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Klopf (1988) presents a formal real-time model of classical conditioning which generates a wide 
range of behavioral Pavlovian phenomena. We describe a replication of his simulation results 
and summarize some of the strengths and shortcomings of the drive-reinforcement model as a 
real-time behavioral model of classical conditioning. To facilitate further comparison of Klopfs 
model with neuronal capabilities, we present a pulse-coded reformulation of the model that is 
more stable and easier to compute than the original, frequency-based model. We then review 
three ancillary assumptions to the model's learning algorithm, noting that each can be seen as 
dually motivated by both behavioral and biological considerations. 

Klopf (1988) presents a fonnal real-time model of clas
sical conditioning that predicts the magnitude of condi
tioned responses (CRs), given the temporal relationships 
between conditioned stimuli (CSs) and an unconditioned 
stimulus (US). When compared with alternative accounts 
in the animal learning literature (e.g., Donegan & 
Wagner, 1987; Sutton & Barto, 1981, 1987; Wagner, 
1981), Klopfs drive-reinforcement (D-R) model ranks as 
a simple, elegant, and powerful account of many real-time 
conditioning phenomena. The possibility that this model 
might be implemented with a single neuron is intriguing 
but largely speculative. 

In this short note we review Klopfs model, describe 
our replication of his simulations, and summarize some 
of the strengths and shortcomings of the D-R theory as 
areal-time behavioral model of classical conditioning. To 
facilitate a comparison between Klopfs model and neu
ronal capabilties, we develop and evaluate a pulse-coded 
reformulation of Klopf s model. 

Summary of Kloprs Model 
Hebb (1949) proposed that learning involved changes 

in the efficacy of plastic synapses at the neuronal level. 
He suggested that these changes occurred through corre
lations between approximately simultaneous pre- and post
synaptic levels of neuronal acitivity. In an attempt to cre
ate a model that more accurately simulated the behavioral 
properties of animallearning, Klopf (1988) proposed a 
variation on Hebb's model that incorporated and extended 
some ofthe ideas presented in Sutton and Barto's (1981) 
real-time generalization ofRescorla and Wagner's (1972) 
model of classical conditioning. 
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First, in lieu of correlating levels of pre- and postsynap
tic activity, Klopf proposed that changes in presynaptic 
levels of activity should be correlated with changes in post
synaptic levels of activity. Second, instead of correlating 
approximately simultaneous pre- and postsynaptic levels 
of activity, Klopf suggested that earlier changes in 
presynaptic signal levels should be correlated with later 
changes in postsynaptic signal levels. Third, in order to 
produce S-shaped acquisition curves (similar to those ob
served in animal learning), he proposed that changes in 
synapse efficacy be proportional to current synapse ef
ficacy. The mathematical specification of Klopf s 0-R 
model consists of two equations: one that calculates out
put signals on the basis of a weighted sum of input sig
nals (drives), and one that determines changes in synapse 
efficacy due to changes in signal levels. 

The specification of signal output level is defined as 
n 

y(t) = E Wi(t)xi(t) - 0, 
i=\ 

(1) 

where y(t) is the measure of postsynaptic frequency of 
firing at time t, w.(t) is the efficacy (positive or negative) 
of the ith synapse, xi(t) is the frequency of action poten
tials at the ith synapse, (J is the threshold of firing, and 
n is the number of synapses on the "neuron. " This equa
tion expresses the idea that the postsynaptic firing fre
quency depends on the summation of the weighted 
presynaptic firing frequencies, wi(t)x.(t), relative to some 
threshold, (J. Note that the US is conceived of as a non
plastic, strongly weighted input to the neuron. 

The learning mechanism is defmed as 

T 

~Wi(t) = ~y(t)E CjIWi(t-j)I~i(t-j), (2) 
j=\ 

where AWi(t) is the change in efficacy ofthe ith synapse 
at time t, ay(t) is the change in postsynaptic firing at time 
t, and T is the longest interstimulus interval over which 
delayed conditioning is effective. The cj are empirically 
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established leaming-rate constants, each corresponding 
to a different interstimulus interval. 

The leaming mechanism is thus defined in terms of four 
factors: (1) the leaming rate constants, Ch (2) the abso
lute value I w;(t-j) I ofthe efficacy ofthe synapse at time 
t - j, when the change in presynaptic level of activity oc
curred, (3) the change in presynaptic activity level 
ilx;(t-j), and (4) the change in postsynaptic level of ac
tivity ily(t). Through the summation of changes in 
presynaptic signal levels, the leaming mechanism corre
lates earlier changes in presynaptic signal levels with later 
changes in postsynaptic signal levels. Note that the cal
culation uses the absolute value of the synapse efficacy, 
I w;(t-j) I, allowing for both inhibitory and excitatory syn
apses in the simulation of classical conditioning. 

To accurately simulate various behavioral phenomena 
observed in classical conditioning, Klopf added three an
cillary assumptions to bis model. First, he placed a lower 
bound ofO on the activation ofthe node. Second, he pro
posed that changes in synaptic weight, ilw;(t), be calcu
lated only when the change in presynaptic signal level is 
positive-that is, when ilx;(t-j) > O. Third, he proposed 
separate excitatory and inhibitory weights in contrast to 
the single real-valued associative weights in other condi
tioning models (e.g., Rescorla & Wagner, 1972; Sutton 
& Barto, 1981). 

Replication and Evaluation oe 
Behavioral Properties 

We have reimplemented and successfully replicated all 
ofthe D-R model simulations presented in Klopf (1988). 
Like the Sutton and Barto (1981, 1987) model, Klopfs 
D-R model is a real-time extension of Rescorla and 
Wagner's (1972) trial-level model of classical condition
ing; because of this, the D-R model accounts for all the 
behavioral properties associated with the Rescorla
Wagner model, including acquisition, extinction, condi
tioned inhibition, partial reinforcement, overshadowing, 
and blocking. In addition, Klopfs model is able to ac
count for some aspects of the foIlowing real-time 
phenomena: second-order conditioning, enhanced reac
quisition, interstimulus interval effects, delay and trace 
conditioning, as weIl as the effects of interstimulus inter
vals and conditioned and unconditioned stimulus duration 
and amplitude. 

The strength of Klopf s model as a simple formal be
havioral model of classical conditioning is quite evident. 
Although the model has not yielded any new behavioral 
predictions, it has demonstrated an impressive abilty to 
reproduce a wide, though not necessarily complete, range 
of Pavlovian behavioral phenomena with a minimum of 
assumptions. Many conditioning phenomena are presuma
bly the result of complex circuit-Ievel interactions among 
many neurons; thus it might seem unlikely that many con
ditioning phenomena can be traced to the properties of 
synaptic leaming rules. It is possible, however, that gross 
characteristics of system-level behavior may, in certain 
situations, mimic the properties of component mechan
isms. For example, the leaming behavior of large mul-

tilayer adaptive networks will, in some situations, but not 
all, mimic the properties of their component neuron-like 
elements (Gluck & Bower, 1988a, 1988b). 

In addition to its strengths as a behavioral model, 
Klopfs D-R theory contains a number of intriguing 
similarities to the computational characteristics of single 
neurons. Some ofthese similarities are discussed in Klopf 
(1988). 

In the succeeding sections of this paper, we highlight 
some of the nontrivial similarities between neuronal capa
bilities and the computations necessary for implementing 
the D-R theory. One way of laying the groundwork for 
developing more complete integrated theories of the bio
logical bases of associative leaming is to note the similar
ities and differences between behavioral theories and bio
logical capabilities (Donegan, Gluck, & Thompson, in 
press). 

To evaluate the strengths and weaknesses of the D-R 
theory as a model of neuronal functioning requires that 
one distinguish between two aspects of the model. First, 
one key idea behind Klopfs model is the differential
Hebbian leaming rule, by which earlier changes in input 
signals are correlated with later changes in output signals 
to produce changes in synaptic weights. In addition to this 
leaming rule, Klopf made a number of other ancillary as
sumptions. In evaluating the biological plausibility ofthe 
model, we have found it useful to consider the leaming 
algorithm and the ancillary assumptions separately. 

Klopf (1988) specified the D-R leaming algorithm in 
tenns of activation or frequency levels. Because neuronal 
systems communicate through the transmission of discrete 
pulses, it is difficult to evaluate the biological plausibil
ity of an algorithm when so fonnulated. For this reason, 
we present and evaluate a pulse-coded refonnulation of 
Klopfs D-R model. We then review the ancillary assump
tions Klopf made to the leaming algorithm, noting that 
each can be seen as dually motivated, by both behavioral 
and biological considerations. 

PuIse-Coding in Neuronal Systems 
Neurons, it is weIl known, use pulses as input and out

put. Frequency (or activation) is a useful abstraction of 
pulse trains, especially for bridging the gap beween whole
animal and single-neuron behavior. To evaluate the im
plications of a neuronal model more precisly, it is prefer
able to develop a model that transmits discrete pulse-coded 
infonnation. We describe here a refonnulation ofthe D
R model that uses pulses in place of frequencies. Our moti
vation is that such an extension will enable the D-R model 
to be compared in a more detailed manner with the bio
logical properties of neuronal functioning. 

We will begin by outlining the general theory and the 
engineering advantages of pulse-coding and then describe 
a pulse-coded refonnulation of differential-Hebbian leam
ing. The key idea, which is quite simple, can be sum
marized as foUows: Frequency can be seen, loosely speak
ing, as an integral of pulses; conversely, therefore, pulses 
can be thought of as carrying infonnation about the deriva
tives of frequency. Thus, computation with the deriva-
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tives of frequency, as in Klopfs model, is analogous to 
computation with pulses. As described below, our basic 
conclusion is that differential-Hebbian learning, when 
reformulated for pulse-coded system, is both more sta
ble and easier to compute than is apparent when the rule 
is formulated in terms of frequencies. These results have 
important implications for any learning model that is based 
on computation with time-derivatives, such as the Sutton 
and Barto (1987) temporal-difference model. 

There are many ways to transmit analog information 
from point to point. Perhaps the most obvious way is to 
transmit the information as a signal level. In electronic 
systems, for example, data that vary between 0 and 1 can 
be transmitted as a voltage level that varies between 0 and 
1 V. This method can be unreliable, however, because 
the receiver of the information can't tell whether a con
stant dc voltage offset has been added to the information, 
or whether crosstalk has occurred with a nearby signal 
path. To the exact degree that the signal is interfered with, 
the transferred data will be erroneously altered. Further
more, if computations based on derivatives of a signal are 
required (as in Klopfs model), then even a small, but sud
den, change in signal level can drastically alter its 
derivative. 

A more reliable way to transmit analog information is 
to encode it as the frequency of aseries of pulses. Even 
in the face of dc voltage offsets or moderate crosstalk, 
a receiver can reliably determine that it has received a 
pulse. Because most errors will not be large enough to 
constitute a pulse, they will have no effect on the trans
mitted information. The receiver can then count the num
ber of pulses received in a given time window to deter
mine the frequency ofthe pulses. Further information on 
encoding analog information as the frequency of aseries 
ofpulses can be found in many electrical engineering text
books (e.g., Horowitz & Hill, 1980). 

As noted by Parker (1987), a further advantage of cod
ing an analog signal as the frequency of aseries of pulses 
is that the time derivative of the signal can be calculated 
easily and stably. If x(t) represents aseries of pulses 
(x = 1 if a pulse is occurring at time t; otherwise x = 0), 
then we can estimate the frequency /(t) of the series of 
pulses by using an exponentially weighted time average: 

(3) 

where p. is the decay constant. The well-known formula 
for the derivative of /(t) is 

dftt) dt = p.[x(t) - /(t)]. (4) 

Thus, the time derivative of pulse-coded information can 
be calculated without using any unstable differencing 
methods. It is simply a function of the presence or ab
sence of a pulse, relative to the current expectation (fre
quency) of pulses. The calculation of time derivatives is 
a critical component of both Klopf s (1988) and Sutton 
and Barto's (1981, 1987) real-time models ofassociative 

learning. They are also an important aspect of second
order (pseudo-newtonian) extensions of the backpropa
gation learning rule for multilayer adaptive "connec
tionist" networks (Parker, 1987). Further details on the 
computational modeling of pulse-coding in neuronal sys
tems can be found in Colbert and Levy (1988). The de
tails of a pulse-coded reformulation ofKlopfs (1988) D-R 
model are presented in our Appendix. 

Ancillary Assumptions to the D-R Model 
The fundamental idea behind Klopfs D-R model is the 

differential-Hebbian learning rule described above. In ad
dition, Klopf made a number of ancillary assumptions. 
It is intriguing that all of these assumptions are not only 
sufficiently justified by constraints from behavioral data 
but also motivated by neuronal constraints. Three assump
tions in particular are doubly (and thus convergingly) 
motivated by both behavioral and neuronal constraints. 

The first such assumption is the lower bound of 0 for 
frequency calculations. Turning first to the behavioral evi
dence, we note that despite the many successes ofthe Res
coda-Wagner trial-level model of classical conditioning, 
this model does have several well-known limitations. One 
shortcoming is that the Rescoda-Wagner model errone
ously predicts that one can drive a conditioned inhibitor 
(i.e., one with net negative associative strength) to zero 
strength by presenting it without the USo The behavioral 
data indicate that this is not the case (Zimmer-Hart & Res
coda, 1974). In the Rescoda-Wagner model, the net ac
tivation from astimulus (analogous to the output signal 
in Klopfs model) can range over both negative and posi
tive values. If, in Klopfs model, the output frequencies 
were allowed to be both negative and positive, then, as 
in the Rescoda-Wagner model, Klopfs model would mis
takenly predict the extinction of conditioned inhibitors. 
That is, if the activity at the inhibitory synapse were al
lowed to push y below zero (corresponding to a positive 
x and negative y), then, when the output activity ceased, 
a positive ~y would ensue. The result would be the pair
ing of positive ax- and a later positive ~y, thus leading 
to the extinction of the associative weight. When frequen
cies in the D-R model are limited to the nonnegative, 
however, a conditioned inhibitor will not become extin
guished, because the positive ax- that occurs at the time 
of the conditioned inhibitor's onset is not followed by a 
positive ~y. 

Thus, there is strong behavioral justification for allow
ing only positively valued output signals. This assump
tion can be justified from a biological standpoint, because 
negative output signals would have no meaning if they 
were meant to correspond to negative output firing fre
quencies. There is no biological meaning for a negative 
"firing frequency," as the term is used in this paper. 

Klopfs second ancillary assumption is the use of only 
positive-valued presynaptic changes. The behavioral 
justification for this assumption is clear: the performance 
of the model deviates radically from experimental evi
dence when this restriction is relaxed; in particular, it be-
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comes possible for negative .ixs to be paired with nega
tive ~ys, with a net positive change in synaptic weights. 
The offset of a es followed by a decrement in the output 
of the model would reinforce that es; this would not be 
consistent with the behavioral data. 

The biological justification for the use of only positive
valued presynaptic changes can be most easily appreciated 
with reference to Equation 4 of the pulse-coded reformu
lation of the D-R model. In the pulse-coded model, in
coming pulses carry information about positive changes 
in presynaptic frequency. Thus, a system that mediates 
changes on the basis of incoming pulses can be seen to 
be equivalent to a system in which synaptic changes are 
mediated by positive-valued presynaptic changes. 
Negative-valued changes in presynaptic frequency reflect 
the internal decay of the frequency counter in Equations 
3 and 4. 

The third ancillary assumption in the D-R model is the 
use of separate excitatory and inhibitory weights (cf. the 
single associative values ofthe Rescorla-Wagner model). 
One behavioral motivation for these separate weights is 
that reacquisition is quicker than initial acquisition when 
the model is implemented in this way. With separate ex
citatory and inhibitory weights, the reinforcement of the 
excitatory weight is not entirely lost during extinction. 
Extinction ends when the inhibitory output to the model 
is strong enough to cancel the excitatory output. When 
this is the case, there is no eR, and thus no conditioning 
occurs. Since more excitatory reinforcement remains af
ter extinction than before the initial training, the excita
tory weight rises more quickly to its asymptotic value than 
it would if it had been at its starting value. This is both 
because it is closer to asymptote than the minimum ex
citatory weight is, and also because the nature of the al
gorithrn allows larger weights to grow faster. 

The eR also depends on the inhibitory input, which 
adds to the rapidity of reacquisition. While the excitatory 
weight rises, the inhibitory weight decreases in magni
tude. Thus, the eR grows rapidly as the inhibition disap
pears. We point out that the D-R model's account of reac
quisition is novel in the conditioning literature in that other 
accounts ofthis phenomenon (e.g., Kehoe, in press) have 
necessitated postulating two-stage processes. The biolog
ical motivation for separate inhibitory and excitatory 
weights is clear. Synapses in real neurons are generally 
presumed to be either exclusively inhibitory or exclusively 
excitatory, regardless of the level of plasticity they demon
strate. 

To surnmarize, each ofthe three ancillary assumptions 
that Klopf incorportes in the D-R model is justifiable 
solely with reference to the behavioral phenomena of con
ditioning. Still, it is intriguing that if one were designing 
a physiologically realistic neuronal model, one would 
sirnilarly be drawn to these same three assumptions. 

General Discussion 
Klopf (1988) has presented a formal real-time model 

of classical conditioning that gene rates a wide range of 

Pavlovian behavioral phenomena. In this paper we first 
reviewed Klopfs model, described our replication ofhis 
results, and summarized some ofthe strengths and short
comings of the D-R theory as areal-time behavioral model 
of classical conditioning. We then considered the possi
bility that this model might be implemented at the level 
of a single neuron. To facilitate comparison of Klopfs 
model with neuronal capabilities, we formulated a pulse
coded variation of Klopf s model. Our basic conclusion 
is that differential-Hebbian leaming, when reformulated 
for a more neuronally realistic pulse-coded system, is 
more stable and easier to compute than is apparent when 
the rule is formulated in terms of frequencies. 

In addition to a differential-Hebbian leaming rule, the 
D-R model includes three ancillary assumptions, each of 
which can be motivated from both a biological and a psy
chological (behavioral) perspective. First, a lower bound 
of 0 is placed on the output activation of the node. Sec
ond, changes in synaptic weights, ~Wi(t), are calculated 
only when the change in presynaptic signal levels is posi
tive. Third, separate excitatory and inhibitory weights are 
used. 

In reviewing Klopfs D-R model, we have noted that 
the model stands on its own as areal-time behavioral 
model of classical conditioning; the possibility that the 
model might be implemented within a single neuron is 
intriguing but largely speculative. The pulse-coded D-R 
model is intended to simulate more closely the physical 
processes that occur in neurons than the original formu
lation of the D-R model can. In doing this. our motiva
tion has been to enable us to draw further paralIeis and 
connections between real-time behavioral models of leam
ing and biological circuit models of the substrates that un
derlie classical conditioning (e.g, Donegan, Gluck, & 
Thompson, in press; Gluck & Thompson, 1987; Thomp
son, 1986). 
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APPENDIX 

A Pulse-Coded Reformulation of the D-R Model 

We illustrate here a pulse-coded reformulation ofKiopfs D
R model (Klopf, 1988). The equations that make up the model 
are fairly simple. A neuron is said to have fired an output pulse 
at time t if v(1) > e, where eis a threshold value and v(t) is 
defmed as follows: 

v(t) = (l-d)v(t-I) + E W,(t)xi(t) , (Al) 

where v(t) is an auxillary variable, d is a small positive con
stant representing the leakage or decay rate, w,(t) is the efficacy 
of synapse i at time I, and X,(t) is the frequency of presynaptic 
pulses at time t at synapse i. The input to the decision of whether 
the neuron will fire consists of the weights and efficacies of the 

synapses, as weil as information about previous activation levels 
at the neuronal output. Note that the leakage rate, d, causes older 
information about activation levels to have less impact on cur
rent values of v(1) than does recent information ofthe Same type. 

The output of the neuron, pet), is as folIows: 

If v(t) > ethen p(l) = I (pulse generated) 

If v(t) s ethen pet) = 0 (no pulse generated) 

lt is important that once p(t) has been determined, v(1) will need 
to be adjusted if p(l) = 1. To reflect the fact that the neuron 
has fired [i.e., p(I)= 1], v(1) = v(v)-l. This decrement occurs 
after pet) has been determined for the current t. Frequencies 
of pulses at the output node and at the synapses are calculated 
using the following equations: 

J(I) = J(I-I) + t.J(I) , (A2) 

where 

t.J(I) = m[p(t) - J(I-I»), (A3) 

whereJ(t) is the frequency of outgoing pulses at time I, p(l) 
is the output (1 or 0) of the neuron at time I, and m is a small 
positive constant representing a leakage rate for the frequency 
calculation. 

Following Klopf (1988), changes in synapse efficacy occur 
according to 

T 

il Wi(t) = ily(t) E cil Wi(t-J) I ilxi(t-J) , (A4) 
j=1 

where 

t. Wi(l) = wiCH 1) - wi(t), 

and t.y(I) and t.x,(I) are calculated analogously to t.j(I), T is 
the longest interstimulus interval (lSn over which delay condi
tioning is effective, and Cj is an empirically established set of 
learning rates that govem the efficacy of conditioning at an ISI 
of j. 

Changes in wi(t) are govemed by the learning rule in Equa
tion A4, which alters v(1) via Equation Al. 

(Manuscript received July 20, 1988; 
revision aecepted for publieation July 28, 1988.) 




