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Frequency discrimination of complex periodic tones*

L. L. FETH
University ofOklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190

When the components of a two-tone periodic complex differ slightly in amplitude and frequency, the
pitch is shifted toward the more intense tone. This well-known phenomenon has been explained by
differences in the instantaneous frequency functions of the complex tones. In this experiment, three
listeners were asked to discriminate between complementary pairs of two-component complex tones.
The results indicate that discriminability may depend upon differences in the envelope-weighted
instantaneous frequency functions of the two-tone complexes.

(4)

More than 100 years ago, Helmholtz "explained" the
pitch shifts that were perceived when a tone of given
frequency and amplitude was sounded simultaneously
with another which differed slightly in both frequency
and amplitude (Helmholtz, 1954; von Bekesy, 1960;
Jeffress, 1968). He observed that the combination
(fo , 10 +LlI), (fo +Llf, 10 ) was lower in pitch than
(fo , 10 ) , (fo + Llf,10 + LlI). That is, the pitch seemed to
shift toward the more intense tone.

Spectral representations of these complex periodic
tones are shown in the left-hand column of Fig. 1. In the
top row, Tone A is at Frequency fo and Level (10 +LlI).
Tone B at (fo + Llf) is at Level 10 , In the lower row,
Tone A, still at fo , has been reduced in level to 10 ;

Tone B, at (fo + Llf), has been raised to Level (10 + Lll).
We may summarize Helmholtz's observation by stating
that for a number of combinations of Lli and Llf, the
complex in the upper row will sound lower in pitch than
the one represented in the bottom row.

Helmholtz explained this phenomenon after
calculating the instantaneous frequency function for
each combination. Jeffress gives a similar derivation. We
will briefly outline the derivation here, with the help of
Fig. I, because the results are essential for the extension
of this work that we propose. In an equation, the
two-tone combination can be written:

y(t) =a cos (2rrfot) + b cos [2rr(fo + Llf)t]. (1)

Here Llf is always a positive number, and three situations
are possible with respect to the pressure amplitudes, a
and b. Clearly, either a is greater than b, or less than b,
or equal to b. Some trigonometric manipulations allow
us to put Eq. 1 into the form:

y(t) =E(t) cos [2rrfot + if>(t)]. (2)

Here E(t) is the envelope function which follows the
slowly varying peaks in the instantaneous value of the
complex tone. It is given by:

*The data for this experiment were collected while the author
was a NSF postdocotral fellow with the Department of
Psychology. University of California, San Diego.

E(t) = a2 + 2ab COS 2rrLlft+b2
• (3)

The function if>(t) expresses the instantaneous value of
the phase of the complex with Tone A as a reference. We
obtain the instantaneous frequency function by taking a
time derivative of if>(t), f(t) = dif>(t)/dt. This gives us,

"( ) _ abzsf cos 2rrLlft +b2 Llf
J' t - fo + .

a2 + 2ab cos 2rrLlft+ b2

When a = b, the familiar auditory beat phenomenon is
perceived (see, for example, Licklider, 1951). The
amplitude of the complex tone waxes and wanes from a
maximum value of 2a to a minimum ofzero, I/Llf times
per second. Of course, when Llf becomes large, the
percept becomes a smooth complex tone with no
noticeable amplitude fluctuations.

Our interest lies in the two cases where there are
differences in the amplitudes of the component tones.
Consider, first, the amplitude fluctuations for a given
pair of two-tone signals. For given values of a and b with
a*b, either (1) a >b, or (2) a < b. Examination of
Eq. 3 leads us to expect no difference in the envelope
function for the pair since a and b are represented
symmetrically. The center portion of Fig. 1 illustrates
typical enveloped functions for a complex pair. Peak
amplitude varies from a maximum of (a +b) to a
minimum of (a - b), I/Llf times per second. This
function can be observed on an oscilloscope if the sweep
time is on the order of I/Llf.

Inspection of Eq. 4 reveals asymmetries which lead to
different functions f(t) for each two-tone complex in a
given pair. The right-hand portion of Fig. 1 gives a
typical example. Here the abscissa is time, as in the
center portion, but the ordinate is now frequency. Thus,
in the upper row, the instantaneous value of f(t) varies
periodically from a value just below [fo + (fo +Llf)] /2
to frequencies even lower than fo - In the lower row, the
instantaneous frequency function is the mirror image of
the one above. Now the flat portion is just above the
average of fo and (fo + Llf), and the peaks extend well
above (fo +Llf). The equations indicate that the peaks in
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Fig. 1. Spectrum, envelope, and
instantaneous frequency functions for both
members of a set of two-component
periodic tones.

f(t) always occur at the muuma of the envelope
function. Also, as the difference between a and b is
reduced, the instantaneous frequency function "spends
more time" near the midline, but moves to more
extreme values for the brief time that it deviates from
that value.

Previous authors have reasoned that the pitch
difference between the members of a complex-tone pair
must be due to differences in their instantaneous
frequency functions. In fact, Jeffress demonstrated this
convincingly by listening only to portions of the signal
near envelope minima. Apparently, none of the previous
investigators attempted to quantify the differential pitch
sensation produced by these tones.

METHODS

Listeners
Three listeners with normal hearing were asked to discriminate

between pairs of complex tones in a standard two-interval,
forced-choice (21FC) paradigm. These listeners were
undergraduates at the University of California, San Diego, who
were paid $1.75 per hour for their participation.

Apparatus
Figure 2 shows a block diagram of the apparatus used to

generate two-component complex tones. Two oscillators, set to
produce fo and (fo + AO, supply the basic signals. To establish
the small differences in amplitude, an attenuated version of each
signal is added to itself. The other signal is also added at this
point; thus, very precise three-input signal summers are necessary
for this experiment.

Each of the two electronic switches presents a complex tone
at the appropriate time. Beyond the gates, the signal pathways
are combined for monaural presentation, although the gates are
not turned on simultaneously .

Procedure
Using the 21FC paradigm, frequency and amplitude

differences (Af and AI) remained fixed for a block of SO trials,
and the percentage of correct discriminations, P(C), was
determined for each listener. For a given amplitude difference
(.2, .5, or 1 dB), the frequency difference was changed from
block to block to obtain a psychometric function. These display
P(C) as a function of Af with AI as the parameter. Listeners were
given extensive practice at all conditions before 200 trials at each
.M-AI combination were recorded for inclusion in the data. For
this experiment, fo was 1,000 Hz, 10 was 70 dB SPL. Signals
were gated on for 200 msec and randomly assigned to the
observation intervals.

In addition, simple frequency discrimination data (fo, 10 ) vs

HEADPHONES

Fig. 2. A block diagram of the apparatus
needed to generate two-eomponent complex
tones.
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Fig. 3. Percentage of correct discriminations, for three
listeners, as a function of the frequency separation of the
two-component complex. The parameter is the intensity
difference: 1.0 dB, 0; 0.5 dB, 0; or 0.2 dB, "'. Each listener's
psychometric function for simple frequency discrimination is
also given (*). Symbols with diagonal slashes represent
differences in the weighted-average of the instantaneous
frequency of corresponding data points (see text).

Let us briefly reconsider these complex tones. In
addition to the periodic frequency modulations, there
are simultaneous amplitude variations that are
represented by the envelope function, E(t). Suppose that
the amplitude fluctuation has the effect of lending
differential weights to concomitant values of
instantaneous frequency. That is. suppose that the values
of the instantaneous frequency near envelope maxima
contribute proportionately more to the overall average
than those values that occur near the minima. We then
may calculate weighted averages of instantaneous
frequency for each of the complex tones. If our listeners
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(fo + Q.f, 10 ) were obtained for each listener. All experimental
conditions were the same as for the two-tone discriminations.

The results of this experiment are displayed as
psychometric functions for three listeners with normal
hearing (Fig. 3). The open symbols represent the "raw"
data percentage of correct discriminations, P(C) in 2IFC,
as a function of Lif. The parameter is Lii. Each symbol
represents 200 observations by each listener at a given
Lif-LiI combination. Also shown in the figure are the
listeners' psychometric functions for simple (one tone)
frequency discrimination (* symbol). For each listener,
the (simple) frequency discrimination function lies to
the left of his psychometric functions for the complex
tones.

For single-frequency tones, small differences in pitch
are monotonically related to differences in frequency
(within the octave). For two-tone complex pairs, pitch
differences also seem to be due to frequency differences;
however, frequency varies periodically in the two-tone
complexes. Let us assume, for the moment, that the
auditory system processes single-frequency tones and
two-tone complexes in the same way. Since frequency
varies in the complex tone, let's assume that the
discrimination is based upon a difference in average
frequency. That is, suppose we calculate an average
frequency for each of the two-tone complexes in a pair.
Then our listener's ability to discriminate one member
of the pair from the other should be monotonically
related to the difference between these average
frequencies. Since the simple frequency-discrimination
psychometric function represents a limitation on our
listener's performance, we should be able to collapse the
families of psychometric functions shown in Fig. 3 onto
the frequency discrimination function. To do this, we
need only plot P(C) as a function of the difference in
averaged frequencies for each two-tone complex pair.
Our problem is to find the appropriate averaging process.

Simple averaging procedures fail to produce the
desired transformation. That is, a weighting such as
[af., + b(fo + Lie)] I(a + b) for one complex tone, and
[bfo+a(fo+Lif)]/(a+b) for its mate predicts
differences that are far too small. A better guess is the
difference in time-averaged instantaneous frequency for
the complex signals. Here, too, we encounter problems
due to a curious property of these complex signals.
Cherry and Phillips (1961) show that the time average of
the instantaneous frequency function, [(t), for two-tone
complexes such as ours can take on only one of three
unique values. If, in our Eq. I, a > b, then f(t) equals fo­

If a < b, then f(t) = (fo + Lif). If a =b, then [(t) =
[fo + (fo + Lif)1/2. This result indicates that the
difference in 1(t) for every complex pair would be equal
to Lif and independent of Lii. Inspection of the
psychometric functions in Fig. 3 shows that this
prediction would be incorrect.

RESULTS
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are basing their judgments on such weighted averagesof
instantaneous frequency, then their P(c) score for a
given difference should correspond with their
performance in the simple frequency discrimination
task.

An example from the data in Fig. 3 will illustrate this
point. For Listener 3, we plot a square symbol at ~f =
20 Hz, P(e) = 89%. Thus, he is able to distinguish
between the complex tones (1}(1,000 Hz, 71 dB),
(1,020 Hz, 70 dB) and (2) (1,000 Hz, 70 dB), (1,020 Hz,
71 dB) 89% of the time. When we calculate the
envelope-weighted average of the instantaneous
frequency function for each complex tone, we get
1,007.59 Hz and 1,012.41 Hz, respectively. The
difference is 4.82 Hz. Notice that this listener performs
at a 93% level when discriminating between two
single-frequency tones with a 5-Hzseparation.

A similar transformation can be applied to every data
point in Fig. 3. Essentially, this has been done, with the
transformed data represented by symbols of the same
shape but with a single line through them. (Thus, a
square, 0, becomes Iil, etc.).

One further refmement was attempted. The
transformed points seemed to fit .the simple
discrimination function better when an envelope
threshold was imposed. This is equivalent to giving a
zero weight to the instantaneous frequency value at the
envelope minima. It is apparent from an inspection of
Fig. 3 that none of the fits are perfect. The
psychometric functions for discrimination of
single-frequency tones are represented by only three
points. With so few degrees of freedom, curve fitting
seemed imprudent. Obviously, the transformations
produced the best fit for Listener 3 and a reasonable one
for Listener 1. Listener 2 poses a problem. At ~f of
10 Hz, his performance exceeds that of the other
listeners; however, at greater ~f, he seems to reach an
asymptote or decline slightly. Simple frequency

discriminations also differ for Listener 2. As a result,
most of the transformed data points fall to the left of,
and above, his simple frequency discrimination function.

DISCUSSION

We have speculated that the basis for discriminations
between two-component periodic tones might lie in the
listener's ability to perceive a weighted average of the
instantaneous frequencies. The performance of two of
our three listeners tends to support this model, although
this preliminary study contains too little data to either
accept or reject it at this time.

This work should be extended in several ways.
Obviously, complex periodic tones containing three or
more components could be used in similar studies.
However, extension of the current two-tone study to
frequencies both above and below 1 kHz would seem to
be more interesting at this time. We would, first of all,
learn whether the just-discriminable ret) differences vary
with frequency as the simple frequency dL. Any
breakdown in performance, at high frequencies, for
example, would allow us to define an "existence region"
for the effect and perhaps lead to further insight into
pitch perception of complex tones.
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