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BES: An algorithm for estimation in
log-normal distributions

CEES H. ELZINGA
University of Nijmegen, Nijmegen, The Netherlands

A Bessel function used to obtain uniform minimum­
variance unbiased estimates for log-normal distributions
is presented in this paper, along with an algorithm (BES)
that approximates this function.

In magnitude-estimation experiments, it is common to
have a single subject make several judgments at each of
the stimulus intensities employed. Let Vtij denote the fh
numerical response of a subject for stimulus intensity Ii.
It is well known that the variability of these responses in­
creases with increasing values of Ir. Often, an adequate
model to account for such responses in terms of the in­
tensities is provided by a power function of the form

series expansion, and I compare this approximation with
one proposed by Aitchison and Brown (1957).

Estimating o , Let 13 and ..y denote the least squares
regression estimates of {j and -yrespectively in Equation 2.
Furthermore, let S2 denote the variance of the errors of
regression, that is, the residual variance S2 =
~(Yj-j3Xj-..yY/(n-2) with n = the number of intensity
levels. The UMVU-estimate & of ex. in Equation 1 is then
given by (Elzinga, 1985)

(3)

with

n -1 00 (n _1)2j - l t j

1 + -n-
t
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(4)

and
(1)

c = 1/2 - [(n-l)ExtI![n(n-2)E(xi-XY]. (5)

where ex. and {j denote constants, and Vij denotes a log­
normally distributed error component. This model may
be linearized by taking logarithms on both sides of
Equation 1:

Approximating the Bessel function g,,(t). Since gn(t)
is an infinite series, its numerical values can only be ap­
proximated. Aitchison and Brown (1957) proposed to use

Yij = (jXi + l' + Zij,

with Yij = In(Vtij), Xi = In(li), l' = In(ex.), and Zij = In(Vij).
Under the assumption that the Vij are log-normally dis­
tributed, the Zij are normally distributed. From Equation 2
it is evident that the parameters {j and l' may be estimated
by least squares regression, and the adequacy of Equa­
tion 2 may then be tested through analysis of variance
(e.g., Coleman, Graf, & Alf, 1981).

The aim, however, is not to estimate l' but to estimate
ex.=e"Y. The problem is that, if..ydenotes an unbiased esti­
mate of 1', then er is not an unbiased estimate of ex.. This
problem has been discussed amply by several authors.
Thomas (1981) presents two methods for estimating ex.
which are highly unstable unless the number of observa­
tions is unfeasibly large. Elzinga (1985) describes a
method to obtain an estimate of (¥ that is uniform
minimum-variance unbiased (UMVU). This method re­
quires an infinite series expansion of a Bessel-function.
In this paper I present an algorithm to approximate this
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to approximate Equation 4.
Below I show that Equation 6 considerably overesti­

mates gn(t). I propose an approximation that arises from
a simple recurrence relation in the infinite series in Equa­
tion 4. Let A denote the infinite series in Equation 4; then

n-l
gn(t) = 1 + t + A (7)

n

and
00

with

A2 = [(n-l)3t2]/[n2(n+3)2J, (8)

Ak = Ak_,[(n-l)2t]/[n(n+2k-3)kl (k > 2).

This approximation may also be used for estimation of
the mean p-v and variance l1~ on the basis of the mean v
and variance s~ of a sample of a log-normally distributed
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Figure 1. Plots of tPn(t) (left ordinate, upper curves) and In(t) (right ordinate, lower curves) for differ­

ent values of t (abcissa) and n,

variable V, since (Finney, 1941) UMVU-estimates for ltv
and trv are given by

Description of DES
The listing presented in this paper is that of the

FORTRAN-routine BES, which is a double-precisioniter­
ative procedure that computes an approximation of gn(t),
based upon Equations 7 and 8. The accuracy of the ap­
proximation depends upon two parameters: the maximum
number of iterations (MAXIT; i.e., the maximum num­
ber of terms in the sum A) and the minimum absolute
difference (DMIN) between consecutive values of the ap­
proximated value. The algorithm stops if either of these
limits is attained.

Obviously, the speed of convergence depends upon the
values of nand t: Convergence slows down with increas­
ing values of nand 1. My experience indicates that even
for large values of nand t, an approximation with an er­
ror less than 10-8 is easily produced within 100iterations.
In applications, BES will usually do so in less than 15

iterations, which is certainly feasible, even on microcom­
puters.

I compared the performance of BES with the perfor­
mance of the approximation suggested by Aitchison and
Brown (1957) (Equation 6) by computing the ratio l/>n(t)
= gn(t)/g!(t) with n = 5, 10, and 20, and t ranging from
0.05-2.0. IfEquation 6 were to be considered an accept­
able alternative to BES, the ratio l/>n(t) should be close
to 1.0 for relevant values of nand t. In Figure 1, I plot­
ted the values of l/>n(t). Clearly, l/>n(t) < 1; hence BES is
preferable to Equation 6 (most experiments do not involve
more than 8-12 different levels of intensity). In this same
figure, I plotted the values of gn(t) as computed by BES.
Based on the values shown in Figure 1, I conclude that
the use of Equation 6 may lead to a nontrivial overesti­
mation of gn and, therefore, of ex in Equation 1.
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SUBROUTINE BES(N,T,G,MAXAT,DMIN,IER)
C*******************,~******~T**********************

G FUNCTION VALUE AT ARGUMENTS
NAND T, DOUBLE PRECISION REAL

IER USER-ERROR PARAMETER, INTEGER
IER=O NO USER-ERROR
IER=l N OR MAXIT OR DMIN ARE

NONPOSITIVE

~IAXIT

DMIN

IFCN.GT.O) GO TO 2
1 IER=l

G=l.DO
RETURN

2 IFCDMIN.LE.O.DO) GO TO' 1
D=N
DMl=D-l.DO
G=l.DO+T*DMl/D
IFCMAXIT.GT.O) GO TO 3
IER=l
RETURN

3 J=2
A=CDM1/D)*CDM1/D)*CDM1/CD+1.DO))*CT/2.DO)*T

4B=G
G=G+A
IFCDABSCG-B).LT.DMIN) RETURN
J=J+1
IFCJ.GT.MAXIT) RETURN
RJ=J
B=CDM1/D)*CDMl/CD+2.DO*RJ-3.DO))*CT/RJ)
A=A*B
GO TO 4
END

FUNCTION ARGmIENT,
POSITIVE INTEGER
FUNCTION ARGUMENT,
DOUBLE PRECISION REAL
MAXIMUM NUMBER OF ITERATIONS,
POSITIVE INTEGER
MINHIUM DIFFERENCE IN CONSECUTIVE
ITERATIONS, DOUBLE PRECISION REAL

N PUT - PAR A MET E R S

OUT PUT - PAR A MET E R S

T

N

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c*************************************************

HIPLICIT DOUBLE PRECISION CA-H,O-T)
IER=O
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