Behavior Research Methods
2008, 40 (1), 164-176
doi: 10.3758/BRM.40.1.164

AGL StimSelect: Software for
automated selection of stimuli for
artificial grammar learning

Tobpp M. BAILEY
Cardiff University, Cardiff, Wales

AND

EMMANUEL M. POTHOS
Swansea University, Swansea, Wales

Artificial grammar learning (AGL) is an experimental paradigm that has been used extensively in cognitive
research for many years to study implicit learning, associative learning, and generalization on the basis of either
similarity or rules. Without computer assistance, it is virtually impossible to generate appropriate grammati-
cal training stimuli along with grammatical or nongrammatical test stimuli that control relevant psychological
variables. We present the first flexible, fully automated software for selecting AGL stimuli. The software allows
users to specify a grammar of interest, and to manipulate characteristics of training and test sequences, and
their relationship to each other. The user therefore has direct control over stimulus features that may influence
learning and generalization in AGL tasks. The software, AGL StimSelect, enables researchers to develop AGL
designs that would not be feasible without automatic stimulus selection. It is implemented in MATLAB.

Artificial grammar learning (AGL) experiments test
people’s sensitivity to sequential dependencies. In its most
common form, an AGL study involves letter strings (e.g.,
XVSX) that do or do not conform to some simple set of rules
(a finite state grammar). Strings that conform to the rules
are grammatical (G) strings, and strings that do not con-
form are ungrammatical (NG) strings. Without knowing
anything about rules, participants study a sample of strings
that conform to the rules. After being told that the studied
stimuli all conformed to an unspecified set of rules, par-
ticipants are then asked to observe a set of novel strings and
decide which are G and which are NG. The first AGL study
was presented in 1967 (A. S. Reber, 1967), and since then
there have been more than 125 studies, spanning research
themes as diverse as implicit cognition (Berry & Dienes,
1993; Pothos, 2007; A. S. Reber, 1993; Shanks, 2005), as-
sociative learning (Boucher & Dienes, 2003; Perruchet,
Vinter, Pacteau, & Gallego, 2002; Servan-Schreiber &
Anderson, 1990), rules versus similarity (Ashby, Alfonso-
Reese, Turken, & Waldron, 1998; Pothos, 2005), and cog-
nitive neuropsychology (including amnesia, Alzheimer’s
disease, and Parkinson’s disease; Knowlton & Squire,
1996; Poldrack et al., 2001; P. J. Reber & Squire, 1999;
Witt, Nuehsman, & Deuschl, 2002). The AGL paradigm
has also been used recently to study the psychopathology
associated with dyslexia (Pothos & Kirk, 2004) and to ex-
amine cognitive processes supporting the maladaptive be-
havior of alcohol abuse (Pothos & Cox, 2002).

In principle, the structural properties of AGL stimuli
can be controlled to a high degree of specificity, to allow
rigorous examination of different theories of learning.
For example, Vokey and Brooks (1992; Brooks & Vokey,
1991) manipulated the similarity of test strings to training
strings, across both G and NG test items. Knowlton and
Squire (1996) factorially combined test string grammati-
cality with “chunk strength” to test effects of the relative
familiarity of sub-sequences within the test strings (pairs
or triplets of letters, called chunks or fragments). Oth-
ers have combined grammaticality with both similarity
and chunk strength (e.g., Meulemans & van der Linden,
2003). Another possibility is to experimentally control
some properties (particularly grammaticality), and then
analyze the effects of other properties through mathemati-
cal modeling (Johnstone & Shanks, 1999; Pothos & Bai-
ley, 2000).

The research above took great care to control important
stimulus properties. It is far from trivial to construct AGL
stimulus sets that simultaneously control multiple psy-
chologically relevant factors. At present, AGL research-
ers employ trial-and-error methods to identify appropri-
ate stimuli, with more or less assistance from whatever
software tools they develop themselves on an ad hoc basis.
These informal methods are perhaps sufficient to control
two or three key stimulus properties across small stimulus
sets with fewer than about 50 test items. However, these
methods do not scale up well to more complex designs.

T. M. Bailey, baileytm1@cardiff.ac.uk

Copyright 2008 Psychonomic Society, Inc.

164

AGL STIMSELECT 165

Also, although AGL studies typically aim to draw general
conclusions, they usually rely on a single set of stimuli on
which all participants are tested. Although it would often
be preferable to test each participant on a different set of
stimuli (Dienes & Altmann, 2003; R. Reber & Perruchet,
2003; Redington & Chater, 1996), it is not usually feasible
to identify more than one suitable set of stimuli for a given
study using the present trial-and-error methods. Thus, the
lack of an automated procedure to generate AGL stimuli
is a major limitation in AGL research.

In this article, we present AGL StimSelect, a software
package that automatically generates training and test
strings that embody structural properties that can be se-
lected by the user from a flexible and extendable set of
parameterized constraints. With StimSelect, a user can
quickly generate AGL stimuli, while controlling multiple
variables that are likely to influence performance on an
AGL task.

PROGRAM DESIGN

The StimSelect software is written in the MATLAB
programming language, which is available for Windows,
Macintosh, and Unix computing environments. MATLAB
is particularly suitable for mathematical and computational
modeling in a variety of disciplines, including psychology
and cognitive science. The base MATLAB system is re-
quired, as well as the Statistics Toolbox. MATLAB and all
its toolboxes are frequently available in many academic de-
partments and, where they are not, individual licenses can be
purchased from the MathWorks (www.mathworks.com).

StimSelect consists of a set of parameterized functions
that can be called manually from MATLAB’s command
window, or from within|scripts or other functions written
by the user. The software is designed to be easy to use, and
requires only an elementary familiarity with MATLAB

programming. A great deal of flexibility is built into Stim-

Select, in the form of optional arguments for the various
functions to specify constraints on a wide range of stimu-
lus properties. More advanced users can extend the range
of stimulus properties controlled by StimSelect, by writ-
ing additional functions that interface with the lower level
StimSelect functions and data structures. However, the
present article focuses on the basic aspects of StimSelect
that will be of interest to most users.

Finite State Grammars

A user-specified finite state grammar is central to
the operation of StimSelect. In AGL studies, the train-
ing strings conform to some set of rules, and these rules
are most often specified as finite state grammars. An ex-
ample grammar, from Knowlton and Squire (1996, Ex-
periment 1), is shown in Figure 1. In general, a finite state
grammar identifies beginning and end states (indicated
as IN and OUT in Figure 1), and defines continuation re-
lations among elementary symbols, allowing certain se-
quences of symbols to be constructed (Chomsky & Miller,
1958). Letter sequences are either G or NG, according to
whether or not they can be constructed by the finite state
grammar of interest.

Figure 1. The finite state grammar used by Knowlton and
Squire (1996, Experiment 1).

StimSelect allows the user to specify a finite state gram-
mar of their choice, or to simply select one of two widely
used grammars that are built in (Knowlton & Squire,
1996, Experiment 1; A. S. Reber & Allen, 1978). Stim-
Select requires a deterministic grammar, so that no state
of the grammar can have two outward transitions labeled
with the same letter. Because any nondeterministic finite
state grammar can readily be converted into an equiva-
lent deterministic one, this is a restriction on form but not
substance.

The grammar specifies which letters are relevant to a
particular study, and determines which sequences of those
letters are G and which are NG. If the number of either G
or NG strings is large, StimSelect will operate on a random
subset of those strings (by default, the limit is 10,000 G and
NG strings, combined). Training strings are always chosen
from among the G items. Test strings may be either G or
NG, unless restricted to one or the other by user-specified
constraints. The sets of training and test strings are strictly
nonoverlapping, so any given string can be chosen as a
training string, a test string, or neither, but not as both.

Properties of test strings that can be controlled in Stim-
Select include grammaticality, similarity, chunk strength,
chunk novelty, and rule strength. The following sections
introduce these properties in relation to the AGL literature,
and then outline the selection strategy used by StimSelect
to identify training and test strings that have the combina-
tions of properties desired by the user.

Grammaticality

Most AGL studies manipulate the grammaticality of
test strings relative to the rules of the finite state grammar
employed, so that some test strings are G and some are
NG. This makes it possible to assess how well participants
discriminate between test strings that do or do not follow
the rules exemplified by the training strings. Originally,
the ability to distinguish G from NG strings, even to a
limited degree, was argued to indicate knowledge of the
underlying finite state grammar (e.g., A. S. Reber, 1976).
However, later investigators have rejected this interpreta-
tion, including the original proponent himself (e.g., Du-

166 BAILEY AND POTHOS

lany, Carlson, & Dewey, 1984; Pothos & Bailey, 2000;
A. S. Reber, 1993). There is currently some controversy
about the appropriate psychological interpretation of par-
ticipants’ partial ability to discriminate between G and NG
strings (Pothos, 2007). Nevertheless, the grammaticality
of test strings is easy to establish and provides a highly
intuitive relation between test strings and training strings.
Perhaps for these reasons, as well as its historical impor-
tance in the origins of AGL, grammaticality continues to
feature prominently in AGL studies.

Similarity

The similarity of test strings to training strings is one
property of AGL stimuli that might be psychologically
relevant (Vokey & Brooks, 1992). According to exemplar
theories of categorization (e.g., Nosofsky, 1988), classifi-
cation of a new instance as a member of this or that cat-
egory depends on the overall perceived similarity between
the new instance and familiar members of each category.
In AGL, Vokey and Brooks used edit distance to deter-
mine relative similarities between any two test and train-
ing strings. In its simplest form, the edit distance between
two letter strings is the number of letter substitutions, in-
sertions, and deletions required to convert one string into
the other. In addition to its use in some AGL studies, edit
distance has also been used widely in psycholinguistics
(e.g., Luce & Pisoni, 1998), where there is some evidence
that people are more sensitive to substitutions than to in-
sertions or deletions of phonemes within words (Bailey &
Hahn, 2001; Hahn & Bailey, 2005).

The default similarity function in StimSelect is based
on edit distance, normalized by the maximum possible
distance for strings of the same length. This normalized
distance ranges from 0 to 1, and is subtracted from 1 to
arrive at a measure of similarity between 0 (maximally
dissimilar, given the lengths of each string) and 1 (iden-
tical). By default, StimSelect assigns somewhat greater
importance to substitutions than to insertions and dele-
tions in its calculation of edit distance, so that a cost of 1
is assigned to each substitution and a cost of 0.7 to each
insertion or deletion (cf. Bailey & Hahn, 2001). Different
costs for these operations can be specified by the user.
StimSelect also allows the user to specify an alternative
similarity function altogether.

Chunk Strength

After participants study the training strings in an AGL
task, they may be more or less familiar with sub-sequences
of those strings, depending on how many times each sub-
sequence occurred within the training set. Then, when
participants classify test strings, their responses may be
influenced by the perceived familiarity of the various sub-
sequences within each test string (Knowlton & Squire,
1994; Perruchet & Pacteau, 1990; Servan-Schreiber &
Anderson, 1990). The sub-sequences usually considered
in AGL research are pairs or triplets of letters, called frag-
ments or chunks. This theory of AGL performance derives
from general principles of associative learning theory, ac-
cording to which the cognitive system learns by gradu-
ally combining elementary units that co-occur frequently

into a single representational unit (see, e.g., Wasserman
& Miller, 1997).

In StimSelect, chunk familiarity is operationalized by
defining the strength of a chunk as the ratio

F
F+E’

where F is the frequency of the chunk across all training
strings, and E is the expected frequency for a chunk of that
size (basically, the average frequency across all chunks of
that size in training). Chunk strength can range from O to 1;
a chunk that occurs with average frequency will have a
chunk strength of .5, and if F >> E, then

F
F+E "
The chunk strength of a test string is the average strength
of all its chunks, from bigrams up to any user-specified
chunk size.

The definition of chunk strength in StimSelect is obvi-
ously related to, but slightly different from, the measure
of global associative chunk strength used by Knowlton
and Squire (1996). They defined chunk strength in terms
of the absolute frequency of a chunk—that is, the number
of times that chunk appeared in the training strings. In
general, their measure of chunk strength is sensitive to the
number of training strings, and also the number of times
the same training strings are shown to the participant. Be-
cause StimSelect’s measure of chunk strength takes into
account the expected frequency as well as the raw fre-
quency of a chunk, it does not depend on the number of
times the same training strings are shown, and is gener-
ally independent of the number of training strings. This
allows users to change the number of training strings in-
dependently of the target chunk strength values. Also, for
a given number of training strings, Knowlton and Squire’s
(1996) measure of chunk strength varies across different
grammars, depending on the number of different symbols
employed. StimSelect’s measure of chunk strength does
not. This should facilitate comparisons across different
grammars. Finally, it would be difficult, if not impossi-
ble, to do incremental selection of training and test items
using Knowlton and Squire’s (1996) measure of chunk
strength, since the final chunk frequencies would depend
on both the number and length of training items yet to
be chosen. For these reasons, StimSelect adopts a new
measure of chunk strength rather than that of Knowlton
and Squire (1996). Nevertheless, the two measures would
typically correlate very highly with each other.

Chunk Novelty :

There is some evidence that participants in AGL studies
are sensitive to the presence of novel chunks within test
strings—that is, chunks that did not appear in any of the
training strings (e.g., Johnstone & Shanks, 1999; Meule-
mans & van der Linden, 1997, 2003). Sensitivity to chunk
novelty may be independent of sensitivity to relative fa-
miliarity (which is measured by chunk strength). In Stim-
Select, a test string’s level of chunk novelty is determined
by counting how many novel bigrams (or chunks of some
user-specified size) are contained within the string. In ef-

AGL STIMSELECT 167

fect, chunk novelty is a measure of how surprising a given
test item is, in light of the training strings.

Rule Strength

Sensitivity to novel sub-sequences in an AGL study
relies on knowledge about which chunks did or did not
appear in the training strings. Pothos (2007) has recently
argued that such frequency-independent knowledge
amounts to knowledge of certain kinds of rules. This
proposal derives from earlier discussions of what might
constitute knowledge of rules in AGL (e.g., Dulany et al.,
1984), as well as considerations of when it is meaningful
to distinguish between rules and similarity (Pothos, 2005;
Sloman & Rips, 1998; Smith, Langston, & Nisbett, 1992;
Smith, Patalano, & Jonides, 1998).

In accordance with the above, StimSelect defines the
rule strength of a test item as the proportion of chunks it
contains that have been observed in training. Rule strength
is computed across all chunks, from bigrams up to a user-
specified maximum chunk size. In some ways, rule strength
is a conceptual inverse of chunk novelty, but is based on the
proportion of chunks within a test item that are or are not
novel rather than the absolute number of novel chunks.

Selection of Training and Test Strings

Initially, the training and test sets are empty. A few
strings are added to the training set, carefully chosen in
order to control the overall frequency with which each let-
ter, bigram, and trigram occurs in the training set. Only G
strings are eligible for inclusion in the training set, as is the
case with the vast majority of AGL studies. After making
a start on the training set, stimulus selection alternately
adds strings to the various test sets and further strings to
the training set. Strings are chosen for various test sets
in order to achieve different combinations of various at-
tributes, such as G versus NG, high versus low average
similarity to the training strings, high versus low chunk
strength, and so on. Further training strings are chosen
according to the effect they have on the various test sets,
so that the final combination of training and test sets has
the desired combination of attributes. The program aims
to fully counterbalance the attributes of interest (however,
if attributes are highly correlated within the strings gener-
ated by a particular grammar, there will be a limited range
of values over which it is possible to vary them indepen-
dently). Stimulus selection stops when the training and test
sets contain the desired number of strings. At that point,
StimSelect displays a list of the selected training and test
strings. Test strings are reported with categorical informa-
tion for each attribute (e.g., high vs. low similarity), along
with the actual numerical measure of each attribute.

PROGRAM USE

As mentioned above, StimSelect consists of a set of func-
tions, distributed as MATLAB source code. We describe
here the highest level functions, which support the stimulus
constraints most commonly of interest to AGL researchers.
If necessary, users with advanced MATLAB programming
skills can readily extend the set of constraints by analogy

with those described here. In that event, a fuller understand-
ing of the program should be pursued through the examples
distributed with the documentation, as well as the comments
provided within the various MATLAB files.

A list of the high-level StimSelect functions is given
in Table 1, with an example function call for each. The
text below describes how to use these functions to identify
stimuli for an AGL study, and covers the most common
variations available through the function arguments. A
complete list of arguments for each function is given in
the Appendix.

The basic idea of StimSelect is to identify a large num-
ber of potential stimulus strings, and then identify appro-
priate strings to include in a training set as well as in vari-
ous test sets. There are six basic steps in using StimSelect.
First, the user selects one of the predefined grammars,
or specifies the finite state grammar of interest. Second,
the grammar is embedded within an AGLSS data object
to identify potential stimulus strings as G or NG. Third,
the user specifies the factors required to control various
properties of the desired test strings, including the number
of levels of each factor. Fourth, the user specifies how the
different levels of the selected factors combine to define
different sets of test strings. Fifth, a constraint satisfaction
function is run to choose the desired number of training
and test strings. Finally, the training and test strings are
displayed, together with statistics that indicate how well
the selected strings achieve the desired properties. These
six steps are described and illustrated below.

1. Selecting the Finite State Grammar

We have provided functions specifying two frequently
used grammars (Knowlton & Squire, 1996, Experiment 1,
and A. S. Reber & Allen, 1978). Alternatively, users who
would like to specify their own finite state grammar can
easily do so. StimSelect includes a grammars folder that
contains several functions defining finite state grammars.
The grammar first used by Knowlton and Squire (1996,
Experiment 1) is defined by the function knowlton_
squire_grammar. The grammar of A. S. Reber
and Allen (1978) is defined by the function reber_
grammar. There are also some trivial “toy” grammars,
as examples of how finite state grammars are defined.

In StimSelect, information defining a finite state gram-
mar is stored in an FSG data object. Two functions are
provided to allow the user to easily define a finite state
grammar from scratch: FSG and LINK. The FSG func-
tion creates a new FSG data object corresponding to a
degenerate finite state grammar with a specified number
of states but no transitions between them. It also specifies
the set of letters to be used by the grammar. Transitions
between states are added using the LINK function. For
example, the grammar shown in Figure 1 uses the letters
“17“T,” “V;” and “X,” and requires five states. To create an
appropriate FSG data object, execute the expression

g = fsg([], 'JTVX', 5);

The first argument to FSG (given as [] above) poten-
tially allows the user to provide a matrix defining transi-
tions between states, but it is usually simpler to specify

168 BAILEY AND POTHOS
Table 1
High-Level StimSelect Functions
Group Function and Example
1 £8g (create an FSG data object)
F = fsg([], 'xy', 3)
link (add links to an FSG data object)
F = link(F, 1, 'xy.', {2 1 -1})

2 aglss (create an AGLSS data object)
S = aglss(F, [4 8])

3 gram_factor (add a grammaticality factor to an AGLSS data object)

[S, levNames]

= gram factor (s,

'Gram’)

chstr_factor (add a chunk strength factor to an AGLSS data object)

[S, levNames, tgts] =

chstr_factor(s,

'MyChStr"')

rulestr_factor (add arule strength factor to an AGLSS data object)

[S, levNames, tgts] =

rulestr_ factor(s,

'MyRuleStr')

chnov_£actor (add a chunk novelty factor to an AGLSS data object)

[s, levNames, tgts] = chnov_factor (s,

'MyChNov ')

sim factor (add a similarity factor to an AGLSS data object)

[S, levNames, tgts] =

sim_factor (s,

'MySimStr"')

4 factorial testsets (specify combinations of factors for an AGLSS data object)

S = factorial_testsets(S, {'Gram',

'G', 'NG'})

5 choose_items (identify training and test strings that satisfy constraints in an AGLSS data object)

S = choose_items (S, 20, 6)

6 format_train_items (format training strings in an AGLSS data object, ready for display)

format_train_items(S)

format_test items (format test strings in an AGLSS data object, ready for display)

format_test_items(S)

Note—Groups are (1) defining a grammar; (2) creating an AGLSS data object; (3) specifying factors and factor
levels; (4) combining factors; (5) constraint satisfaction to choose stimulus strings; (6) displaying chosen strings.

transitions afterward using the LINK function. The gram-
mar in Figure 1 has two transitions out of State 1, one of
which returns to State 1 and one of which goes to State 2.
To add these transitions to the FSG data object created
above,

g = link(g, 1, 'XV', [1 2]);
The arguments to LINK respectively specify the FSG
data object to be modified, the state from which the speci-

fied links originate, the letters labeling the specified links,

and the states to which the links lead, given in the same -

order as the letters. The beginning state of a grammar is
always State 1. The end state is —1. As shown in Figure 1,
transitions to the end state are not labeled with letters of
the grammar, but instead, the symbol “.” is used to refer to
these transitions in calls to LINK. The remaining links of
Figure 1 can be added using the following expressions:

g = link(g, 2, 'JXT', [3 4 5]);
g = link(g, 3, 'T.', [1 -1]);
g = link(g, 4, 'J.', [4 -1]):
g = link(g, 5, 'V.', [4 -1]);

For convenience, the user would usually create a MAT-
LAB function containing the expressions that define the
grammar of interest.

2. Creating an AGLSS Data Object

The many working variables of StimSelect are organized
within a specialized data structure that has been defined
specifically for this purpose. We refer to this data structure
here as an AGLSS data object, and most of the high-level
StimSelect functions operate on this object. The function

AGLSS creates a new AGLSS data object, and embeds the
user’s finite state grammar within it (in MATLAB terminol-
ogy, the AGLSS function is a class constructor method). In
addition to the user’s grammar, the AGLSS data object also
contains a large set of potential stimulus strings, based on
the letters used in the specified grammar. Each potential
stimulus string is classified as G or NG by the grammar.
Eventually, training and test strings will be chosen from the
potential stimulus strings. An argument to the AGLSSS func-
tion specifies the range of string lengths to be considered.
By way of example, suppose an AGL study is going to em-
ploy the grammar of A. S. Reber and Allen (1978), hence-
forth simply the Reber grammar. To embed this predefined
grammar in an AGLSS data object and consider strings of
lengths 3 to 7, execute the MATLAB expression

(3 71:

This expression creates a new AGLSS data object, as-
signs it to the variable “s,” and produces the output below:

s = aglss(reber_ grammar,

Potential items:
Grammar involves 5 symbols (MRSVX)
97625 possible strings of length 3-7
68 grammatical strings (0.07%)
97557 ungrammatical strings (99.93%)
Using all 68 grammatical strings
Using sample of 9932 ungrammatical
strings

The user must give some thought to the relevant range
of string lengths. In general, the range of string lengths
must be determined primarily by the psychological hy-
potheses of interest to the researcher, but the ability of

AGL STIMSELECT 169

StimSelect to efficiently identify appropriate stimuli de-
pends both on the particular grammar specified and on
the range of string lengths of interest. For example, with
the Reber grammar, if the minimum length of strings is
3 and the maximum is 7, then there are just 68 possible
G strings and 97,557 NG ones. The small number of G
strings here will make it difficult to find a stimulus set for
an AGL study that simultaneously controls more than two
or three key properties of the test items. By contrast, if the
maximum length of strings is increased to 11, then there
are 388 possible G strings (and 61,034,737 NG ones). The
greater number of possible G strings will make it easier to
control more properties of the stimuli, but at the same time
there is probably a limit to the extent to which participants
in AGL studies are sensitive to sequential dependencies in
very long strings. .

By default, out of all the possible G and NG strings,
the AGLSS function ordinarily selects, at most, 10,000
of these for subsequent processing as potential stimulus
strings. The user can specify a different limit with an argu-
ment to the AGLSS function. To consider 30,000 potential
stimulus strings, the expression below could be used:

s = aglss(reber grammar, (3 7], 30000);

In the interest of obtaining the best possible stimuli,
the more potential strings, the better. However, with very
large numbers, MATLAB may run out of memory, or
program completion times may be prohibitively long. In
our simulations, searching in a set of 20,000 strings was
reasonably fast and typically led to the identification of
highly acceptable training and test sets.

If the number of posiible G strings is less than half the
specified limit, then all of them will be potential stimu-
lus strings. Otherwise, p random sample of them will be
selected. Similarly, a random sample of NG strings will
be selected if necessary. The selection process sometimes
results in the number of potential strings being slightly
less than the specified limit, but never more.

The AGLSS data object variable (“s,” in the examples
above) will typically be successively modified by subse-
quent calls to various StimSelect functions. Generally, be-
fore starting another search for a new stimulus set, users
should be careful either to clear the variables in MAT-
LAB memory (using the Clear all command; see also
later), or use different variables for AGLSS objects cor-
responding to different searches.

3. Factors

The highly modular structure of StimSelect means
that the user specifies as many factors as required, in a
straightforward “pick and mix” manner. We describe here
the basic options for the available factors, only briefly
mentioning additional advanced options, where available
(also see the Appendix). We anticipate that many users
will not require these advanced options, which are de-
scribed in detail in the program documentation.

3.1. gram_factor. Grammaticality is the simplest fac-
tor, because it just distinguishes between the G and NG
strings. This distinction is made when the potential stimu-
lus strings are originally selected by the AGLSS function,

so the grammaticality factor contributes very little to the
time required to run the final stimulus selection constraint
satisfaction process. To specify the grammaticality factor
and assign it the name gram, execute the expression:

[s, levels] = gram factor(s, 'gram');

This expression modifies the AGLSS data object “s,” and
also creates a “levels” variable, which contains the names
of the two levels of grammaticality, “G” and “NG.” These
level names will be used later, when combinations of fac-
tors are defined, and they will also appear eventually in the
lists of stimuli chosen. Here and elsewhere, the “levels”
variable is an optional value returned by the function, and
may be omitted if not needed, as in some examples dis-
cussed below in the section on combining factors. Thus,
the expression

s = '‘gram');

has exactly the same effect as the previous one, but does
not create the “levels” variable.

An advanced option for the grammaticality factor al-
lows the user to specify other names for the grammati-
cality levels (e.g., “Good” and “Bad” instead of “G” and
“NG”; here and elsewhere, for any advanced options not
fully covered in the text, please refer to the Appendix). A
similar option is available for all of the factors, but will not
be explicitly mentioned for each.

3.2. sim_factor. The similarity factor controls the aver-
age similarity of test strings to training strings. To specify
the default similarity factor and assign it the name Sim,

gram_factor (s,

[s, levels, targets] = sim factor(s,

'Sim’) ;

In addition to modifying the AGLSS data object “s,” this
expression creates the variables “levels” and “targets.” The
“levels” variable contains names for the different levels of
similarity. Here, those will be “LowSim” and “HighSim,”
but in general the number of factor levels and their names
depend on the arguments specified for the sim_factor
function. The “targets” variable contains the actual values
of similarity desired for test strings assigned to the various
levels of the similarity factor.

By default, two levels of similarity are specified, based
on the distribution of pairwise similarities of the potential
G items to each other. The 25th and 75th percentile values
of these similarities are the respective default target simi-
larities for low-similarity and high-similarity test strings.
Different percentile values can be specified by an addi-
tional argument. The expression

[s, levels, targets] =
'Sim', [20 80]);

assigns low-similarity and high-similarity values based on
the 20th and 80th percentile values of similarities between
potential G strings. The user can specify more than two
percentile values to obtain any number of different levels
of similarity. Alternatively, the user can specify absolute
similarity values rather than percentile values.

If levels of similarity are specified in terms of percen-
tiles, the user can be reasonably certain that the specified

sim_factor (s,

170 BAILEY AND POTHOS

levels will be feasible, regardless of the grammar that is
being used. However, the same percentile for two different
grammars might represent very different levels of abso-
lute similarity. If results are to be compared across differ-
ent grammars, it may be more appropriate to use absolute
levels of similarity than percentiles. Note that a given level
of absolute similarity may be feasible with some gram-
mars and impossible to achieve with others.

The 100th percentile represents the similarity between
the two most similar G items. Usually this would not be a
useful or attainable level of similarity to aim for among a
set of test strings. Indeed, the reported average high versus
low values of similarity in the literature are generally only
marginally different from each other (e.g., Johnstone &
Shanks, 1999; Knowlton & Squire, 1994, 1996; Pothos &
Bailey, 2000; Vokey & Brooks, 1992).

Other advanced options allow the user to specify the
relative cost of insertions, deletions, and substitutions in
computing edit distances between strings, or to specify a
different similarity function altogether.

3.3. chstr_factor. The chunk strength factor controls
degrees of familiarity of the sub-sequences in test strings.
To specify the default chunk strength factor and assign it
the name ChStr,

[s, levels, targets] =
factor(s, 'ChStr');

The return values on the left-hand side of this expression,
and others below, are just like those of sim_factor, dis-
cussed above.

By default, two levels of chunk strength are specified,
based on the frequency of bigrams and trigrams in train-
ing strings (see the discussion of chunk strength in the
Program Design section above). High-chunk-strength
test strings will contain chunks occurring about twice as
often in training strings as the chunks within low-chunk-
strength strings. This is a somewhat more ambitious target
than that typically employed in the literature. For example,
in Knowlton and Squire’s (1996) study, the chunk strength
manipulation varied the average frequency of chunks only
by a ratio of 1.54 to 1. The average global associative
chunk strength of the low-chunk-strength items in their
study was 5.6. Whereas the default criterion employed
in StimSelect would produce high-chunk-strength items
whose average global associative chunk strength was
twice as high (2 X 5.6 = 11.2), the average in Knowlton
and Squire’s (1996) stimuli was only 8.6.

Different relative frequencies can be specified by an
additional argument. The expression

chstr_

[s, levels, targets] = chstr_
factor (s, 'MegaChStr', [1 3]);

assigns more extreme low- and high-chunk-strength levels,
where high-chunk-strength test strings contain chunks oc-
curring, on average, three times as often in training as the
chunks in low-chunk-strength strings. The user can specify
any number of relative frequency values, to obtain as many
levels of chunk strength as are required. Alternatively, the
user can directly specify the absolute target chunk strength
for the chunks in the strings in each category.

An advanced option allows the user to control the vari-
ability in frequency allowed among chunks within a single
test string. Ideally, every chunk within a test string would
have the desired overall level of chunk strength for that
string, However, it is not feasible to achieve this level of zero
variability if chunk strength is to be combined with other
factors. By default, frequencies are controlled so that strings
can achieve their target chunk strength by containing a mix-
ture of 80% of chunks of the correct frequency and 20%
of chunks at the opposite end of the frequency spectrum.
For example, a low-chunk-strength string of length 6 could
contain four low-frequency bigrams and one high-frequency
bigram. The default values of 80% and 20% can be altered,
if necessary, to obtain the best feasible stimulus set.

An additional advanced option allows the user some
control over the size of chunks used to compute chunk
strength. To date, all AGL research has used chunks of
length 2 and/or 3 (bigrams and trigrams). There are some
theoretical justifications for doing so (e.g., Cabrera, 1995;
Dirlam, 1972; Servan-Schreiber, 1991), but the main rea-
son for restricting investigations to bigrams and trigrams
has been ease of computation. The chunk strength factor
allows consideration of chunk strength when the maximum
chunk size is arbitrarily large. For example, if a maximum
chunk length of 4 is chosen, then chunk strength computa-
tions will involve bigrams, trigrams, and 4-grams.

3.4. chnov_factor. The chunk novelty factor controls
the number of novel chunks within test strings. Eligible
potential stimulus strings are identified ahead of time,
so chunk novelty is computed very efficiently and adds
relatively little to the amount of time required by the con-
straint satisfaction process used to select training and test
strings. To specify the default chunk novelty factor and
assign it the name ChNov,

[s, levels, targets] =
factor(s, 'ChNov');

By default, two levels of chunk novelty are specified,
based on the number of bigrams within a test string that do
not appear in any training strings. Low-novelty test strings
will contain only bigrams that also appear somewhere in
the training strings. Each high-novelty test string will con-
tain exactly one bigram that does not appear in any of the
training strings. Note that chnov_factor operates on
chunks of just one size, unlike chstr_factor, which
by default takes into account both bigrams and trigrams.

Any number of different novelty levels can be specified
by an additional argument. There is also an argument that
controls the size of chunks on which chunk novelty oper-
ates, allowing the user to control trigram novelty rather
than bigram novelty, for example. A further optional argu-
ment allows the user to control how many different chunks
are to be avoided in training strings to act as novel chunks
in test strings. By default, two chunks that occur in the
fewest possible G strings are reserved in this way. Poten-
tial stimulus strings containing these particular chunks
will not be selected as training strings. Usually, any test
string that contains a novel chunk will either contain one
of these reserved chunks or an ungrammatical chunk that
does not appear in any G strings.

chnov_

AGL STIMSELECT 171

3.5. rulestr_factor. The rule strength factor controls the
proportions of chunks in a test string that are familiar from
training. To specify the default rule strength factor and
assign it the name RuleStr,

[s, levels, targets] =
factor(s, 'RuleStr');

By default, two levels of rule strength are specified, based
on proportions of familiar bigrams and trigrams. High-
rule-strength test strings will contain 100% familiar bi-
grams and trigrams. Low-rule-strength test strings will
contain 75% familiar bigrams and trigrams (that is, 75%
of the chunks in each string will be familiar, and 25% will
be novel). Different proportions can be specified by an
additional argument. The expression

rulestr_

[s, levels, tarf_;ets] = rulestr_
factor(s, 'RuleStr', [.5 .8]):

assigns low- and high-rule-strength levels based on 50%
and 80% familiar chunks. The user can specify more than
two proportions to obtain any number of different levels of
rule strength. Note, however, that if chunk strength were
to be used in combination with rule strength, it would be
difficult to find strings that have both high chunk strength
and very low rule strength.

An advanced option controls the maximum size of
chunks on which rule strength should operate. For ex-
ample, if a maximum chunk length of 4 is chosen, then
rule strength will be computed over bigrams, trigrams,
and 4-grams.

A further argument allows the user to control how many
different chunks are to be avoided in training strings to act
as novel chunks in tebt strings. This option is just like the
carresponding one discussed above for chunk novelty.

4. Combining Factors

After specifying the individual factors of interest, the
user must specify which levels of which factors are to be
combined with each other to create sets of test strings with
particular combinations of properties. The user is cau-
tioned that, except where noted, the examples below are
not intended to be run one after the other. In general, each
factor of interest should be specified just once. To change
the specification of a factor, the user should start again
from the first step, with a call to the AGLSS function, and
proceed from there. The use of the MATLAB command
Clear all (which eliminates all variables in the MAT-
LAB workspace) is advised before starting the process.

Suppose that grammaticality and chunk strength factors
are specified as

[s, glevs] = gram_factor (s,
'gram');

[s, chlevs] = chstr_factor(s,
'ChStr'):;

Then, to factorially combine grammaticality and chunk

strength,
S =
glevs{:}},

factorial_ testsets(s, {'gram',
{'ChStr', chlevs{:}}):;

The argumentsto factorial testsets specifyan
AGLSS data object plus one or more bracketed lists (cell
arrays, in MATLAB terminology), each of which names a
factor and whichever of its levels are to be combined fac-
torially with specified levels of other factors. The order of
factors in the arguments to factorial_testsets is
irrelevant. In the expression above, glevs{ : } specifies
all levels of the grammaticality factor (“G” and “NG”).
Similarly, chlevs{:} specifies all levels of chunk
strength (“LowChStr” and “HighChStr”). Alternatively,
the user could spell out the factor levels explicitly:

s = factorial_testsets(s, {'gram',
'G', 'NG'}, {'ChStr', 'LowChStr’',
'HighChStr'});

To factorially combine similarity as well as grammati-

cality and chunk strength, the expressions below could
be used:

[s, glevs] = gram factor(s, 'gram');
[s, chlevs] = chstr factor(s, 'ChStr');
[s, slevs] = sim factor(s, 'Sim');
s = factorial_testsets(s, {'gram',

glevs{:}}, {'ChStr’',
{'Sim', slevs{:}}):

chlevs{:}},

As a degenerate case, to control a single factor on its
own, factorial testsets can be passed a single
bracketed list naming the factor and levels of interest. For
example, to manipulate the grammaticality of test items,

s = gram_factor(s, 'gram');
s = factorial testsets(s, {'gram', 'G’,
'"NG'}) s

An advanced option also allows nonfactorial combina-
tions of factors to be specified. This would allow a user to,
for example, specify just three of the four possible com-
binations of two binary variables—for example, omitting
contradictory or infeasible combinations such as low rule
strength-high chunk strength. In general, the feasibility of
simultaneously controlling multiple factors will depend
on the length and number of potential strings to be con-
sidered, the particular options specified for the factors of
interest, and the finite state grammar.

5. Choosing the Training and Test Strings

Once the desired combinations of factors are specified,
the AGLSS data object is ready for stimulus selection. The
choose_items function runs a constraint satisfaction
process to identify the desired number of training and test
strings. For example, to identify 10 training strings plus
5 strings for each set of test strings,

s = choose_items(s, 10, 5);

The number of test sets corresponds to the number of
different combinations of factors and factor levels. Thus,
if only grammaticality is specified via the factorial _
testsets function, then choose_items will find
5 test strings for the “G” category and 5 for the “NG” one.
If binary categories of grammaticality, chunk strength, and

172 BAILEY AND POTHOS

similarity are combined factorially, then there will be eight
test sets of 5 strings each, for a total of 40 test strings.

The choose_items function dynamically displays
a summary of its progress to give the user an indication
of how long the search for stimulus strings will take. On
a Pentium Duo IBM-compatible computer, creating a
stimulus set with 10 training strings and 5 strings in each
test set, balancing grammaticality and chunk strength, re-
quires just a few seconds (using the Reber grammar, with
the default option of searching in a set of 10,000 potential
items). By default, choose_items identifies an initial
set of 3 training strings, based on how well they repre-
sent the target distribution of chunk frequencies. There-
after, each selection round identifies an additional train-
ing string, then 1 test string for each set, until the desired
number of strings is selected. An advanced option allows
the user to specify how many training strings should be
chosen initially, before selection of test strings begins.

6. Displaying the Training and Test Strings

After stimulus strings have been selected, the function
format_train_items lists the training strings in a
formatted text string, This can be displayed in MATLAB’s
output window, and copied and pasted into other applica-
tions as desired. Table 2 shows 10 training strings that were
selected on the basis of the Reber grammar, and displayed
using the expression below (with no trailing semicolon):

format_train_items(s)

The first column of output from format_train_
items enumerates the strings, and the second column
lists the strings themselves.

The function format_test_items lists test strings
in a formatted text string, as illustrated in Table 3. These
test strings were selected to factorially control grammati-
cality and chunk strength, and were displayed using the
expression

Table 2
Sample Training Strings
Itm num Itm name
01 VXM
02 MSVRXM
03 MSV
04 MVRXRRM
05 VXVRXSV
06 VXSSV
07 VXSSSVS
08 VXV
09 MSSVRXR
10 MSSVRXV

Note—Selected using the A. S. Reber and Allen (1978) finite state
grammar.

format_test items(s)

Table 3 shows four test sets (two levels of grammati-
cality X two levels of chunk strength), with five strings
in each set. The first column, Tset num, enumerates
the different test sets. The next two columns (gram_cat
and ChStr_cat) list the names of the factor levels that
define each set of test strings. The Itm_num column
enumerates the training strings within each set, and the
Itm_name column lists the test strings themselves. The
last two columns list the actual chunk strength for each
string, and then the target chunk strength corresponding
to whichever test set the string is in.

Consider the first test string, VXRRM, which is in
the set of G and LowChStr strings. Its chunk strength is
0.367, which seems reasonably close to the target value
for LowChStr strings, 0.400. There is no such information
for the grammaticality factor, because the grammatical-
ity of each potential stimulus string is defined ahead of
time, and the selection of strings appropriate to each level
of grammaticality does not require dynamic checking of
string properties against target factor levels.

Table 3
Sample Test Strings

Tset_num gram cat ChStr_cat Itm_num Itm name ChStr ChStr_tgt
01 G LowChStr 01 VXRRM 0.367 0.400
01 G LowChStr 02 VXRR 0.358 0.400
01 G LowChStr 03 VXVS 0.450 0.400
01 G LowChStr 04 VXRRRRM 0.293 0.400
01 G LowChStr 05 VXRRRM 0.323 0.400
02 NG LowChStr 01 RRXRXSR 0.377 0.400
02 NG LowChStr 02 XXSVVXS 0.391 0.400 °
02 NG LowChStr 03 SVRMVSS 0.405 0.400
02 NG LowChStr 04 SVSM 0.358 0.400
02 NG LowChStr 05 VMMRVRX 0.379 0.400
03 G HighChStr 01 VXVRXRR 0.566 0.571
03 G HighChstr 02 VXVRXRM 0.555 0.571
03 G HighChStr 03 MSSSSVS 0.573 0.571
03 G HighChStr 04 VXVRXV 0.591 0.571
03 G HighChStr 05 MSSSSsv 0.589 0.571
04 NG HighChStr 01 MVXVRX 0.565 0.571
04 NG HighChStr 02 MSVXSVR 0.575 0.571
04 NG HighChStr 03 RXSSVRR 0.581 0.571
04 NG HighChStr 04 SVRXVRV 0.576 0.571
04 NG HighChstr 05 SVXVRXS 0.577 0.571

Note—Selected using the A. S. Reber and Allen (1978) finite state grammar. This test set manipulates

grammaticality and chunk strength.

AGL STIMSELECT 173

For a quick, informal assessment of the extent to
which the test strings are suitable or not, summary in-
formation for each test set can be obtained by giving
*summary’' as an additional argument to the function
format_test_items:

format_test_items(s, 'summary')

This expression lists average factor values for each test
set, as illustrated in Table 4. The columns are the same
as in Table 3, except that item numbers and item strings
themselves are omitted. In evaluating the extent to which
selected strings have the desired properties, the user may
want to check whether the various properties of individual
strings are closer to their target values than to the target
values of other levels of the same factor. Also, various
authors have used statistical tests to evaluate the collective
appropriateness of AGL test sets (e.g., Brooks & Vokey,
1991; Knowlton & Squire, 1996; Vokey & Brooks, 1992).
It is straightforward to carry out such tests from the output
produced by StimSelect.

Note that if the finite state grammar defines only a
small number of G items, it may be difficult or impossible
to find suitable test strings that combine several other fac-
tors with grammaticality. In that case, the properties of
some test strings may be far away from the specified fac-
tor levels. If this does occur, the user may want to increase
the maximum length of the items in the first instance, and
possibly experiment with some of the advanced options.

PROGRAM INSTALLATION

The software is distributed as a .zip file. Users running
Mac OS-X can unpack this file by opening it with the
Finder. Users running Windows XP can unpack this file
by selecting it in Windows Explorer and then choosing
File > Extract All from the command menu. Users run-
ning Unix can unpack the .zip file using the unzip com-
mand. It does not matter where the contents of the .zip
file are extracted, but a MATLAB path must be specified
to that location so that MATLAB knows where to look
for the StimSelect functions. The MATLAB path can be
modified using the File > Set Path menu option in the
MATLAB command window. The Set Path With Subfolder
button will allow the user to browse to the directory con-
taining the unpacked StimSelect files.

SUMMARY

StimSelect allows the user to create AGL stimulus sets
based on a particular finite state grammar, so that the test

Table 4
Summary of Selected Test Strings
Tset_num gram cat ChStr_cat ChStr ChStr tgt
01 G LowChStr 0.358 0.400
02 NG LowChStr 0.382 0.400
03 G HighChStr 0.575 0.571
04 NG HighChstr 0.575 0.571

Note—Based on test strings of Table 3.

strings are balanced across any combination of the fol-
lowing factors: grammaticality, similarity, chunk strength,
chunk novelty, and rule strength. These factors represent
by far the most common stimulus properties in AGL stud-
ies (Pothos, 2007). A number of advanced options allow
the user to alter the specification of all these factors in
theoretically interesting ways (including, in particular, the
use of larger chunk sizes for chunk-based factors). Addi-
tional factors can be defined by analogy with the specifi-
cation of the existing ones. '

To achieve flexible and efficient stimulus selection, the
mathematical specifications of some factors have been
slightly refined relative to traditional definitions in the
AGL literature. We have altered the definition of “chunk
strength” to obtain a more robust measure, in which chunk
strength is scaled relative to expected chunk frequencies,
so that chunk strength values do not depend on training
item repetitions or the number of training items. Also, we
have generalized the definition of “similarity” to allow
differential weighting of insertions, deletions, and substi-
tutions (such flexibility will be desirable for some research
projects). Finally, we have implemented for the first time a
measure of rule strength, consistent with a recent proposal
of what rules are (Pothos, 2005). Associating rules knowl-
edge with grammaticality has been highly problematic
(e.g., A. S. Reber, 1993); therefore, providing an alterna-
tive conception of what would constitute rules knowledge
in AGL would enable new research possibilities.

The appeal of AGL has been recognized, in that AGL
designs allow the concurrent examination of several hy-
potheses about learning. Researchers in the past have re-
lied on informal methods to balance the postulated influ-
ence of different stimulus attributes. With such methods,
itis difficult, if not impossible, to balance arbitrarily many
factors for stimulus sets of arbitrary size. StimSelect al-
lows AGL designs that are much more sophisticated than
was previously possible, including factorial manipula-
tions of four or five stimulus properties simultaneously.
By greatly expanding the range of feasible AGL designs,
StimSelect has the potential to significantly aid further
progress in AGL and learning research more generally.

AUTHOR NOTE

This research was partly supported by ESRC Grant R000222655 and
European Commission Grant 51652 (NEST). Correspondence concern-
ing this article should be addressed to T. M. Bailey, School of Psychol-
ogy, Cardiff University, Cardiff CF10 3AT, Wales, or E. M. Pothos, De-
partment of Psychology, Swansea University, Swansea SA2 8PP, Wales
(e-mail: baileytm1@cardiff.ac.uk or e.m.pothos@swansea.ac.uk).

REFERENCES

AsHBY, FE G., ALFONSO-REESE, L. A., TURKEN, A. U., & WALDRON, E. M.
(1998). A neuropsychological theory of multiple systems in category
learning. Psychological Review, 105, 442-481.

BAILEY, T. M., & HARN, U. (2001). Determinants of wordlikeness: Pho-
notactics or lexical neighborhoods? Journal of Memory & Language,
44, 568-591.

BERrry, D. C., & DiENES, Z. (1993). Implicit learning: Theoretical and
empirical issues. Hove, UK.: Erlbaum.

BOUCHER, L., & DIENES, Z. (2003). Two ways of learning associations.
Cognitive Science, 27, 807-842.

BRrOOKS, L. R., & VOKEY, R. J. (1991). Abstract analogies and abstracted

174 BAILEY AND POTHOS

grammars: Comments on Reber (1989) and Mathews et al. (1989).
Journal of Experimental Psychology: General, 120, 316-323,

CABRERA, A. (1995). The “rational” number e: A functional analysis of
categorization. In Proceedings of the 17th Annual Conference of the
Cognitive Science Society. Mahwah, NJ: Erlbaum.

CHOMSKY, N., & MILLER, G. A. (1958). Finite state languages. Informa-
tion & Control, 1,91-112.

DIENES, Z., & ALTMANN, G. (2003). Measuring learning using an un-
trained control group: Comment on R. Reber and Perruchet. Quarterly
Journal of Experimental Psychology, 56A, 117-123.

DirLAM, D. K. (1972). Most efficient chunk sizes. Cognitive Psychol-
ogy, 3, 355-359.

DuLANY, D. E., CARLSON, R. A, & DEWEY, G. 1. (1984). A case of
syntactical learning and judgment: How conscious and how abstract?
Journal of Experimental Psychology: General, 113, 541-555.

HanN, U,, & BAILEY, T. M. (2005). What makes words sound similar?

Cognition, 97, 227-267.

JOHNSTONE, T., & SHANKS, D. R. (1999). Two mechanisms in implicit
grammar learning? Comment on Meulemans and van der Linden
(1997). Journal of Experimental Psychology: Leaning, Memory, &
Cognition, 25, 524-531.

KNOwLTON, B. J., & SQUIRE, L. R. (1994). The information acquired
during artificial grammar learning. Journal of Experimental Psychol-
ogy: Learning, Memory, & Cognition, 20, 79-91.

KNOwLTON, B. J., & SQUIRE, L. R. (1996). Artificial grammar learn-
ing depends on implicit acquisition of both abstract and exemplar-
specific information. Journal of Experimental Psychology: Learning,
Memory, & Cognition, 22, 169-181.

Luck, P. A, & Pisont, D. B. (1998). Recognizing spoken words: The
neighborhood activation model. Ear & Hearing, 19, 1-36.

MEULEMANS, T., & vAN DER LINDEN, M. (1997). Associative chunk
strength in artificial grammar learning. Journal of Experimental Psy-
chology: Learning, Memory, & Cognition, 23, 1007-1028.

MEULEMANS, T., & VAN DER LINDEN, M. (2003). Implicit learning of
complex information in amnesia. Brain & Cognition, 52, 250-257.

Nosorsky, R. M. (1988). Similarity, frequency, and category represen-
tation. Journal of Experimental Psychology: Learning, Memory, &
Cognition, 14, 54-65.

PERRUCHET, P., & PacTEAU, C. (1990). Synthetic grammar learning;
Implicit rule abstraction or explicit fragmentary knowledge? Journal
of Experimental Psychology: General, 119, 264-275.

PERRUCHET, P., VINTER, A., PACTEAU, C., & GALLEGO, J. (2002).
The formation of structurally relevant units in artificial grammar
learning. Quarterly Journal of Experimental Psychology, 55A,
485-503.

POLDRACK, R. A., CLARK, J., PARE-BLAGOEYV, E. J., SHOHAMY, D., CRESO
MovANo, J., MYERs, C., & GLUCK, M. A. (2001). Interactive memory
systems in the human brain. Nature, 414, 546-550.

PotHos, E. M. (2005). The rules versus similarity distinction. Behav-
ioral & Brain Sciences, 28, 1-49.

PotHos, E. M. (2007). Theories of artificial grammar learning. Psycho-
logical Bulletin, 133, 227-244.

PotHos, E. M., & BAILEY, T. M. (2000). The importance of similarity
in artificial grammar learning. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 26, 847-862.

PotHos, E. M., & Cox, W. M. (2002). Cognitive bias for alcohol-related
information in inferential processes. Drug & Alcohol Dependence,
66, 235-241.

PotHoOs, E. M., & KIRK, J. (2004). Investigating learning deficits associ-
ated with dyslexia. Dyslexia, 10, 61-76.

REBER, A. S. (1967). Implicit learning of artificial grammars. Journal of
Verbal Learning & Verbal Behavior, 6, 855-863.

REBER, A. S. (1976). Implicit learning of synthetic language. Journal of
Experimental Psychology: Human Learning & Memory, 2, 88-94.

REBER, A. S. (1993). Implicit learning and tacit knowledge. New York:
Oxford University Press.

REBER, A. S., & ALLEN, R. (1978). Analogic and abstraction strategies
in synthetic grammar learning: A functional interpretation. Cognition,
6, 189-221.

REBER, P. J., & SQUIRE, L. R. (1999). Intact learning of artificial gram-
mars and intact category learning by patients with Parkinson’s disease.
Behavioral Neuroscience, 113, 235-242.

REBER, R., & PERRUCHET, P. (2003). The use of control groups in arti-
ficial grammar learning. Quarterly Journal of Experimental Psychol-
ogy, 56A, 97-115.

REDINGTON, F. M., & CHATER, N. (1996). Transfer in artificial grammar
learning: Methodological issues and theoretical implications. Journal
of Experimental Psychology: General, 125, 123-138.

SERVAN-SCHREIBER, E. (1991). The competitive chunking theory: Mod-
els of perception, learning, & memory. Unpublished doctoral disserta-
tion. Carnegie-Mellon University.

SERVAN-SCHREIBER, E., & ANDERSON, J. R. (1990). Learning artificial
grammars with competitive chunking. Journal of Experimental Psy-
chology: Learning, Memory, & Cognition, 16, 592-608.

SHANKsS, D. R. (2005). Implicit learning. In K. Lamberts and R. Gold-
stone (Eds.), Handbook of cognition (pp. 202-220). London: Sage.
SrLoMaN, S. A, & Rips, L. J. (1998). Similarity as an explanatory con-

struct. Cognition, 65, 87-101.

SMiTH, E. E., LANGSTON, C., & NISBETT, R. E. (1992). The case for rules
in reasoning. Cognitive Science, 16, 1-40.

SMITH, E. E,, PATALANO, A, L., & JONIDES, J. (1998). Alternative strate-
gies of categorization. Cognition, 65, 167-196.

VOKEY, J. R., & Brooks, L. R. (1992). Salience of item knowledge in
learning artificial grammars. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 18, 328-344.

WASSERMAN, E. A., & MILLER, R. R. (1997). What’s elementary about
associative learning? Annual Review of Psychology, 48, 573-607.

WITT, K., NUEHSMAN, A., & DEUSCHL, G. (2002). Intact artificial gram-
mar learning in patients with cerebellar degeneration and advanced
Parkinson’s disease. Neuropsychologia, 40, 1534-1540.

APPENDIX
Parameters for High-Level StimSelect Functions

£sg([(], 'L', N)
: II\Iumber of states in grammar
Ll.etters used in grammar
link (F, SO, 'L', [S..])
: : : étates to which transitions go
: : Il.etters labeling links from SO to S
: étave from which links originate
II:SG data object; required

AGL STIMSELECT 175

APPENDIX (Continued)

gram factor(s, 'F', {'L'.})
| | |
| | Level names, one per factor level; default {'G', 'NG'}
] !
| Factor name; required
|

AGLSS data object; required

chstr_factor(s, '
|

'y [T.1, {'L'.}, [p P], Z)
| | [|
| | || Maximum chunk size to control; default 3
| ! [
| | | Fraction of high-chunk-strength string’s chunks at highest frequency
| | | level; default p
o | Fraction of low-chunk-strength string’s chunks at lowest frequency level >0;
] | default 0.8
| Level names, one per factor level; defaults depend on number of levels

F
|
I
!
I
!
I
|
|
|
| Chunk strength targets (relative or absolute), one per level; default [1 2]

|
|
|
]
|
|
|
|
!
|
| Factor name; required
I

AGLSS data object; required

rulestr_factor(s, '

'y [T.], {'L'), (X GY, 2)
I
I Maximum chunk size to control; default 3
|

!
I !

| | Minimum number of grammatical chunks of size Z to exclude from
| | training strings; default 2

‘ | Minimum number of chunks (grammatical or not) to exclude from training
: | strings; default G

! Level names, one per factor level; defaults depend on number of levels
| |

! !
I

I

F

|
! I
! !
| I
! [
l I
! !
| |
| |
I

Rule strength targets, one per level; default [.75 1}
Factor name; required

AGLSS data object; required

chnov_factor(s, 'F', [T..], {'L'.}, [

Gl, Z)
|

| Chunk size to control; default 2
I

X
|
I
I
I

|

| Minimum number of grammatical chunks of size Z to exclude from

| | training strings; default 2

| Minimum number of chunks (grammatical or not) to exclude from training
| strings; default G

Level names, one per factor level; defaults depend on number of levels

F
I
I
I
|
I
|
I
I
|
I

Chunk novelty targets, one per level; default [0 1]
|

Factor name; required

I
|
I
|
I
I
I
I
I
|
I
I

AGLSS data object; required

176 BAILEY AND POTHOS

APPENDIX (Continued)
sim factor(s, 'F', [T.], {'L'..}, €M, {P..}, @N)
I I I I I I Slcaling function; for advanced users only
I I I I I 1"a1ameterstosimilarityﬁmction;default{0.7,0.7,1} for @EditSim,
I |I I : Sluml:rlxst; {ﬁinction; default @EditSim
I I I Il.evel names, one per factor level; defaults depend on number of levels
I I Slimi]arity targets (percentile or absolute), one per level; default [25 75]
|I l|=actor name; required
JxGLSS data object; required

factorial testsets(s, {'F', 'L'..}, ..)

I | I
| Names of levels of F to be included; required

|
| Name of factor to be combined factorially with others; required
I

AGLSS data object; required

factorial testsets(s, {{'F', 'L'..}, {..}}, ..)

| | Names of levels of F to combine pairwise with corresponding levels of other factors;
| | required

| Name of factor to combine pairwise with other factors; required

I

AGLSS data object; required

choose_items (S, N, M, NO)

I R
| | Number of head start training items; default 3

I
I
| | Number of test strings desired per combination of factor levels; default 0
b

| Number of training strings desired; required

I

AGLSS data object; required

format train items(S)

I
AGLSS data object; required

format_test_items (S, 'P’')
.

| ‘detail’ or 'summary’; default 'detail’

I
AGLSS data object; required

(Manuscript received February 19, 2007;
revision accepted for publication April 25, 2007.)

