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The guiding idea of functional measurement is that measurement theory and substantive theory 
form an organic unity. Psychological scales are inherent in the statement of quantitative psycho­
logical laws, and these laws themselves form the base and frame for psychological measurement. 
Valid scales thus depend on empirically valid laws. But establishing empirical validity of any law 
requires appropriate data analysis. Several statistical problems are discussed with respect to 
simple algebraic laws. To illustrate the necessity for proper tests of goodness of fit for algebraic 
models, five sets of experimental data are reanalyzed. In each case, the factorial plot and the analysis 
of variance showed that the data were nonadditive. Nevertheless, an additive model was fit to the 
data. The correlations between the data and the predictions from the additive model were extremely 
high, ranging from .964 to .9997. The corresponding observed-predicted scatterplots also gave little 
sign of the deviations from additivity. These correlation-scatterplot analyses conceal and obscure 
what the factorial plot and the analysis of variance reveal and make clear. Other topics discussed 
are accepting and rejecting the null hypothesis, the use of nonmetric smoothing for parameter 
estimation, and problems of stimulus-response-model generality. An extension of functional 
measurement is suggested for a practicable error theory for nonmetric analysis. 

In the functional measurement approach, the 
essential element is the stimulus integration function 
that governs the synthesis of separate stimulus com­
ponents into a unitary perception or judgment. This 
problem of stimulus integration ordinarily has pri­
!llary substantive interest. However, the integration 
fupction also serves as the base and frame for con­
structing valid scales of subjective magnitude. The 
term "functional" reflects this basic conceptual and 
technical role of the integration function. 

The guiding idea of functional measurement is 
that measurement theory and substantive theory 
form an organic unity (Anderson, 1962b, 1970). 
Psychological scales are derivative from the integra­
tion function. Applicability of functional measure­
ment thus rests squarely on the empirical validity of 
the stimulus integration function. It is not enough 
to assume that some function is correct; that must be 
established empirically. 

In principle, validation of an integration function 
is straightforward. It requires a test of goodness of 
fit, that is, an assessment of the deviations between 
the model and the data. In practice, unfortunately, 
this simple precept presents numerous difficulties. 
Many reports employ tests that are incorrect, or 
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experimental designs that do not allow a valid test. 
And, at best, statistical analysis, although necessary, 
is not sufficient. 

The purpose of this note is to comment on certain 
aspects of these questions. A preliminary overview 
will be given to clear up some apparent misunder­
standings about the nature of functional measure­
ment. Some problems of statistical analysis will then 
be discussed. In addition, a functional measurement 
approach will be given to an error theory for non­
metric analysis. 

THE LOGIC OF 
FUNCTIONAL MEASUREMENT 

Functional Measurement Diagram 
The nature of functional measurement can be 

exhibited most clearly in the functional measurement 
diagram (Anderson, 1970). A reduced version is 
given in Figure 1. 

In the diagram of Figure 1, physical stimuli, S, 
impinge on the organism to be processed by the 
valuation function, V, into psychological stimuli, s. 
These psychological stimuli are combined by the 
integration function, I, into a covert response, r. 
This covert response is transformed by the response 
function, M, into the overt response, R. 

In the case of simple sensory stimuli, the valuation 
function, V, is commonly called the psychophysical 

. law . However, V is more general, applying also to 
verbal or symbolic stimuli that lack a physical metric. 

201 

The integration function, I, can also be called the 
psychological law, for it relates the internal stimuli 
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Figure 1. Functional measurement diagram. 

to the internal response. This integration function 
constitutes the basis for functional measurement. 

The response function, M, can also be called the 
output function or psychomotor law. It relates the 
covert response to the overt measurement scale 
imposed by the investigator. If M is linear, so that 
R is a linear function of r, then R ·is said to be a linear 
or interval scale (Anderson, 1975, p. 473). 

This diagram shows a cascade of three conceptually 
distinct functions. If theoretical clarity is to be 
obtained, then the physical law that relates the observ­
able stimuli and response must be broken down into 
these three component functions. A strict behavior­
istic view is not adequate (Anderson, 1974a, p. 284). 

Two functions in Figure 1 are associated with 
problems of measurement. The V function refers to 
measurement of the stimulus, whereas the M function 
refers to measurement of the response. The solution 
to both measurement problems rests on the integra­
tion function, I. 

The Functional Logic 
A general theory of measurement must be able to 

work with ordinal or rank-order scales. A solution 
to this problem was given in the two papers that 
introduced the essential ideas of functional measure­
ment (Anderson, 1962a, b). "The logic of the present 
scaling technique consists in using the postulated 
behavior laws to induce a scaling on the dependent 
variable" (Anderson, 1962b, p. 410). In terms of the 
present Figure 1, "behavior law" corresponds to 
integration function or psychological law, while 
"dependent variable" refers to the overt response 
scale, R. 

If the integration function is empirically valid, 
then it can be established at the same time that the 
response scale is transformed into a linear measure. 
The fundamental element in this approach is the 
integration function; its mathematical form consti­
tutes the essential basis for measurement, both of 
stimuli and of response. Related views have been 

expressed by Krantz (1972) and by Marks (1974, 
p.277). 

An essential property of the integration function 
is that it is a function of two or more stimulus 
variables. Consequently, monotone rescaling of the 
observable response measure still leaves degrees of 
freedom for testing the integration function, I 
(Anderson, 1962b, 1970, p. 167,1975, p. 478, 1977). 

This many-variable approach represents a distinct 
break from the one-variable approach that is typical 
of much work in psychophysics. The one-variable 
approach is inherently inadequate as a basis for 
measurement theory because it provides no protec­
tion from ordinal bias in the overt response scale. 
The many-variable approach can give adequate con­
straints on monotone response transformation, and 
so provides an adequate basis for theoretical 
development. 

An Illustrative Model 
For present illustration, suppose that the subject 

is asked to judge average or total intensity of two 
stimuli (Anderson, 1972, 1974c). Stimulus pairs are 
constructed according to an ordinary row-by-column 
factorial design. The natural model for this task is 

rij = Co + SRi + sCj, (1) 

where SRi and sCj are the subjective values of the row 
and column stimuli, Co is a zero-point constant, and 
rij is the covert response. (A complete statement of 
the model would include weight parameters for each 
stimulus dimension, as well as a term to represent 
response variability. Response variability will be 
explicitly considered below, but Equation 1 will 
suffice for present purposes.) 

Case of Linear Response 
When the overt response is a linear scale, then 

the analysis is very simple. This appears in the paral­
lelism theorem which may be stated as follows: 

If (1) the linear model is correct, and if 
(2) the response measure is a linear scale, 

and if 
(3) the stimulus variables have independent 

effects, 
then (1) the data from a factorial design will plot 

as a set of parallel curves, and moreover, 
(2) the marginal means of the data table will 

be the stimulus values on validated 
interval scales. 

The proof of this theorem is straightforward and is 
not given here. 

This theorem means that observed parallelism con­
stitutes joint support for all three assumptions. This 
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follows because, if anyone assumption fails, then 
parallelism will not in general obtain. There is, of 
course, a logical possibility that two assumptions 
might fail in a compensating way to produce 
parallelism. 

This parallelism theorem has been extremely 
valuable in the development of information integra­
tion theory (Anderson, 1974a, b, d). The usefulness 
of the parallelism theorem results from two fortunate 
findings. The first, which has been widely doubted, 
is that ordinary rating methods can yield linear 
response scales with only modest experimental 
precautions (Anderson, 1974a, p. 231, 1974d, p. 245, 
Note 1). The second, which has been widely con­
jectured, is that stimulus integration obeys simple 
algebraic models in a variety of situations. Both 
findings have been placed on solid ground by the 
experimental work on information integration theory. 

Weiss (1972) provides a relevant illustration of this 
point. His subjects judged average grayness of two 
Munsell chips using two response measures, ratings 
and magnitude estimation. Equation 1 is assumed to 
hold for the covert response. If either overt response 
is a linear scale, then the data will exhibit paral­
lelism. Both measures have equal opportunity. Not 
both can succeed because, as is well known, they 
are nonlinearly related. As it happened, the rating 
method succeeded and magnitude estimation failed. 
Stevens' (1971) objection that the task itself 
imposes a bias is ad hoc and disagrees with much 
collateral evidence. 

Case of Ordinal Respopse 
If the overt response is only an ordinal scale, then 

parallelism will not obtain even though the model is 
true. This was the situation that was faced in the 
original article (Anderson, 1962b). The same prob­
lem arises in psychophysical bisection (Figures 3 and 
4 below) where the overt response is in the physical 
metric. 

In principle, however, the case of ordinal response 
is also straightforward. Since the response scale is 
ordinal, some monotone transformation will make 
it linear. This monotone transformation can be deter­
mined because it is the one that makes the data 
parallel, at least when the linear model is true. 

In practice, of course, there are two difficult prob­
lems in the use of monotone transformations. The 
first is that of computing it. The original suggestion 
for the use of power series expansion (Anderson, 
1962b) was developed statistically by Bogartz and 
Wackwitz (1971) and implemented in Weiss' (1973, 
1975) FUNPOT program. This method provides a 
valid error theory. However, it seems to be less 
computationally desirable than nonmetric additivity 
programs such as MONANOVA (Kruskal, 1965) and 
ADDALS (de Leeuw, Young, & Takane, 1976). 

The second major problem with using monotone 
transformation relates to two aspects of statistical 
procedure. One is the lack of an error theory, a 
necessity for model analysis. The other relates to 
inferential power. Ordinal, qualitative tests can be 
useful for eliminating hypotheses, as illustrated by 
the crossover interactions of averaging theory 
(Anderson, 1965, p. 397, 1974d, p. 249). However, 
monotone transformation clearly gives tremendous 
flexibility in fitting the data to the model. Good fits 
may be easy to obtain, even when the model is invalid 
(Anderson, 1962b, p. 410). Consequently, nonmetric 
analysis provides much less power than metric 
analysis for the fundamental problem of inverse 
inference, that is, from the overt responses to the 
underlying model. Both of these statistical problems 
are discussed below in the section on error theory 
for nonmetric analysis. 

COMPARISON OF THREE METHODS 
FOR TESTING GOODNESS OF FIT 

Functional measurement depends entirely on the 
validity of the integration function or model. Validity 
has to be established empirically, and that requires an 
assessment of how well the model fits the data. Un­
fortunately, some current methods for testing 
goodness of fit suffer from fundamental short­
comings. For example, the correlation between pre­
dicted and observed is not only logically inappro­
priate, but can be extremely high even though the 
model is seriously incorrect. To apply functional 
measurement, therefore, it is necessary to give 
adequate attention to the problem of testing the 
validity of the integration model. 

Factorial Plots Compared with Correlations 
and Scatterplots 

Five experimental examples will be used to compare 
three methods of testing goodness of fit. In each 
example, the original analysis was done using fac­
torial plots and analysis of variance with satisfactory 
results. All five examples were reanalyzed using 
correlations and scatterplots between predicted and 
observed. As will be seen, correlations and scatter­
plots are generally inadequate if not downright 
misleading. 

Grayness averaging. Subjects judged average 
grayness of two Munsell chips using magnitUde 
estimation. The theoretical hypothesis was that the 
averaging model was correct so that the above 
parallelism theorem would apply. However, it was 
expected that the data would not actually plot as 
parallel lines, owing to bias in magnitude estimation. 

The factorial plot of the data is in the upper panel 
of Figure 2. Each curve represents one row of the 
5 by 5 design, .and the corresponding Munsell value 
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of the left chip is listed as curve parameter. Similarly, 
the horizontal axis lists the Munsell value of the right 
chip. 

The five curves of Figure 2 are markedly nonparal­
lel. This nonparallelism can best be appreciated by 
measuring the vertical spread from right to left; it 
varies by more than 2 to I. This nonparallelism was 
statistically significant in the analysis of variance test. 
Clearly, these data are not additive. 

Nevertheless, an additive model was fit to the data 
in the manner described just below. The lower panel 
of Figure 2 plots the predicted values as a function 
of the observed. The fit looks respectable, and the 
correlation is quite high, .983. Closer study shows 
systematic deviation from the diagonal line, but the 
correlation-scatterplot analyses give little inkling of 
the extreme nonparallelism in the upper panel. 

The additive model was fit to the data of Figure 2 
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Figure 2. Upper panel gives factorial plot of mean judgment 
of average grayness as a function of Munsell value of left and 
right chips. Lower panel plots predictions from the additive 
model as a function of the observed means in the upper panel. 
(After Weiss, 1972.) 

using a least squares criterion to estimate the stimulus 
values from the given data. Had the stimulus values 
been estimated separately from independent data, 
failure of the test of fit would have been ambiguous 
since it could be attributed to incorrect stimulus 
values. The least squares approach, which is equiva­
lent to the analysis of variance model with no inter­
action term, gives the additive model its optimum 
possibility for fitting the data. Failure cannot then be 
attributed to invalid stimulus values per se. It may be 
added that this method also provides more power to 
detect discrepancies from the model because it avoids 
unreliability that would be introduced by the use of 
independent estimates of the stimulus values. 

Grayness bisection. This experiment was designed 
to extend Weiss' (1975) functional measurement 
analysis of bisection, using a larger design for more 
power and for a better determination of the psycho­
physical law. Subjects selected a Munsell chip to lie 
halfway in grayness between two given chips. The 
two given chips were varied in factorial design, and 
the response measure was the Munsell value of the 
chip selected as the bisector. 

The theoretical hypothesis is that the bisection task 
obeys a weighted average model (Anderson, 1970, 
Equation 9). If this model is true, and if the Munsell 
scale is a true linear or equal-interval scale of gray­
ness, then the measured response data should have 
the additive form. 

Accordingly, an additive model was fit to these 
data in the same way as above. The plot ofpredicted 
vs. observed is in the lower panel of Figure 3. The 
points cluster very closely around the diagonal line 
of perfect fit. The correlation between predicted and 
observed is exceptionally high, .997. An investigator 
who relied on such correlation-scatterplot statistics 
might readily conclude that the additive model held 
for bisection, and, simultaneously, that the Munsell 
scale was a true linear scale of grayness. 

This conclusion is not justified, however, for the 
factorial plot in the upper panel of Figure 3 is non­
parallel. The curves show a gradual rightward 
divergence that can best be appreciated by measuring 
the vertical spread between top and bottom curves. 
This vertical spread increases by 270/0 from left to 
right. This nonparallelism is reliable as shown by the 
interaction test of analysis of variance, F(20,300) = 
2.82, p < .0001. These data, therefore, are non­
additive. More detailed analysis (Anderson, 1976b; 
see also below) shows that the cause of this failure 
of goodness of fit lies in the Munsell scale of grayness, 
not in the bisection model itself. 

Length bisection. Six subjects were instructed to 
choose a variable rod so that its apparent length was 
halfway between two given lengths. A monotone 
transformation was applied to maximize additivity. 
If length bisection obeys the averaging model, then 
these transformed data will be additive. 
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Figure 3. Upper panel gives factorial plot of mean Munsell 
value of bisector chip as a function of the Munsell values of the 
left and right bisectee chips. Lower panel plots predictions from 
the additive model as a function of the observed values in the 
upper panel. (Data from Subject A. L., after Anderson, 1976b). 

The right panel of Figure 4 plots the transformed 
data as a function of the predictions from the 
additive model. The correlation is surpassingly high, 
.9997. Deviations from the line of perfect fit are 
miniscule. These correlation-scatterplot analyses 
seem to say that the bisection model holds for the 
dimension of length. 

However, the factorial plot in the left panel of 
Figure 4 shows small, but systematic, convergence to 
the right, most readily appreciated by measuring 
vertical spread. This nonparallelism in the trans­
formed data was statistically reliable (p = .(01) by 
application of the error theory for nonmetric analysis 
given below. In addition, a metric analysis of the raw 
data showed that no monotone transformation could 
make the data additive. In contrast to grayness, 
therefore, the bisection model does not appear to 
hold for length. 

Loudness averaging. Subjects judged average 
loudness of a sequence of four noise bursts combined 
in a four-way factorial design. All six interactions 
involving the noise at Serial Position 4 were signifi­
cant, so the data do not exhibit parallelism. An 
illustrative two-way interaction is shown in the upper 
panel of Figure 5, which gives the judgment as a 
function of the noise intensity at the last two serial 
positions. The curves show marked convergence to 
the right, with a decrease in vertical spread from 
1.30 to .86 scale steps. This interaction was signifi­
cant, F(9,63) = 5.82, p < .00001. 

Nevertheless, an additive model was fit to the data, 
averaged over Serial Position 1 in order to reduce the 
number of data points from 256 to 64. The predicted­
observed plot is shown in the lower panel of Figure 5. 
The correlation is .964, and the mean absolute dis­
crepancy is less than .16 scale steps. Although hind­
sight might suggest some discrepancy in the scatter­
plot, it would be hard to attribute significance or 
meaning to it. 

Here, again, the factorial analysis provides a 
superior portrait of the data. It is especially useful 
for the multiple-stimulus experiments. 

Size-weight illusion. A pound of lead feels heavier 
than a pound of feathers because the visual cues have 
a strong effect. The theoretical hypothesis in this 
experiment was that the visual and the kinesthetic 
cues are integrated by a linear, or additive, rule. 

Subjects lifted a cylinder and rated its heaviness on 
a 1-20 scale. The factorial plot of the data is shown 
in the upper panel of Figure 6. The cylinders varied 
in height as listed on the horizontal axis, and in gram 
weight as listed by each curve. The upward slope 
of the curves means that the same gram weight feels 
heavier in a smaller cylinder. 

The factorial plot looks nicely parallel, except for 
one point, at the right end of the lower curve. This 
one-point discrepancy was enough to cause a signifi­
cant deviation from parallelism. Its interpretation is 
discussed below. 

The lower panel of Figure 6 plots the predicted­
observed scatterplot for the linear model. The points 
cluster closely around the diagonal line of errorless 
fit. The correlation is exceptionally high, .996. This 
scatterplot gives little sign of the one-point discrepancy. 
Nor does it give the sense of data reliability that 
reflects from the factorial plot. 

An incidental but noteworthy aspect of these data 
is their illustration of the great power of the analysis 
of variance test. The one-point discrepancy, small 
and local though it is, produced a significant result in 
the overall interaction test. 

Comment on Correlations and Similar Statistics 
How can invalid models produce such high correla­

tions? The answer is simple. Any model that is at all 
plausible will predict a low response to low stimuli, 
a high response to high stimuli. That is enough to 
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gurantee a high correlation. The above examples may 
be surprising in that the correlations are .98, .99, or 
even higher. They are not exceptional, however, for 
comparable correlations have been obtained in many 
other cases, even some that contained substantial 
crossover interactions (Anderson & Shanteau, 1977). 

The fact is that the correlation coefficient is 
logically invalid as a general tool for testing goodness 
of fit. It measures the wrong thing, namely, the 
degree of agreement between the model and the data. 
A valid test must measure the degree of disagreement 
between the model and the data. These two measures 
can lead to quite different conclusions, as the above 
examples have shown. 

This point can be formalized by noting that there 
is a direct relation between the predicted-observed 
correlation and the analysis of variance. The above 
procedure of fitting the additive model by least 
squares is equivalent to the analysis of variance 
model with the interaction term deleted. Thus, r2 

equals the proportion of systematic variance account­
ed for by the additive main effects, whereas 1 - r2 

is the proportion of systematic variance accounted 
for by the interaction term. Since the interaction term 
measures the discrepancies from additivity, it provides 
the proper test of the model. Even small discrepancies 
can be important psychologically. 

Various other statistics are functionally equivalent 
to the correlation coefficient. These include percen­
tage of variance accounted for, as well as stress 
values in nonmetric analysis. These statistics have 
their uses, but they are basically misleading in model 
analysis, for they seem to test the model but do not 
really do so. 

Comment on Scatterplots 
The scatterplot is superior to the correlation 

coefficient because it presents a more detailed picture 
of the data. Systematic deviations from the 
diagonal line of perfect fit can sometimes be detected 
by visual inspection. 

Nevertheless, scatterplots have limited value. One 
major shortcoming is that real discrepancies can be 
present that do not exhibit any systematic trend 
along the line of perfect fit. Visual inspection cannot 
distinguish such real discrepancies from error 
variability. 

Comment on Factorial Plots 
Factorial plots are superior to scatterplots because 

they exhibit the data as a patterned, two-dimensional 
function of the stimulus variables. This patterning 
allows easier interpretations than does the scatterplot. 
Further, the factorial plot presents the data them­
selves, whereas the scatterplot is half dependent on 
the model. At the same time, the prevailing 
irregularity in the factorial plot gives a handy visual 
assessment of the degree of error variability. 

Surprisingly, factorial design is not overly com­
mon in psychophysics. Even when factorial design is 
used, its full capabilities are often neglected. In part, 
this may result from dominance of the one-variable 
approach. In the many-variable approach, as noted 
above; factorial design becomes a natural tool. I 

Comment on Analysis of Variance 
Various writers have expressed concern that 

analysis of variance does not have adequate power 
for model analysis. Two of the above examples 
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should help alleviate this concern. In the size-weight 
illusion (Figure 6), the one-point discrepancy was 
enough to produce a reliable effect, even in the global 
interaction test. In length bisection (Figure 4), the 
very small discrepancies from additivity were readily 
detected even though they accounted for only .0007 
of the systematic variance. It seems evident that the 
analysis of variance itself has ample power. 

Of course, power also depends on experimental 
design and data reliability. Statistical methods 
should not be expected to compensate for weak 
design or for unreliable data. 

PROBLEMS IN MODEL VALIDATION 

Although no sharp dividing line can be drawn, 
there is a useful and important distinction to be made 
between qualitative and quantitative studies. In 
qualitative studies, which form the bulk of the work 
in any substantive area of psychology, it is often 
sufficient to verify a directional prediction. Thus, 

one experimental condition may be shown to be more 
effective than another without primary concern for 
the exact degree of difference. 

Greater demands are imposed when interest shifts 
to the study of algebraic models or functions. Unless 
the model can give a fairly exact account of the data, 
it may mean very little. 

The example of length bisection (Figure 4) provides 
a good illustration of the demands of model analysis. 
That the bisection model accounts for nearly all the 
systematic variance is trivial; no one could doubt that 
subjects can choose one length that lies roughly mid­
way between two given lengths. The fact remains 
that the bisection model is invalid in this case. But 
this fact might have been slow to emerge without 
experimental design and statistical analysis of suf­
ficient precision and cogency. Certainly, as the 
previous section demonstrates, a reliance on 
correlation-scatterplot statistics would not have done 
the job . 

However, the correlation-scatterplot discussion 
touches only one aspect of the problem of validating 
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algebraic models. Four related and more general 
aspects will be covered in this section. 

The Role of Statistical Tests 
The need for statistical tests of goodness of fit 

can hardly be overemphasized. Much current work 
rests on methods that, like the correlation-scatterplot 
statistics considered above, are fundamentally inade­
quate to the job. Work that relies on such methods is 
likely to be inconclusive, largely wasted. 

However, although statistical tests are necessary, 
they are seldom sufficient. They suffer, indeed, from 
a variety of shortcomings, and some of these will be 
discussed here. 

Accepting the Null Hypothesis 
Attempts to establish algebraic integration models 

sometimes cause concern because accepting the 
model corresponds, in statistical terms, to accepting 
the null hypothesis in a statistical test (see Binder, 
1963; Grant, 1962). In a strict sense, of course, the 
null hypothesis can never be proved. However, that 
is as true of algebraic models in physics as in psychol­
ogy. In psychology, however, prevailing response 
variability makes statistical analysis more generally 
necessary. 

The question of power. Unfortunately, the null 
hypothesis logic, which is so useful in ordinary 
experimental work, is awkward in testing models. In 
ordinary experiments, the investigator usually wishes 
to reject the null hypothesis. Failure to reject is 
ordinarily failure pure and simple, so it is advan­
tageous to avoid weak experiments. 

In model tests, however, failure to reject can seem 
like success. That sets up a selection tendency toward 
weaker experiments, or toward weaker statistical 
analyses. Such selection tendencies may be one con­
tributory cause to the popularity of correlation­
scatterplot analyses. Weak designs or weak analyses 
may be less than useless by seeming to support a bad 
model (Grant, 1962). 

Power considerations must therefore be given 
primary concern in model analysis. Power depends 
on experimental design, and on statistical analysis in 
various well-known ways that need not be repeated 
here. However, it may be worth emphasizing that 
the major determinant of power is prior knowledge, 
the importance of which cannot be overestimated. 
Vague or conflicting though it often is, prior knowl­
edge controls the choice of response measure, and 
details of design, procedure, and analysis. It is on 
these choices that power depends. 

An example. A case of inappropriate acceptance 
of the null hypothesis by Curtis and Mullin (1975) 
will help illustrate some of the practical considera­
tions that can arise. This report is relevant here 
because the authors were apparently trying to apply a 
functional measurement analysis to a loudness 

averaging task like that of Parducci, Thaler, and 
Anderson (1968). Curtis and Mullin had nine subjects 
use a magnitude estimation response to judge average 
loudness of two sounds whose decibel values were 
varied in a factorial design. They assumed that the 
averaging model with equal weighting would hold, 
and so the above parallelism theorem became 
applicable. The group analysis of variance failed to 
produce a significant interaction. Curtis and Mullin 
apparently thought that their failure to obtain a sig­
nificant interaction somehow required an acceptance 
of the null hypothesis that the curves were truly 
parallel except for random variability. The parallel­
ism theorem would then imply, in particular, that 
the magnitude estimation response was a linear scale. 

In the functional measurement approach, contrary 
to Curtis and Mullin (1975), accepting the null 
hypothesis in this case would be most inappropriate. 
One major reason is that previous work with func­
tional measurement methods has amassed extensive 
evidence that magnitude estimation is biased and 
nonlinear (e.g., Anderson, 1972, 1974a, p. 289, 
1974c, p. 231, 1976b; Weiss, 1972, 1975). Real dis­
crepancies from parallelism would therefore be 
expected to hold for the loudness averaging task 
with the magnitude estimation response used by 
Curtis and Mullin. Since the example of Figure 6 
above shows that the analysis of variance has ample 
power to detect minor deviations from parallelism, 
it would seem that Curtis and Mullin's failure to 
get significant nonparallelism must be due to high 
variability or unreliability in their data. 

This diagnosis of unreliability is supported by 
closer study of their results. Nonparallelism corre­
sponds to an exponent greater than 1 in their output 
function. However, if a t test is performed on their 
reported data, the mean exponent of 1.48 is not 
reliably different from I. More revealing is the 95010 
confidence interval; it extends from .93 to 2.03. In 
other words, the level of precision in their data does 
not define even the probable localization of the true 
mean exponent any better than somewhere within 
this interval. The extreme breadth of this confidence 
interval reflects both large individual differences and 
the high variability of magnitude estimation. Large 
individual differences, of course, cause low power 
in the group analysis of variance that Curtis and 
Mullin performed. For this reason, among others, it 
would be inappropriate to accept the null hypothesis 
on the basis of their analyses. 

A rough rule about power. For many reasons, it 
is often problematical to judge how far a test that 
fails to reject a model allows that model to be 
"accepted." When a confidence interval can be set 
up, its width is a useful guide. A wide confidence 
interval would mean that the data have little bearing 
on the validity of the model, whereas a narrow con­
fidence interval would support the model. 
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Factorial plots can also serve as a guide in the 
evaluation of additive or linear models. Confidence 
intervals may not be too useful in this case because 
the concern is with the overall pattern. However, the 
degree of irregularity in the factorial plot provides a 
handy visual index of power, one that is usefully 
supplemented by statistical tests on the interaction or 
components thereof. 

In addition, the following rough rule about power 
merits consideration: Power is adequate when the 
discrepancies are significant statistically, but un­
important substantively. This rule may seem para­
doxical, for it implies that the null hypothesis should 
be rejected before it can be accepted. Nevertheless, 
this rule seems to represent common sense and com­
mon practice. If the discrepancies are statistically 
significant, that is prima facie evidence for adequate 
power. But, if they are not substantively important, 
then it seems reasonable to accept the model. 

Exactly this case arose in the discussion of the 
size-weight experiment of Figure 6 above. In a very 
real sense, the significant one-point discrepancy pro­
vided support for the basic integration model. 

In the abstract, this rule lacks force because it 
lacks a criterion for importance of the discrepancies. 
In practice, it seems to work fairly well. In some 
cases, the decision is straightforward, either for 
rejection, as in Figures 2 and 4, or for acceptance, 
as in Figure 6. In other cases, as in Figure 5, decision 
must be deferred. And in some cases, no doubt, a 
discrepancy that appears unimportant today will 
become important tomorrow. 

Overall, this rule sep,ms to be a fair reflection of 
how investigators actually behave. It provides no 
routine recipe, but rather recognizes that research 
focuses on the uncertain and the partially known. 
There is no perfect solution to the problems of model 
analysis. Still, some solutions are better than others, 
just as the factorial plot is better than the scatterplot. 

Rejecting the Null Hypothesis 
If the observed data fail the test of goodness of 

fit, then the interpretation becomes problematical. 
All such tests rest on auxiliary assumptions other 
than the model itself. The parallelism test, in partic­
ular, rests on the three assumptions discussed above, 
and anyone could be at fault. 

The main concern, in most cases, would be that 
significant discrepancy signaled some basic flaw in 
the model itself. However, discrepancy could also 
result from bias in the response measure, from stim­
ulus interaction, or from some combination of all 
three faults. That makes it difficult to be at all certain 
about the cause of the discrepancy. 

No general rule seems possible, and each case 
needs to be considered on its individual merits. Since 
the five examples of Figures 2-6 all showed signifi­
cant discrepancies, it is instructive to consider their 
interpretation. 

In the grayness averaging experiment of Figure 2, 
the nonparallelism is marked. Weiss' interpretation 
was that the averaging model itself was basically 
correct, and that the discrepancy reflected bias in the 
magnitude estimation response. This interpretation 
was supported by the success of the model when a 
rating response was used. 

In the grayness bisection experiment of Figure 3, 
the nonparallelism is not large and might not seem 
too serious. However, it makes a substantial change 
in the psychophysical law . In this experiment, it was 
possible to transform the data to parallelism using a 
monotone transformation (see below). The test of fit 
showed nonsignificant discrepancies, in support of 
the averaging model for bisection. The functional 
scale from the bisection task yielded an exponent of 
.2 in a power function fit. This contrasts with the 
exponent of .33 from the Munsell scale, and the 
exponent of 1.2 obtained from magnitude estimation 
(Stevens, 1974). Cross-task validation was provided 
by the scale agreement across bisection, averaging, 
and differencing tasks (Anderson, 1976b). In this 
case, therefore, the bisection model seems to be 
correct, whereas the Munsell scale shows a moderate 
bias. In effect, the steps on the Munsell scale become 
progressively too small toward the white end of the 
scale. 

In the length bisection data of Figure 4, the devia­
tions from parallelism are small. However, it should 
be recognized that these data are as additive as a 
monotonic transformation can make them. That 
significant nonadditivity remains argues strongly 
against the bisection model. It also argues for the 
power of even relatively small factorial-type designs 
to resist monotone transformation to additivity. 

In the loudness averaging experiment of Figure 5, 
the interpretation remains uncertain. Attempts to 
transform the response in the original report were 
unsuccessful, but the transformation method was not 
optimal, so the fault may yet lie in the response scale. 
The loudness averaging study of Curtis and Mullin 
(1975) failed to note the discrepant results in Parducci 
et al. (1968), and simply assumed the averaging 
model to be true. That is of course in line with the 
success of the model on other psychophysical dimen­
sions, such as grayness, heaviness, and length. How­
ever, some caution must be used in generalizing these 
results to loudness averaging, because it is also 
possible that differential weighting is involved, with 
louder sounds receiving greater weight. Differential 
weighting would cause the convergence interaction 
visible in the upper panel of Figure 5. This possibility 
requires serious consideration, because differential 
weighting has been fairly frequent, at least with 
verbal and symbolic stimuli (Anderson, 1974d). If 
differential weighting is involved, then it would be 
wrong to transform the data to additivity. The 
dilemma posed by the Parducci et al. (1968) experi­
ment thus remains unresolved. 
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In the size-weight data of Figure 6, the significant 
discrepancy could be localized in a single point. 
Further, this discrepant point could be given a 
reasonable interpretation in terms of an end-effect 
in the response scale. In this case, therefore, it 
seemed reasonable to discount the significant dis­
crepancy. 

Discounting significant discrepancies may seem 
cavalier, but it makes sense. The model itself is con­
sidered to apply to a pure or idealized case, just as 
in physics. Thus, the law of falling bodies, or the law 
of the pendulum, refer to idealized cases in which 
friction is absent. In psychology, similarly, minor 
biases in the response scale, such as number pref­
erences, are inevitable and they will produce sig­
nificant discrepancies if sufficient data are collected. 
Similarly, the independence assumption of no stim­
ulus interaction will probably never be perfectly true. 
I t is on this reasoning that the above rough rule 
about power is based. 

Error Theory for Nonmetric Analysis 
Nonmetric analysis, as is well known, has been 

severely handicapped by lack of ways to handle 
response variability. Conjoint measurement and 
most multidimensional scaling methods rely on non­
metric analysis of certain algebraic models. Without 
goodness of fit tests, the validity of these models 
remains in doubt. The existence theorems of conjoint 
measurement can be seen essentially as goodness of 
fit tests that rely only on ordinal properties of the 
data. However, the theorems assume errorless data 
and are difficult to use with real data. 

Recent work in functional measurement has sug­
gested ways by which a valid and general error theory 
for nonmetric data might be obtainable. This 
approach is based on joint application of functional 
measurement and multidimensional scaling. Two 
methods will be discussed briefly here. 

The first method was used in the experiment on 
grayness bisection of Figure 3. Each subject served 
in 10 replications of the basic 6 by 5 design so the 
analysis could be carried out at the individual level. 
If the averaging model holds for bisection, and if 
the response measure is a linear scale, then the data 
will exhibit parallelism. The physical measure, 
namely, the reflectance of the gray chip chosen as 
the bisector, is of course not a linear function of 
grayness and did not exhibit parallelism. However, 
the Munsell scale also failed the test of parallelism. 
This leaves the interpretation uncertain: The basic 
model might be wrong, or the Munsell scale might be 
nonlinear. A more definite analysis can be obtained 
as follows. 

The first step is to apply a monotone transforma­
tion to make the data as additive as possible. This can 
be accomplished with one of the transformation pro­
grams developed in the work on multidimensional 

scaling, in this case the ADDALS program of 
de Leeuw et al. (1976). If grayness bisection does 
follow the averaging model, then the transformed 
data should exhibit parallelism except for unsys­
tematic error variability. 

The next step, therefore, is to assess the deviations 
from parallelism. This presents a problem. The 
monotone transformation is, in effect, a curve-fitting 
procedure that has a large, unknown number of 
parameters. It has great power to force parallelism 
onto the data. If systematic discrepancies remain, 
they will generally be small and difficult to assess 
s ta tis ticall y . 

Further, the analysis of variance cannot be applied 
in the usual manner. In the first place, the monotone 
transformation has used up an unknown number of 
degrees of freedom. In addition, the transformed 
data are no longer independent, being intercorrelated 
through their dependence on a common trans­
formation. 

Fortunately, there is a simple way around these 
problems. The monotone transformation program is 
applied separately to each replication of the design. 
Since the transformed data are then independent 
across replications, anyone degree of freedom com­
ponent of the interaction has a valid test. For 
example, the algebraic value of the Linear by Linear 
component could be calculated for each replication. 
The model-implied null hypothesis, that the true 
mean of these algebraic values is zero, can readily be 
tested, by t ratio, say, or by nonparametrictest. 

More generally, the overall Row by Column inter­
action should be nonsignificant when tested against 
its proper error term, namely, the Row by Column by 
Replication interaction. The entries within each 
replication are all intercorrelated, of course, but the 
repeated measurements analysis of variance allows 
for that. This same approach may also be used for 
group analyses by treating subjects in the same way 
as replications. 

The second method relies on two-stage integration 
models (Anderson, 1974a, pp. 251-258). These refer 
to tasks that incorporate two integration operations. 
Applied to the present problem, the essential idea 
would be to use one operation as the frame for trans­
forming the response, the other operation as the base 
for testing goodness of fit. 

In the three-factor adding model, A + B + C, 
for example, the response would be transformed to 
make A + B maximally additive. If the model is 
correct, then this transformation is generally possible 
and the transformed response will ideally be a linear 
scale. Accordingly, the interaction between C and the 
compound variable (A + B) should be nonsignifi­
cant. If either operation is nonadditive, then this test 
should fail. Psychophysical averaging is well suited 
to this method because three or more stimulus factors 
can readily be employed, even with, indeed, especially 
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with, different stimulus dimensions (Anderson, 
1974c).2 

A variant of this second method is possible when 
the two operations represent distinct tasks with the 
same stimuli. In some cases, the functional stimulus 
values should be the same in both tasks. In the gray­
ness bisection experiment of Figure 3, for example, 
subjects also rated average grayness and difference in 
grayness between each pair of chips. All three tasks 
yielded the same grayness scale (see Figure 7 below), 
which supports the application of monotone trans­
formation to the bisection data. This approach has 
also been explored by Birnbaum and Veit (1974). 

These methods have not been adequately explored 
in practice, and their use requires caution. One main 
concern is over possible bias in the monotone trans­
formation which could arise, for example, from dis­
creteness in the design. This problem has not received 
adequate study in the literature on nonmetric multi­
dimensional scaling which has been oriented more 
toward the discovery of dimensions than to the 
algebraic models themselves which are the main con­
cern of functional measurement. 3.4 

A second main concern is that monotone trans­
formation may be too effective in the sense that it 
eliminates real discrepancies (Anderson, 1962b, 
p. 410). Information available on this problem is 
hopeful, but largely tangential. Work on nonmetric 
multidimensional scaling has shown that ordinal 
information provides strong constraints (e.g., 
Shepard, 1962, 1966). However, most of this work 
has been concerned with extraction of dimensions, 
and that is much less demanding than reconstruction 
of the exact metrics. 

Furthermore, illustrations that nonmetric analysis 
can reconstruct additive metric data merely from 
rank orders (e.g., Weiss & Anderson, 1972) are not 
squarely to the point. What needs to be studied is 
how strongly data that are inherently nonadditive 
resist being transformed to additivity, and what 
design considerations are necessary to avoid inappro­
priate transformation. 

The two bisection examples (Figures 3 and 4) have 
twofold relevance here. First, they show that simple 
additive models are sometimes, but not always, 
correct, even with a fixed judgment task. Second, the 
length bisection data did successfully resist trans­
formation to additivity. Even a relatively small 
design may be adequate, therefore, at least with data 
that are as highly reliable as bisection data. 

Nevertheless, much more work is needed on this 
question. On the basis of present knowledge, failure 
to find significant nonadditivity in the transformed 
data may have rather little bearing on the question of 
whether the process is truly additive. 

The danger of inappropriate transformation can 
be reduced by transforming more than one replica­
tion at a time, by increasing the number of levels in 

each factor of the design, and, perhaps most effec­
tively, by increasing the number of factors in the 
design. However, studies with artificial data are 
greatly needed to assess minimum design require­
ments that will allow real deviations from the model 
to be detected. These studies need to be done for 
models that are empirically reasonable, and inherent­
ly nonadditive, such as the averaging model with 
unequal weighting, and the ratio model developed in 
information integration theory (Anderson & Farkas, 
1975; Leon & Anderson, 1974; Oden, 1974).5 

Nonmetric Smoothing and Parameter Estimation 
Integration models may be studied for their own 

sake, or they may be used as the base and frame for 
scaling. In the size-weight illusion, for example, main 
interest centers on how the visual and kinesthetic cues 
are integrated. Psychophysical averaging tasks, on 
the other hand, have less intrinsic interest and are 
usually employed as tools, for cross-task validation, 
for example, or for scaling. 

Scaling and model testing involve somewhat differ­
ent considerations that affect both experimental 
design and data analysis. Different designs and dif­
ferent statistical analyses may be indicated, depending 
on which goal is primary. One problem of scaling 
has special relevance to the present discussion. 

Scaling is essentially a matter of parameter estima­
tion, at least from the standpoint of data analysis. 
Parameter estimation is an intricate subject, much 
studied in statistical theory, but lucid reviews are 
given by Bush (1963) and Restle (1971). As is well 
known, the statistical properties of the estimates 
from a given set of data will depend on the method 
employed in the estimation. The reliability of the 
estimates, in particular, will be greater or lesser, 
depending on the estimation method. Only the prob­
lem of monotone smoothing will be considered here. 

If the linear model is correct, and if the response 
measure is on a linear scale, then the marginal means 
of the factorial design are unbiased estimates of the 
stimulus values as noted above. Of course, these 
estimates still contain variability and to that extent 
are unreliable. Smoothing the data can increase 
reliability. 

Smoothing for the linear model is done by applying 
a transformation that makes the data more additive 
or parallel. Even when the integration process is 
additive, the data themselves will not be exactly 
parallel because of the prevailing response variability. 
The transformation reduces this variability, making 
the data more parallel. and so also reduces the 
unreliability of the parameter estimates. 

There is nothing mysterious about data smoothing. 
Essentially. it is a matter of fairing a curve through 
variable data points. The only difference in the 
present case is that the "curve" is actually the 
integration function. 
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Nonmetric methods have special usefulness for 
data smoothing, in part because of the availability of 
powerful computerized techniques, in part because 
such transformations have optimal properties. An 
illustrati'lf application is given in Weiss and Anderson 
(1972). The original metric data satisfied the paral­
lelism test. These metric data were reduced to rank 
orders, and Kruskal's (1965) MONANOVA was 
applied. Even in this rather small 5 by 5 design, it 
was possible to reconstruct the metric data from the 
rank orders. The reconstructed data, of course, were 
even more parallel than the original data (Weiss & 
Anderson, 1972, Figures 1 and 2). 

Nonmetric smoothing has an added advantage. 
Not only will it reduce variability, but it wilIalso 
reduce bias. Any numerical response will have some 
bias, from number preferences, for example, even 
though the bias may not be large enough to reach 
statistical significance. Monotone transformation to 
additivity will reduce this bias and so improve the 
estimates. 

Of course, nonmetric smoothing depends com­
pletely on the integration function. This point cannot 
be overemphasized. To the degree that the model is 
wrong, smoothing will tend to inject an additional 
bias of its own. Accordingly, an adequate test of 
goodness of fit is essential. This represents a serious 
problem because, as noted above, monotone trans­
formation may too readily impose additivity where it 
does not hold. 

THE PROBLEM OF GENERALITY 

Within anyone experimental task, the test of 
goodness of fit can be viewed as a test of internal 
struclure or· consistency. It asks whether the given 
data satisfy the pattern or structure implied by the 
model. For additive models, this pattern is one of 
parallelism, as noted above. Other models imply 
other patterns (Anderson, 1974a, p. 264, Note 2; 
Shanteau & Anderson, 1972). Such tests of internal 
structure are the necessary first step in the study of 
algebraic models. 

However, external consistency is also needed. No 
one experiment goes very far by itself. Only an inter­
locking body of experiments can provide an adequate 
theoretical base (see, e.g., Anderson, 1962b, 1974a; 
Birnbaum & Veit, 1974; Cliff, 1973, p. 480; Garner, 
Hake, & Eriksen, 1956, among others). 

Three kinds of external consistency have been of 
concern in the functional measurement approach. 
Each deserves a brief remark. 

Cross-Task Stimulus Consistency 
The first kind of external consistency concerns the 

invariance of the subjective stimulus scale across 

different tasks. Results so far have been reasonably 
promising for psychophysical stimuli. 6 

Work on heaviness (Anderson, 1971, 1972) has 
obtained an interesting cross-task consistency. The 
same heaviness scale was obtained from the size­
weight illusion as from an averaging task. This is 
important because the integration is preconscious in 
the former case, postconscious in the latter case. 
Accordingly, the agreement of these two scales would 
seem to be an important clue to the processing struc­
ture. Similar studies in other stimulus domains, taste 
and warmth, for example, would be desirable. 

The work on grayness (Anderson, 1976b; Weiss, 
1972, 1975) has special interest because the bisection 
task yielded the same grayness scale as the differ­
encing and averaging tasks. This can be seen in 
Figure 7, which plots the psychophysical law obtained 
from the three tasks: The three curves are virtually 
identical. 

This cross-task consistency is important because 
the perceptual-cognitive demands of the three tasks 
are quite different. Bisection asks for a physical 
response that makes equal two direct sensory differ­
ences. Differencing asks for a verbal response to 
represent the magnitude of one sensory difference. 
Averaging also uses a verbal response but a rather 
different cognitive operation. That the same grayness 
scale is operative in all three tasks is of course not 
surprising. However, the capability of functional 
measurement to establish this cross-task consistency 
is notable. 

This grayness scale has an exponent of about .2 in 
a power function fit. That contrasts moderately with 
the exponent of .33 for the Munsell scale, and sharply 
with the exponent of 1.2 obtained from magnitude 
estimation. Since the present determination of the 

. psychophysical law satisfies both within-task con­
sistency and between-task consistency, it seems 
reasonable to think that it is correct. . 
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Figure 1. The psychophysical law for grayness from bisection, 
averaging, and differencing tasks. Curves displaced horizontally. 
(From Anderson, 1916b.) 
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Cross-Task Response Consistency 
The second kind of external consistency concerns 

the generality of the rating method. According to 
the functional measurement logic outlined above, 
success of the parallelism test for the additive model 
supports the observed response measure as a valid, 
linear scale. The same logic applies to corresponding 
tests for the various nonadditive integration models. 

Following this logic, substantial evidence has 
accumulated to validate ratings as true linear scales 
in numerous different tasks, not only in psycho­
physics (Anderson, 1974a), but also in many other 
areas (Anderson, 1974b, d; 1976a). This support for 
the rating method is both broad and firm. 

Of course, as noted above, certain modest experi­
mental precautions are indicated in order to avoid the 
various known biases that can contaminate the 
ratings. The development of such precautions is an 
important methodological contribution of the pro­
gram of research on information integration theory. 
This methodological task should not be considered 
complete, but a matter for continuing study. It is 
important because the ability to rely on numerical 
response methods yields far more rapid progress than 
is possible with nonmetric analysis. Further, the 
development of numerical response methods is 
important, if indeed not vital, for the analysis of 
stimulus interaction. 

Model Generality 
The third type of external consistency concerns the 

generality of the integration function. Workers in 
many separate areas have conjectured that simple 
algebraic models might be operative in perception 
and judgment (see, e.g., Anderson, 1970, 1974a, 
1975, p. 480). However, the analysis of these models 
was held back by the lack of adequate measurement 
methodology. Although many investigators have 
espoused ideas similar to those used in functional 
measurement, the dominating orientation saw 
measurement as a methodological or mathematical 
preliminary to substantive inquiry.7 In contrast, the 
functional measurement approach makes measure­
ment an integral, organic part of the ongoing 
empirical investigation. 8 

With functional measurement methods, the study 
of algebraic models can be placed on a rigorous, 
quantitative basis. Numerous experimental studies 
have given strong support to such models across 
many different areas, including psychophysics, 
psycholinguistics, decision theory, and social percep­
tion (Anderson, 1974a, b, d, Note 3). Thus, there 
does seem to be substantial model generality. Over­
all, the accumulated evidence points to the existence 
of a general cognitive algebra. 
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NOTES 

1. An interesting illustration of the potential of factorial design 
for substantive analysis arose in conversations with Edward 
Carterette about perceptual "trading relations." In binaural 
localization (Durlach & Colburn, in press), for example, the 
loudness difference and the time difference between the sounds to 
the two ears act as joint cues; their integrated resultant deter­
mines the phenomenal localization. The trading relation approach 
studies what magnitude of one cue is needed to just offset a given 
magnitude of the other cue. This information is not adequate to 
determine the cue integration function because, in particular, it 
does not look at the effect of both cues acting in the same direc­
tion. Neither is it adequate to determine the subjective values of 
the separate cues. 

In the integration-theoretical approach, the two cues would be 
varied independently in a factorial-type design, and the response 
would be the localization azimuth. It seems reasonable to expect 
an averaging rule for cue integration. Factorial-type design 
would allow a test of this hypothesis which, if successful, would 
also yield the psychophysical functions for the separate cues. The 
trading relation, if desired, could be derived from this informa­
tion, for it is merely the plot of one psychophysical function 
against the other. 

2. A unique possibility for cross-stimulus comparison may be 
obtainable from the averaging model. With suitable design, the 
functional scales of loudness, brightness, sweetness, pitch, etc., 
are on interval scales with common zero and common unit. One 
specific experimental approach would use a heteromodal averag­
ing task (Anderson, 1974c) in which subjects would judge average 
magnitude of sets of stimuli from several different dimensions. 
Variations in set size can produce the differential weighting and 
design constraints that are needed to obtain uniqueness 
(Anderson, 1974a, p. 227). Some estimation problems are dis­
cussed by Norman (1976). If the cross-modal averaging model 
holds empirically, it can provide direct comparisons of magnitude 
between quite different stimulus dimensions. 

3. These two approaches, both of which make use of algebraic 
models and monotone response transformation, were introduced 
independently in the same year (Anderson, 1962a, b; Shepard, 
1962) and have remained largely independent ever since. This 
reflects their difference in orientation. toward dimensional stim­
ulus representation, on the one hand, and toward stimulus integra­
tion, on the other. 

This difference in orientation can be highlighted by the cor­
responding treatment of discrepancies. In multidimensional 
scaling, discrepancies are usually (though not necessarily) taken 
as evidence for additional dimensions. Adding another dimension 
reduces the discrepancies but does not change the basic model. In 
integration theory, however, significant discrepancies that remain 
after monotone response transformation would usually be taken 
as evidence against the model itself. The study of length bisection 
(Figure 4) is a good example. 

4. Sternberg's (1969) important additive-factor method for 
reaction time uses interactions from factorial design as clues to 
interactions among sequential processing stages. By nature of the 
focus on the additivity of processing times across successive 
stages, response transformation is not allowable, a property of 
Sternberg'S method that avoids one difficulty in the interpretation 
of the factorial interactions. On the other hand, the method does 
not apply to general problems of stimulus integration (see also 
Anderson, 1974a, pp. 271-274). 

5. Although not immediately relevant to the discussion of the 
text, it may be appropriate to add here a note on the statistical 
analysis of the linear fan prediction of the multiplying model. For 
individual subject analyses, there is usually no problem. since the 
within-cell variability may usually be used to test both the Linear 
by Linear and the residual components of the interaction. For 
group data in repeated measurements designs, a valid test of the 
Linear by Linear component may be obtained by calculating the 
algebraic value of this component for each subject and testing the 
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null hypothesis that the mean of these algebraic values is zero. 
However, the test of the residual is biased. Previously, it had been 
thought that this bias was negligible (Graesser & Anderson, 1974, 
appendix), but that conclusion was based on an error, and later 
applications have shown that the bias is not always negligible. The 
present status of the omnibus test on the residual is thus uncertain. 
Valid tests of the residual can be obtained by extraction of Linear 
by Quadratic and other higher order components of the interac­
tion, though perhaps with some loss of power. 

6. One particular kind of cross-task stimulus consistency 
deserves comment. Judgments are often obtained, not only of the 
stimulus combinations, but also of the separate single stimuli. 
These single stimulus judgments are often treated as scale values, 
to be used in testing the integration rule. Surprisingly, this direct 
approach is inferior to the indirect approach in which the stimulus 
values are estimated from the judgments of the combinations 
(Anderson, Note 1). Among other reasons, the variability of the 
single-stimulus judgments reduces power, at least as the test is 
usually performed. 

At the same time, judgments of the single stimuli and of the 
combinations can be seen as two different tasks, for the latter 
involves an integration operation and the former does not. Thus, 
it is a proper question whether the stimulus scale is the same in 
both tasks. Some results from decision theory are given by 
Shanteau (1974), but there is little firm evidence on this question 
in psychophysical judgment. 

7. This point is well illustrated in Stevens' (1971, p. 431, 1974) 
reaction to algebraic models as the basis for measurement. 

Finding that magnitude estimation did not satisfy these models, 
Stevens concluded that the judgment task introduced a bias. This 
interpretation hardly seems tenable in view of the extensive success 
of rating meth'Jds in these tasks. 

8. The issues of response and model generality also bear on the 
problem of monotonic indeterminacy (see Anderson, 1974a, 
p. 231), which is illustrated by the classical question of whether 
subjects instructed to judge ratios are really judging ratios or 
differences (Birnbaum & Veit, 1974; Torgerson, 1961). A similar 
problem arises in averaging theory, since the data of Figure 2 
above could be interpreted to support magnitude estimation 
jointly with the geometric mean which corresponds to a multi­
plicative model (Weiss, 1972). If monotone transformation is 
allowed, additive and multiplicative models may be equivalent; 
parallel curves that support the arithmetic mean are monotonical­
ly equivalent to a linear fan of curves that would support the 
multiplicative geometric mean. 

But the geometric mean is not defined for negative values such 
as are obtained in many integration tasks, most notably in person 
perception. The success of the rating response and the arithmetic 
mean in these tasks where the geometric mean cannot apply may 
thus resolve the question for other tasks where both can apply. 
Attending to a broader range of tasks, therefore, allows progress 
on some of the problems of monotonic indeterminacy (Anderson, 
1974a, p. 231). 
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