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The replacement effect: Repeating some items 
while replacing others 

BENNET MURDOCK and MARY LAMON 
University of Toronto, Toronto, Ontario, Canada 

We performed three experiments on recognition learning that tested for the existence of a replace­
ment effect (i.e., the benefit accruing to nonrecognized items, or targets, when recognized items 
are replaced in the next study trial). A reverse Rock substitution procedure was used, and the 
replacement effect occurred in all three experiments. The results were interpreted in terms of 
a distributed memory model, the matched-filter model of Anderson (1973), but several modifica­
tions were necessary. The original version cannot learn, and a closed-loop modification did not 
show the repetition effect that was clearly evident in the data. The most satisfactory version was 
one based on probabilistic encoding of features in the item vectors, and it seemed capable of ex­
plaining most aspects of the data. 

Recent developments in distributed memory models 
provide a new way of looking at human memory. They 
specify how information can be stored and retrieved, they 
explain how recognition and recall can occur, and, cou­
pled with a decision system, they can account for both 
accuracy and latency data. They are content addressable, 
and retrieval occurs by direct access rather than by search. 
They are consistent with known physiological mecha­
nisms; in fact, many distributed memory models (see Hin­
ton & Anderson, 1981) are based on or are outgrowths 
from neural models. 

Originally, it was not clear how to test distribut¢ 
memory models, so their usefulness to experimental psy­
chologists was limited. However, a number of applica­
tions to experimental data have appeared more recently 
(e.g., Anderson, 1973; Anderson, Silverstein, Ritz, & 
Jones, 1977; Eich, 1982, 1985; Heath, 1983; Humphreys, 
Pike, Bain, & Tehan, in press; Kawamoto & Anderson, 
1985; Knapp & Anderson, 1984; Lewandowsky & Hock­
ley, 1987; McDowd & Murdock, 1986; Murdock, 1982, 
1983; Nilsson, 1986), so the models can clearly make con­
tact with experimental data. 

A further test is whether distributed memory models 
predict any novel or unexpected empirical phenomena. 
We argue that they do, and illustrate with a particular ex­
ample. The prediction to be tested is that in a recognition 
learning situation, replacing items recognized on one trial 
should facilitate recognition of the repeated items (' 'tar­
gets") on the next trial. This facilitation is relative to a 
control condition in which there is no replacement. 

More specifically, in the experimental or replacement 
condition, one replaces all items recognized on the test 
phase of Trial n - 1 with a new sample of items for the 
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study phase of Trial n. In the control or nonreplacement 
condition, all old items from Trial n - 1 are repeated in 
the study phase of Trial n. The prediction is that perfor­
mance on targets (the nonrecognized items) should be bet­
ter than performance on nontargets in the experimental 
condition but worse in the control condition. To facili­
tate exposition, we call this prediction the "replacement 
effect. " 

Why do distributed memory models predict the exis­
tence of a replacement effect? To understand this predic­
tion, we must first understand why some items are recog­
nized and some items are not recognized on any given 
trial. Basically, each item is masked by all the other items 
on the list, and the amount of this masking varies from 
item to item. Purely by chance, some items are at the bot­
tom of the distribution, and those are the items that are 
not recognized. As signal-detection theory tells us, 
memory-trace strength is graded not all-or-none, and items 
below the criterion have less strength than other items but 
not zero strength. 

What should happen to the target items if one replaces 
the masking items with a new (random) sample? By 
replacing the recognized items, there should be a "regres­
sion to the mean" for the target items. Although they were 
below average for the first sample of items, with a new 
sample of items there is no reason they should still be be­
low average, hence the regression to the mean. As a result, 
the target items should be better recognized in the replace­
ment condition than in a standard or control nonreplace­
ment condition. (We are oversimplifying at this point, be­
cause there are two opposing factors. Targets in the 
experimental condition are handicapped by being of 
greater than average difficulty but, compared with the 
nontargets, are benefited by the repetition. How these two 
factors trade off will be explicitly considered in the Dis­
cussion section.) 

The predicted replacement effect highlights some of the 
differences between distributed memory models and a 
more standard type of strength theory (e.g., Wickelgren 
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& Norman, 1966). According to a distributed memory 
model (e.g., the matched-filter model of Anderson, 1973), 
there is no discrete representation of individual items; all 
items are pooled in a common memory vector. Any for­
getting that occurs is global, not local; one item cannot 
be forgotten more than another. Retrieval occurs by a 
direct comparison of a probe item to the memory vector, 
and whether or not old items are recognized depends on 
how much they "resonate" at the time of testing. Dis­
tributed memory models are what Humphreys et al. (in 
press) call "global matching models." 

However, it turns out that the picture is not quite so 
simple. The prediction about the replacement effect was 
arrived at intuitively and, although it seems quite reason­
able, rests on a presupposition that turns out to be false. 
The presupposition is that distributed memory models can 
learn, but in fact some of them cannot. Therefore, we must 
talk about particular distributed memory models, not dis­
tributed memory models in general. We will start with 
the matched-ftlter model of Anderson (1973), a simple 
but elegant distributed memory model for item recog­
nition. 

The Matched-Filter Model 
According to the matched-ftlter model, the storage and 

retrieval of item information is as follows: Item informa­
tion is represented by N-dimensional random vectors. 
These are vectors in an N-dimensional space whOse ele­
ments are random variables. Each of the N elements in 
an item vector is a random sample from a normal distri­
bution with mean zero and variance PIN, where P is the 
power of the vector. (P = E;~I.r..r., where N is the num­
ber of elements in the vector.) Each item is stored in a 
common memory vector M. The storage of item infor­
mation is given by: 

(1) 

where the item vectors are represented by f, for I = 1, 
2, ... , L, and L is the number of items in the list. For 
retrieval, the probe item is compared with the memory 
vector and the comparison operation is the dot product. 
This dot product is fed into a decision system whose out­
put is an observable response, "no" or "yes" depend­
ing on whether the value of the dot product falls below 
a lower criterion or above an upper criterion. (The 
matched-ftlter model is a two-criterion model.) 

A major problem with the matched-ftlter model is that 
it cannot account for recognition learning. Memory after 
a single presentation can be quite good or bad depending 
on the number of items in the list and the values of the 
parameters N and a, but it can be just as good (or just 
as bad) after the second presentation, the third presenta­
tion. and so forth. That is, there is no improvement in 
performance with repetition. We know (e.g., Kintsch, 
1965) that this is wrong. 

Why does learning not occur with repetition? Each repe­
tition adds a new copy of the item to the memory vector, 
and this increases the expected value of the dot-product 

comparison. However, it also increases the variance. 
Since d', the standard measure of recognition memory, 
depends on both the old-item mean and the new- and the 
old-item variances, both the mean and the variance must 
be considered. 

The fact that both the mean and the variance increase 
with repetition is not enough to say that learning does not 
occur. What is necessary is to know what happens to d' 
with repetition, as d' takes into account both mean and 
variance. In fact, d' does not change as the number of 
presentations increases, and a proof is given in Ap­
pendix A. 

An obvious modification to rectify the learning problem 
is to change the matched-ftlter model from an open-loop 
system to a closed-loop system. In a closed-loop system 
the output modifies the input, whereas it does not in an 
open-loop system. This difference is illustrated in 
Figure 1. The homeostatic regulatory mechanisms of the 
body are well-known examples of closed-loop systems, 
and such closed-loop or feedback systems have been much 
discussed in the literature (see, e.g., Arbib, 1964, or 
Wooldridge, 1963). Closed-loop or feedback systems have 
been widely used in neural models oflearning (e.g., Sut­
ton & Barto, 1981) and in connectionist models (e.g., 
McClelland & Rumelhart, 1985). Also, this closed-loop 
model can account quite well for some recognition­
memory data of Avant and Bevan (1968) on constant 
versus varied encoding (McDowd & Murdock, 1986), so 
it seemed reasonable to try it here. 

A simple way to tum an open-loop system into a closed­
loop system is to rewrite Equation 1 so that 

(2) 

where c = 1 -d and d is the dot product of item I with 
the memory vector M (McDowd & Murdock, 1986). We 
let retrieval precede storage, and we let what is stored 
be a function of what is retrieved. In other words, assume 
that when a study item is presented, it is first compared 
to the information in the usual way (i.e., dotted with the 
memory vector); then the additional information that is add­
ed to the memory vector is inversely proportional to what 
is already there. When the item is familiar (i.e., when d, 
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Figure 1. lliustration of the difference between an open-loop and 
a closed-loop control syskm. 



the dot product, is large) little is added, but when the item 
is unfamiliar (Le., when d is small) much is added. The 
constant c acts as a negative-feedback weighting to de­
termine how much of the item is added to memory. 

As we show here, this closed-loop version does indeed 
rectify the learning problem, so our presupposition for 
the replacement effect is well-founded. Whether the 
closed-loop version can explain the replacement effect is 
another matter. We turn now to the experiments that were 
designed to provide the data to test the model. 

METHOD 

The experiments were designed to test whether or not the replace­
ment effect occurs, and they used what may be called a reverse 
Rock substitution procedure (RRSP) (Lamon, 1982). In the ex­
perimental condition all items recognized on the test phase of Trial 
n -1 were replaced for the study phase of Trial n. This procedure 
contrasts with the original substitution procedure of Rock (1957), 
in which all nonrecalled pairs were replaced. A similar procedure 
has been used in paired-associate learning (e.g., Cavanagh & Park­
man, 1971), but not, to our knowledge, in recognition. 

Using the RRSP, we focused on the recognition of the target items 
on the test phase of Trial n. The prediction was that performance 
on the target items should be better than performance on the non­
target items in the experimental condition but not in the control con­
dition. 

We conducted three separate experiments, in part to vary the 
procedural details in order to test the generality of the replacement 
effect. Also, we varied the difficulty level of the task to see if the 
replacement effect interacted with task difficulty. We detail the 
procedure and subjects for each experiment separately, and then 
discuss the results. 

Experiment 1 
A discrete-trials study-test recognition procedure was used. Lists 

of 80 words were presented singly to each subject. After study-list 
presentation, the subject was given a 160 word yes-no recognition 
test. The test consisted of the 80 study words and an equal number 
of new words that served as lures. In the experimental condition, 
correctly recalled items on Trial n - 1 were replaced for the study 
trial on Trial n. If a study item was not recognized, it was repeated 
on the next study list. These repeated items were the target items, 
and target items were defined in terms of only the previous trial. 
They were missed on Trial n - 1, and hence repeated on Trial n. 
What happened on Trial n - 2 was irrelevant. 

In the control condition, the same 80 study items were presented 
and tested with new lures on each test trial. There were target items 
(the nonrecognized items on the prior trial), but the recognized items 
were not replaced. Three study-test trials were given for each con­
dition. Only three trials were used because preliminary testing 
showed that performance was near the ceiling after three trials. 

The subjects were assigned randomly to conditions, and each sub­
ject was tested individually. The subjects were asked to try to learn 
each word as well as possible and were informed that a recognition 
test would follow immediately. The subjects were told that on sub­
sequent study lists some proportion of words studied on the first 
list would be repeated, but that the task did not involve discriminating 
among lists. Study cards, each bearing a single typed word, were 
presented one at a time at a rate of 30 words per minute. The recog­
nition test followed immediately and consisted of items shown on 
cards presented one at a time. The recognition test was self-paced. 
The subjects were asked to respond to each item, indicating whether 
or not they recognized the word as a study word by placing the 
test card on a 2x2 matrix. Old items were to be placed to the left 
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and new items to the right. Each test card was coded on the reverse 
so that the experimenter knew whether that item was old or new. 
The experimenter then indicated whether the card should be placed 
in the upper (correct responses) or lower (incorrect responses) quad­
rant. The subjects were informed about this method of scoring; thus, 
they had immediate feedback about accuracy of performance for 
each item. 

A word pool was constructed by selecting common nouns that 
had at least 30 occurrences per million words according to the 
Kurera and Francis norms (1967). These words were matched for 
length and concreteness. A noun was classified as concrete if it met 
either of two criteria: (I) it was rated as greater than 6.0 on the 
Paivio, Yuille, and Madigan norms (1968), or (2) if there was no 
available rating, the word had to be a reasonably appropriate ob­
ject ofa sense verb, such as see, hear, touch, taste, or smell (Glan­
zer & Bowles, 1976). There were approximately 500 words in the 
resulting word pool that were assigned randomly without replace­
ment as targets or lures in constructing unique sets of study and 
test lists for each subject. For each control subject, a single study 
list and three sets of lures were constructed. For each experimen­
tal subject three old-item sets and three sets of lures, each consist­
ing of 80 items, were constructed. Order of item presentation was 
randomized for each study and test list. 

The subjects were 30 volunteers, male and female, ranging in 
age from 18 to 24 years. The subjects volunteered in order to receive 
course credit. A 3 x2 split-plot design was used. Repetition was 
a within-subjects factor and replacement condition was a between­
subjects factor. 

Experiment 2 
The same RRSP was again used for the replacement manipula­

tion. This experiment was performed on an mM PC. The computer 
was used both to generate study and test lists and to administer the 
experiment. The subjects were presented with a list of 64 words 
displayed one at a time in the center of a CRT screen for 1.25 sec 
with an interstimulus interval (lSI) of 300 msec. The subjects were 
informed that immediately following list presentation a recognition 
test list would be presented, with each word appearing alone. The 
subject's task was to respond to each item as it appeared by press­
ing a "yes" key if the item was recognized as a study word or a 
"no" key if it was not recognized as a study word. 

Response keys were assigned randomly so that half of the sub­
jects made' 'yes" responses with their preferred hand and half made 
"yes" responses with their nonpreferred hand. When ready, the 
subject pressed the "yes" key to begin testing. The recognition 
test was self-paced. Latencies were recorded, and as soon as the 
subject made a response, immediate feedback about accuracy and 
latency was given. Either "correct" or "incorrect" appeared be­
low the test item, along with the latency in milliseconds. There was 
a 300-msec interval between response and display of the next test 
item. Three study-test trials were given in this manner. The sub­
jects were assigned randomly and blindly to conditions. Each sub­
ject was tested individually. 

Study and test lists were constructed for each subject by select­
ing words randomly and without replacement from the Toronto 
Word Pool. This pool consists of 1,080 common English words 
from different parts of speech ranging in length from four to eight 
letters. We chose these words of more general nature to help en­
sure that the effect found in Experiment 1 was not due to idiosyn­
cratic properties of common concrete nouns. 

The subjects were 20 male and female volunteers ranging in age 
from 17 to 30 years. The subjects were paid for their participation. 
The design was the same as that used for Experiment 1. 

Experiment 3 
To increase the difficulty level, Experiment 3 used a longer list 

and a faster presentation rate. In addition, there was a 5-min inter-
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polated distractor task between each trial. The same general de­
sign was employed in this experiment as in the first two. 

Generally, the same RRSP used in the previous experiments was 
followed in this experiment. Presentation time was decreased from 
1.25 sec per item to 300 msec per item with a shortened lSI of 
100 msec. Thus, each word in this experiment was allowed only 
about one quarter of the time allowed in Experiment 2. List length 
was also increased to 96 items from 80 items in Experiment I and 
64 items in Experiment 2. Between each study and test trial and 
between each test trial and subsequent study trial, a 5-min filled 
retention interval ensued. During this time the subjects were re­
quired to read a prose passage. The subjects were informed that 
a recall test for the gist of the passage would be given after the 
third recognition test. Again, the subjects were assigned randomly 
and blindly to conditions, and each subject was tested individually. 

As in Experiment 2, the Toronto Word Pool was used. The same 
method of list construction and randomization was again employed. 
A split-plot design was used with tlials as a within-subjects factor 
and conditions as a between-subjects factor. The subjects were 26 
male and female volunteers, aged 18-55. Half of the subjects par­
ticipated for monetary payment; the remainder were undergradu­
ates who volunteered in order to fulfill a course requirement. 

RESULTS 

The main results of the experiments are shown in Ta­
ble 1. The table shows hit rates and false-alarm rates for 
targets and nontargets for the control and experimental 
groups for all three experiments. All items were targets 
on Trial 1, so the number of targets on Trial 2 did not 
differ except by chance for the control and experimental 
groups. Thereafter, the number of targets differed since 
the experimental group had a partly new list on each trial 
and the control group saw the same items repeatedly. 

Table 1 
Hit Rate (HR) and False-Alann Rate (FAR) for Targets (T) and 

Nontargets (N) by Condition and Trials for Experiments 1-3 

Trial 

1 
2 

3 

1 
2 

3 

1 
2 

3 

Type 

T 
T 

N 
T 

N 

T 
T 

N 
T 

N 

T 
T 

N 
T 

N 

Control 

HR FAR 
Experiment 1 

.76 .10 

.95 
.05 

.97 

.96 
.03 

.97 

Experiment 2 

.74 .16 

.89 
.11 

.96 

.96 
.08 

.97 

Experiment 3 

.59 .31 

.73 
.23 

.86 

.78 
.16 

.92 

Experimental 

HR FAR 

.77 .10 

.99 
.09 

.82 
1.00 

.10 
.80 

.78 .15 

.96 
.19 

.86 
1.00 

.18 
.85 

.60 .31 

.82 
.32 

.59 

.90 
.35 

.60 

There are a variety of measures we could have used 
to test for the existence of a replacement effect, but we 
considered only two. The first and perhaps more obvi­
ous measure is the d' value for targets. With this mea­
sure one would compare d' for targets in the experimen­
tal condition with d' for targets in the control condition 
on each trial. The prediction, of course, is that d' for tar­
gets in the experimental condition should be higher than 
d' for targets in the control condition. By conventional 
wisdom, this comparison would correct for criterion ef­
fects and, as the false-alarm rates show, such criterion 
differences seem to exist. 

There are two problems with this measure. The first 
problem is that an erroneous interpretation might result 
if there were differences in the variance. The use of d' 
as an experimental measure assumes equal variances, yet 
our theoretical understanding of this situation suggests that 
the variances are probably unequal. We have no way of 
assessing from the data what the underlying variances 
might be, so although this problem is only hypothetical 
it is still a worrisome point. 

The other problem is that the d' measure focuses on 
a subset of the data (targets only) and neglects the re­
mainder (i.e., nontargets). To test the replacement effect, 
we need a measure that reflects performance on targets 
and nontargets in both control and experimental condi­
tion. The hit-rate crossover is such a measure. By "hit­
rate crossover, " we mean the difference between targets 
and nontargets in the experimental condition compared 
with the same difference in the control condition. Sym­
bolically we can represent the hit-rate crossover, H, as 
H = (a-b)-(c-d) where a is the hit rate for targets in 
the experimental condition, b is the hit rate for nontar­
gets in the experimental condition, c is the hit rate for 
targets in the control condition, and d is the hit rate for 
nontargets in the control condition. 

This measure H is like an interaction but since, strictly 
speaking, it is not an interaction, we use the term 
"crossover" instead. That is, H is not an interaction in 
the analysis of variance sense, because item type (target 
vs. nontarget) is not crossed with the replacement manipu­
lation. 1 However, H is the theoretically relevant measure 
that the experiments were designed to test. Furthermore, 
it turns out to be a crucial measure to use to compare the 
three experiments. 

As a statistical test we used a simple t test for the differ­
ence between the experimental and control groups, where 
the data for each group was the target-nontarget differ­
ence for each subject. That is, for each experiment we 
computed a - b for each subject in the experimental group 
and c-d for each subject in the control group and per­
formed a between-groups t test on these difference scores. 
Thus, we have a single measure (H) and an appropriate 
statistical test (a t test) to represent and test what we are 
calling the hit-rate crossover. 

To provide additional documentation we also considered 
two sets of binary contrasts. One binary contrast is the 
comparison of a with c, that is, hit rate for experimental 



targets with hit rate for control targets. This gives a mea­
sure of the effectiveness of context change on unrecog­
nized items, which we call the context effect. The other 
binary contrast is the comparison of a with b, that is, tar­
gets in the experimental condition with nontargets in the 
experimental condition. This gives a measure of the ef­
fectiveness of repetition, which we call the repetition 
effect. 

The hit-rate crossover on Trial 2 is summarized in Ta­
ble 2. The table shows the hit rate for targets and nontar­
gets in both the experimental and control conditions. As 
can be seen, in all three experiments, targets were worse 
than nontargets in the control condition but (much) bet­
ter in the experimental condition. The crossover was sig­
nificant in all three experiments [t(18) ~ 4.2, t(18) = 
3.81, and t(24) = 6.36 for Experiments 1, 2, and 3, 
respectively; in all cases p < .01].2 

The context effect involves a comparison of the hit rate 
for targets in the experimental condition with the hit rate· 
for targets in the control condition. In Experiments 1 and 
2 there were ceiling effects (about half the subjects in the 
experimental condition correctly recognized all the tar­
gets on the second trial), so a statistical test would not 
be too meaningful. In Experiment 3 this was not a 
problem, and, although the difference was in the right 
direction (see Table 2), it was not statistically significant 
[t(24) = 1.41, P > .05]. 

Consequently, the data do not demonstrate a context 
effect, but the test was not too powerful. Also, in addi-· 
tion to probable criterion differences (which go the other 
way), an obvious confounding should be noted. The non­
targets in the control group were repeated items the sub­
jects had previously recognized, so the control subjects 
could have devoted more attention to the target items or 
rehearsed them more than did the experimental subjects, 
for whom the nontargets were items they were seeing for 
the first time. So, although we cannot claim there is a con­
text effect, we would certainly not deny the possibility 
that one could be found under the right conditions. 

The repetition effect was clearly evident and statisti­
cally significant in all three experiments. In the ex­
perimental group, targets were better recognized than non-

Table 2 
The Hit-Rate Crossover on Trial 2 for Experiments 1-3 

Condition Targets Nontargets 

Experiment 1 

Control .95 (288) .97 (912) 
Experimental .99 (276) .82 (924) 

Experiment 2 

Control .89 (166) .96 (474) 
Experimental .96 (141) .86 (499) 

Experiment 3 

Control .73 (512) .86 (736) 
Experimental .82 (499) .59 (749) 

Note-The numbers in parentheses are the frequencies on which the hit 
rates are based. 
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targets, with t(14) = 6.05, t(9) = 3.88, and t(12) = 6.09 
in Experiments 1, 2, and 3, respectively (in all cases 
p < .01). In fact, for only 1 subject in all three experi­
ments was the difference in the opposite direction. Thus, 
the benefit of repetition clearly outweighed the disadvan­
tage of item difficulty, and this was true in all three ex­
periments. 

GENERAL DISCUSSION 

The results of these experiments demonstrate the exis­
tence of a replacement effect, and our chief evidence is 
the hit-rate crossover. It is a large effect that clearly oc­
curred in all three experiments. The context effect was 
not statistically significant, but a possible confounding 
with differential attention or rehearsal was noted. The 
repetition effect was quite large and statistically signifi­
cant in all three experiments. Target items were recog­
nized better than nontarget items by the experimental 
group in all three experiments. 

The repetition effect cannot reasonably be attributed to 
criterion differences. Each subject must set a criterion, 
but the criterion is between new and old items, not be­
tween targets (items with two previous presentations) and 
nontargets (items with one previous presentation). Both 
targets and nontargets should be given the same response 
(i.e., "old"), and to claim that there are different crite­
ria for targets and nontargets puts one in the position of 
claiming that subjects somehow know the difference be­
tween once-presented and twice-presented items without 
knowing the difference between old and new items. This 
does not seem to be a very reasonable position to maintain. 

The purpose of conducting these experiments was to 
provide some data that could be used to test a prediction 
from distributed memory models in general and from the 
matched-ftlter model in particular. We now consider 
whether the model can accommodate these data. As we 
shall show, the closed-loop version of the matched-ftlter 
model cannot; in particular, it cannot generate the repe­
tition effect that was so evident in the data. After we have 
documented this claim, we shall end by briefly present­
ing a different modification of the matched-ftlter model 
that can learn, generate a repetition effect, and generate 
a hit-rate crossover that at least qualitatively matches the 
data from the three experiments. 

Before we do this, however, it is necessary to rule out 
a simpler explanation of the data based on strength the­
ory. It could be argued that any theory that locates item 
difficulty in the item would predict a hit-rate crossover. 
Control nontargets are stronger than control targets which 
are equal to experimental targets which are stronger than 
experimental nontargets, or d > (c = a) > b (see 
above). Then, the hit-rate crossover is given by (a-b) 
- (c-d) = -b+d = d-b, which will be positive be­
cause d > b. 3 

Although this is true, it turns out that this simpler ex­
planation makes the wrong prediction about how the hit­
rate crossover should vary with task difficulty. It predicts 
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that the magnitude of the crossover should decrease as 
task difficulty increases (see Appendix B). The relevant 
data are shown in Table 3, which shows the value of d' 
on Trial 1 and the magnitude of the hit-rate crossover on 
Trial 2 for each of the three experiments. Since Experi­
ment 3 clearly had the most difficult task yet had the lar­
gest hit-rate crossover, this simpler explanation does not 
seem to be correct. 

This analysis makes explicit the trade-off between item 
difficulty and repetition benefits mentioned in the in­
troduction. Obviously, the benefits of repetition outweigh 
the item difficulty factor. Furthermore, this analysis high­
lights the advantage of using the hit-rate crossover as the 
main dependent variable. Under the linearity assumptions 
of strength theory, computation of the three-way effect 
(i.e., the hit-rate crossover x task difficulty) cancels out 
several terms that might make interpretation difficult (see 
Appendix B). 

We now turn to a more realistic model, the closed-loop 
version of the matched-fIlter model, to see if it can han­
dle the replacement effect. 

Simulations of the Closed-Loop Model 
Unlike the open-loop version, it is difficult, if not im­

possible, to obtain explicit expressions for the closed-loop 
version of the matched-fIlter model. Consequently, we 
must resort to computer simulations to find out what it 
predicts. To apply it to the RRSP, we modeled the simu­
lations after the experiments as closely as possible. 

The simulations were run as follows. We always in­
cluded both the control (nonreplacement) and the ex­
perimental (replacement) conditions. On each replication 
there was a study list of L items followed by a test list 
of 2L items, half new and half old. Presentation order for 
both the study phase and the test phase of each trial was 
always randomized. For the study phase the items were 
added to the memory vector in the prescribed fashion 
(Equation 2). That is, the dot product of the item with 
the memory vector was first computed, then the weight­
ing factor c was simply the complement of this dot 
product. In some simulations we added information in the 
same way to the memory vector during the test phase; 
in other simulations we did not. Whether information was 
added to the memory vector during testing did not seem 
to affect the pattern of results we obtained. 

In the experimental condition target items had to be 
replaced, and their replacements were simply more items 
of the same type. That is, all items of whatever type were 
simply N random samples from the feature distribution 

Table 3 
Trial 1 d' Values and the Hit-Rate CrotlIiOver 

on Trial 2 for Experiments 1-3 

Hit-Rate 
Experiment FAR HR d' Crossover 

1 .100 .765 1.996 .19 
2 .155 .760 1.713 .17 
3 .310 .599 0.744 .36 

Note-FAR is mean false-alarm rate; HR is mean hit rate. 

(i. e., a zero-centered normal distribution with (J2 = 1 IN). 
It was necessary to have a criterion to decide which items 
were not recognized on a given trial. In general, the cri­
terion a was set about midway between zero and the mean 
of the old-item distribution, and to mimic the experimen­
tal data we sometimes raised the criterion over trials in 
the control condition. In general, these criterion manipu­
lations seemed quite inconsequential. Although they cer­
tainly had a big effect on the number of targets, within 
the range we used they had little or no effect on the pat­
tern of results. 

In each replication there were two to five trials, depend­
ing on the simulation, and recognized items were replaced 
or not as the condition dictated. The new items were al­
ways different on each test trial. The value of N, the num­
ber of elements in the item vectors, ranged from 64 to 
500, and the number of study items varied from 8 to 32, 
depending on the simulation. Although these lists were 
not as long as those used in the experiments, longer lists 
would have increased the running time for the simulations, 
which was already considerable (from 3 to 72 h per simu­
lation on an mM/XT with an 8087 coprocessor). 

Finally, for each condition we initialized the memory 
vector to a set of random numbers before the first repli­
cation and left it alone from then on. That is, informa­
tion was added during the study and test phases, but the 
memory vector was not reinitialized until we started the 
next condition (experimental or control). This means that 
the information in memory was cumulative over the 
100-500 replications we ran per condition. Just as sub­
jects remember items from test trials, so it is reasonable 
to assume that subjects remember items from prior lists. 
In fact, we have some unpublished data from a single­
trial study-test procedure showing very clearly that sub­
jects remember lists over sessions even when the sessions 
are spaced one or more days apart, so this cumulative 
procedure mimics in a small way what probably goes on 
naturally over periods of time spanning hours if not days. 

The dependent variable was the dot-product value for 
each item on each trial, as this is the theoretically rele­
vant measure. However, to identify the target items, it 
is necessary to assign "yes" and "no" responses to each 
item, so we determined this by whether the dot product 
was above or below the criterion for that trial. This ena­
bled us to identify the targets and replace the nontargets 
in the study phase of the next trial in the experimental 
condition. 

There were two main questions the simulation was 
designed to answer. The first question was whether leam­
ing occurred. There is little doubt that it did. Consider­
ing only the control condition, in all the simulations there 
was seldom a time when the mean dot-product values did 
not increase steadily with repetition. (The only exceptions 
were when the number of items in the list were about the 
same as the number of elements in the memory vector, 
and poor performance here would be expected.) 

This is not enough to ensure that learning occurred, 
since we must consider the variances as well. Generally, 
the new-item variances increased very slightly over trials, 



but the old-item variances decreased markedly over trials. 
Typically, the decrease in variance was about an order 
of magnitude (10: 1) over say three to four trials, and this 
is a very large decrease. But then this is what a closed­
loop system is intended to do: to "home in" on some 
desired value and achieve equilibrium. Thus, it seems safe 
to conclude that the open-loop system can learn. 

The other question was whether the model generated 
a replacement effect. Sometimes there was a replacement 
effect, more often there was not, but on closer inspection 
of the results of the simulations this problem was replaced 
by a larger problem. The simulations clearly and consis­
tently failed to yield a repetition effect. That is, in the 
experimental condition, targets and nontargets were of 
comparable strength. The results of the simulations, along 
with the relevant parameter values, are shown in Table 4 
and, as can be seen, the mean strength of targets and non­
targets was essentially the same. 

We find, then, that the closed-loop version cannot han­
dle one of the very striking results of the experiments, 
namely, that in the experimental group targets were bet­
ter recognized than nontargets. As has been noted, not 
only was this repetition effect significant in each experi­
ment, but there was only 1 subject in all three experiments 
who did not show a difference in this direction. 

We turn now to a second modification of the matched­
ftlter model, one based on probabilistic encoding, which 
does a better job of describing the main results of our ex­
periments. 

Probabilistic Encoding 
The other modification of the matched-ftlter model that 

we consider is one in which each feature of an item is 
encoded with some fixed probability, p. This means that, 
on every trial, each feature of the item is or is not added 
to the memory vector. The dimensionality of the item vec­
tors is not changed; rather, the encoding is probabilistic. 
This idea has been used by others (e.g., Estes, 1959; 

Table 4 
Frequencies, Means, and Standard Deviations of Targets and 

Nontargets for 16 SimulatiolL'l (Sim) of the Closed-Loop Model 

Targets Nontargets 

Sim Rep N L a Freq M SD Freq M SD 

1 200 64 8 .3 1.1 .85 .44 6.9 .86 .50 
2 200 64 16 .3 4.1 .77 .56 11.9 .74 .62 
3 200 64 16 .3 3.8 .72 .59 12.2 .74 .63 
4 100 200 30 .3 3.0 .84 .46 27.0 .82 .44 
5 100 200 30 .5 6.0 .83 .41 24.0 .84 .41 
6 100 200 30 .7 10.5 .84 .37 19.5 .84 .40 
7 100 200 30 .5 5.9 .83 .41 24.1 .84 .41 
8 100 200 30 .3 3.0 .84 .46 27.0 .82 .44 
9 100 300 30 .3 1.2 .89 .33 28.8 .89 .35 

10 100 400 30 .3 0.5 .96 .26 29.5 .91 .30 
11 100 500 30 .3 0.3 1.06 .22 29.7 .93 .26 
12 100 500 32 .3 0.4 .94 .24 31.6 .92 .28 
13 300 500 32 .3 0.4 .94 .24 31.6 .92 .28 
14 250 500 32 .5 1.8 .93 .26 30.2 .92 .26 
15 250 500 32 .5 1.6 .92 .24 30.4 .93 .26 
16 300 400 32 .45 1.9 .92 .28 30.1 .91 .30 

Mean .881 .374 .869 .402 

Note-Rep is number of replications; L is list length. 
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Table 5 
Hit-Rate Crossover on Trial 2 from a Simulation with 

a=.98, p=.4, N=200, L=15, and a Yes-No Criterion at 0.3 

Condition Target Nontarget 

Control .747 .987 
Experimental .940 .765 

Hintzman, 1986), and it has some intuitive appeal. More 
important, it works. It allows learning to occur, and it 
seems to generate a replacement effect. 

Unlike the closed-loop version, explicit expressions for 
the old-item mean, the new-item variance, and, conse­
quently, the signal-to-noise ratio can be obtained. The deri­
vations are presented in Appendix C. It can be seen that 
this is a more general version of the matched-ftlter model 
which reduces to the matched-ftlter model when p= 1. 

The rate of learning depends jointly on list length and 
the three parameters p, a, and N, but we do not analyze 
the model in any detail here. All we would like to do is 
present some sample data to show that the model can in­
deed generate a replacement effect. We have not done an 
extensive grid search to explore the parameter space; the 
results we present are illustrative, but the model is not 
yet complete. 

The results from a simulation with a = .98, p = .4, 
N=2oo, and a list length of 15 are shown in Table 5. The 
yes-no criterion was set at 0.3, order of presentation was 
randomized, and there were 100 replications. For both 
the control and the experimental group we assumed that 
the criterion was placed midway between the new- and 
the old-item mean, and the old-item variance was com­
puted separately for targets and nontargets in each con­
dition. 

We did not use a parameter-estimation routine to ob­
tain this crossover; it is the result of a fairly coarse grid­
search with a few sample values of the criterion (.1 or 
.3), a (.95-.99), and p (.20-.80 in steps of about 0.5). 
(Remember, the criterion is the criterion in the simula­
tion to segregate targets and nontargets on Trial 2, not 
the criterion used to determine the hit and false-alarm rates 
from the dot-product values in the simulation.) 

Although the results of this simulation (and most others) 
generated a reasonable hit-rate crossover, quantitatively 
speaking they were not very close to the experimental 
data. We have not tried to improve the fit because the 
model is incomplete. In particular, it does not include any 
output interference. Information is added to the memory 
vector at the time of study but not at the time of test. From 
what we know of recognition memory, this is surely a 
major omission, and rectifying this omission is the next 
step to take in the further development of the model. 

All we can claim, then, is that the model generates the 
right qualitative effect. In addition, it certainly demon­
strates a repetition effect, and this was the downfall of 
the closed-loop model. In about 30 simulations it only 
failed to appear once, and generally the mean dot-product 
value for targets in the experimental condition was 
20%-50% greater than the mean dot-product value for 
nontargets in the experimental condition. There was no 
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tendency for the magnitude of the hit-rate crossover to 
increase with task difficulty when difficulty was manipu­
lated either by variations in a or by variations in p. This 
is admittedly a potential problem, but perhaps this problem 
could be solved by including output interference in the 
model. 

Perhaps the most interesting result from the simulations 
was the context effect. There was no context effect at all 
when the proportion of targets was say 0.30 or above, 
but as the proportion decreased the context effect in­
creased, and the lower the proportion the larger the ef­
fect became. That is, targets in the experimental condi­
tion had a higher dot-product value than targets in the 
control condition, and in the most extreme simulation the 
proportion of targets was about 0.025 and the context ef­
fect was almost 2: 1. 

Why does the model generate a context effect? After 
all, the same target items are repeated on Trial 2 in the 
replacement and nonreplacement conditions, so the dot­
product value of the probe with these target items must 
be the same in both conditions. The answer probably lies 
in a consideration of the dot -product value of the probe 
with the nontargets. These must be sufficiently negative 
to offset the positive values resulting from the presence 
of the target item in the memory vector. Perhaps the in­
tuitive argument about regression is correct after all; by 
replacing the nontargets, the targets benefit. It is not that 
the targets per se are any stronger in the experimental than 
in the control condition. Rather, the dot-product value is 
larger because the "masking" items are replaced by other 
items that are likely to be neutral rather than negative. 

CONCLUSION 

Our initial intuition turned out to be correct: tht!re is 
a replacement effect and, using the RRSP, we were able 
to demonstrate a statistically significant hit-rate crossover 
in all three experiments. We also demonstrated a signifi­
cant repetition effect but not a significant context effect. 
The matched-filter model of Anderson (1973) was shown 
not to be able to learn, and a closed-loop version could 
not generate the repetition effect. A second modification 
based on probabilistic encoding of item features was bet­
ter in that it could generate both a hit-rate crossover and 
a repetition effect that was qualitatively consistent with 
the data. 

We cannot claim complete success in modeling the data. 
We did not find a significant context effect in the experi­
ments, and the probabilistic encoding model was not a 
good quantitative fit to the hit-rate crossover. Also, it is 
not clear whether or not the model can predict the increase 
in the magnitude of the hit-rate crossover with the increase 
in task difficulty that we found in these experiments. 
However, the model is incomplete and with the addition 
of output interference may fare better. Finally, the model 
provides some guidance as to how we might find a con­
text effect. The smaller the proportion of targets, the 

larger the context effect should be, and this provides an 
interesting challenge for further research. 
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NOTES 

l. We would like to thank W. K. Estes, one of the reviewers of an 
earlier version of this paper, for his comments on this problem. 

2. Unfortunately not all of the raw data for the control condition of 
Experiment I were still available for this analysis, so in computing the 
value of the t test we used an estimate of the standard deviation whose 
ratio to that of the experimental group was twice as large as the com­
parable ratio in either Experiment 2 or Experiment 3. 

3. We would like to thank M. J. Humphreys, one of the reviewers 
of an earlier version of this paper, for emphasizing the importance of 
ruling out this alternative explanation. 

APPENDIX A 
For a list of L items, each presented once, the mean of the 

old-item distribution /Lk(L), or simply /Lk, is given by: 

/Lk = E [fk' M] = E [fk . E~=. a,f,] 

= E[fk' (akfk + E~~ka,f,)] 

= E [fk . akfk + fk' E~~k a,f,] 

= E [fk . akfk] + E [fk . E~~k a,f,] 

= akE [fk . fk] = NakE [Z2] 

= Naka> = Nak(PIN) = akP 

for an item in serial position k, where a> is the variance of the 
feature distribution. The probe item (from serial position k) is 
fk' and M is the memory vector. We use a, as the serial-position 
constant, I = I, ... , L, and it is a geometric function of a. Since 
f is a random vector, it can be considered as an ordered list of 
N random variables, each a random sample from the feature dis­
tribution. We use Z to denote the random variable. Since the 
items are independent, fk' f,=O, l*k. Thus, if P= I (P is the 
power of the vector) then /Lk=ak and, from Equation I, ak=cr--k. 

For R presentations of this list with a fixed order of presenta­
tion, the mean of the old-item distribution p.o(R,L), or simply 
/Lo, is: 

/La 
I Y"R Y"L I Y"R Y"L L ~r=1 ~I=' /LI = L ~r=. ~I=' Cr " 
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I I-aRL 

L I-a 

We use Cr,l rather than al to emphasize the fact that the serial­
position constant varies with both repetition (r) and serial posi­
tion (I). Assuming a fixed order, we can factor out the repeti­
tion component, which is simply the geometric sequence I, aL

, 

a 2L , ... , a(R-.)L, and we use the standard expression for the 
sum of the first R terms of a geometric progression. We then 
do likewise for the serial-position component, which is I, a, 
0:':2, ... , a,L-t. 

For one presentation of the list, the new-item variance UN2(L), 

or simply u N2
, for the probe item g dotted with the memory vector 

Mis: 

UN2 = Var[g· M] = Var[g· E~=. a,fl] 

= E~=. alVar[g· f] = NE~=. alVar[ZW] 

= N E~=. alu4 = N E~=. al(P2IN2), 

where Z and Ware identically distributed independent random 
variables. We use the fact that 

Var[E~=. cIZ] = Var[c.Z+ ... +CLZ] 

= Var[c.Z]+ ... +Var[cLZ] 

= c.2Var[Z]+ .. ,+cL2Var[Z] 

= E~=I clVar[Z], 

where the c/s are constant terms. If P= I, then, for a single 
presentation of the list, the new-item variance UN2 is: 

For R presentations of the list, we need UN2(R,L), or simply UN2, 

which is: 

UN2 = Var[g· M] = Var[g· E!. E~=. cr,lfa, 

Assuming a fixed order of presentation, we can write cr" as the 
product of al and b" where al varies with serial position but 
not with repetition, and br varies with repetition but not with 
serial position. Consequently, 

Var[g· E!. E~=. cr,lfl] = Var[g· E!. br E~=. a,fl] 

= (E!. br)2Var[g . E~=. a,fl] 

= (E~=. br)2Var[E~=. alf,' g] 

= N(E!. br)2E~=. alVar[ZW] 

_ (l-aRL)2 I-alL 
- N I-cr- I-a2 ~ 

The main point here is that the repetition component (br ) fac­
tors out differently from the serial-position constant (a,). To see 
this, consider a specific example with three repetitions of a three­
item list, where the list elements are the (identically distributed) 
random variables X, Y, and Z. This is illustrated in Table AI. 
If you take the double summation over R and L, the repetition 
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Table Al 
mustrations of Three Repetitions (R) of a List of Three Random 

Variables X, Y, and Z with Coefficients b, and a, 

R 

1 
2 
3 

List 

2 3 

factor comes out as (!;b,)l, whereas the serial-position factor 
comes out as !;a,z. Remember that the items (here, random vari­
ables) are assumed to be the same on each presentation, but they 
vary randomly from one serial position to another. 

Since the signal-to-noise ratio (SIN) is by defmition /Lo1/uN1, 
we have: 

{ (lIL)[(I-cr'L)/(I-a)]}Z 

SIN = (l/N)[(l-cr'L)/(l-aLW[(l-a1L)/(I-a1») 

= (NW)[(I-aL)/(I-aW [(I-a1)/(l-a1L)] 

= (NW)[(1 +a)/(I-a») [(l-aL)/(l +aL»). 

Consequently d' , which is the square root of the SIN ratio, will 
vary with a, L, and N, but it will not vary with R, the number 
of presentations. Thus, performance as measured by d' will not 
improve with repetition, so learning will not occur. 

APPENDIX B 

Let q,(s) be the item strength distribution after a single presen­
tation of the list. For the control condition p.c(T,I), the mean 
strength of the target items after one presentation is given by: 

p.c(T,I) = d' + I:", sq,(s)ds, 

where a is the location of the criterion on the strength (s) axis 
and d' is the strength resulting from the single presentation. The 
mean strength of nontargets (N) in the control condition p.c(N, 1) 
is given by: 

p.c(N,I) = d' + t""sq,(s)ds. 

These integrals can be evaluated since for a unit normal distri­
bution 

i
b q,(a) -q,(b) 
a sq,(s)ds = tI>(b)-tI>(a) 

(Murdock & Dufty, 1972). Thus we have at once that 

q,(a) 
p.c(T,I) = d' - tI>(a) 

and 
q,(a) 

p.c(N,I) = d' + l-tI>(a) 

Verbally, the mean strength of items below the criterion (i.e., 
targets) is proportional to the ordinate of the normal curve at 
the criterion divided by the area below the criterion, whereas 
the mean strength of items above the criterion (i.e., nontargets) 
is proportional to the ordinate divided by the complement of 
the area. 

Let Mc(T) be the repetition effect for targets in the control 
condition (i.e., the increase in strength resulting from a second 
presentation) and Mc(N) be the same for nontargets. In the 

control condition, then, the mean strength for targets after the 
second presentation p.c(T,2) is simply 

q,(a) 
p.c(T,2) = d' - tI>(a) + Mc(T) 

and for nontargets 

q,(a) 
p.c(N,2) = d' + l-tI>(a) + Mc(N) . 

Then the difference, Dc, between nontargets and targets in the 
control condition is: 

n. = p.c(N,2) - p.c(T,2) 

= ~ + q,(a) + Mc(N) - Mc(T). 
l-tI>(a) tI>(a) 

In the experimental condition (E) for targets 

/LE(T,2) = d' 
q,(a) 
tI>(a) + ilRE(T) , 

but for nontargets 

q,(a) 
/LE(N,2) = d' + l-tI>(a) , 

which is the same as p.c(N,l) because these items are being 
presented for the fIrst time. Then DE, the difference between 
nontargets and targets in the experimental condition, is given by: 

q,(a) q,(a) 
DE = /LE(N,2) - /LE(T,2) = l-tI>(a) + tI>(a) - ilRE(T). 

The hit-rate crossover (H) is simply 

H = Dc - DE = Mc(N) - Mc(T) + ilRE(T). 

Now the critical assumption of strength theory is that Mc(T) 
= ilRE(T), that is, that the benefIts of repetition are item specifIc 
and so should be the same for targets in the experimental and 
control conditions. If this assumption were correct, then 

H = Mc(N). 

Thus, a simple version of strength theory with the assumptions 
given above predicts that the magnitude of H should be equal 
to the increment in strength due to repetition. Since the benefIts 
of repetition will surely decrease as task difficulty increases, 
strength theory predicts that the magnitude of H should decrease 
as task difficulty increases. 

APPENDIX C 

Let M, = aM,_. + pf" where pf, denotes that each feature 
of the jth item is encoded (added to the memory vector) with 
some probability p. Then, as in Appendix A, after R presenta­
tions of a list of L items, the old-item mean JLk(R,L), or simply 
/Lk, is: 

/Lk = E [fk ' M] = E [fk . E!. E~=. c,.,pf,] 

= E [fk ' (E!. c'.kpfk + E!. E~_k c,.,pf,)] 

= akE [r· E!. b,pf]. 

We have skipped a number of steps that are spelled out in Ap­
pendix A. As before, the l=t=k summation term drops out be-



cause items are independent, so E [f.' f,] = 0, l*k. We can 
factor C,.' into two parts a. and b" where a. varies with serial 
position but not repetition and b, varies with repetition but not 
serial position. Thus, Ec, .• = a.Eb" and we can drop the sub­
script on f because k is arbitrary. Now 

a.E [f· E!'.., b,pf] = a.E [E!'.., b,pf' f] 

= a.E [E!'.., pb,f' f] 

= a.E [E!'.., pb,]E [f· f] 

= a.p E!'..,b,E [f· f] 

= pal E!'.., b,Nu2. 

That is, we can consider the probability p to operate on the serial­
position constant rather than on the elements of the vector; that 
is, b(pf) = (bp)f = (pb)f and E[(pb)f] = E[pb]E[f] 
pbE[f]. If P= 1, then we have 

l-aRL 

/L. = pal E!'.., b, = pal l-aL . 

This expression for /L. gives us the mean dot-product value when 
the probe is an old item from serial position k. For the old-item 
mean, /Lo, we have 

1 L P l-aL l-aRL 

/La = L E,=, /LI = L I-a I-OIL 
P l-aRL 

----
L I-a . 

For the new-item variance, UN2
, we have 

UN2 = Var[g· M] = Var[g· E~=, a, E!'.., b,pf,] 

= E~=, a?Var[g . E!'.., b,pf] 

= E~=, a?Var[E!'.., b,pf' g] 

= NE~=, a?Var[E:=, b,pZw] 

= NE~=, a?Var[E!'..,pb,Zw]. 

All we have done here is to bring the serial-position constant 
a, outside the bracket and switch from random vectors to ran­
dom variables. Now Epb,ZW is an expression for the sum of 
all2R -l nonzero outcomes (e.g., for R=3, these outcomes are 
b, +b2+b3 , b, +b2, b, +b3 , b2+b3 , b" b2, and b3) with binomial 
probabilities r, p'q, and Prt, respectively, where q= I-p. Now 
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Table CI 
Numerical Example to Ulustrate the SIN Ratio for 

a=.98, N=200, and L=IS 

R 

1 
3 
5 

1.0 

13.23 
13.23 
13.23 

.80 

10.59 
12.16 
12.50 

p 
.40 

5.29 
8.65 
9.78 

.05 

0.66 
1.72 
2.42 

Note-R is the number of presentations; p is the probability of encoding. 

var[E!'.., pb,Zw] 

= {pE!'.., b,2 + 2p2E!'.., E:.>, b,b,.}Var[ZW] 

= {pE!'.., br' + p2 E!'..,E:.~, b,b,. }u 4 

= {pE!'.., br' + p2[(E!'.., b,)2 - E!'.., b.>]}u 4 

= {p2(E:=, b,)2 + pqE!'.., b.>}u 4 

where, as above, q=l-p. Consequently, we have 

UN
2 = NE~=, a?{p2(E!'.., b,)2 + pqE!'.., b.>}u4 

This is the new-item variance for a list of L items presented R 
times with probabilistic encoding. 

The expression for the SIN ratio can be written as: 

so the SIN ratio is a function of p, N, a, L, and R. A numerical 
example is shown in Table C 1. 

As can be seen, the absolute performance level drops but learn­
ing (the rate of change of the SIN ratio with respect to R) in­
creases as p decreases. This probabilistic-encoding model is a 
more general version of the matched-filter model, and the ex­
pressions for /Lo, UN2, and the SIN ratio given here reduce to 
the comparable expressions in Appendix A when p = 1. 

(Manuscript received May 4, 1987; 
revision accepted for pUblication September 18, 1987.) 
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