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A context-sensitive representation
of word meanings
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This study provides a numerical representation of contextual effects on the meanings of words,
constructed from the order judgments of 19 subjects concerning the word “red” in 19 sentences. Subjects
judged whether or not the red object mentioned in a sentence was redder than, less red than, or could be
equally as red as the red object mentioned in each of the other sentences. These judgments were well
described as an interval order. This means that the red ascribed in a sentence can be represented by a real
interval with judgments of equally red corresponding to overlapping intervals. Semiorder axioms were
not met, indicating that the width of the interval varied from sentence to sentence. Possible ways of
incorporating the result into theories of semantic memory were discussed, as well as ways of accounting
for the pronounced individual differences which were observed.

This paper presents a formal representation of the
effects of sentence context on word meaning. Our
working hypothesis is that words do not have a few
discrete, qualitatively distinct meanings. Instead they
act in different contexts to establish boundaries in an
underlying continuum of knowledge. Thus, “The fire
engine is red” is not represented in memory solely as a
proposition attributing the property of redness to a
fire engine. Rather, the sentence also delimits the set
of appropriate representations of the color of the fire
engine. Redness attributed in another context might
give rise to a different, nonoverlapping set of
possibilities.

Persuasive a priori arguments that the meanings of
terms in ordinary use are context sensitive have been
set forth by Wittgenstein (1963). He claimed that the
senses of words in different occurrences and contexts
are best considered as related only by “family
resemblance,” since it is impossible to determine any
fixed defining characteristics. A related conclusion
has been reached by linguists such as Weinreich (1971)
and Lakoff (1972) when addressing the semantic
atomism implicit in interpretive semantics (e.g., Katz,
1966, 1972).

There are several lines of empirical evidence showing
semantic flexibility (Anderson & Ortony, 1975; Barclay,
Bransford, Franks, McCarrell, & Nitsch, 1974).
Especially interesting is the work of Labov (1973), who
has been concerned to discredit the “categorical view”
of word meanings. This view, he says, implicitly defines
linguistic units in terms of discrete, invariant categories,
which are qualitatively distinct, conjunctively defined,
and composed of atomic primitives. Labov’s experi-
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ments show the fuzziness of the concept cup. The width,
height, contents, material of construction, and number
of handles were all factors in determining whether a
drawing of an object would be called a “cup,” “mug,”
“bowl,” “vase,” etc. Labov found that the influence of
any dimension on the tendency to call an object a cup
systematically interacted with context, that is, the values
of the object on other dimensions. He thus concluded
that the rather vague and hedged definitions found in
ordinary dictionaries—replete with *‘usually,” “often,”
“sometimes”—are in much closer agreement with
language use than the all-or-none definitions assumed in
most linguistic and psychological models.

The research described here is an attempt to provide
a numerical representation of the boundaries and ranges
determined by particular words in various contexts.
The choice of a numerical representation is motivated
by our belief that many important cognitive relations
possess all the properties of the real numbers. One
should, for example, be able to fill the gap between
any two possible cognitive representations of attributed
redness in a fashion which is impossible with a count-
able set of entities. This view implies that linguistic
representations, being at most countable, cannot be
isomorphic with the knowledge or experience that they
convey. Rather, language can only serve to map more or
less unique parts of the underlying cognitive space. This
view illuminates the relation between context and
semantic flexibility. Context operates to narrow the
possible representations of an utterance to an appro-
priate interval. In this way, the uniqueness or precision
of linguistic representations is greatly extended. It is
obvious, for example, that we can communicate a great
deal about the color of an object in a particular context
using only a very small set of color names. If semantic
flexibility is thus related to the underlying continuity
of knowledge, a numerical representation seems to be
the most natural way of capturing the relationship.
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Table 1
Sentences Used to Define Contexts

Anger He saw red when his secretary came in an hour late.
Apple Red apples were used in the salad.

Army The Red Army is very well disciplined.

Beet Red beets make a good garnish.

Blood The knife blade was red from the blood of the victim.
Brick The red brick house was being demolished.

Dress Her red dress made her the center of attention.
Eyes The laborer’s eyes were red from the smoke and dust.
Face His face turned red with embarrassment.

Fire The fire is red hot.

Fire engine The red fire engine raced down the street.

Flag The U.S. flag is red, white, and blue.

Hair The boy with red hair stood out in the crowd.
Ink The teacher wrote her comments in red ink.

Light He stopped his car when the stop light turned red.
Paint The red paint spilled onto the floor.

Soil The red soil of Alabama is good for raising cotton.
Sunburn  His skin was red due to sunburn.

Sunset As the sun set the sky turned red.

Wine They drank fine red wine with their meal.

The research concerned the effects of context on the
representations of the word “red.” The assumptions
are that the use of a word such as “red” in some
particular context conveys information defining a set of
plausible cognitive representations, and that in many
cases these representations can be fully ordered by the
subject (perhaps in terms of their projection on a redness
vector or distance from a prototype). Given these
assumptions, it becomes possible to obtain a rich charac-
terization of the different representations of a term by
looking at simple order judgments. Subjects were asked,
for example, if the red of a sunburn was definitely
redder than, definitely less red than, or possibly equally
red as the red of a fire engine. This procedure was
repeated for all possible pairs drawn from a set of sen-
tences, each of which used the word in a different
context. It was assumed that a subject would choose the
first alternative if each of his cognitive representations
of sunburn red was redder than any of his representa-
tions of fire-engine red. He would choose the second
alternative if all his fire-engine reds were redder than
any sunburn red. If some fire-engine reds were as red
as some sunburn reds, he would indicate this by select-
ing the third alternative.

These assumptions may be expressed formally as
follows: If a, b, ¢, d, etc. represent different contexts,
then we represent the three possible responses as aRb,
bRa, and a~vb for some pair of compared contexts,
according to whether the subject decides that the red
in a is redder than that in b, that the red in b is redder
than that in a, or that they could be equally red. Thus,
“R” and “~” represent dominance and indifference
relations, respectively. Fishburn (1970, 1973) has dealt
extensively with empirical systems characterized by
dominance and intransitive indifference. He has shown
that under many conditions such systems can be
represented by real intervals if the following axiom
holds:
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aRb & cRd = aRd or ¢cRb. (1)
Systems in which Axiom 1 holds are called interval
orders. Fishburn’s representation theorem states that if
Axiom 1 is true, there exist two real-valued functions,
L and U > L, such that aRb if and only if L(a) > U(b).
In the present case U and L represent, respectively,
upper and lower bounds of redness in each context.

Assuming that Axiom 1 holds, one can examine the
scaling solution for further information. If, for example,
aRb and bRe implies dRc or aRd, the data can then be
scaled as a semiorder (cf. Suppes & Zinnes, 1963) in
which U — L is a constant. In this case, one could pro-
pose that the effect of context is to change the amount
of redness conveyed by the term while leaving the range
of redness, U — L, constant for all contexts. An even
stronger condition could hold, one in which v is an
equivalence relation, that is, transitive, symmetric, and
reflexive; if so, a scaling solution would exist with
L = U. Were this the case, the concept of a range of
redness would not be needed after all; each use of “red”
could be represented as a point.

In summary, our hypothesis is that “red” results in
different representations in different contexts, and that
these variations can be captured in an interval order
scale. Also investigated was the possibility of using the
stronger axioms of a semiorder or full order.

METHOD

Subjects
The subjects were 19 students in an educational psychology

course who participated in the experiment as part of a course
requirement.

Materials

The materials were the 190 pairs that can be constructed
from the 20 sentences in Table 1. Each of the sentences con-
tained the word “red.” The word itself was unqualified; phrases
such as “very red” or “‘as red as an apple” were not included.
The sentences were chosen from the productions of other
students in such a way as to maximize the range of redness
across sentences, as judged by the subjects who produced the
sentences, and the popularity of the theme, as indicated by
frequency of use by the subjects producing the sentences.
“Red” was used in its literal sense in all but two of the sen-
tences, the ones about anger and the Red Army.

Procedure

The original design called for 190 pairs formed from 20
sentences. Due to an error, however, one pair was omitted and
another duplicated. This error was not discovered until the
subjects had been tested. The solution to the problems this
raised is discussed in the Results section. Each sentence was the
first member in half the pairs in which it appeared and the
second member in the other half. The 190 sentence pairs were
randomly ordered and divided into 19 blocks. Each block was
typed on a separate page; the pages were then collated into
booklets in 19 different orders, forming a Latin square. Finally,
a 20th page was added to each booklet. This last page contained
10 pairs randomly chosen from different blocks and was
included as a check on the subject’s reliability.

Each of the subjects was given a machine-readable answer
sheet, a mimeographed set of instructions, and one of the
booklets described above. The experimenter read the instruc-
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Table 2
Consistency Statistics for Each Subject
Difference Overlap Average Axiom One- Two-
Subject 1 Error Error Error Failure Tau Wide Wide
1 724 .308 143 193 .006 .842 4 0
2 .894 .080 130 123 .001 903 3 2
3 1.000 1.714 463 515 .014 979 1 0
4 156 310 549 468 .025 818 6 1
5 876 400 227 257 004 .897 4 0
6 1.000 520 .548 544 .015 .873 7 1
7 .802 877 368 .538 .020 814 6 2
8 933 .805 .762 772 034 .839 5 1
9 909 2.278 .784 .942 .039 931 3 0
10 .028 3.600 4.184 4.082 .248 874 3 1
11 693 .296 142 181 .005 935 1 0
12 .896 2.864 470 778 .024 976 0 0
13 -.051 1.592 3.861 3.211 237 832 7 1
14 1.000 2.012 626 .825 .028 943 2 0
15 .530 1.083 .208 269 .003 949 2 0
16 1.000 421 518 A85 .028 .893 3 0
17 724 229 911 719 .048 .880 5 1
18 745 409 1.090 912 .051 .769 8 0
19 753 1.062 1.640 1.532 .091 .884 4 0
Mean .748 901* 916* 913 047* 886 3.90 53

*Weighted by number of cases.

tions to the subjects as they followed along on their copies.
The most relevant part of the instructions was as follows: “If
you think that the red object in Sentence A is definitely redder
than the red object in Sentence B, mark Alternative A on your
answer sheet. If you think that the object in Sentence B is
definitely the redder, mark Alternative B on the answer sheet.
If you think that the two objects could be equally red, mark
Alternative E. In making these judgments, remember that we are
interested in what the description normally conveys to you.
Hence, you should only consider the normal range of redness
implied by the sentence.” The subjects worked through the
booklets at their own pace.

RESULTS

All subjects were first evaluated on reliability using
the pairs duplicated on the last page of each booklet.
Each of the duplicated pairs, (a, b), was assigned a score
of —1 if aRb, 0 if a~vb, and 1 if bRa. Then, for each
subject, the Pearson product-moment correlation coef-
ficient was computed between scores on the first and
second occurrences of the duplicated items. These
coefficients are presented in Table 2. The bulk of the
subjects were not perfectly reliable. In fact, two of them
appeared to be responding at random. However, we
believed that reliability was good enough to allow a
test of the interval-order axiom.

To deal with the procedural error mentioned above,
the Dress context was arbitrarily eliminated from all
further analyses, since the sentence pair Dress and Eyes
was not included in the materials. The other alternative,
eliminating the Eyes context was also examined, and the
results were essentially the same in either case.

The procedure suggested by Fishburn’s (1970) proof
of the representation theorem is ranking the set of
values, V, consisting of all U(a)s and all L(a)s. To see
how this can be done, consider an example involving the

four contexts, eyes, brick, ink, and apple. Suppose that
a subject indicated that eyes could be as red as brick
but is redder than both ink and apple, that brick could
be as red as ink but is redder than apple, and that ink
could be as red as apple. Denoting each context by its
initial letter, we have

e~b, eRi, eRa, bvi, bRa, iva.

To rank the eight points in V, we need only count
the number of points exceeded by each member of V.

. Consider first the number of points below L(b), the

lower limit of brick. Since brick is redder than apple,
L(b) must exceed both the upper and lower bounds
of apple. Also, since brick is redder than apple, and
apple could be as red as ink, L(b) > U(a) = L(i), so that
L(b) therefore exceeds three points in V, namely,
U(a), L(a), and L(i). Now consider the points falling
below U(b), the upper bound of brick. Naturally, those
points falling below L(b)—U(a), L(a), and L(i)—will also
fall below U(b). We may also assume that U(b) exceeds’
the lower bounds of those objects which could be red
as brick; that is, U(b) also exceeds its own lower bound,
L(b), and that of ink, L(i). Finally, note that brick
would be as red as eyes, and eyes are redder than ink.
This implies that U(b) = L(e) > U(i); hence, U(b)
also exceeds the upper bound of ink. U(b) therefore
exceeds six points in V, namely, U(a), L(a), L(i), L(b),
L(e), and U(i). This line of reasoning may be developed
into the following general algorithm for determining
the number of points exceeded by any point in V.
We first introduce some notation:

NL (a) is the number of contexts, b, such that aRb.
Ny(a) is the number of contexts, b, such that not (bRa).



Now consider the set of points that are ranked below
L{a). Clearly, L(a) > U(b) if and only if aRb. We will
assume that L(a) > L(b) if aRb, or if ab and Ny, ()
> Ny, (b). This latter condition [Ny,(a) > Np(b)] indi-
cates there is a context ¢ such that aRc and not (bRc);
such a context could exist only if L(a) > L(b). Next,
consider the set of points ranked below U(a). Again,
U(a) > L(b) if and only if not (bRa). We will further
assume that U(a) > U(b) if aRb, or if avb and Ny(a) >
Ny(b). This latter condition [Ny(a) > Ny(b)] indicates
there is a context ¢ such that cRb and not (cRa); such
a context could exist only if U(a) > U(b). Now let
Mp(a) be the number of points such that a~b and
Np(a) > Ny,(b), and let My(a) be the number of points
such that anb and Ny(a) > Ny(b). Then the number of
points in V exceeded by L{a) is 2Ny,(a) + My,(a), and the
number of points in V exceeded by U(a) is Ny(a) +
Ny(a) + My(a).

Applying this algorithm to the above example, we
see that Np(b) = 1 (because bRa), and My (b) = 1
[because b~vi, and Np(b) = Np(i) + 1], Ny(b) = 4
(because bc, bvb, b, and bRa), and My(b) = 1
[because b, and Ny(b) = Ny (i) + 1]. Thus, 2Ny (b) +
My (b) = 3, and Ny(b) + Ny,(b) + My(b) = 6. Applying
the algorithm to the other points in V reveals that the
numbers of points exceeded by L(e), L(b), L(i), and L(a)
are 5, 3, 0, and 0, respectively; corresponding figures
for U(e), U(b), U(i), and U(a) are 6, 6,4, and 2, respec-
tively. Using these figures to rank the points in V
produces the following result:

Ule) = U(b) > L(e) > U(i) > L(b) > U(a) > L(i) = L(a).

For each subject, the points in V were ranked accord-
ing to the scheme just outlined, and each point was
assigned its rank order, with ties being assigned the
average of tied ranks. A graphical presentation of the
results of this analysis for Subject 1 appears in Figure 1.

The implication of Fishburn’s proof is that if Equa-
tion 1 is satisfied, the scaling procedure that has just
been described will yield U and L such that ab if and
only if the intervals [L(a), U(a)] and [L(b), U(b)] over-
lap. Failure of the axiom could result in two types of
inconsistency. First, pairs with overlapping intervals
could be judged different, and, second, pairs with non-
overlapping intervals could be judged indifferent. To
evaluate the extent of the first type of error, called
“overlap error,” each pair in which aRb was assigned
an overlap measure of 0 if L(a) > U(b), or U(a) — L(b)
+ 1 if L(a) < U(b). To evaluate the second type of
inconsistency, “‘difference error,” each pair in which
ab was assigned a distance measure of max [0, L(a) —
U(b), L(b) — U(a)] . The average overlap of pairs judged
different, the average distance between pairs judged
indifferent, and the weighted average of these two
statistics was then computed. Finally, the overall propor-
tion of occasions on which Equation 1 failed, called
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“axiom failure,” was computed as a proportion of the
number of times the premise was met and a # ¢ and
b # d. The four types of error statistics are listed in
Table 2. Although there is no absolute standard to judge
these statistics by, they all seem quite low. Notice that
scaling consistencies bear an obvious relation to the
reliability of the subjects’ judgments. When Subjects 10
and 13 are discounted, average error is about three-
fifths of an’ ordinal unit and the scaling axiom fails in
only .025 of the possible cases.

Having shown that Axiom 1 fits reasonably well,
we will not consider stronger representations. A semi-
order can be scaled in such a way that U — L is a con-
stant. Although the scaling solution used here does not
guarantee a semiorder representation if one exists, it
does uniquely order the points in V. Hence, a sufficient
condition for a semiorder is that U(a) > U(b) if and only
if L(a) > L(b). To examine this, we computed Kendall’s
tau between U and L for each subject. The results
are shown in Table 2. Some of the taus are quite high,
suggesting the possibility that these subjects’ data may
be described by a semiorder. These statistics, however,
are somewhat deceptive in that they entail the number
of pairs that are involved in violations of the semiorder
condition as opposed to the number of individual
contexts that are involved in such violations.

Another way of viewing the data is to determine the
percentage of contexts whose redness interval is wider
than the interval of some other context. We will say
that a context, a, is one-wide if there is another context,
b, such that L(a) < I(b) and U(a) > U(b); a is a two-
wide context if there are contexts b and ¢ such that
L(a) < L(b), U(b) < L(c), and U(a) > U(c). Thus, the
one-wide contexts for Subject 1 are fire, sunburn, hair,
and blood. (Subject 1 has no two-wide contexts.)
The number of one-wide and two-wide contexts for each
subject are shown in Table 1. If Subjects 10 and 13 are
excluded, the overall percentages of one- and two-wide
contexts are 19.8 and 2.5, respectively. Neither one-
wide nor two-wide contexts are representable in a semi-
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Figure 1. The intervals [U(a), L(a)] for each context, a,
as determined by the data from Subject 1.
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order. It would appear, therefore, that a semiorder
characterization can be rejected; however, a definite
conclusion is not possible because of the lack of
reliability of the judgments.

Finally, it is interesting to note the remarkable lack
of agreement among subjects. Kendall coefficients
of concordance between U, L, and U — L were .08,
.14, and .20, respectively. Another statistic which gives
some idea of the degree of concordance is the extent to
which one subject decides aRb when another decides
bRa. For each pair of subjects, we computed the number
of times that aRb for one subject and bRa for the other,
and the number of times that aRb for one subject or
bRa for the other. The overall ratio of the former
number to the latter was .10. Neither this statistic nor
the coefficients of concordance were substantially
affected by eliminating Subjects 10 and 13.

DISCUSSION

The main intent of this study was to investigate
contextual effects on the representations to which a
word gives rise and to determine whether or not
observed variations in meaning could be given a consis-
tent numerical representation. The results indicate that
redness judgments generally do satisfy the interval order
axiom. This fact is consistent with the hypothesis that
context places bounds on the internal representations
of a concept. The data definitely could not be described
by a full order. This means that the meaning of red in
each context could not be represented as a point.
Instead, without exception, redness in a context had to
be represented as a real interval. Since the widths of the
intervals, U — L, generally varied, the overall fit of a
semiorder was poor.

While acknowledging and handling homographs, most .

current theories of semantic memory and language
comprehension (e.g., Anderson & Bower, 1973; Smith,
Shoben, & Rips, 1974) have yet to deal with the fact
that words systematically shift meanings as a function
of context. They have not taken account of the fact
that people have range or distributional knowledge.
Rather, it is usually assumed that concepts can be
represented as a set of features, each of which takes on
a single discrete value.

How could distributional information be represented
in human memory? An obvious ploy is to represent the
properties of concepts as intervals instead of points.
A lower limit and an upper limit, or the subjective
equivalent of a mean and standard deviation, might be
stored. This tack has a number of difficulties, such as
the incorporation of the information in new instances
and deciding which dimensions to distribute the infor-
mation on. A more promising solution is to abandon
the totally deductive processes which characterize most
recent theories. There is evidence which suggests that
people may be better at dealing with particular cases
than abstracted general concepts (Anderson & McGaw,

1973; Anderson & Ortony, 1975). One could accommo-
date the data reported here by supposing that people
generate or retrieve particular instances and base their
inferences on these cases. In this view, in determining
whether fire-engine red is redder than sunbum red, the
subject generates the palest red fire engine and the
fiercest red sunburn and compares the two. Such a
process could produce the patterns of behaviors
observed in this study and seems more consistent with
the results from other research (Kahneman & Tversky,
1973; Tversky & Kahneman, 1971, 1973) than a system
based on deduction from a set of propositions.

The deficiencies of a totally deductive approach are
also suggested by research on ordered series. Several
investigators have shown that the speed and accuracy
of decisions about the relative position of two objects

. in a series increase with the distance between the

objects (Lovelace & Snodgrass, 1971; Moyer, 1973;
Moyer & Landauer, 1967; Scholz & Potts, 1974). An
attempt to explain this fact in terms of deductive reason-
ing from a set of propositions is awkward, to say the
least. An explanation in terms of inductive inference is
far simpler and seems to fit the data from many situa-
tions (Gillman, Buckley, & Theios, Note 1).

Finally, the matter of individual differences is some-
what puzzling. Rosch (1973a, b), on the basis of cross-
cultural evidence, suggests that there is considerable
consistency among people in color perception. However,
if our data is any indication, there is little agreement
even in our own culture concerning the meaning of any
particular color word.

There are several ways of approaching the subject
of individual differences. One way would be to represent
each context as a region in multidimensional space.
This would allow the application of any of several multi-
dimensional preference models. For example, Carroll
(1972) describes a family of unfolding models relating
preference to distance from some ideal. According to
this theory, U and L could be represented as maximal
and minimal distances from an ideal red. Within this
framework, individual differences could occur in the
location of the ideal red and, even more likely, in the
weights that each dimension receives in the computa-
tion of distance. Another approach is suggested by the
work of Tucker and Messick (1963). Each meaning
could be represented by the projection of its context
region on a redness vector running through the space.
Individual differences would be captured in this model
in the location of the vectors. Naturally, a detailed
investigation of any of these models is beyond the scope
of this paper.

Another possible explanation for individual
differences is that, as mentioned above, the subjects
might be dealing with stored distributional information
instead of plausibility bounds. In other words, subjects
could be dealing with the same subjective distribution
of redness, but apply different criteria to those distribu-
tions to produce L and U. The low proportion of times



when one subject responded to aRb while another
responded bRa is consistent with this hypothesis.

This hypothesis can be elaborated under the assump-
tion that subjects’ redness judgments involve generating

particular examples. Take the sentence *“The knife blade

was red from the blood of the victim,” for instance.
One subject might construct a scenario on the assump-
tion that the blood was fresh; for him, then, blood red
would probably be interpreted as very red and compris-
ing a narrow interval. Another subject might suppose
that a detective had come upon the knife some hours
after an assault; a low degree of redness would probably
be inferred. Still another person might consider both
scenarios, resulting perhaps in a redness interval spanning
those of numerous other contexts.

The implication of the present research is that con-
cepts are going to have to be represented in terms of
context-sensitive intervals rather than context-invariant
points. Several suggestions for how this might be done
have been considered, but it would be premature to
attempt to choose among them.
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