidence
does not allow any dissociation between a semantic—
associative system, in which words are related due to their
distributional properties in language, and a conceptual
system, in which word meaning and associates are medi-
ated by retrieval of sensory representations. Nonetheless,
the present data do provide strong evidence for readily
available information about category membership. The
datl allow specific tests to investigate this kind of pro-
posals. For instance, if language contingencies shape the
semantic—associative system, the likelihood of certain cue
pairs can be estimated and compared with the likelihood

of these pairs in the association data. The largest dissocia-
tions between the "language model" and the association
model must be due to some conceptual involvement. This
account remains speculative for now, but the tools and
data to investigate its merits are accessible.

GENERAL DISCUSSION

In this article, word associations were studied on a
number of different levels. What differentiates this re-
search from previous studies that used large word asso-
ciation data sets is the specific procedure for generating
responses (De Deyne & Storms, 2008). In contrast to the
association data set by Nelson et al. (2004), our associa-
tions were gathered in a continuous task. The nature of
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our task allowed the testing of a number of hypotheses sponses a good candidate for a high-dimensional spatial
regarding the response characteristics of associations that model of meaning such as HAL (Burgess & Lund, 1997)
are given early or late. or LSA (Landauer & Dumais, 1997). The continuous task

First, the idea that association responses are predomi- led to a denser network representation as measured by
nantly paradigmatic was refined. In fact, the syntagmatic the average distance between two arbitrary points in the
responses were the modal response type for adjectives and network. The average distance between two concepts was
verbs but not for nouns. Furthermore, the paradigmatic four edges in an undirected network, whereas the corre-
response tendency for nouns showed a decrease in later sponding network based on Nelson et al. (2004) needed an
association responses. average of five edges to connect two arbitrary nodes. Fur-

Second, it was shown that the secondary and tertiary thermore, the large-scale analysis of the semantic network
responses add extra information, which makes a distri- indicated that the connection pattern between nodes cor-
butional account of meaning based on the aggregated re- responds to a small-world structure. These results confirm
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earlier findings by Steyvers and Tenenbaum (2005) based
on the English data of Nelson et al. Finally, and perhaps
most crucially, the continuous task showed a different dis

-tribution of semantic content types in the responses. This
result fits the prediction of the model of word association
proposed by de Groot (1980), according to which two pro-
cesses determine the generation of word associations: (1) a
fast process during which reactions are retrieved between
directly connected words, without the need for retrieval of
the meaning of the stimulus word; and (2) a relatively slow
process during which no use is made of automatic connec-
tions between word associations, but which depends on a
meaningful interpretation of the stimulus word.

The theory of de Groot (1980) shows a striking resem-
blance to the predictions of the LASS theory (Barsalou
et al., in press). According to LASS, certain types of infor-
mation become activated very quickly, and this process can
be attributed to distributional properties in language, such
as their co-occurrence. Other information becomes avail-
able after extended processing, but this aspect requires the
situated simulation of conceptual properties of the cue. De-
spite the fact that LASS attributes certain types of semantic
relations to different systems, perhaps instantiated in differ-
ent neural substrates, it is hard to prove such claims (which
localize the source of semantic relationships) on the basis
of these data alone. However, at least one study (Simmons,
Hamann, Harenski, Hu, & Barsalou, 2007) has used fMRI
measurements during a property-generation task and an
association task and found a correspondence between the
activation of linguistic areas such as Broca's area for early
responses and area's such as the precuneus, which are often
associated with mental imagery for late responses. Other
studies have used ERP measurements to investigate the
time, course of associa ons and have demonstrated that
less frequent associations typically involve different neu

-roanatomical areas located in the right hemisphere than
do frequent associations (Abdullaev & Posner, 1997).
Evidently, there are still aspects that can differentiate first,
second, and third responses, but, on the basis of the find-
ings described above, researchers interested in using these
association norms can make more informed decisions on
whether to use only primary association response data (i.e.,
based on first associates only) or the aggregated data (i.e.,
based on first, second, and third associates). Furthermore,
alternative theories to dual coding theories have also been
proposed (e.g., the relational/distinctiveness processing
theory—Marschark & Hunt, 1989). Although these ac-
counts offer some predictions about language utility mea-
sures such as imageability or concreteness, they often do
not make any predictions about the semantic composition
of association responses, and further treatment would be
beyond the scope of this article.

The study of the network topology confirmed the find-
ings of the small-world network structure of Steyvers and
Tenenbaum (2005), despite the fact that the Dutch associa-
tion network was not as extensive as the network based on
the Nelson et al. (2004) norms. Furthermore, as in Steyvers
and Tenenbaum, the high-density nodes, called hubs, are
often adjectives. Although both networks exhibit small-
world properties, there are some deviations between the

two networks that are likely due to language-specific prop-
erties and to the choice of materials and procedures. The
networks that are presented here might also deviate from
the neurological substrates that instantiate these proper-
ties in the brain. Even though small-world properties have
been found in many growing systems and there is some
evidence for them in brain networks (Sporns, Chialvo, Kai-
ser, & Hilgetag, 2004), it is not clear if these fmdings can
be generalized to all neural structures that encode meaning
at the conceptual or semantic level. 6 Allowing some specu-
lation, a more functional view of an associative network
with hardwired small-world property constraints could
prove a useful quick-and-dirty heuristic for the retrieval of
conceptual information. This might provide an interesting
solution to the omnipresent frame problem in the study of
conceptual representations. When representation of con-
cepts is seen as the representation of similarity between
concepts, it is unclear how to restrict the representations
that are needed to represent this similarity. For example, it
is likely that the concept of an apple is defined by its simi-
larity to pears or other fruit members, but it is not clear how
this representation can be bounded so as not to include cars
or lightbulbs. If associations reflect the contingencies in
the world through language, organized according to a cer-
tain type of network architecture such as a small-network
architecture, this might provide the structural bounds for
selecting information and presenting a bottleneck for the
activation of conceptual information used in recognition
or categorization. Furthermore, it has been suggested that
these network architectures are dynamically advantageous
because they are more synchronizable or error tolerant
(Strogatz, 2001). Finally, the finding of power-law degree
distributions in semantic networks is significant because it
indicates that a small number of words appear as associ-
ates for a great variety of cues. This finding has theoretical
implications for spatial models of meaning, since this kind
of phenomenon is difficult to produce in spatial represen-
tations (Griffiths, Steyvers, & Tenenbaum, 2007; Steyvers
& Tenenbaum, 2005).

Our study of cue centrality showed that, regardless of
how this centrality is measured, the time at which a word is
acquired (i.e., its AoA) is strongly related to the central po-
sition in the network. Previous research with neuropsycho-
logical patients has shown that AoA is the best predictor of
performance in patients who exhibit a loss of knowledge
about word meaning (Bell, Davies, Hermann, & Walters,
2000; Kay & Hanley, 1999; Ukita, Abe, & Yamada, 1999).
In line with previous accounts by Brysbaert et al. (2000)
and Steyvers and Tenenbaum (2005), these observations
support a mechanistic explanation of how networks grow
over time and how this affects later retrieval.

Our findings have also shown that cue centrality is not
strongly related to the degree of concreteness or imageabil-
ity, a result that does not support the findings by de Groot
(1989) and others who have explained imageability or
concreteness effects in terms network connectedness (e.g.,
Schwanenflugel & Shoben, 1983). In contrast to image-
ability, node centrality was related to word frequency and
AoA. The magnitude of this relationship was similar for
both measures of word availability. In order to disentangle
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these effects, more specific tests are needed. One possibil-
ity would be to investigate differences among verbs, adjec-
tives, and nouns, since a similar analysis of response avail-
ability in a continuous word association task indicated that
the association frequency of verbs and adjectives is related
to the imageability and AoA of these responses, but not to
word frequency (De Deyne and Storms, 2008).

The semantic analysis of the word associations re-
vealed that certain knowledge types are generated early in
a continuous association task. In particular, the fact that
taxonomic information (and especially superordinate in-
formation) becomes available more quickly than concep-
tual information (i.e., entity or situation properties) puts
into question the involvement of conceptual information
in tasks such as semantic categorization. This is in accor-
dance with experimental evidence from speeded categori-
zation tasks with items from natural categories, in which
it was shown that speeded categorization involves both
the retrieval of associations and similarity-based concept
representations (Hampton, 1997).

The semantic taxonomy was expanded to allow the iden-
tification of certain cue—response relationships typically
found in word associations such as mediated responses. If
many of the responses are based on a mediated relation-
ship between cue and association, this would show that the
task is largely affected by chaining (Nelson et al., 2004).
Although chaining might be considered undesirable for
certain studies, our findings indicated that this is of little
concern when only three responses per cue are elicited.
When a large sample of cues and response relationships
were coded, it was found that a maximum of 0.24% of the
data could have been affected by chaining. The semantic
taxonomy also functions as a guide to judge comparable
models. For instance, when a high-dimensional seman-
tic model based on concept features is compared with a
similar model based on word associations, it is hard to in-
terpret different performances of these models. What sets
semantic representations based on text collocates such as
LSA (Landauer & Dumais, 1997) and HAL (Burgess &
Lund, 1997) apart from models such as the Word Associa-
tion Space (Steyvers et al., 2004) or models based on con-
cept properties such as the featural and unitary semantic
space (FUSS; Vigliocco, Vinson, Lewis, & Garrett, 2004)
is the distribution of certain types of semantic properties.
Meaningful interpretations depend on an understanding of
the meaning of the model content.

For instance, if word associations simply stem from the
learner's sensitivity to the statistical properties of language,
then this can be modeled by co-occurrence models such as
LSA or HAL. However, when different kinds of semantic
information are distinguished, a different view can emerge.
For instance, responses referring to visual properties (e.g.,
color, shape) occurred quite frequently. It is at least ques-
tionable whether these types of properties are similarly
represented as co-occurrences in language. The answer to
this question could provide evidence for competing views,
such as the dual coding theory or co-occurrence models
that do not recruit conceptual representations. Further re-
search on this topic is currently being undertaken.

The present semantic analysis has touched upon only a
few aspects of the nature of word associations. We hope
this might lead to a better appreciation of the nature of
word associations, yet it must be acknowledged that the
presented analyses do not provide complete coverage of the
potential offered by the data set. For instance, it does not
describe category-specific differences for the association
responses. Such an analysis (based on semantic features)
has previously been performed to study category-specific
deficits (Cree & McRae, 2003) and could be expanded to
incorporate word associations as well. Furthermore, the
in-depth treatment of topics such as the semantic com-
position of word associations would be beyond the scope
of this article. However, it would be interesting to further
investigate how cue availability properties influence the
semantic types that are generated. For instance, on the
basis of these data it is possible to test the hypothesis that
low-frequency cues elicit more superordinate responses
than high-frequency instances.
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NOTES

1. Note that the gammas are comparable to those reported by Steyvers
and Tenenbaum (2005) but are not completely identical. This is likely
due to the small differences in procedure used to build the network, such
as the choice of the cutoff for the distributions tail, which is needed to
identify the power-law distribution.
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2.Using the out-degree or the sum of out- and in-degrees would
introduce a bias, since the out-degree depends on the task charac-
teristics, such as the number of associations that were generated for
each cue.

3.Through the use of logarithmically transformed bins, the skew in
the regression function is reduced and can be expected to approach the
real values better.

4. The formula that is used to calculate the clustering coefficients
CC 1, CC2 is the corrected version: CC 1' and CC2'. This correction takes
into account the number of edges for the node and normalizes the out-

come by multiplication by the degree divided by the maximum degree
of the network. For nodes with a high degree (a large number of edges),
the interconnections in Neighborhood 1 or 2 is likely to be smaller than
those of nodes with a very low degree, and would have an artificially
small clustering coefficient.

5.The coding scheme used here was based on a similar, but improved,
scheme currently used by Larry Barsalou (personal communication, Janu-
ary 2006).

6.As noted by Steyvers and Tenenbaum (2005), this is especially the
case for the scale-free structure.

APPENDIX
Wu and Barsalou's (2007) and McRae and Cree's (2002) Semantic Taxonomic Codings,

Adapted With Additional Types for Associations

Entity Features: Properties of a concrete entity, either animate or inanimate. Besides being a single, self-
contained object, an entity can be a coherent collection of objects (e.g., forest).

External component: A 3-D component of an entity that, at least to some extent, normally resides on its sur-
face. Examples: coconut <has a shell>; tricycle <has pedals>)

External surface feature (visual or nonvisual): An external feature of an entity that is not a component and
that is perceived on or beyond the entity's surface, including shape, color, pattern, texture, size, touch, smell, and
taste. An additional distinction is made between visual surface features (shape, color, texture, size) and nonvisual
surface features (touch, smell, taste). Examples: apple <is red>; blender <is loud>

Internal component: A 3-D component of an entity that normally resides completely inside the closed surface
of the entity. Examples: cherry <has a pit>; car <has an engine>

Internal surface feature (visual or nonvisual): An internal feature of an entity that is not a component, that
is not normally perceived on the entity's exterior surface, and that is only perceived when the entity's interior
surface is exposed, including color, pattern, texture, size, touch, smell, and taste. An additional distinction is
made between visual surface features (shape, color, texture, size) and nonvisual surface features (touch, smell,
taste). Examples: watermelon <is red>; honey <tastes sweet>

Behavior: A chronic behavior of an entity that is characteristic of its nature and that is described as a char-
acteristic property of the entity, not as a specific intentional action in a situation. Examples: dog <barks>;
clock <ticks>

Material: A specification of the materials or substance of which the entity is made. Examples: oak <made of
wood >; sink <made of enamel >

Quantity: A numerosity, frequency, size, intensity, or typicality of an entity or its properties. Examples: gi-
raffe <has a long neck>; slippers <come in pairs>

Associated abstract entity: An abstract property of the target entity not dependent on a particular situation.
Examples: harp <angels>; teacher <democrat>

Systemic feature: A global systemic feature of an entity or its parts, including states, conditions, abilities,
traits. Examples: dolphin <is intelligent>; car <is fast>

Larger whole: A whole to which an entity belongs. Examples: ant <lives in a colony>; basement <is part
ofa house>

Situation Features: Properties of a situation, where a situation typically includes one or more agents, at some
place and time, engaging in an event, with one or more entities in various semantic roles. Examples: picnic,
conversation, vacation, meal.

Function: A typical goal or role that an entity serves for an agent in a situation by virtue of its physical proper-
ties with respect to relevant actions; Examples: tomato <eaten>; bed <usedfor sleeping>

Action: A (nonintrospective) action that an agent (human or nonhuman) performs intentionally in a situation.
Examples: strawberry <is picked>; shirt <wear>

Object: An inanimate object in a situation, except buildings. Examples: watermelon <plate>; cat <sofa>
Person: An individual person or multiple people in a situation. Examples: toy <cl ildren>;

car <passenger>
Living thing. A living thing in a situation that is not a person, including other animals, plants, and body parts.

Examples: sofa <cat>; park <grass>
Social organization: A social institution, a business, or a group of people or animals in a situation. Examples:

picnic <family>; dog <pack>
Social artifact: A relatively abstract entity, sometimes partially physical (e.g., book) and sometimes com-

pletely conceptual, created in the context of sociocultural institutions. Examples: shark <a movie (about)>;
invention <Nobel prize>

Building: A building in a situation. Examples: book <library>; candle <church>
Location: A place where an entity can be found or where people engage in an event or activity. Examples:

zebra <Africa>; cupboard <kitchen>
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APPENDIX (Continued)
Time: A time period associated with a situation or with one of its features. Examples: turkey <Thanksgiv-

ing>; cabin <vacation>
Event: A stand-alone event or activity in a situation in which the action is not foregrounded but is on a rela-

tively equal par with the setting. Examples: car <trip>; church <wedding>
Manner: The manner in which an action or event is performed in a situation, or in which an entity is

transformed—typically, the modification of an action in terms of its quantity, duration, style, etc. Examples:
potato <cooked>; egg <omelet>

Physical state: A physical state of a situation or any of its components except entities whose states are coded
as systemic features. Examples: mountains <dewy>; beer <hangover>

Quantity: A numerosity, frequency, intensity, or typicality of a situation or any of its properties except when the
feature is an entity feature, whose quantitative aspects are coded with entity-quantity. Examples: party <many
people>; sea <long trip>
Taxonomic Categories: Categories in the taxonomy to which a concept belongs.

Superordinate: A category one level above the target concept in a taxonomy or referring to a basic kind of
thing in existence, including thing, substance, object, human, animal, plant, location, time, activity, event, action,
state, thought, and emotion. Examples: deer <a mammal>; hammer <a tool>

Coordinate: Another category in the superordinate category to which a concept belongs. Examples: coy-
ote <dog>; veil <hat>

Subordinate: A category one level below the target concept in a taxonomy. Examples: lettuce <romaine>;
pants <bell-bottoms>

Individual: A specific instance of a concept. Examples: dog <Lassie>; doll <Barbie>
Synonym: A synonym of a concept. Examples: calf <baby cow>; sink <basin>
Antonym: For nouns, this property also indicates contrasting concepts. Examples: black <white>;

fruit <vegetable>
Introspective Features: Properties of a subject's mental state as he or she views a situation, or properties of a
character's mental state in a situation.

Affect/emotion: An affective or emotional state toward the situation or one of its components by either the
subject or the participant. Examples: wasp <annoying>; bomb < frightening>

Evaluation: A positive or negative evaluation of a situation or one of its components by either the subject or
a participant. Examples: homework <stupid>; gown <fancy>

Representation: A relatively static or stable representational state in the mind of a situational participant,
including beliqfs, goals, desires, ideas, perceptions, etc. Examples: tree <wanted to cut it down>; tree <I had
a good VIEW of a bird in it>

Contingency: A contingency between two or more aspects of a situation, including conditionals and causals,
such as if, enable, cause, because, becomes, underlies, depends, requires, etc.; correlations such as correlated,
uncorrelated, negatively correlated, etc.; others, including possession and means. Examples: garlic <causes
bad breath>; shirt <requires ironing>

Cognitive operation: An operation on a cognitive state, including comparison, retrieval, learning. Examples:
buffalo <like a cow>; magazine <like a book>

Negation: An explicit mention of the absence of something, with absence requiring a mental state that repre-
sents the opposite. Examples: ostrich <cannotfly>; apple <not an orange>

Quantity: A numerosity, frequency, intensity, or typicality of an introspection or one of its properties. Ex-
amples: truth <a SET of beliefs>; buy <I was VERY angry at the saleswoman>
Lexical Features: Properties at the word level by virtue of orthographic similarity and completions, mediated
responses through implicit common features or similar concepts, words used in common expressions, and meta-
comments pertaining to the task and the stimulus (e.g., indications of word class),

Forward completion: The use of a word as a prefix to the response. Example: bomb <shelter>
Backward completion: The use of a word as a suffix to the response. Example: fish <sword>
Word fragment: A part of a compounded word. Example: jellyfish <jelly>
Orthographic similarity: Applying a minor modification to the orthographic composition of the word in such

way that the added or removed letters compose a meaningful unit. Typically, this includes rhymes. Example:
wine <whine>

Mediation: A response generated through an intermediate associate which might refer to an entity or a shared
entity property or situation property. Examples: canary <banana>; whale <fireman>

Expression: Word pairs that occur in common expressions or sayings. Examples: color <outside the lines>;
birds <bees>

Metacomment: A comment on the task or the characteristics of the word as a lexical entity. Examples:
noon <palindrome>; papaya <huh>
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