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Trees as memory representations
for simple visual patterns

JAMES P. CUNNINGHAM
Cornell University, Ithaca, New York 14853

The form of the memory representation for visual patterns consisting of a few line seg-
ments was investigated with three tasks. One task was the reproduction of remembered
patterns using pencil and paper. The order in which the subparts of those patterns were
reproduced was used to make suggestions about possible memory representations for the
patterns. The second task involved rating the ‘“‘goodness’ of subparts of the patterns.
These ratings were also interpreted as reflecting the underlying representations of the
patterns. In the third task, the time required to recognize that a small pattern was part
of a larger remembered pattern was used as further evidence about the memory represen-
tations of the patterns. The results from all three tasks are consistent with the theory that the
memory representations are tree structures. Methods for deriving and comparing tree struc-

tures are discussed.

This paper has two overall goals: (1) to give empirical
evidence that memory representations of simple visual
patterns can be modeled by a particular kind of net-
work, namely, a tree, and (2) to illustrate a methodology
that has recently been developed that can be used to
discover optimal tree representations in many research
domains.

Networks have often been proposed as models of the
way in which information is stored in memory (e.g.,
Anderson & Bower, 1973; Collins & Loftus, 1975;
Collins & Quillian, 1969; Norman & Rumelhart, 1975).
A graph, or network, consists of a set of objects called
nodes and a set of links between nodes. The pieces of
information to be stored in a memory network can be
represented by nodes or sets of nodes and the relation-
ships among the pieces can be represented by the way in
which the links interconnect the nodes.

Most of the empirical work associated with these
models has been in the general domain of language, but
there have also been several attempts to model visual
memory with networks. Both Palmer (1977) and Reed
(1974; Reed & Johnsen, 1975) present empirical evi-
dence that networks or network-like structures may be
appropriate for the representation of simple visual
patterns, but neither author proposed a specific repre-
sentation for a specific pattern. Anderson and Paulson
(1978) obtained data consistent with the idea that the
memory representation for faces is a network, but
presented only a schematic version of what that network
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might be. Others (e.g., Palmer, 1975; Winston, 1975;
Baylor, Note 1) have presented more detailed theories
of how networks can be used to model information in
visual memory but have not been concemned with
providing empirical support for those theories. The
intent of this paper, on the other hand, is not only to
show that network representations of simple visual
patterns are plausible, but also to propose and empiri-
cally support specific network representations for
specific patterns.

Only a restricted class of network representations will
be considered in this paper: the class of free trees. A
“tree” is a particular kind of network in which there is
only one path (set of links) connecting each pair of
nodes. An example of how a tree can be used to repre-
sent some of the information in a simple visual pattern
is given in Figure 1. Figure la illustrates a pattern
consisting of six line segments, with each segment
labeled with a digit. (This is an example of the type of
pattern used in the experiments described below.)
Figure 1b illustrates a possible tree representation
for that pattern. The individual line segments of the
pattern are represented by the terminal nodes of the
tree (nodes with only one link attached), and the other
nodes of the tree have been given labels (LINE, ANGLE,
PATTERN) stating their significance in the organization
of the pattern. Note that only part of the information
in the pattern is represented by the given tree, since the
pattern could not be reconstructed from the information
in the tree. Additional information concerning the
lengths of lines and the sizes of angles would have to be
added in order for the representation to be complete.

There are several reasons why trees rather than
general networks will be considered as candidates for
modeling the memory representation of visual patterns,
with most of the reasons relating to the simplicity of
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Figure 1. (a) A sample pattern with digits labeling the line
segments. (b) A possible tree representation of some of the
information in the pattern. (c) The corresponding uninterpreted
weighted free tree.

trees. One reason is that the use of trees in the repre-
sentation and recognition of two- and three-dimensional
patterns has received considerable attention in the auto-
matic pattern recognition field (e.g., Pavlidis, 1977,
Chapter 10), indicating their potential sufficiency as
models. Another reason is that trees generally require
less “memory capacity” than do networks to represent
the same information (Friendly, 1977), although it
might take more time to retrieve the information from a
tree. A third reason is that it is usually better to resort to
a complicated model only after a simpler version of the
model has been shown to be inadequate. And a final
reason is that there are convenient methodological
techniques for the development and evaluation of tree
models but not for general network models.

METHODOLOGICAL APPROACH

There are basically two approaches to obtaining
empirical evidence that the memory representation of
some particular pattern can be adequately modeled by a
network. One approach is to make predictions concern-
ing the outcome of some experimental task that would
hold if the memory representation for the pattern was
any member of some class of networks. If the predic-
tions are verified, that is evidence that some network
representation is appropriate, but the verification does
not identify which particular network is the most
appropriate. This approach has been used, for instance,

by Palmer (1977) and Reed (1974). A second approach
to obtaining evidence is to propose a particular network
representation and test predictions based upon that
representation. But what is the source of the particular
representation from which the predictions are made?
The traditional model-building method is to invent it
using past experience and intuition as guides. (An excel-
lent example of this approach is the work of Anderson
and Bower, 1973, on memory for sentences.) Another
method is to hypothesize a class of representations, find
the particular member of that class that most closely
agrees with the observed data, and then evaluate that
particular representation. This last approach is the one
taken in this paper.

One way to get empirical evidence about the struc-
ture of a memory representation is to use an experi-
mental task that is sensitive to the distance between
subparts of the representation. For instance, in the
domain of semantic memory, if a subject is given word A
and the first semantic associate that occurs to the sub-
ject is word B, then words A and B can be considered
to be “close together” in the subject’s memory repre-
sentation. Any model of the subject’s semantic memory
representation should be consistent with these distances.
In the experiments discussed below, several tasks are
presented that can be used in the domain of visual
memory to estimate the distances between subparts of a
memory representation.

As an illustration of what is meant by “distance” in
a network representation, in the structure shown in
Figure 1b, Segment 5 is much closer to Segment 6 than
it is to Segment 4. To be more precise, the links of a
weighted free tree can be considered as having different
lengths (weights), and the ‘“‘distance” between two nodes
is the sum of the lengths of the links in the path con-
necting the two nodes. One conception of the reason
that links differ in length is that they differ in the
number of “elementary links” that they represent but
that elementary links could all have identical lengths.
Thus, in Figure 1b, the fact that the link connecting
Segment 5 to “line” is shorter than the link connecting
“angle” to “pattern” could indicate that the former
contains fewer elementary links than the latter.

The general research strategy used is the following.
The smallest unit of a simple visual pattern of concern
will be the line segment. It is assumed that the relevant
aspects of the memory representation of a simple visual
pattern can be described by a weighted free tree, with
some of the nodes of the tree representing the line
segments of the pattern. Three different experimental
tasks are used to estimate the distance in the memory
structure among the nodes representing the line seg-
ments of a pattern: reproduction of the pattern from
memory, goodness ratings of parts of the pattern, and
the recognition of parts of the pattern. The data from
each of these tasks is summarized by a matrix of dis-
tances, each entry in the matrix being the empirically



estimated distance between the representations of two
line segments in the memory structure. Each matrix of
distances is then analyzed with a procedure described by
Cunningham (1978) in order to find the particular
member of the class of weighted free trees that best
represents the distances. The procedure finds the tree
that has the organization and link lengths that produce
internode distances corresponding most closely (in the
least-squares sense) to the empirically estimated inter-
segment distances. The tree resulting from this analysis
is the proposed model of the memory representation of
the pattern associated with that distance matrix.

The adequacy of a particular tree as a model of the
relevant aspects of the memory representation of a par-
ticular pattern is evaluated in several ways. One way is
to compare the predicted intersegment distances with
the empirically estimated intersegment distances by
computing the correlation between them. A high cor-
relation indicates a good fit of the tree model to the
observed data. Another way of evaluating a tree is to see
if its structure is intuitively interpretable (has face
validity). An example of the sort of tree that could be
obtained from the analysis of a distance matrix is given
in Figure 1c. This tree corresponds exactly to the tree
in Figure 1b, but no interpretation is imposed. (Note,
for instance, that the node labeled “Pattern” in Fig-
ure 1b does not even exist in Figure lc, because it
has only two links connected to it; thus its location in
no way affects the distances between other nodes.) If a
free tree obtained from this analysis can be sensibly
interpreted in a way analogous to the way in which
Figure 1c can be interpreted as representing Figure 1b,
then that is evidence that the tree is a good model of
the memory representation of the associated pattern.
Another, and perhaps the most powerful, way used to
evaluate the adequacy of a particular tree is to see if the
same tree representation can model memory for a par-
ticular pattern in a variety of experimental situations. If
the structure of the memory representation of a partic-
ular pattern can be tapped with several different experi-
mental tasks, and a different tree is needed to model
behavior in each task, then either there is no common
representation underlying performance on all the tasks
or the tree is a poor model of that representation. Two
different approaches to this use of converging evidence
are employed. In one approach, results from one experi-
mental task are compared with the tree representation
derived from the results of a different task. In the
second approach, a separate tree representation is
derived from the results of each task, and the trees
themselves are compared with each other.

Three experiments are presented, and the results of
each suggest that memory for simple visual patterns can
be adequately modeled by weighted free trees. The first
experiment uses the order in which the segments of a
pattern are reproduced from memory as a way of
inferring memory structures for a relatively large number
of patterns. In the second experiment, subjects repro-
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duce a small number of patterns from memory and also
rate the “goodness” of various parts of the patterns. In
the analysis of this experiment, it is necessary to intro-
duce several ways of comparing trees with one another,
since the similarity of trees derived from the two dif-
ferent tasks needs to be evaluated. In the third experi-
ment, the time required to recognize whether or not a
set of line segments is part of a particular remembered
pattern is used as information about the structure of the
memory representation for that pattern. The results of
this task are compared with the results of a reproduction
task and a goodness rating task performed by the same
subjects.

EXPERIMENT 1: REPRODUCTION

In this experiment subjects reproduced simple visual
patterns with pencil and paper. The order in which the
subparts of the patterns were reproduced can be used to
make suggestions about possible memory representations
for the patterns. The general idea is that subparts which
have representations close to each other in the represen-
tation of the overall pattern also tend to be reproduced
close to each other in time. So if two subparts of a
pattern tend to be drawn one immediately after the
other, this is evidence that the two subparts are repre-
sented close to each other in the memory structure for
the pattern. The idea that output order reflects the way
in which memory is organized is not new. For instance,
Henley (1969) used it to study the semantic memory
organization of animal names, and Reitman (1976)
suggested its use in the study of memory for the loca-
tion of pieces in the game of Go.

Method

Subjects. The subjects were eight undergraduates at Cornell
University who were enrolied in an introductory psychology
course and volunteered to participate in the experiment. All
subjects were right-handed.

Stimuli. The stimuli were simple patterns of intersecting
straight lines. Each pattern was made up of a 3 by 3 matrix
of dots and 6 (of 16 possible) line segments connecting adja-
cent dots. Each of the 19 particular patterns used is shown in
Figure 2. Each pattern had exactly two diagonal segments,
tended to fill the area defined by the dot matrix, and had no
disconnected parts. Similar sorts of stimuli were used in experi-
ments by Derks (1972) and Palmer (1977).

Slides of the individual patterns were projected onto a screen
from a distance of approximately 4 m. The projected patterns
were approximately .5 m in height, and subjects sat approxi-
mately 2.5 m away from the screen. The patterns appeared as
black lines and dots against a white background.

Procedure. Each subject was given a 57-page booklet. All of
the booklet pages were identical and had three sections. At the
top of each page was a 3 by 3 matrix of dots with all of the
adjacent dots connected and with each line segment numbered
with a digit from 1 to 16. In the middle of each page was a
dashed-ine version of the dot matrix with all 16 connecting line
segments, and at the bottom was a row of blanks where line
segment numbers could be written. The first blank already
contained a segment number.

On each trial, a pattern was displayed for 10 sec, and then a
blank white field was displayed. As soon as the blank white
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Figure 2. The patterns used in Experiment 1 (with each line segment given an arbitrary numerical label), the weighted
free tree representation for each pattern (numbered nodes represent the corresponding line segments), and the correlations
between the internode distances in the tree and the corresponding data values, For each tree, the longest link between non-
terminal nodes is marked by an X.



field appeared, the subjects drew the pattern that they had just
seen by filling in the appropriate parts of the dashed-line pattern
in the middle of the current page in the booklet. They began
drawing with the segment identified by the number in the first
blank at the bottom of the page. They recorded the order in
which the line segments were drawn by writing the sequence of
line segment numbers in the rest of the blanks at the bottom of
the page. After 30 sec of drawing time, the next trial was started.

The sequence of 19 patterns was shown three times in three
different random orders. An experimental session lasted approxi-
mately 50 min, with two subjects being tested at a time. Each
pattern had six possible line segments that could be identified
as the one to be drawn first. Each subject reproduced each
pattern three times, each time beginning with a different line
segment. In each group of two subjects, one subject began draw-
ing with each of three of the possible segments, and the other
subject began with each of the other three possible segments.

Results and Discussion

The data consist of three ordered lists of segment
numbers for each subject for each pattern. An ordered
list of segments can be converted into a matrix of all
pairwise distances between segments by assigning as the
distance between two segments the absolute value of the
difference between their numerical places in the ordered
list. Thus, segments adjacent to each other in the list are
separated by a distance of one, and segments at opposite
ends of a six-segment list are separated by a distance of
five. In order to derive a representation for each pattern
it is assumed that: (1) the relevant aspects of each
pattern can be represented in memory by a weighted
free tree, with line segments at some of the nodes of the
tree; (2) segments close together in the tree will tend to
be close together in the reproduction sequence; and
(3) all subjects have the same memory representation for
any given pattern.

One matrix of empirically estimated intersegment
distances was obtained for each pattern by averaging all
of the distance matrices resulting from correct repro-
ductions of that pattern. The best weighted free tree
representation for each pattern was then found by using
the procedure described by Cunningham (1978). Fig-
ure 2 contains the tree representations for each of the
19 patterns, and beside each tree is the product-moment
correlation between the empirical distance estimates and
the derived distances. Note that in general, the trees
provide an excellent account of the data, with only one
correlation below .90. (For comparison purposes, if the
tree recovery procedure is applied to matrices of random
numbers, correlations below .90 are obtained in more
than 95% of the cases.)

A few comments about the appearance and interpre-
tation of free trees might be helpful since many readers
may be unfamiliar with these structures. The trees in
Figure 2 were drawn in an arbitrary way with no inter-
pretation imposed. Since the internode distances are not
changed by the orientations of the links or the angles
between the links, any other way of drawing the trees
is acceptable, as long as it does not change the link
lengths. In the case of trees this small, most of the infor-
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mation in the tree is conveyed by the link lengths and
the assignment of segment numbers to nodes. In order
to see that this is true, consider all possible free trees
with six terminal nodes, ignoring link lengths and labels
on nodes. There are then only two different kinds of
trees possible: Those similar to the tree associated with
Pattern A and those similar to the tree associated with
Pattern D.

One criterion for determining if the derived trees are
plausible models for the memory representations of the
patterns is whether or not the tree implies an intuitively
reasonable organization of the pattern. For instance, the
top node in Figure 1b seems to divide the associated
pattern into two intuitively reasonable parts: Angle 1-4
and Angle 2-3-6-5. The location of that top node in the
version of the tree in Figure 1¢ would be in the center of
the longest link between two nonterminal nodes. A
similar analysis of each of the trees in Figure 2 could be
made. For each tree, the longest link between non-
terminal nodes is marked by a small x. The reader can
verify that, in almost all cases, the link seems to divide
the pattern into two intuitively reasonable parts. In
some of the cases in which the division seems less reason-
able (Patterns C, O, and R), the tree contains two
links between nonterminal nodes that are of approxi-
mately equal length, which could mean that it is not
clear in which link a “top” node should be inserted or
that at this level of analysis the pattern should be
divided into three parts rather than two. On the other
hand, for Pattern Q, it appears that the “top” node
should be inserted in the long link attached to the node
representing Segment S. This “face validity” of the
trees is evidence in favor of their use as models, since
the lack of this validity would lead to serious question-
ing of their use as models.

A remaining question is the extent to which the trees
reflect the underlying memory representation as
opposed to rules for drawing with a pencil and paper.
Two aspects of the experimental procedure were
intended to reduce the influences of any such simple
rules. The fact that subjects only had to fill in dotted
lines, rather than draw the patterns freehand, should
have decreased the use of heuristics intended to increase
the accuracy of the drawing of parallel lines, straight
lines, right angles, or lines of equal lengths. By forcing
subjects to begin drawing with a different particular
segment each time and by averaging over many repro-
duction sequences for the same pattern, it was hoped
that the information remaining in the intersegment
distances would principally reflect the memory organi-
zation. Another question concerns the effect of having
subjects record the number corresponding to the
sequence in which the line segments were drawn. Did
this cause the subjects to artificially focus on the digits
rather than a visual pattern and thus reproduce the seg-
ments in an order different from that which would have
occurred under more normal circumstances? The current
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experiment cannot address this point. However, that
means that the trees are modeling only the behavior
exhibited in this particular situation. Whether or not
they can model behavior in other situations is addressed
in the next two experiments.

The conclusion from this experiment is that trees
provide plausible models of the memory representations
for simple visual patterns. Furthermore, for each pattern,
a specific tree was found that provided a good quanti-
tative fit to the data and implied an intuitively reason-
able organization of the pattern. The extent to which
the trees really reflect memory representations can
be assessed by the following additional experiments.

EXPERIMENT 2: PART GOODNESS

Experiment 1 provided information about the mem-
ory structures for a relatively large number of visual pat-
terns. Experiment 2 began an in-depth analysis of the
representation of four of those patterns. The subjects in
this experiment reproduced patterns from memory and
then rated the “goodness” or “naturalness” of all the
two-segment parts of each pattern. One interpretation
of a “good” part of a pattern is that it is one which is
represented by a coherent unit within the representation
of the whole pattern. The closer together two parts are
within a representation, the more likely it is that they
are in the same coherent unit. If this interpretation is
correct, it should be possible to transform goodness
ratings into distance estimates. Distance estimates
obtained in this way are used to infer a weighted free
tree representation for each pattern. The results of a
reproduction task are then compared with the trees
to see if they are consistent with each other. If they are
consistent, this is evidence that the same representations
underlie performance on both tasks and that those
representations could be the free trees that are proposed.
Since tree representations of the same pattern derived
from two different tasks are compared with each other,
several ways of making this sort of comparison are
introduced.

Method

Subjects. The subjects were nine right-handed undergraduates
at the University of California, San Diego, who participated in
the experiment as part of a requirement for an introductory
psychology course.

Stimuli. The basic stimuli were Patterns I, K, L, and N,
which were used in Experiment 1 and are illustrated on the left
in Figure 3.

Procedure. In the first part of the experimental session, the
subjects reproduced the patterns in an abbreviated version of
Experiment 1, using the same materials and procedure. However,
only four patterns were used, each pattern was reproduced only
once, and there was no specification of where the reproduction
was to begin.

The subjects made goodness ratings during the second part of
the experiment. Each subject was given a four-page booklet.
Each page had one pattern drawn at the top and the 15 two-
segment parts of that pattern filling the rest of the page. The
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Figure 3. The four patterns used in Experiment 2 and, for
each pattern, the weighted free tree representation derived from
the mean goodness ratings and from the reproduction sequences,
along with the correlation between the internode distances in
the tree and the corresponding data values.

subjects were instructed to rate “how good or natural or obvious
each part is within the figure at the top of the page.” They were
instructed to use a scale ranging from 1 (‘“very bad”) to 10
(“very good”™) and to use the entire range of the scale for each
pattern. The ratings were written in a space provided below each
two-segment part. The two-segment parts were randomly ordered
on the page, and the pages were ordered randomly for each
subject.

Results and Discussion

Recovery of trees. First, trees were derived from the
subjects’ average goodness ratings and from the sub-
jects’ reproduction sequences. It was assumed that the
goodness of a two-segment part of a larger pattern was
inversely proportional to the distance between the two
segments in the representation of the larger pattern.
Each subject’s goodness ratings were transformed into
intersegment distance estimates by a negative linear
transformation, yielding distances ranging from 1 to
10. The distance estimates were then averaged over sub-
jects and the optimal free tree representation was found
for each pattern. Those trees are shown in Figure 3. The
correlations between the tree distances and the data
values ranged from .842 to .989.

Intersegment distance estimates were also generated
from the reproduction sequences by the procedure used
for the analysis of the results of Experiment 1. Weighted
free tree representations based upon these distances
were found and are also shown in Figure 3. The correla-
tions measuring the correspondence between the trees
and the data ranged from .951 to .994.

As in Experiment 1, an examination of the organiza-
tion of each pattern implied by the tree representations
of that pattern can be made. In all cases, the implied
organization seems to be intuitively reasonable, indicat-
ing that the trees have face validity.



Comparison of goodness trees and reproduction
trees. An informal comparison of the trees generated
from the goodness ratings and those generated from the
reproduction sequences indicates definite similarities,
but only for Pattern N are the two trees topologically
identical. (Two trees that are topologically identical
differ at most in the lengths of links between nodes and
are said to have the same “‘structure.”) But if the two
trees for each pattern reflect the same underlying
representation, then they should differ only because of
random fluctuations in the data.

Before a more systematic comparison can be made, a
formal measure of the amount of “structural difference”
between two free trees is needed. A few preliminary
definitions are required in order to state the measure.
The insertion of a link into a tree is defined as the
replacement of one of the nodes of the tree by two new
nodes connected by a link. The deletion of a link from a
tree is the removal of a link and the replacement of the
two nodes that it connected by a single node. A move
is defined as either the insertion or deletion of a single
link. The structural difference between two free trees
can then be defined as the minimum number of moves
required to transform one of the trees into the other.
(Boorman and Oliver, 1973, discussed several other
possible measures.)

An indirect way of evaluating whether or not the
trees differ only by chance is to compare the extent
of the structural differences between the pairs of trees
with the expected structural differences between pairs
of randomly chosen trees. The average number of moves
between the trees based on the ratings and the trees
based on the reproduction sequences is 2.5. The prob-
ability of the mean difference between four pairs of ran-
domly selected trees with six terminal nodes being 2.5
or smaller is .0025.! This indicates that the trees gener-
ated from the different data sets are structurally similar
and may be reflecting the same underlying representa-
tion. (They are “significantly similar.”)

There is a somewhat involved way to directly test
the hypothesis that the differences between correspond-
ing trees are small enough to be due to chance. Some of
the details of this test are given in the Appendix. The
result of this test is the probability that a structural
difference of the observed magnitude or larger could
occur by chance. For Patterns K and L this probability
is very small (p <.0l), so the structure of the trees
based on the goodness ratings should be considered to be
significantly different from the structure of the trees
based on the reproduction sequences for those two
patterns. For Patterns I and N the probability is large
(p=.32 and p=1.00, respectively), so for those pat-
terns, the structure of corresponding trees should not
be considered to be significantly different.

Consistency of goodness trees and reproduction
sequences. A detailed comparison of the reproduction
sequences themselves with the trees derived from the
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goodness ratings may provide better information con-
cerning whether or not the same representation under-
lies both tasks. In order to do this, it is necessary to
define what it means for the drawing of a certain line
segment in a sequence of segments to be consistent or
inconsistent with a particular tree representation. The
general idea is that reproducing a pattern involves the
systematic traversal of the nodes of the tree representa-
tion of that pattern. A reproduction sequence is con-
sistent with a given tree if traversing the nodes of that
tree in the order specified by the sequence “makes
sense.” For the present purposes, the drawing of a
certain line segment in a particular sequence of line
segments is said to be consistent with a given tree
representation if it is the first segment in the sequence
or if the path through the tree from the previously
drawn segment to this segment does not pass through
any nodes attached by a single link to a not-yet-drawn
segment. (Basically, this means that a sequence contain-
ing only consistent segments does not “skip over” any
intermediate nodes.) Note that this definition of con-
sistency does not guarantee that there is only one line
segment that is consistent with a given tree and given
partial sequence of segments.

A measure of the overall consistency between a group
of reproduction sequences and a set of associated trees
is the overall proportion of segments that are consistent
but could have been inconsistent. Since only the middle
four positions of each sequence could be inconsistent,
only those positions are considered. The proportion of
consistent segments can then be compared with the
probability of a chance consistency in order to evaluate
whether or not it is significantly larger. The probability
of a chance consistency is computed by comparing the
number of possible consistent segments to the number
of undrawn segments for each position in each sequence.

For each subject, a weighted free tree representation
for each pattern was derived from the goodness ratings
of that subject. The reproduction sequences of each sub-
ject were then compared with the trees for that subject.
The proportion of consistent segments was 93/132 =
.705. This proportion is significantly larger than the
chance probability of 494 (z=4.85, p<.00001).
Therefore it can once again be concluded that the
reproduction sequences and goodness ratings reflect
at least similar underlying structure. When the repro-
duction sequences of the individual subjects were
compared with the trees derived from the averaged
goodness ratings (those shown on the left in Figure 3)
rather than with the trees for individual subjects, the pro-
portion of consistent segments increased to 116/132 =
879, which is a significant increase (z=3.48, p <.0005).
This increase would be expected if most subjects had the
same underlying representations. If that was the case,
then the average goodness ratings would contain less
error than the ratings of individual subjects, so the
trees based upon those averaged ratings would more
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closely approximate the true underlying representations.
(When the proportion of consistent segments was
broken down by pattern, the results were: 28/28 = 1.00
for Pattern I, 31/36 = .861 for Pattern K, 30/36 = .833
for Pattern L, and 27/32 = .844 for Pattern N.)

In order to demonstrate that the notion of consistency
that has been defined is a reasonable one, the reproduc-
tion sequences can be compared with the trees derived
from those sequences (the trees on the right in Figure 3).
The proportion of consistent segments should be very
high in this case, since the trees were derived from the
information contained within the sequences. When this
comparison was made, the proportion of consistent
segments was found to be 120/132 = 909, which is the
highest proportion found. This indicates that the defini-
tion of consistency and the method of converting
reproduction sequences into distance matrices are com-
patible with each other.

The major conclusions from this experiment are:
(1) the order in which the parts of a pattern are repro-
duced and the rated goodness of parts of a pattern may
both be based upon the same underlying representation,
and (2)likely candidates for the underlying represen-
tations of the particular patterns used in this experiment
are the weighted free trees shown in Figure 3.

These conclusions are strongly supported for Pat-
terns I and N, since for those patterns the structures of
the trees based on the ratings and the trees based on the
reproductions are significantly similar and not signifi-
cantly different. The conclusions are less strongly
supported for Patterns K and L, since for those patterns
the structures of the corresponding trees are signifi-
cantly different as well as being significantly similar.
However, a more detailed comparison of the reproduc-
tion sequences themselves and the trees derived from the
ratings revealed that each tree tended to be highly
consistent with its associated reproduction sequences,
even for Patterns K and L. This apparent discrepancy
could be a resuit of the way in which the reproduction
sequences were collected. In this experiment subjects
drew each pattern only once and were not instructed
to begin with a particular segment. As a result, for
Patterns K and L there was considerable agreement
between subjects in their reproduction sequences (many
subjects producing the same sequence). Since the infor-
mation in the sequences comes from the way in which
they differ from one another, little information is
obtained if most subjects produce the same sequence.
Thus, the trees derived from the reproduction sequences
of Patterns K and L should not be taken too seriously.

EXPERIMENT 3: PART RECOGNITION TIME

It is not clear whether the trees derived from the
results of Experiment 2 should be considered to be
models of memory representations, perceptual repre-
sentations, or both. The drawing task involved memory

over a relatively short duration (approximately 1 to
15 sec), while the goodness ratings did not necessarily
involve memory for an entire pattern. Experiment 3
is addressed to the question of whether or not these
trees can be used to model the memory representation
of these simple patterns in a task that involves memory
over a relatively long duration. The results from this
task can be used to estimate the distances among the
representations of the line segments of a pattern in
memory. The trees derived from these estimates can be
compared with the trees derived from goodness ratings
and to reproduction sequences. As in Experiment 2, if
the representations derived from the various tasks are
consistent with each other, this is evidence that the same
representations are underlying performance on all three
tasks.

In this experiment, subjects began by learning a set
of six-segment patterns. Then they participated in a task
in which the time required to recognize that two line
segments were both contained within a specific pattern
was used as a measure of the distance between those
line segments in the memory representation of that
pattern. Weighted free trees were then derived from the
distance estimates and compared with trees obtained
from the other tasks.

Method

Subjects. The subjects were four graduate students and staff
members from the Department of Psychology at the University
of California, San Diego, who volunteered to participate in the
experiment. All subjects were right-handed.

Stimuli. The basic stimuli were the four six-segment patterns
used in Experiment 2. Each of the patterns was paired with a
unique digit ranging from 1 to 4. For the first part of the experi-
ment, each pattern was printed in black ink on the right-hand
side of a piece of paper, with its associated digit on the left-hand
side. In the part of the experiment involving the recording of
reaction times, the stimuli were displayed on an oscilloscope
screen (Tektronix 602) in a dimly illuminated soundproof booth
and appeared as light green patterns on a black background.
The stimuli were 3.2 cm in height and the subject viewed them
from approximately 45 cm, but the subject’s head was not
fixed.

Procedure. Each subject was first given four pieces of paper,
each containing a pattern and its associated digit. The subject
was instructed to learn which pattern was associated with which
digit. When the subject said that the patterns and associations
had been learned, a test was administered. The test consisted
of giving the subject the digits from 1 to 4 in a random order and
having the subject draw the pattern associated with each digit.
The experimenter observed and recorded the order in which the
line segments were drawn. If a mistake was made, the subject
was given another opportunity to learn the patterns and associa-
tions, followed by another test. The procedure was repeated
until the subject performed perfectly in the test. This portion
of the experiment required less than 10 min.

The second part of the experiment consisted of a sequence of
trials on which the subject was shown a digit followed by a two-
segment pattern and was asked whether or not the two-segment
pattern was contained within the six-segment pattern associated
with the digit. Specifically, an experimental trial had the follow-
ing form. The 3 by 3 matrix of dots that was a part of all pat-
terns was displayed on the oscilloscope screen continuously
between trials. When the subject was ready to start a trial,



(s)he pushed a button; after a 500-msec delay, the dot matrix
was replaced by a digit. The digit was displayed for 3,000 msec,
during which time the subject was supposed to “bring to mind”
the pattern associated with the digit. After the digit disappeared,
the screen remained blank for 1,000 msec, and then the test
stimulus was displayed. The test stimulus was a 3 by 3 dot
matrix with two line segments connecting adjacent dots. The
test stimulus was displayed until the subject responded either
“yes,” indicating that the two line segments were contained in
the pattern associated with the digit, or “no,” indicating that
they were not. The subject responded by pressing one of two
buttons on a table in front of him (her). When the subject
responded, the test stimulus disappeared, and eithera Y oran N
was displayed for 3,000 msec, indicating the correct response
for that trial. The time from the onset of the test stimulus to the
subject’s response was the recorded reaction time.

For each of the four patterns, each of the 15 possible two-
segment parts of the pattern was used as a test stimulus for that
pattern four times. So, for each pattern, there were 60 trials for
which the correct response was “‘yes.” There were also 60 test
stimuli for which the correct response was ‘‘no”” for each pattern.
Thirty of the test stimuli were randomly chosen from the
60 possible test stimuli having one segment in common with
that pattern, and 30 were randomly chosen from the 45 possible
test stimuli having neither segment in common with that pattern.
The 480 experimental trials for each subject were randomly
ordered and then divided into three blocks of 160 trials.

The third part of the experiment involved making goodness
ratings of various two-segment patterns. Each subject went
through the same rating procedure as the subjects of Experi-
ment 2. In addition, they rated the goodness of the 20 possible
unique (up to reflections and rotations) two-segment patterns,
independent of any context. That is, they rated the goodness of
each pair of segments as an independent pattern.

Each subject participated in three experimental sessions on
3 separate days, each lasting approximately 1h. In the first
session, the subject learned the patterns and associations and
then had 30 practice reaction time trials, followed by the first
block of 160 experimental trials. Each of the next two sessions
began with the subject’s refreshing his memory for the patterns
and associations, followed by 20 practice reaction time trials and
a block of 160 experimental trials. When a subject made an error
on an experimental trial, that trial was repeated after one half of
the remaining trials in that block had been executed. At the end
of the third session each subject made the goodness ratings.

Results and Discussion

Effect of the part itself on part recognition time. The
first question addressed is the extent to which the time
required to recognize that a two-segment pattern is
part of a larger pattern depends upon the two-segment
pattern itself, rather than on its relationship to the
larger pattern of which it is a part. This question is
addressed in two ways. The first way is to consider
cases in which the identical two segments are parts of
more than one larger pattern. In particular, Patterns L
and N have four line segments in common and thus six
two-segment parts in common. A three-factor analysis
of variance with the factors of part (six levels), pattern
(L or N), and subjects showed that there were no signifi-
cant differences in reaction time due to which part was
being recognized [F(5,15)=.67], but that there were
differences due to which larger pattern had been
“brought to mind” [F(1,3)=14.51, p<.05]. This
suggests that the important determinant of the recogni-
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tion time is the relationship of the part to the larger
pattern, and not the structure of the part itself.

The second way of addressing this question is to com-
pare the part recognition times with the two different
goodness ratings made for each part. Each two-segment
pattern was rated for its goodness as a part of a six-
segment pattern and for its goodness as an isolated
pattern. The correlation between the goodness-as-a-
part ratings and the normalized median reaction times
for the corresponding segment pairs was computed for
each subject. The average value of this correlation was
--.589, indicating that good parts were recognized
faster than bad parts. This correlation was significant for
all subjects [with t values ranging from t(58)= —11.08,
p <.00001, to t(58)=—-3.68, p<.001]. The correla-
tion between the goodness-as-a-pattern ratings and the
corresponding normalized median reaction times was
also computed for each subject and had an average
value of —.262. However, if this relationship was assessed
by computing the correlation between goodness-as-a-
pattern ratings and normalized median reaction times
with goodness-as-a-part ratings partialed out, the average
correlation became —.035. The value of the partial
correlation was significant for only one subject [t values
ranging from t(58)=12.33, p<.05, to t(58)=—.59,
p>.50]. An average of 36.9% of the variance of the
median reaction time can be accounted for by the
goodness-as-a-part ratings, and only an average of 3.9%
more variance is accounted for by the goodness-as-a-
pattern ratings. In other words, a part of a larger pattern
tends to be recognized quickly if it is a good part of the
larger pattern, but being a good pattern unto itself
tends to be unimportant. This is additional evidence that
the primary factor that determines the time required
to recognize a two-segment part is the relationship
between the segments in the memory representation and
not the two segments’ relationship in the physical world.

Reaction time trees and goodness trees. If the time
required to recognize a two-segment part is determined
by the relationship between the segments in the memory
representation, then those reaction times can be used
to make inferences about the memory representation. In
order to make those inferences, it is assumed that the
patterns used in this experiment are represented in
memory by weighted free trees, with the line segments
at some of the nodes of the trees. It is also assumed that
the time required to recognize that a two-segment
pattern is part of a six-segment pattern is a function of
the distance between the two segments in the tree
representation of the larger pattern. The farther apart
the two segments are in the memory representation, the
longer the time required to recognize that they are both
part of the memory representation. This means that the
“yes” reaction times can be used as intersegment dis-
tance estimates. For a given subject, there are four
replications of the “yes™ reaction time for each pair of
segments, and the median of those four replications was
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used as the estimate of the distance between those
segments. This yielded a distance matrix for each pattern
for each subject.

For each subject, a weighted free tree was derived
for each pattern. In general, the trees agreed very well
with the data, with correlations between derived dis-
tances and empirical estimates ranging from .762 to
981, with a mean of .910. The individual subjects’
reaction time distance matrices were averaged, and an
overall weighted free tree representation was found for
each pattern. The four trees are shown on the right-
hand side of Figure 4, along with the correlations between
the derived tree distances and the original mean dis-
tance estimates.

Weighted free trees were derived from the average
goodness ratings in the same manner as was used for the
analysis of Experiment 2. Those trees are shown on the
left-hand side of Figure 4, along with their correlations.
The trees based on the group reaction time data were
compared with trees based on the group goodness rat-
ings. The average structural difference between a good-
ness rating tree and the reaction time tree representing
the same pattern is 2.75 moves. The probability of a
value that low or lower occurring by chance is approxi-
mately .0064. This indicates that although the pairs of
corresponding trees are not identical, they are similar
and may be reflecting the same underlying structures.
Tests of the hypotheses that the differences between
corresponding trees were due to chance variation yielded
nonsignificant results for all four patterns (Pattern I,
p=.33; Pattem K, p=.13; Pattem L, p=.28; Pat-

GOODNESS ~ RATINGS REACTION  TIMES

Ly % 0, ®
4 @ ©®
3z ®
4
3 9 ' 0
6 \ @ LR
7
978 as3
' ®
14| o110 v
Z s @ G ®
@0 ©® @
.885 934
2 5
1
@ @
4 %
2 ® |
824 G o

Figure 4. The four patterns used in Experiment 3 and, for
each pattem, the weighted free tree representation derived from
the mean goodness ratings and from the mean median reaction
times, along with the correlation between the internode dis-
tances in the tree and the corresponding data values.

tern N, p=.34). This is further evidence that the same
tree representation may be underlying performance on
both tasks.

When the trees are compared with the patterns, the
following interpretations can be applied to both the
goodness rating trees and reaction time trees. For
Pattern I, the angle 14 is separated from the angle
5-6-3-2. The angle 34 is separated from the square
5-6-2-1 in Pattern K. Pattern L. consists of three units,
the parallel lines 1-2, the straight line 3-6, and the
angle 4-5. The goodness rating tree for Pattern N sepa-
rates the triangle 4-1-5 from the rest of the pattern, but
the reaction time tree is uninterpretable. This difficulty
in interpretation is caused by individual differences in
organization of the pattern and is discussed later in this
section.

If the trees based on goodness ratings from this
experiment are compared with the trees based on
goodness tatings from Experiment 2 (shown in Fig-
gure 3), remarkable agreement can be seen. In all but
one case the corresponding trees have identical struc-
tures and similar link lengths. It appears that trees based
on average goodness ratings are very robust between
experiments. Even though the subjects of this experi-
ment were more sophisticated and had more exposure to
the patterns than did the subjects of Experiment 2, the
trees based on their average goodness ratings are almost
identical.

Another question of interest is how representative
of the trees of individual subjects are the trees based
upon the group data. The average structural difference
between the tree of an individual subject and the group
tree for the same pattern is 2.56 moves for the trees
based on goodness ratings and 2.25 moves for the trees
based on reaction times. These differences are about the
same as the differences between tree representations of
the same pattern based upon different dependent
measures. This indicates that the trees based upon the
group data are similar to each of the trees of individual
subjects, suggesting that they may be reflecting the same
(or at least similar) memory structures.

The similarity between the tree based upon the group
data and the individual trees is least for Pattern N. For
that pattern the average structural difference between
the individual trees and the group tree is 3.25 moves for
the trees based upon goodness ratings and 4.00 for trees
based upon reaction times. (Not surprisingly, Pattern N
has the lowest correlations between the derived distances
and the data, with the reaction time tree having a
correlation of only .678.) This lack of agreement is
caused by the lack of agreement between individuals. As
examples, the trees derived from the median reaction
times of Subjects S2 and S4 are shown in Figure 5.
Pattern N seems to have been organized in one of two
ways, depending upon the subject. One way was as a
pair of “steps” made out of Segments 2, 3, 4, and 1,
with a “brace” made out of Segments 5 and 6; the
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Figure 5. Pattern N and weighted free tree representations for
it based upon the reaction time data of Subject S2 and Subject $4.

other way was as a “triangle” made out of Segments 1,
4, and 5, resting on a “base” made out of Segments 2,
3, and 6. Subject S2 appears to have the “steps and
brace” organization, as evidenced by his tree in Fig-
ure 5 and the fact that his reproduction sequence was
2-34-1-5-6. On the other hand, Subject S4 appears to
have the “triangle and base™ organization, as shown by
his tree in Figure 5 and his reproduction sequence of
5-1-4-2-3-6. The combination of these differing organi-
zations results in a tree representation of neither, as
illustrated by the reaction time tree for Pattern N
shown in Figure 4. For the rest of the patterns, the
group tree appears to be much more representative of
the individual trees.

Reaction time trees and reproduction sequences.
Each subject drew the patterns with pencil and paper
after they had been learned. The order in which the
line segments were reproduced can be compared with
the trees based upon the reaction time data to see if they
are consistent with each other. Consistency is defined in
the same way as for Experiment 2. When the reaction
time trees for individual subjects were compared with
those subjects’ reproduction sequences, the proportion
of consistent segments was .812, which is significantly
larger than the chance proportion of .560 (z =5.14,
p <.00001). This indicates that the reproduction task
and the reaction time task may be tapping the same
underlying memory structure.

Comparison of trees with other models. A natural
question is whether or not there are alternative models
that could do a better job of accounting for the data
than trees. Accordingly, the adequacy of a spatial model
and a specific network model will be compared with
that of the proposed free trees. The spatial model is
one in which the segments of a pattern are represented
by points in a two-dimensional euclidean space. This
model was fit by performing metric multidimensional
scaling with the MDSCAL computer program (Kruskal,
1964). The network model is one in which the segments
of a pattern are represented by nodes; any two segments
that are adjacent in the pattern are connected by a link.
The optimal link lengths were obtained by performing
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multiple linear regression. (When there were multiple
paths between nodes, the length of the path containing
the fewest links was taken as the distance between the
nodes.) When each model was applied to the group
reaction time data for each pattern, an average of 78%
of the variance in the data for each pattern was accounted
for by the free tree model by estimating 9 free param-
eters, an average of 84% was accounted for by the
spatial model with 10 parameters, and an average of 76%
was accounted for by the network model with an
average of 9.5 parameters (different patterns required
different numbers of parameters). Thus, the spatial
model fits the data slightly better than does the tree
model but requires one additional parameter to do so,
while the network model fits the data slightly worse
than does the tree model. Since a quantitative compari-
son of the degree to which the three models correspond
to the data does not clearly indicate which model is best,
the most appropriate model would have to be chosen on
other grounds. Earlier, several reasons were given for
why the simplicity of trees made them preferable to
general networks. A tree is also an attractive model
because it has been demonstrated that a tree can repre-
sent the detailed information contained in a visual
pattern (e.g., Pavlidis, 1977, Chapter 10). On the other
hand, a simple spatial model of the type used here
includes very little information about the exact structure
of the pattern, since each line segment is represented by
just two coordinate values. Of course, it is possible to
propose a spatial model in which an exact copy of the
pattern is stored in memory, but little explanatory
power is gained by such a model. Since a purpose of
this paper is to demonstrate the empirical adequacy of a
tree model, the important point is that neither alterna-
tive model provided a clearly better explanation of the
data.

Overall reaction time results. Up to this point, only
the detailed structure of the pattern of correct “yes”
reaction times has been analyzed. An examination of
the overall reaction time results yields a better idea of
exactly what subjects were doing in this task and why
the “yes” reaction times have a detailed structure
worth examining. Figure 6 plots reaction time averaged
over subjects, patterns, and replications as a function of
the number of segments that the test stimulus had in
common with the pattern. If the test stimulus had two
segments in common with the pattern, the correct
response was “‘yes”’; otherwise, the correct response was
“no.” Figure 6 shows that both the probability of an
error and the mean reaction time for correct responses
increases as the number of segments in common increases.
Incorrect responses were less numerous and their times
more variable than correct responses, so all that can be
concluded about the pattern of their mean reaction
times is that they are approximately equal to the longest
mean reaction times for a correct response.

The mean reaction times for correct responses are
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Figure 6. Mean reaction time and proportion of incorrect
responses plotted as a function of the number of common line
segments shared by the memory pattern and the test stimulus.
The error bars represent plus and minus one standard error.

consistent with an appealingly simple model of what
subjects are doing in this task. The model proposes that
subjects go through the following sequence of opera-
tions: Select one of the two segments of the test stim-
ulus and compare it serially with each of the segments of
the remembered pattern. If no matching segment is
found, respond “no.”” When a matching segment is
found, select the other segment from the test stimulus
and compare it with each of the remaining segments of
the pattern by searching through the memory repre-
sentation starting at the node corresponding to the
segment already located. If a match is found, respond
“yes”; otherwise, respond “no.” This model can predict
the obtained ordering of mean reaction times for correct
responses, and it predicts that the time required to
recognize a two-segment part will be a function of the
distance between the nodes corresponding to the two
segments in the memory representation.

GENERAL DISCUSSION

These three experimenis have demonstrated that
free trees provide reasonable models of the memory
representations of simple visual patterns. The results
from experiments involving the drawing of patterns,
goodness ratings of parts of patterns, and the recognition
of parts of patterns could all be accounted for by
postulating that the patterns were stored in memory in
the form of weighted free trees. Trees representing the
same pattern but derived from different dependent
measures were very similar to each other. This similarity
indicates that the behavior of a given subject in a variety
of tasks could be modeled by assuming a single memory
representation for any given pattern. In addition to

random error, the task requirements and the nature of
the processes acting upon the memory representation
might explain any minor differences between structures
inferred from different tasks.

These experiments have also illustrated a type of
methodology available for investigating cognitive pro-
cesses in general and visual memory representations in
particular. That methodology consists of (1) defining
the smallest to-be-remembered units in which you are
interested, (2)empirically estimating the distances
between those units in the memory representation,
(3) finding the tree structure that best explains those
distances, and (4) trying to verify that that particular
tree structure is a good model of the memory repre-
sentation.

A variant of this sort of methodology has been
employed by other investigators by hypothesizing that
the memory structure is a continuous dimensional space
rather than a tree and by using multidimensional scaling
to find the best form of the representation (e.g., Henley,
1969). Previous attempts to use this approach with trees
as the hypothesized memory representation (e.g.,
Anglin, 1970) have been limited by the fact that hier-
archical clustering was the only technique available
for deriving the tree structures, and thus only the use
of the overly restrictive ultrametric trees was possible
(Cunningham, 1978; Johnson, 1967).

Both Palmer (1977) and Reed (1974; Reed &
Johnsen, 1975) performed experiments similar to
Experiment 3 reported here, and yet they were unable
to infer specific representations for specific patterns.
Given the kind of data that they collected, the method-
ology available at that time was not sufficient to permit
such inferences. The experiments reported here, on the
other hand, always produced intersegment distance
estimates of some kind, so the methodological approach
discussed earlier could be used to infer the structure of
specific memory representations.

While trees provided adequate descriptions of the
data from these experiments, there is a lot of informa-
tion in a visual pattern that is not represented in the
simple trees of the type illustrated in Figure 1b. For
instance, the exact location, orientation, and length
of each line segment is not represented. Thus, one of the
trees should not be thought of as a model of the entire
representation of a pattern, but rather as a model of
part of the representation of a pattern. Whether or not
data from tasks that require different information or
data from more complicated patterns can also be inter-
preted in terms of free tree representations is yet to be
determined.
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NOTE

1. The probabilities of various numbers of moves separating
a random pair of trees can be calculated by enumeration. Then
the sampling distribution of the mean of four pairs can be
calculated by considering all possible kinds of samples of four
pairs and calculating the probability of each.

APPENDIX

The problem of determining whether or not the structures
of two trees are significantly different from each other can be
treated as being analogous to the problem of determining whether
or not two sample means are significantly different from each
other. An outline of a solution to the problem is given here, and
more details are given in Cunningham (Note 2).

The null hypothesis (H,) is that the two trees derived from
different sets of data differ from the single underlying “true”
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tree only because of random error in the data sets. This is
analogous to the hypothesis that two sample means differ from
a single population mean only because of random error (or
sampling variability). The alternative hypothesis is simply the
negation of H,.

In order to test H,, the sampling distribution of the struc-
tural difference (measured in moves, as previously defined)
between two trees, given that H, is true, must be found. This
sampling distribution will depend upon the amount of random
error in the data in a way analogous to the way the sampling
distribution of a sample mean depends upon the variability of
the population distribution. The approximate form of the
sampling distributions was determined by Monte Carlo tech-
niques. (That is, various amounts of artificially produced random
error were introduced into a large number of distance matrices
from weighted free trees, and the form of the relevant sampling
distributions was determined by comparing pairs of derived
trees and tabulating the results.)

In order to perform the test, the amount of random error in
each of the two distance matrices is first estimated. These two
estimates indicate to which sampling distribution the number of
moves separating the two trees derived from the matrices should
be compared. The result of this comparison is the probability
that a separation that large or larger could occur by chance,
given that H, is true and that the data contain the estimated
amount of error variability.

In order to be more precise, some notation must first be
introduced. The objects being represented by the trees can be
labeled by the integers 1 to n. Let t(i,j) be the distance in the
true underlying tree between the nodes representing objects
i and j (normalized, for convenience, to have a mean of 2 and a
standard deviation of .5) and di(i,j) be the empirically estimated
distance (similarly normalized) between objects i and j given in
matrix k (k =1 or 2). From each distance matrix, the optimal
weighted free tree is derived, and the distance between nodes
iand j in the tree derived from matrix k is ti(ij). A multiplica-
tive model of random error is assumed, so that the relationship
between the true underlying tree distances and the empirically
estimated distances is di(i,j) = ejjkt(,j), where ey is a multi-
plicative random error component with a mean of 1 and a
standard deviation of oi. The amount of random error in dis-
tance matrix k can be estimated by obtaining an estimate of
ok, and that estimate is

) z[@_l] A%

i j<i ti (i)

nn-1)
2

The notation M(s,,0,,n) is used for the random variable
representing the sampling distribution of the number of moves
separating two weighted free trees, each with n terminal nodes,
that were derived from distance matrices reflecting error multi-
pliers with standard deviations of o, and o,. The approximate
probability distribution of M(s,,0,,6) for the tree-derivation
method of Cunningham (1978) was found for various combina-
tions of o, and o, by employing Monte Carlo techniques. If
the number of moves separating the structures of two empiri-
cally determined weighted free trees ism, ,, then the p value for
the one-tailed test of H, is

p=P[m,, > M(s, s, 6)/H, true].

This is the probability reported for tests of this kind in the body
of the paper.
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