Acoustic confusability values for 1172 CCC trigrams'

DENISE SCOTT and A. D. BADDELEY, University of Sussex, Brighton, England

Mean probabilities of acoustic confusability were computed for 1172 CCC trigrams chosen at random from Witmer's list of association values, and the results were tabulated.

Acoustic confusability has been shown to be a strong factor in the recall of letter sequences (Conrad, 1964; Wickelgren, 1965) but it is a variable that is rarely controlled in experiments using CCCs. This is presumably due to the lack of a table of such values and the inconvenience of computing the appropriate values for all CCCs used in such studies.

Conrad (1964) presents an acoustic confusion matrix from which it is possible to compute the mean probability of acoustic confusability of any sequence of letters using Clarke's (1957) Constant Ratio rule.

Mean probabilities of acoustic confusability $[p(A C)]$ were computed for 1172 CCCs chosen at random from Witmer's (1935) list of three-consonant syllables. Because of the difference in British and American pronunciations of the letter " z " ("zed" and "zee") all syllables containing this letter were eliminated. The following table presents the 1172 syllables arranged first by Witmer's association values (AV) and, within each $A V$, by ascending order of $p(A C)$.

Table 1

0\%AV	QGX . 21	HBM . $\mathbf{\alpha}_{4}$	WFP . 01
QJF . 02	GQ . 21	JDF . 04	RJW . 02
XJQ . 02	JXF . 22	N4S . O_{4}	TJQ .02
QJH. O_{4}	Q.F. 25	QFT. 0_{4}	XRJ . 02
XFQ . 21	QFC. 25	BFM . 05	HWQ . 03
	CJQ . 27	BMF .05	Q17T . 03
4\%AV	CQH . 28	DJH . 06	WPJ . 03
XQL . 01	DJB . 34	JFM . 06	XQK . 03
KXB . 02		KHQ . 06	BFJ . O_{4}
QXJ . 02	13\%AV	MB:V . 06	FJP . O_{4}
DJX . 03	TFJ . 03	RBM . 06	TLP. O_{4}
QHJ . 04	XBN . 03	XGJ . 06	FFN . 05
FFW . 07	QJS . 05	XJL . 06	NLQ . 05
CXJ . 09	QHF . 06	HJF . 07	HWF . 06
GXM . 09	HCF . 07	XNJ . 07	LJW . 06
XQH .09	QXH .09	WCJ . 08	WBM . 06
XBQ .10	XJC 09	HKJ . 09	GJK . 07
KHX . 11	QDJ . 16	JXH . 09	HSL . 07
HFC 015	QNW . 21	OHX . 09	WGJ . 77
XGF . 21	QXF . 21	SJH . 12	NQJ.C3
GCT .24	XFP . 22	BJQ .13	QMK . 08
	XGP . 24	QUB . 13	XIIG . 08
8\%这	HCQ . 25	QDJ . 16	JHX . 09
FQW -0,	QFC. 48	PXB .17	BFQ . 11
JFQ . 02		JTK . 18	DHX . 11
MHW . 03	17\%AV	NPB . 20	BQH .12
CST .05	X041 . 01	QXG . 21	KBQ . 12
MJF . 06	XQN .02	XFIT .23	KBQ 12
QLJ . 06	JHV . 03	XJS .23	FCM 013
WFC . 07	Kilq .03	FJS . 32	KHC . 15
KQB . 12	KXR . 03	SXH .32	MCJ . 15
DJQ . 16	kiBX . 03	DWB .33	QDM . 15
GXC . 20	XBM .03		CSJ . 16
XGC . 20	XJP . 03	21\% 2 V	QDH . 16
FXG . 21	FPJ . \mathbf{O}_{4}	QFW . 01	XCG . 20

BX .2	
	TJB
	GON . 24
	KXP
	FX .27
	Q
	J
	Pr
	Krs
	TCF
	AGD
25\%)	
	KGX
	KXP
	H 03
	RWF
	XLG . 0
	XMB . 03
	SGM
	LIH
	FHO
	HKQ
	TJI
	WH\%
	G
	BJW
	JWB
	Rif F
	BXH
	FHK
	HJN
	HFS
	QBX
	XHN
	LJS
N	
	XHK
MYC . 12	
	NDJ . 1
KM .13	
	BQ
	RJL . 13
SDH . 13	
NCW . 1	
	M
DKG . 15	
HMC	
	QDN
PBF .18	
HCX .19	
	,
,	
GWQ . 22	
JTB . 22	
	QGL
.	
	QJG . 24

GXB
QCS
QC
BJG
GN
GWB
JB
QS
CX
KD
XC
KS
TF
GB
XS
GXB
QCS
QCH
BJG
GNB
GWB
JBG
QSF
CXS
KDB
XCS
KSF
TFE
GBQ
XSF

29\%AV
XLQ . 01
BXK . 02
KBX . 02
QNV:.02
HWJ . 03
JXD .03
PJW . 03
WJP . 03
BJF. O_{4}
FJB. O_{4}
$\mathrm{PFJ} \cdot \mathrm{Cl}_{4}$
CKF .O4
NSJ . 04
FKB .05
FWB . 05
HTJ . 05
JKH .05
JSQ. 05
NFP .05
$\mathrm{N} W \mathrm{H} .05$
NXL . 05
SJB . 05
WHB .05
FDK .06
HBN . 06
JLQ . 06
JIX . 06
JXS . 06
KDF . 06
KwB . 06
Rific . 06
TKF. . 06
HK .07

XKL	
FYH	.07

JQN .08
LBJ .08
LRH
.08
WJC . 08
HNF . 09

RLB	. 09	JTL	. 06
H2N	. 10	BJM	. 07
JNF	. 10	D ${ }^{\text {WTJ }}$. 07
MKF	. 10	HLIJ	. 07
XKN	. 10	JXN	. 07
GJL	. 11	KXM	. 07
KQN	. 11	NWB	. 07
IJG	.11	DKH	. 08
CFM	.13	JLB	. 08
DQF	. 13	KHD	. 08
FQD	. 13	K1/W	. 08
QFD	. 13	LNF	. 08
XDQ	. 13	NTJW	. 08
MGJ	. 14	XRL	. 08
CKH	. 15	LRB	. 09
KQD	. 15	LXH	. 09
KTC.	. 18	XDH	. 09
BPN	. 20	CKF	. 10
CXG	. 20	JNB	. 10
TWB	. 20	XPB	. 10
QLG	. 22	GXN	. 11
DXP	. 23	LHC	. 11
NXF	. 23	QFB	. 11
glig	. 23	XHD	. 11
KXS	. 24	CSiF	. 12
CQW	. 25	HCW	. 12
SGB	. 26	NLR	. 12
CKQ	. 27	NRL	. 12
CNQ	. 27	WHC	. 12
GPN	. 27	DFQ	. 13
HCQ	. 28	FLQ	. 13
XGD	. 28	JRL	. 13
FSt	. 29	QXD	. 13
WBG	. 29	WCN	. 14
LDB	. 31	CJM	. 15
TFC	. 34	IVDQ	. 16
HFS	. 38	N\&D	. 16
		QJD	. 16
OWS		RBP	. 17
RPW	. 01	LPB	. 18
RPW	. 01	TFB	. 20
WQS	. 01	TiB	. 21
RXJ	. 02	DFX	. 23
TYJ	. 02	DXF	. 23
WFJ	. 02	GKT	. 23
FQL	. 03	JGT	. 23
KTW	. 03	MgG	. 23
MFQ	.03	TDF	. 25
RKB	. 03	TJG	. 23
WQK	. 03	JGG	. 24
EMH	. 0_{4}	SGP	. 24
JFD	. 04	TDJ	. 24
LBF	. 04	XGB	. 26
MPI	. 04	CSQ	. 27
IFN	. 05	DLB	31
HJM	. 05	BDH	32
HYN	. 05	SMF	
JTW	. 05	CNP	34
KSQ	. 05	FKS	
MJT	. 05	DBQ	
N0L	. 05	PGB	. 46
P1FF	. 05	CTD	. 49
TMF	. 05		
HFW	. 06		这

failure to obtain a reinforcement effect following the first in a series of CS+ trials seems to be a pervasive characteristic of differential eyelid conditioning. The problem these data pose is that an unmodified linear-operator model of differential conditioning (e.g., Bush \& Mosteller, 1951) is unable to account for it. The CS+ effect is particularly puzzling in view of the fact that in this study, as well as in that of Prokasy et al, the anticipated decremental effect of a nonreinforced trial was obtained.

If an excitation-inhibition theory of differential conditioning (Spence, 1936) is to account for the data, then it would be predicted that response probability to CS+ in Group C would be less than that in Groups L and R combined. This would be expected because the mean distance of the nonreinforced stimuli from CS + is less in Group C than in either of the other two Groups. As Fig. 1 suggests, responding to CS+ did not differ reliable between Group C and Groups L and $R, F(1,47)=.03$. While we cannot accept the null hypothesis, the facts that the spatial gradient has been shown to be a relevant dimension and that sequential effects were manifested to the CS- stimuli show that transfer effects do exist. The transfer effect from CS- to CS+ was apparently limited and not a function of spatial separation.

Both the linear operator model of Bush \& Mosteller (1951) and the Spence theory of differential conditioning (1936) have in common a prediction that in differential conditioning
response probability will increase following a CS+ trial and decrease following a CS- trial. Similarly, the incremental and decremental effects should vary inversely as a function of stimulus discriminability. The failure to find an incremental effect following the first in a sequence of CS+s and the failure for physical separation of stimuli to have a differential effect on responding to CS + despite a demonstrated discrimination gradient indicates that additional assumptions will be necessary to account for the fine-grain detail of differential classical eyelid conditioning.

REFERENCES

BUSH, R. R., \& MOSTELLER, F. A model for stimulus generalization and discrimination. Psychological Review, 1951, 58, 413-423.
Prokasy, W. F., CARLTON, R. A., \& HIGGINS, J. D. Effects of nonrandom intermittent reinforcement schedules in human eyelid conditioning. Journal of Experimental Psychology, 1967, 74, 282-288.
Prokasy, W. F., Higgins, J. D., \& CARlton, R. A. Sequential effects in differential human eyelid conditioning. Psychonomic Science, 1968, 12, 5.
SPENCE, K. W. The nature of discrimination learning in animals. Psychological Review, 1936, 43, 427-449.

NOTE

1. This research was supported by Grants GB-3875 and GB-6750 to William F. Prokasy from the National Science Foundation. Charles K. Allen was a NIMH Postdoctoral Research Fellow and Mukul Dey was a participant in a program of Research Participation for College Teachers, supported by a grant from the National Science Foundation to William M. Lepley.

				Continued	page 190)			
KRT	. O_{4}	BRD .31	XPD .23	TBL . 19	FLS . 32	WDS . 07	DFT . 23	MSK . 11
LTF	. O_{4}	FSN . 31	PGN .27	TMR . 19	PWT . 33	CRL . 11	SPD . 23	THKK . 12
TKT	. 04	CLT .32	DGN . 32	FTB . 20	TCH . 34	SQB . 11	PRC . 32	RNG . 13
H	. 05	CPR .32	FISS . 32	CGS . 24	CMP . 35	GWN . 12	PCK . 36	KNG 019
LTN	. 05	GDN . 32	SCP . 33	SPG . 24	MPT . 35	HNK . 13		GRD . 28
NLT	. 05	IPC . 32	CFPT 34	GLB 27	PTH . 35		88\%AV	DBT ${ }^{50}$
TIN	. 05	SCX 33	ITPF. 34	DGR . 28	SHF . 38	83\%AV	PLS .03	
NGR	. 05	IRC 33	PHT . 35	LGD . 28		BKR . 03	SIN $0^{(0)}$	
JLP	. 06	CNT .34	PTG . 59	BGN . 29	79\%AV	HTL . 03	Stin .004	
KRG	. 06	C7H . 34		DMB $\cdot 32$	PWR . 01	PHL . 03	FNT .05	9\%\%AV
PM	. 06	PIN . 34	71\%AV	NDG $\cdot 32$	MXI . 02	RHP . 03	GLW . 05	TWN 0.03
THH	. 06	BPD .48	BRX. 01	WPT - 33	XIR . 02	$\mathrm{inS}^{\mathrm{S}} .0 \mathrm{O}_{4}$	HRN . 05	FLP . O_{4}
TLC	. 07	PDG .50	FDR . 03	PKC . 36	沮T 03	WNS .04	SLD. 06	LFT . 0_{4}
Sid	. 07	GCT .54	RIH .03	75\%AV	HFH 03	FWN . 05	SNG .13	DSH . 13
JHS	. 08	PDI . 58	JRD . 0_{4}	PRX 01	BrR 04	MRW 05	MCH .15	GRNV . 13
RLX	. 08		NTR . 04	BKS . O_{4}	$\mathrm{FHL}^{\text {FPS }}$	BLW .06	BLT . 19	BND . 33
BLR	. 09	6T゙GAV	PFL . 0_{4}	BSK. 0_{4}	LPS . \mathbf{O}_{4}	HNT .06	BXT .19	FSK . 34
:KD	. 09	TMR . 01	BSN . 05	TMS . OL_{4}	${ }_{\text {SWK }} .0 \mathrm{O}_{4}$	JLT .06	PRD .22	-
NDS	. 09	HDR . O_{4}	HRK . 05	BRM . 06	BNS .05	NRD . 06	THD . 24	
NHF	. 09	MWIS . 04	FRC . 06	HTN . 06	LINX . 05	NLD 07	DRG . 28	
RBL	. 09	TFL . 04	FRK . 06	KFT . 06	MiRX .05	JRN . 09	PNT 034	
DNH	. 10	BMS . 05	KGR . 06	MRD . 06	NBS .05	MRK . 11		$100{ }^{1} \mathrm{~A}$ AV
HSu	. 10	PHN . 05	KSP . 06	NBL . 06	PMS 005	CRM . 13	$\frac{92}{}$	DRK . O_{4}
BSO	. 11	DiR . 06	KDR . 06	FLN . 08	GRK . 06	GLR . 13	WRP 01	Sin .04
Bive	. 12	KPS . 06	Rifio . 06	DRL . 09	NTTH . 06	SHK . 13	THR . 03	PNK . 13
CHR	. 13	LDS . 06	CEX 07	HPS . 09	PKS . 06	BTH . 21	MBR . 06	SNK .13
KIP	. 13	MLH . 06	FNL . 08	LND . 09	RPM . 06	DPR . 22	SHP . 09	DNTT . 24
PKN	. 13	NIFR . 06	TRL . 08	SH\% . 09	DKS . 07	TGR . 22	YND . 10	DPT . 58
SHD	. 13	WDR . 06	HQS . 10	THX .10				
NCa	. 14	DHS . 07	2SH - 10	CLR .11			NCES	
SQD	. 14	RPL . 08	HLS . 11	RCH .11	CLARKE,	Constant rat	for confusio	ces in speech
TNQ	.17	DNS .09	JGL . 11	TKN . 12	communi 29, 715-7	Journal of	ustical Socie	erica, 1957,
\% ${ }^{\text {H }}$. 19	RKC . 09	Kif 011	UGN . 12			mmediate me	
PMB	. 20	SNL .09	WKN -11	HKS . 13	of Psych	$1964,55,75-$		
CGR	. 21	.HS . 09	WCH . 12	GLN . 14	WICKELGR	A. Short-t	mory for pho	similar lists.
RD'	. 22	WRL . 09	HDS .13	BMP . 20	American	al of Psychol	65, 78, 567-5	
KSK	. 23	LGR . 13	KNF . 13	RTD . 22	WITMER,	Association	of three-place	ant syllables.
PGL	. 24	PBL . 18	IRGG . 13	TVG . 22	Journal	tic Psycholo	$5,47,337-35$	
MDP	. 25	CSH .23	SLC . 14	GLP . 24	1. The	er facilities	this work	de available
DER	. 28	HSC . 23	NCL . 16	PKD . 26	through gr	om the Scie	search Coun	authors are
GDP	. 28	ESX . 23	NSC .19	MDG . 30	grateful to	dical Researc	il for financi	

