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BES: An algorithm for estimation in
log-normal distributions

CEES H. ELZINGA
University of Nijmegen, Nijmegen, The Netherlands

A Bessel function used to obtain uniform minimum-
variance unbiased estimates for log-normal distributions
is presented in this paper, along with an algorithm (BES)
that approximates this function.

In magnitude-estimation experiments, it is common to
have a single subject make several judgments at each of
the stimulus intensities employed. Let ¢; denote the j™
numerical response of a subject for stimulus intensity Ii.
1t is well known that the variability of these responses in-
creases with increasing values of Ii. Often, an adequate
model to account for such responses in terms of the in-
tensities is provided by a power function of the form

Vi = aVilf, 0

where a and @ denote constants, and V;; denotes a log-
normally distributed error component. This model may
be linearized by taking logarithms on both sides of
Equation 1:

vii = Bxi + v + zj, (2)

with yvi; = In(¥55), xi = In(§;), v = In{e), and z55 = In(V;3).
Under the assumption that the Vj; are log-normally dis-
tributed, the z;; are normally distributed. From Equation 2
it is evident that the parameters 3 and v may be estimated
by least squares regression, and the adequacy of Equa-
tion 2 may then be tested through analysis of variance
(e.g., Coleman, Graf, & Alf, 1981).

The aim, however, is not to estimate v but to estimate
a=e". The problem is that, if i denotes an unbiased esti-
mate of v, then e” is not an unbiased estimate of «. This
problem has been discussed amply by several authors.
Thomas (1981) presents two methods for estimating o
which are highly unstable unless the number of observa-
tions is unfeasibly large. Elzinga (1985) describes a
method to obtain an estimate of o that is uniform
minimum-variance unbiased (UMVU). This method re-
quires an infinite series expansion of a Bessel-function.
In this paper I present an algorithm to approximate this
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series expansion, and I compare this approximation with
one proposed by Aitchison and Brown (1957).

Estimating «. Let 8 and v denote the least squares
regression estimates of 3 and -y respectively in Equation 2.
Furthermore, let s? denote the variance of the errors of
regression, that is, the residual variance s* =
I(yj—Bx;—)*(n—2) with n = the number of intensity
levels. The UMVU-estimate & of o in Equation 1 is then
given by (Elzinga, 1985)

& = eg, ,(cs?), A3)
with

-1 o —1)E g
gy =1+ Ly g @D
n k=2 ’(n+1) - (n+2j—3)j!

C))

and
¢ = 172 — [(n—DEXV[n(n—2)Z(x:i—X)?]. (5)

Approximating the Bessel function g (t). Since gq(t)
is an infinite series, its numerical values can only be ap-
proximated. Aitchison and Brown (1957) proposed to use

git) = e[l — wt+1)/n + (Bt*+22t3+211%)/(2n?)] (6)

to approximate Equation 4.

Below I show that Equation 6 considerably overesti-
mates gy(t). I propose an approximation that arises from
a simple recurrence relation in the infinite series in Equa-

_tion 4. Let A denote the infinite series in Equation 4; then

gn(t)=l+$t+A @
and
A= A
k=2
with
A, = [(n—1)2)/[n*(n+3)2], 8)

Ax = A_[(n—1l/[n(a+2k-3)k]  (k > 2).

This approximation may also be used for estimation of

the mean uy and variance 6% on the basis of the mean v
and variance s} of a sample of a log-normally distributed
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Figure 1. Plots of ¢,(t) (left ordinate, upper curves) and g,(t) (right ordinate, lower curves) for differ-

ent values of t (abcissa) and n.

variable V, since (Finney, 1941) UMVU-estimates for uv
and o3 are given by

p = €'8,,(s%2), ®

n-—2
@ = ezv[gn_,(253)—gn_l( Py s?,)].

Description of BES

The listing presented in this paper is that of the
FORTRAN-routine BES, which is a double-precision iter-
ative procedure that computes an approximation of ga(t),
based upon Equations 7 and 8. The accuracy of the ap-
proximation depends upon two parameters: the maximum
number of iterations (MAXIT; i.e., the maximum num-
ber of terms in the sum A) and the minimum absolute
difference (DMIN) between consecutive values of the ap-
proximated value. The algorithm stops if either of these
limits is attained.

Obviously, the speed of convergence depends upon the
values of n and t: Convergence slows down with increas-
ing values of n and t. My experience indicates that even
for large values of n and t, an approximation with an er-
ror less than 107® is easily produced within 100 iterations.
In applications, BES will usually do so in less than 15

109)

iterations, which is certainly feasible, even on microcom-
puters.

I compared the performance of BES with the perfor-
mance of the approximation suggested by Aitchison and
Brown (1957) (Equation 6) by computing the ratio ¢q(t)
= ga(t)/gi(t) withn = 5, 10, and 20, and t ranging from
0.05-2.0. If Equation 6 were to be considered an accept-
able alternative to BES, the ratio ¢,(t) should be close
to 1.0 for relevant values of n and t. In Figure 1, I plot-
ted the values of ¢4(t). Clearly, ¢n(t) <1; hence BES is
preferable to Equation 6 (most experiments do not involve
more than 8-12 different levels of intensity). In this same
figure, I plotted the values of g,(t) as computed by BES.
Based on the values shown in Figure 1, I conclude that
the use of Equation 6 may lead to a nontrivial overesti-
mation of g, and, therefore, of « in Equation 1.
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SUBROUTINE BES(N,T,G,MAXAT,DMIN, IER)

BES: ESTIMATION IN LOG-NORMAL DISTRIBUTIONS
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INPUT - PARAMETERS
N FUNCTION ARGUMENT,
POSITIVE INTEGER
T FUNCTION ARGUMENT,
DOUBLE PRECISION REAL
MAXIT : MAXIMUM NUMBER OF ITERATIONS,
POSITIVE INTEGER
DMIN MINIMUM DIFFERENCE IN CONSECUTIVE
ITERATIONS, DOUBLE PRECISION REAL
OUTPUT - PARAMETERS
G FUNCTION VALUE AT ARGUMENTS
N AND T, DOUBLE PRECISION REAL
IER :  USER-ERROR PARAMETER, INTEGER

IER=0 NO USER-ERROR
IER=1 N OR MAXIT OR DMIN ARE
NONPOSITIVE

LR e

e

IMPLICIT DOUBLE PRECISION (A-H,0-T)

Yotk

IER=0

IF(N.GT.0) GO TO 2
IER=1

G=1.D0

RETURN

IF(DMIN.LE.0.D0O) GO TO- 1

D=N

DM1=D-1.DO

G=1.DO+T*DM1/D

IF(MAXIT.GT.0) GO TO 3

1ER=1

RETURN

J=2

A=(DM1/D)* (DM1/D)%(DM1/ (D+1.D0))*(T/2.D0)*T
B=G

G=G+A

IF(DABS(G-B) .LT.DMIN) RETURN

J=J+1

IF(J.GT.MAXIT) RETURN

RJ=J

B=(DM1/D)*(DM1/ (D+2.D0*RJ-3.D0) ) * (T/RJ)
A=A*B

GO TO &

END
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